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Abstract Different upper tail indicators exist to characterize heavy tail phenomena, but no 

comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, 

Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness – the surprise factor. 

Sensitivity analyses to sample size and changes in scale- to-location ratio are carried out in bootstrap 

experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable 

between records of similar length. For samples with symmetric Lorenz curves, shape parameter, 

obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the 

first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest 

the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. 

These indicators should be supported with calculation of the Lorenz asymmetry coefficients and 

interpreted with caution.

Keywords upper tail behaviour, heavy-tailed distributions, extremes, diagnostics, surprise

1 Introduction

Heavy tail phenomena have been discussed in various branches of science reaching from 

finances and economics to natural hazard research and environmental sciences (e.g. Malamud, 

2004; Katz et al., 2002). While several definitions of heavy tail behaviour of statistical 
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distributions coexist, it can generally be characterized by a higher probability of the 

occurrence of extreme events compared to distributions with bounded or light tails (El 

Adlouni et al., 2008; Papalexiou et al., 2013). Hence, the occurrence probability of events 

larger than observed ones is higher for heavy-tailed distributions. Historical observations of 

heavy-tailed phenomena can be a poor guide to the future (Kousky and Cooke, 2009). 

Neglecting heavy tail behaviour can lead to strong underestimation of extreme events (Katz, 

2002) and thus to surprise. Being caught by surprise may lead to severe and malign 

consequences (Taleb, 2007; Merz et al., 2015).

In hydrology and natural hazard research, the upper tail behaviour is important as the 

majority of risk reduction measures is based on the probability of extreme events. For 

instance, the design dike height is usually derived based on the probability of extreme flows 

represented by the upper tail of the adopted distribution. Therefore, it is important to reliably 

characterize the upper tail behaviour of the underlying distribution based on the observed 

samples. Heavy tail behaviour has been identified for several hydro-meteorological and 

damage-related variables such as streamflow, precipitation, landslides, flood damage and 

sedimentation rates (Katz et al., 2002; Malamud, 2004).

The quantification of upper tail behaviour is not straightforward as there is a “jumble 

of diagnostics” (Cooke et al., 2014). Some diagnostics are based on the graphical 

interpretation of distributions, utilizing for instance mean excess plots, log-log plots or the 

generalized Hill ratio plot (Resnick, 2007; El Adlouni et al., 2008). Since graphical methods 

are usually restricted to certain types of distributions, a quantitative comparison of tail 

heaviness between two or more distributions of different types is difficult. Due to the visual 

interpretation, graphical methods are time-consuming and may lack objectivity. Although 

there are recent attempts to make graphical tools like the mean excess function more objective 

(Nerantzaki and Papalexiou, 2019), graphical methods are usually hardly feasible when a high 

number of samples is to be compared. Hence, there is a need for quantitative or scalar, 

objective and easily applicable indicators (Cooke et al., 2014). 

Previous studies employed different scalar upper tail indicators for examining the 

upper tail behaviour of hydrological variables. Reviewing the literature, we identified four 

relevant scalar upper tail indicators. The shape parameter of the generalized extreme value 

(GEV) distribution is a common indicator, which has been applied to quantify the upper tail 

behaviour of flood and heavy precipitation distributions (e.g. Zhou et al., 2017; Gu et al., 

2017; Kyselý and Picek, 2007). In a global study, Papalexiou et al. (2013) analysed the tails 

of precipitation distributions at more than 15 000 stations. Heavy tails of flood peaks were 
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investigated by Morrison and Smith (2002), Katz et al. (2002) and Villarini and Smith (2010) 

in the central Appalachian region (USA), southern Germany and the eastern USA, 

respectively. Other studies focus on the peak-over-threshold approach and use the shape 

parameter of the generalized Pareto (GP) distribution (Zhou et al., 2017; Naghettini et al., 

1996; Bernardara et al., 2008, Papalexiou et al., 2018). However, as the GEV and GP 

distributions for the same dataset share an equal shape parameter, whereas their respective 

scale and location parameters differ (Coles, 2001; Katz et al., 2005), we only focus on the 

shape parameter of the GEV. 

Further, the upper tail ratio (UTR), defined as the highest value in the sample 

normalized by the 10-year return level, was applied by Villarini and Smith (2010), Lu et al. 

(2017) and Smith et al. (2018) to hydro-meteorological series. The Gini index as a classical 

inequality measure has lately been proposed as an upper tail indicator (Eliazar and Sokolov, 

2010; Fontanari et al., 2018b, 2018a). Rooted in economics, the Gini index has recently found 

its way to hydro-meteorological sciences and was applied to capture inequality and temporal 

changes of distributions of daily precipitation (Rajah et al., 2014; Lai et al., 2018), streamflow 

(Zhang et al., 2015) and river solute loads (Jawitz and Mitchell, 2011). Finally, the obesity 

index was introduced by Cooke and Nieboer (2011) as a non-parametric measure of tail 

heaviness. The obesity index has rarely been applied so far in the context of hydrological 

extremes. However, Cooke and Nieboer (2011) proposed the indicator especially for extreme 

value statistics and demonstrated its usefulness with datasets from the National Flood 

Insurance Program (NFIP) and national crop losses of the USA. Sartori and Schiavo (2015) 

also applied the obesity index for the investigation of the upper tail behaviour of negative 

shocks in global agricultural production.

Although several upper tail indicators coexist, a comparative analysis of their 

differences and similarities as well as of their skill in representing the upper tail behaviour has 

not been conducted. Due to the ambiguity in the definition of tail heaviness, there seems to 

exist no clear benchmark criterion for assessing the utility of various indicators and neither 

their sensitivity to changes in the properties of time series (sample size, location and scale 

changes) has been investigated.

In this study we compare scalar upper tail indicators by (a) analysing their properties 

and sensitivity to sample characteristics, and (b) examining their ability to quantify the upper 

tail behaviour. We analyse the sensitivity of indicators to sample size and to changes of the 

location and scale parameters. We introduce the surprise factor as a novel benchmark of heavy 

tail behaviour. The surprise factor is based on considerations of hydrological engineering 
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design and is related to the probability of an extreme event (surprise) exceeding a design 

criterion given incomplete knowledge (short observational records) and tail heaviness of the 

underlying or parent population distribution. Finally, we discuss the implications of the use 

of the various indicators to characterize tail heaviness and draw specific recommendations.

The article is structured as follows: in Section 2, we provide an overview on how heavy 

tail behaviour is defined in the literature, amd introduce the four selected upper tail indicators 

and the surprise factor as a synthetic benchmark. The results of sensitivity and benchmark 

analyses are presented in Section 3, followed by discussion in Section 4. Conclusions are 

drawn and recommendations made in Section 5.

2 Methods

2.1 Defining heavy tail behaviour

The definition of a heavy tail is a common discussion point and many studies conclude that 

no generally accepted definition exists. Ambiguity is present in the terminology as different 

terms such as ‘heavy’, ‘long’, ‘fat’ and ‘thick’ are used interchangeably to describe upper tail 

behaviour (El Adlouni et al., 2008; Papalexiou et al., 2013).

Most often, heavy tails are defined to be decreasing more slowly than lighter tails, 

which are determined as the tails of exponential or normal distributions, depending on the 

definition (e.g. Bryson, 1974; Mikosch, 1999; Reiss and Thomas, 2007; Papalexiou et al., 

2013; Cooke et al., 2014). Other studies define heavy tail behaviour as power-law behaviour 

of the upper tail. To classify the degree of heaviness, previous studies have employed a system 

of nested distribution classes (for further details, see Werner and Upper, 2002; Embrechts et 

al., 2003; El Adlouni et al., 2008; Cooke et al., 2014), as follows: E: distributions with non-

existence of exponential moments; D: sub-exponential distributions; C: regularly varying 

distributions; B: Pareto-tailed distributions; and A: α-stable distributions.

Class E represents the broadest definition of tail heaviness (Werner and Upper, 2002). 

This class contains all distributions whose upper tails decrease exponentially (or more slowly) 

and, thus, more slowly than the tails of normal distributions (Foss et al., 2013). This definition 

of tail heaviness in comparison to normal distributions is employed by, for instance, Daníelsson 

et al. (2001) and Reiss and Thomas (2007).

A more common and more conservative definition is based on the comparison to 

exponential tails (Class D) (Werner and Upper, 2002; Papalexiou et al., 2013; Cooke et al., 
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2014). Typical examples of Class D distributions include the Gumbel and Gamma 

distributions, whose tails decrease more slowly than the exponential (El Adlouni et al., 2008).

Going one step further, Class C (regularly varying distributions) is applied as a limiting 

class. The main characteristic of distributions in this class is that, far out in the upper tail, the 

tails decrease similar to a power-law function (Werner and Upper, 2002). The exponent of this 

power-law function, κ, is defined as the tail index and determines the heaviness of the tail. 

The class of regularly varying distributions has been employed by Werner and Upper (2002), 

Daníelsson et al. (2006) and Cooke et al. (2014) as a definition for heavy-tailed distributions. 

Example distributions of this class are the Fréchet and log-Pearson Type III distributions.

Other studies determine heavy tails as exact Pareto tails, which encompass Class B. 

These have a tail index, κ, which is connected to the moments of the distribution function (for 

more details, see Werner and Upper, 2002). That is, for   M, the M moments of the 

distribution are infinite. Pareto distributions with infinite variance, i.e.   2, are very heavy-

tailed and belong to Class A of α-stable distributions. Crovella and Taqqu (1999) apply Class 

A for the definition of heavy tails.

Defining heavy tail behaviour, i.e. what defines a heavy tail or a light tail, seems to be 

subjective and depends on the respective study aim. In this study, we aim to analyse upper tail 

indicators that provide a relative measure of tail heaviness. Hence, we do not attempt to 

classify the distribution samples into light- and heavy-tailed, but rather investigate whether 

the tail of one sample is heavier than the other and which indicators capture this best. For our 

analyses we consider the generalized extreme value (GEV) distribution, with its special cases 

Gumbel and Fréchet distributions belonging to classes D and C, respectively. Additionally, 

the lognormal distribution is considered as a limiting case between these two classes (El 

Adlouni et al., 2008).

2.2 Selected upper tail indicators

2.2.1 Shape parameter (GEV)

The most common scalar measure of upper tail behaviour in hydro-meteorological studies is 

the shape parameter of the GEV distribution. Of the four selected upper tail indicators, it is 

the only parametric one, as it assumes a distinct underlying distribution.

The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) 

states that, if a properly normalized sample maximum converges to a non-degenerate 
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ξ

distribution, it belongs to one of three distributions (Gumbel, reverse Weibull, Fréchet). These 

are encompassed in the cumulative distribution function of GEV:

   (1)𝐹(𝑥) =  {exp ( ― [1 + 𝜉(𝑥 ― 𝜇
𝜎 )] ―

1
𝜉),   𝜉 ≠ 0

exp ( ―exp( ―
𝑥 ― 𝜇

𝜎 )),    𝜉 = 0

where µ is the location parameter, σ is the scale parameter and ξ is the shape parameter. 

For negative shape parameters (ξ < 0), the distribution is a reverse Weibull distribution 

and its tail is bounded at (Kyselý, 2010). A shape parameter of ξ = 0 corresponds 𝜇 +
𝜎
𝜉 

to a Gumbel distribution. If shape parameters are greater than zero (ξ > 0), the resulting 

distributions are Fréchet distributions, with an unbounded heavy tail and belong to Class C

of regularly varying distributions. Note that some studies adopt an alternative notation 

where the shape parameter ξ‛ = −ξ, resulting in negative shape parameters for heavy tail 

behaviour (e.g. Morrison and Smith, 2002).

A special characteristic of GEV distributions with ξ > 0 is that their central moments 

become infinite at an order of 1/ξ. That is, for ξ > 0.5, the variance of the distribution is 

infinite, while for ξ > 0.25, the kurtosis is infinite (Katz et al., 2002; Daníelsson et al., 2006).

2.2.2 Obesity index

The obesity index was introduced by Cooke and Nieboer (2011) as a scalar measure of tail 

heaviness. This non-parametric indicator is based on order statistics and is expressed as the 

probability that the sum of the largest and the smallest value from a random sample of four 

values is larger than the sum of the remaining two values:

   (2)Ob(𝑋) = 𝑃(𝑋(4) +  𝑋(1) > 𝑋(2) + 𝑋(3)|𝑋(1) ≥ 𝑋(2) ≥ 𝑋(3) ≥ 𝑋(4)) 

where X(k) are independent and identically distributed copies of X randomly sampled from the 

given sample. The obesity index ranges between 0 and 1. The assumption is that large values 

lie further apart in heavy-tailed distributions in comparison to lighter-tailed distributions and 

thus, the obesity index increases with increasing tail heaviness.

Cooke et al. (2014) show that the obesity index of symmetric distributions is always 

0.5, while for exponential distributions the obesity index is 0.75. Applying the definition of 

heavy tails decreasing more slowly than exponential tails, Cooke et al. (2014) state that 
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distributions with an obesity index Ob > 0.75 are heavy-tailed.

2.2.3 Gini index

The Gini index is a non-parametric measure of the inequality or heterogeneity of a distribution 

that is widely applied in economics and finance. Recently, the Gini index has further been 

proposed as an upper tail indicator (Eliazar and Sokolov, 2010; Fontanari et al., 2018b). There 

are several methods to determine the Gini index (see Eliazar and Sokolov, 2010, for further 

details) but the most intuitive one is the derivation from the Lorenz curve.

The Lorenz curve is a graphical representation of a distribution, as it provides the 

cumulative percentage of the total sum for all events or observations in a distribution versus 

the cumulative number of events (Fig. 1). In the case of, for instance, rainfall events, the 

single events are ranked and plotted against their cumulative proportional contribution to 

the total sum. The 1:1 line in Figure 1 is the line of equality (y = x), which would arise 

from a distribution where all events are of the same magnitude (i.e. a Dirac delta 

distribution). The Gini index comprises twice the area between the Lorenz curve and the 

line of equality. Hence, the Gini index is bounded between 0 (i.e. the Lorenz curve is 

equal to the 1:1 line and all values are equal) and 1 (i.e. only one event is > 0). The 

equation for the Gini index based on the Lorenz curve is (Konapala et al., 2017) is given by:

   (3)𝐺 =  
1
𝑛 (𝑛 + 1 ― 2 (∑𝑛

𝑖 = 1(𝑛 + 1 ― 𝑖)𝑦𝑖

∑𝑛
𝑖 = 1𝑦𝑖

)) 

where n is the number of events and yi are the event magnitudes. The Gini index is further 

related to the tail index κ of Class B  (exact Pareto-tailed) distributions as  𝐺 =
1

2𝜅 ― 1

(Benhabib et al., 2011; Kondor et al., 2014).

The Gini index is often described as ambiguous since it only considers an area measure, 

i.e. similar values may arise for very different distributions (Damgaard and Weiner, 2000). 

The two distributions with dashed/dotted lines in Figure 1, for instance, have similar values 

for G, but obviously different tail heaviness.

To take this asymmetry of the Lorenz curve and the corresponding ambiguity into 

account, Damgaard and Weiner (2000) introduced the Lorenz asymmetry coefficient, L, 

which can be interpreted as the inflection point of the Lorenz curve (equations are given in 

Masaki et al. 2014). The Lorenz asymmetry coefficient marks the point on the Lorenz 

curve that has the maximum orthogonal distance from the line of equality and measures 

Page 7 of 38

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

8

the distance of this point from the line of symmetry (y = −x + 1). If this maximum distance 

point is located exactly on this line of symmetry, L is equal to 1 and if it is below or above 

the line, L is smaller or greater than 1, respectively. Whether the Lorenz asymmetry 

coefficient is connected to the skewness of a distribution largely depends on the 

distribution type, as shown by Masaki et al. (2014) for different skewed theoretical 

distributions.

Thus, the Gini index cannot be directly related to tail heaviness. Rather, it quantifies the 

impact of the small and large values of a distribution (Masaki et al., 2014).

2.2.4 Upper tail ratio (UTR) 

The UTR is defined as the ratio between the event of record Xn, with n being the number of 

events, and the estimated 10-year event magnitude  of the sampling distribution:𝑋10yr

   (4)UTR =  
𝑋𝑛

𝑋10yr
 

The estimation of  varies between studies. Villarini and Smith (2010) and Lu et al. 𝑋10yr

(2017) derive the 10-year flood quantile by means of a power-law relationship to the drainage 

area, whereas Smith et al. (2018) estimated  from the Weibull empirical plotting 𝑋10yr

positions (Makkonen, 2006).

The UTR has been applied in hydrological studies concerning flood peaks and heavy 

rainfall events by Villarini and Smith (2010), Smith et al. (2011) and Lu et al. (2017). In 

addition to its application as an upper tail indicator, the UTR has also been also used for the 

identification of extraordinary events (Smith et al., 2018) and for the regional quantification 

of selected flood events (Villarini et al., 2011a).

2.3 Analysis of key properties

For the comparative analysis of the upper tail indicators, we investigate the key properties that 

might play a role for the choice of suitable indicators. We analyse these properties in a series 

of synthetic bootstrap experiments. The quantitative comparison of different precipitation or 

streamflow records is a common application of upper tail indicators in hydrology (e.g. 

Villarini et al., 2011b; Papalexiou et al., 2013). Since empirical distributions can strongly 

differ between locations, we examine the sensitivity of the indicators to changes in the location 

and scale parameters, i.e. whether the upper tail behaviour can be reasonably compared across 

various locations with variable mean, variance and record length. In particular, we test the 
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scale invariance of the upper tail indicators, i.e. whether the indicators change when the 

location and scale parameters change but the ratio (scale/location) is constant. Smith et al. 

(2018) indicate that, for more than 5500 US gauges, the scale and location parameters are 

linearly related. Thus, scale invariance of the upper tail indicators can be useful to ensure the 

comparability across different sites.

We further probe the sensitivity of the upper tail indicators to the sample size. More 

specifically, we examine how the uncertainty and the bias or change in the median of the 

indicator change with sample size. To answer these questions, we apply the indicators to 

synthetic series generated from distributions with different statistical characteristics. We apply 

the GEV distribution often used in extreme value statistics to generate synthetic series. The 

GEV has the ability to depict a wide range of tail behaviour from bounded tails (ξ < 0) to 

unbounded, heavy tails (ξ > 0), whose heaviness increases with increasing ξ. We carry out 

three types of bootstrap experiments, as summarized in Table 1.

Recently, Papalexiou et al. (2018) showed that, besides the sample size, the level of 

extremeness, i.e. the threshold value above which records are considered for tail estimation, 

may also affect the tail heaviness estimation (in their case the shape parameter of the Pareto 

Type II distribution). In our analyses, we consider the entire sample to fit the GEV distribution 

following the block maxima approach, as regularly applied in hydrological analysis (e.g. Katz 

et al., 2002) and, thus, we focus on the sensitivity to the sample size. 

Only values equal to or greater than zero are considered for the generation of synthetic 

records, as we focus on the analysis of strictly positive values such as flood or heavy 

precipitation records. Furthermore, some indices, e.g. the Gini index, are not applicable to the 

negative data.

2.4 Surprise factor as a benchmark for heavy tail behaviour

Surprise is one of the main challenges in hydrological design and risk assessment. Surprise 

arises from the occurrence of unexpectedly large events when the heavy tail behaviour of the 

underlying (parent) distribution is underestimated or even neglected. The main reasons for 

surprise are usually a short record length, where large events were not recorded, or the choice 

of unsuitable distribution types or a combination of the two (Nordhaus, 2011). Further, it is 

debated whether smaller floods provide sufficient information about large events, as small 

and large events may be the result of different mechanisms (Villarini and Smith, 2010; Barth 

et al., 2019). Nevertheless, for practical applications, it is required to assess tail heaviness and 
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to evaluate the ability of the upper tail indicators to reflect the propensity of extreme events, 

i.e. the chance of surprise.

Based on the hydrological design consideration, we propose the surprise factor S as a 

synthetic benchmark of tail heaviness. It is defined as the probability that a ‘true’ event  𝑋true
𝑇

with a distinct return interval T is underestimated from the limited observational record:

)𝑆 = 𝑃(𝑋true
𝑇 ≥ 𝛼 𝑋obs

𝑇

where  is the estimated T -year event from the limited record length and α is the degree 𝑋true
𝑇

of surprise, e.g. a value of 1.5 means that the ‘true’ event is 50% larger than estimated. 

The parameter α may be related to the application purpose. For example, when designing 

flood protection levees, a freeboard is added to the design flood, with e.g. T = 100α, to 

account for the estimation uncertainty. In this case, it would be interesting to quantify the 

probability that the ‘true’ flood is higher than levee height, consisting of the estimated 100-

year value and the added freeboard.

The surprise factor thus quantifies the underestimation of occurrence of large events 

due to sparse observation records. Since the ‘true’ T event  is not known in practice, the 𝑋true
𝑇

surprise factor can only be used in synthetic experiments, where the ’true’ value is estimated 

from very long, synthetically generated series

Here we deploy the surprise factor as a benchmark for testing the four upper tail 

indicators. We expect a suitable indicator to depict the tendency of surprise of a distribution 

and result in a monotonic relationship to the surprise factor. It is important to note that the 

surprise factor is not suitable as a standalone indicator because it is only applicable if the ‘true’ 

distribution is known.

For the calculation of the surprise factor, a random long series of events (104 years) is 

created as the ‘true’ underlying distribution. From this ‘true’ time series, 104 observation 

windows of constant length are sampled. For each sample,  is estimated by means of 𝑋obs
𝑇

Weibull plotting positions. The chosen return period T of  is equal to the observation period 𝑋obs
𝑇

due to restricted extrapolation for the plotting positions. The upper tail indicators are calculated 

based on the ‘true’ distribution.

For this analysis, we employ different types of heavy-tailed distributions. By choosing 

the GEV, we cover the classes D and C of sub-exponential and regularly varying distributions. 

We further choose the two-parameter lognormal distribution, as El Adlouni et al. (2008) 
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identified it as the limiting case between these two classes. Another interesting feature of the 

lognormal distribution is that its Lorenz asymmetry coefficient L is equal to 1 (Masaki et al., 

2014). Both distributions are also commonly used in the field of hydrological extremes (e.g. 

El Adlouni et al., 2008; Papalexiou and Koutsoyiannis, 2013). In addition, we conducted the 

surprise analysis with other distribution types from classes C and D. The results of the 

analyses of gamma, inverse gamma and log Pearson Type III distributions were qualitatively 

similar to those we achieved from applying the lognormal and GEV distributions and are not 

shown.

The parameter ranges for the surprise analysis are given in Table 2. We choose a wide 

range of possible σ, µ and corresponding ratios to explore a wide domain of different 

distributions and surprise factors. The shape parameter of the GEV distribution was varied 

between 0 to 1 to cover a wide range of tail heaviness. The two parameters of the lognormal 

distribution were varied to achieve a similar bandwidth of resulting shape parameters which 

resulted in a wide range of scale parameters and σ/µ ratios. As the choice of α (the degree of 

surprise) might play a crucial role for the calculation and interpretation of the surprise factor, 

we incorporate this factor into the bootstrap experiments to examine its potential impact on 

the results for the GEV distribution. The values of α are varied in the range 1–2.5.

2.5 Estimation of the upper tail indicators

The upper tail indicators are computed for the synthetic samples in both analyses. We 

estimate the shape parameter by means of L-moments. This method was shown to be robust 

with regard to outliers and small sample sizes (Hosking 1990, R package extRemes). The 

obesity index is determined via a bootstrap approach, in which four random values are 

selected from the distribution without replacement and the procedure is repeated m times. 

We varied m between different analyses. For the sensitivity analyses, where sample sizes 

range from 25 to 150, we chose m  = 103 according to Sartori and Schiavo (2015) and for 

the surprise factor analysis, we increased m to 105 to account for the larger sample size of 

104 of the ‘true’ distributions. The calculations of the Gini index and the Lorenz asymmetry 

coefficients are based on Equation (3) and the equations in Masaki et al.  (2014),  respectively 

(R package ineq). For the calculation of the UTR,  is estimated from Weibull plotting 𝑋10yr

positions.
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3 Results

3.1 Analysis of key properties

In this section, the influence of varying sample sizes and distribution parameters on the upper 

tail indicators is discussed in detail. All analyses of key properties are presented in a similar 

manner with four subplots corresponding to the four upper tail indicators. The x axis 

corresponds to the predefined shape parameters used to generate 104 random sampling 

distributions. The y axix  shows the corresponding values of each indicator. The colours of 

the boxplots correspond to the respective varying parameter of the analysis.

3.1.1 Sensitivity to sample size

The impact of the shape parameter of the parent distribution and of the sample size on the 

upper tail indicators is illustrated in Figure 2. All four indicators show a monotonic increase 

with increasing shape parameter of the parent distribution. The behaviour of the estimated 

shape parameter and the obesity index is similar, as both exhibit a quasi-linear increase with 

increasing predefined shape parameters. The UTR and the Gini index show a stronger increase 

for higher parent shape parameters. Similarly, the ranges of the boxes and the outliers 

substantially increase with increasing tail heaviness for the UTR and the Gini index, whereas 

the shape parameter and the obesity index show relatively constant outlier behaviour for all 

parent shape parameters.

The bias, i.e. the difference in median estimates, introduced by the sample size, is 

relatively small for the shape parameter, obesity and Gini indices and hardly changes with 

increasing parent shape parameter. On the contrary, the median of UTR shows a high 

sensitivity to the sample size. The impact of the sample size on UTR strongly increases with 

increasing parent shape parameter. With increasing sample size the chance of encountering 

higher extraordinary events, i.e. record events, is increasing particularly for heavy-tailed 

distributions (Douglas and Vogel, 2006; Smith et al., 2018). For the three indicators other than 

UTR, the sampling uncertainty decreases with increasing sample size. The UTR exhibits a 

strongly increasing sampling uncertainty for parent shape parameters ≥ 0.

The discriminative power is highest for the shape parameter and obesity index and is 

much lower for the Gini index and UTR. This can be observed from the distance between 

boxes for different parent shape parameters (Fig. 2). For instance, it is quite likely to obtain 

the same Gini index for observed samples with a wide range of tail heaviness of the parent 
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distribution. The problem is aggravated for small sample sizes. For the shape parameter and 

obesity index, in contrast, the median for heavy-tailed distributions (e.g. ξ = 0.25) lies 

beyond the interquartile range for the Gumbel parent distribution (ξ = 0), even for small 

sample sizes.

The results show that all indicators reflect the tail heaviness defined by the shape 

parameter of the parent distribution to a different extent. With the exception of UTR, all 

indicators show a low sensitivity to the sample size. In practice this hampers the comparability 

of the UTR values across various locations with different record lengths. Moreover, the 

discriminative power for tail heaviness is found to be the smallest for UTR and Gini index (in 

this order), which may result in a wrong estimation of tail heaviness. The large sampling 

uncertainty associated with the UTR for heavy-tailed distributions additionally challenges the 

application of this indicator for the characterization of hydro-meteorological records.

3.1.2 Sensitivity to shifting the location parameter and to scale changes

The mean of records (e.g. maximum annual precipitation or discharge) varies across different 

locations. When comparing different locations, it is a desirable property of an upper tail 

indicator to be invariant to shifts in the mean. Our bootstrap experiments show that changing 

the location parameter, while keeping the scale parameter constant, influences the four 

indicators differently (Fig. 3). While the shape parameter and the obesity index are nearly 

unaffected, the UTR and the Gini index respond strongly to shifts of the location parameter 

(and thus, to changes in the ratio of scale and location). For the latter two indicators, the 

median and the sampling uncertainty decrease with larger location parameters. The 

differences are particularly significant for the Gini index. Apparently, the σ/µ ratio affects 

the occurrence probability of large events, and the Gini and UTR are sensitive to the different 

resulting sampling distributions. The shape parameter and the obesity index are relatively 

unaffected by the σ/µ ratio. The analysis is additionally performed with constant location 

parameters and changing scale parameters (results not shown). The results are qualitatively 

similar but reverse as the Gini index and UTR increase with increasing scale parameters.

The analysis shows that the shape parameter and obesity index are nearly invariant to 

changes in the ratio of location and scale parameters. They retain their discriminative power 

and show reasonable uncertainty for the predefined shape parameters. The situation is 

different for the Gini index and UTR, which questions the comparability when the Gini index 

and UTR are applied across different locations.
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The four indicators are not sensitive to shifts in both parameters, as long as the σ/µ ratio 

is constant (Fig. 4). Smith et al. (2018) showed that the location and scale parameters of flood 

records are linearly related and the σ/µ ratio tends to be invariant across catchment scales. 

Under this assumption, all four upper tail indicators can be employed across scales. For 

comparability of the Gini index and UTR across locations, the invariance of σ/µ ratio needs 

to be taken into consideration.

3.2 Analysis of the surprise factor as benchmark for heavy tail behaviour

In this section we use the previously defined surprise factor as a benchmark for tail heaviness. 

Two different distribution types – the two-parameter lognormal and the GEV distribution – 

are utilized as ‘true’ distributions.

3.2.1 Lognormal distributions

The relationship between the surprise factor and the four indicators computed for ‘true’ 

distributions from the parent lognormal distributions is shown in Figure 5. All four indicators 

show an increase for increasing surprise factors. However, the Gini index and the shape 

parameter show very little variation for very high surprise factors above 0.5, which correspond 

to extremely high shape parameters above 0.9. The UTR values increase monotonically but 

are highly dispersed (note the log scale of the y axix ). For surprise factors around 0, the shape 

parameter, obesity index and Gini index show high variability and seem to discriminate the 

tail heaviness above a specific threshold (0.7, 0.2 and 0.25, respectively). Overall, these three 

indicators exhibit a similar relationship to the surprise factor.

3.2.2 GEV distributions

For the GEV parent distribution, all four indicators show an increasing tendency with 

increasing surprise factor, similarly to the case of lognormal distribution. However, a 

much greater dispersion is apparent for the GEV case. For instance, shape parameters for 

small surprise factors range from 0 to 0.75. When coloured according to their Lorenz 

asymmetry coefficients L, the values of all four indicators clearly differentiate (Fig. 6). The 

Lorenz asymmetry coefficient for the GEV-distributed samples has a wide range from 

0.98 to 1.66, whereas L = 1 for the lognormal distribution. Hence, the Lorenz asymmetry 

coefficient explains the dispersion in the relation of the four indicators to the surprise 

Page 14 of 38

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

15

factor. For nearly symmetric Lorenz curves (L < 1.2), the relationship between the Gini 

index, shape parameter, obesity index and the surprise factor are similar as was also 

observed in the lognormal case. The differences between the three indicators emerge with 

increasing Lorenz asymmetry coefficients. Here, the Gini index stands out as it behaves 

differently in relation to the Lorenz asymmetry coefficients. For example, samples with 

higher Lorenz asymmetry coefficient (blue dots) tend to have lower Gini indices. The 

shape parameter, obesity index and UTR tend to show the reverse behaviour. The highest 

surprise factors result from samples with the Lorenz asymmetry coefficients below 1.2.

In order to better resolve the behaviour of upper tail indicators in relation to the 

surprise factor and Lorenz asymmetry coefficient, we depict them in the Lorenz space 

(Fig. 7; this figure corresponds to Fig. 1). Each point characterizes a ‘true’ distribution 

drawn of the parent GEV distribution and corresponds to a specific Lorenz curve. We can 

position the point of the Lorenz curve with the maximum distance to the line of equality 

(y = x) in the Lorenz space. This point corresponds to the inflection point of the Lorenz 

curve. The distance between this point and the line of symmetry (y = −x + 1) indicates the 

Lorenz asymmetry coefficient. In Figure 7, points are coloured according to the value of 

the upper tail indicators, the surprise factor and the Lorenz asymmetry coefficient.

All four indicators show distinct gradients in different directions. While the shape 

parameter and the obesity index mainly depend on the position of the inflection point in the 

direction of the x axis, the Gini index increases orthogonally to the line of equality and the 

gradient of the log-scaled UTR points in a direction between these two. Comparing all four 

indicators, the pattern of the log UTR seems to follow closest the pattern of the surprise factor, 

though the high uncertainty of UTR is apparent through the mixed (non-smooth) colour 

pattern. For example, for UTR orange and blue points are mixed, the Gini pattern is on the 

contrary the smoothest one. It means that for samples with similar Lorenz curves, one can 

obtain quite different UTR, but similar Gini indices. The shape parameter and the obesity 

index also show rather smooth patterns in the Lorenz space.

All four upper tail indicators exhibit high values for points in the lower right corner of 

the Lorenz space, similar to the surprise factor. (Note that the colour of points should not be 

directly compared, but rather the relative change in the colours.) The Gini index mainly 

deviates from the surprise factor in the region of highly asymmetric Lorenz curves (L > 1.4), 

where small Gini indices are computed due to the small area between Lorenz curve and the 

line of equality. The distributions with L > 1.4 can however have high surprise factors (Fig. 7). 

Here, the shape parameter and the obesity index are more conservative and indicate high 
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values, thus overestimating the surprise factor. Also, for the points close to the line of 

symmetry, the shape parameter and obesity index seem to overestimate the degree of surprise, 

i.e. tail heaviness, whereas the Gini index and UTR resemble the pattern of the surprise factor 

more closely.

Comparing the plots for shape parameter and obesity index (Fig. 7), it is apparent that 

samples with shape parameters between 0 and about 0.4 possess obesity indices below 0.75. 

This value is described to characterize the exponential distribution, which is a limiting case 

for heavy tail behaviour (Cooke et al., 2014). This reveals the weakness of the obesity index 

to identify GEV distributed samples with moderate shape parameters in the range between 0 

and 0.4 as heavy-tailed. 

In order to illustrate the influence of different Lorenz asymmetry coefficients on the 

characteristics of the upper tail indicators, three example realizations are illustrated in 

Figure 8 and corresponding parameters are given in Table 3. These samples are 

subjectively chosen and are characterized by similar shape parameters and obesity indices 

and similar magnitudes of location parameters but large differences in surprise factors. The 

blue and the red curves are samples from the GEV distributions with asymmetric and 

symmetric Lorenz curves, respectively, and the orange curve corresponds to the lognormal 

distribution (L = 1).

Although the location parameters of all three distributions are of similar magnitude, 

their variance is very different, which influences the probability of extremes in the upper tail. 

The different spread of extremes is also apparent in the corresponding Lorenz curves. The red 

and orange distributions have few extremes that account for ≥25% of the total sum. In contrast, 

the extremes in the tail of the blue distribution have little impact on the total sum and the Gini 

index is thus rather small (Fig. 8). The surprise factor is highest for the red curve and is 0 for 

the blue. The shape parameter and obesity index show high values and are similar for all three 

realizations. These two indicators mainly respond to the skewness of the distribution and have 

high values even if there are only few extremes in the tail. In this case they are not able to 

discriminate between the tail heaviness of the distributions. The UTR values show the same 

rank as those of the surprise factor (Table 3). In contrast, the Gini index shows a different 

ranking. It increases with a rising proportion of extremes in the total sum of event magnitudes. 

This effect can be caused by very few, very high extremes as well as by a few, less extreme 

but large events.
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3.2.3 Sensitivity of indicators to the degree of surprise α

The calculation of the surprise factor requires the choice of a degree of surprise α. For 

the surprise analysis we set  = 1.5, i.e. the probability of a  being 50% larger than 𝑋true
𝑇

estimated from observations. To examine the effect of , each of the 103 realizations is 

plotted according to the corresponding  values (Fig. 9). For different  values distinct 

patterns of upper tail indicators emerge;  controls the threshold at which the indicators start 

to monotonically increase with increasing surprise factor. With increasing degree of surprise 

beyond 1, the range of surprise factor values decreases, i.e. the probability of surprise gets 

smaller. The chosen value of  = 1.5 applied to the 50-year event appears reasonable 

from the engineering perspective and it seems to provide a good basis for comparison of 

the indicators through the well-resolved patterns. The introduced surprise factor is an 

intuitive measure of the consequences of heavy tails for engineering design and risk.

4 Discussion

Our analyses indicate that the selected upper tail indicators are related to tail heaviness as they 

increase monotonically with increasing shape parameter of the parent GEV distribution and 

with increasing surprise factors for lognormal and GEV parent distributions. For distributions 

with nearly symmetric Lorenz curves (L < 1.2), all four indicators show a similar pattern to 

the surprise factor (Fig. 7). The main differences emerge for distributions with asymmetric 

Lorenz curves (L > 1.2). While the Gini index tends to underestimate the tail heaviness for 

asymmetric Lorenz curves (L > 1.2) compared to the ones with L < 1.2, the shape parameter 

and the obesity index exhibit an overestimation (Fig. 7). The UTR resembles best the pattern 

of the surprise factor in the Lorenz space. However, it possesses a number of unfavourable 

properties that impede its comparability across different locations, such as its strong 

sensitivity to the sample size.

In our synthetic experiments, we carried out analyses for stationary flood series. Non-

stationarities may affect the upper tail indicators if, for instance, an underlying trend leads to 

events far above the previously observed. Upper tail indicators characterize the tail of 

frequency distributions that are constructed based on the assumption of independent, 

identically distributed values. If the assumption does not hold, the results should be interpreted 

in this context or time series need to be shortened to fulfil the assumption.

In the following, the main results are discussed for each upper tail indicator.
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4.1 Shape parameter

The shape parameter is the only parametric upper tail indicator among the four investigated 

ones. Its application assumes that the sample belongs to a GEV distribution and this its main 

weakness. The shape parameter delivers a plausible description of tail heaviness also for 

samples drawn from the lognormal distribution. The shape parameter exhibits a number of 

favorable properties. It is found scale invariant and not sensitive to changes in the σ/µ ratio 

since it mainly responds to the skewness of the distribution and less to its dispersion. 

Furthermore, the shape parameter showed a relatively low sensitivity to the sample size, 

relatively high discrimination power and reasonable uncertainty compared to other indicators. 

It can thus be compared across sites with variable statistical moments and record lengths.

4.2 Obesity index

The obesity index shows a very similar behaviour as the shape parameter but has the 

advantage to be a non-parametric upper tail indicator. It was also found to be scale invariant 

and robust to changes in the σ/µ ratio and sample size. The sampling uncertainty of the obesity 

index is slightly larger than for the shape parameter, but overall the discriminative power is 

comparable. Cooke et al. (2014) proposed the threshold of 0.75 for heavy-tailed distributions. 

In their study, Cooke et al. (2014) justified this threshold with the definition of heavy-tailed 

distributions decreasing slower than exponential distributions. In our surprise analysis, we 

find obesity indices below the threshold of 0.75 for shape parameters between 0 and about 0.4 

and surprise factors above 0. However, both shape parameter and obesity index show 

weaknesses by overestimating the tail heaviness expressed by the surprise factor for samples 

with asymmetric Lorenz curves (L > 1.2) (Figs 7 and 8).

4.3 Gini index

The median of the Gini index has small sensitivity to the sample size, whereas the sampling 

uncertainty is larger for samples with positive shape parameters of the parent GEV 

distribution. It shows moderate discriminative power. The Gini index is found to be scale 

invariant, i.e. independent to changes in location with the σ/µ ratio being constant. It is 

however strongly sensitive to changes of the latter. Gini indices can thus be compared across 

sites and records if the σ/µ ratio can be assumed to be constant. For instance, Smith et al. 

(2018) found for annual peak flow records at >5500 gauges in the USA, that σ/µ is about 0.5 
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with a high degree of correlation between σ and µ. According to this finding, the applicability 

of the Gini index for the comparative analysis of tail heaviness is promising. Our analyses 

shows that the Gini index is less sensitive to tails with few (and relatively nearby) extremes 

(the blue distribution in Fig. 8). This is in agreement with studies by Cowell and Flachaire 

(2007) and McAleer et al. (2017). The Gini index detects heavy tails in case the extremes 

account for a considerable share of the total sum, caused by either one event or several events. 

The Gini index, however, underestimates the tail heaviness, i.e. surprise factors, for samples 

with asymmetric Lorenz curves (L > 1.2).

4.4 Upper tail ratio

The UTR is highly sensitive to the sample size which is in agreement with Smith et al. (2018). 

It directly depends on the flood of record, which varies with the record length (Douglas and 

Vogel, 2006; Smith et al., 2018). The chance to observe extraordinary extremes increases with 

record length. The UTR shows the largest sampling uncertainty and the lowest discriminative 

power, i.e. the same value of UTR can be obtained for relatively light-tailed and heavy-tailed 

distributions depending on the record length. Though being scale invariant, it exhibits a high 

sensitivity to the location parameter. In overall, the comparability of UTR across different 

locations and records is limited. At the same time, the logarithm of the UTR seems to have 

the closest pattern to the surprise factor (Fig. 7). Hence, it can be applied when comparing 

records of similar length and with nearly constant σ/µ ratio, however, the high sampling 

uncertainty should be kept in mind.

5 Conclusions and recommendations

This paper presents the first comparative analysis of four scalar upper tail indicators: the shape 

parameter of the generalized extreme value distribution, the obesity index, the Gini index and 

the upper tail ratio. We analysed their sensitivity to the sample size, to changes in the location 

parameter with variable σ/µ ratio and to changes in scale with constant σ/µ ratio. This analysis 

elucidates the comparability of the indicators across various sites and record lengths. Further, 

we propose a surprise factor as a synthetic benchmark for upper tail heaviness. It is related to 

implications of tail heaviness for hydrological engineering design and risk. The benchmark 

analysis reveals different patterns of the upper tail indicators in relation to the pattern of the 

surprise factor in the Lorenz space. We conclude the following:
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1. The median estimates for all indicators except UTR show little sensitivity to the sample size.

2. The sampling uncertainty for heavy-tailed distributions is highest for UTR, followed by Gini 

index, obesity index and shape parameter.

3. All indicators are scale invariant, i.e. they are insensitive to changes in location and scale 

parameters subject to a constant σ/µ ratio.

4. Shape parameter and obesity index exhibit little sensitivity to changes in location with variable 

σ/µ ratio, whereas Gini index and UTR are highly sensitive.

5. The logarithmic UTR seems to resemble the pattern of the surprise factor best.

6. The patterns of the shape parameter, obesity index and Gini index are similar for samples 

characterized by nearly symmetric Lorenz curves with Lorenz asymmetry coefficient (L < 

1.2).

7. Obesity index appears to classify GEV distributed samples with the shape parameters between 

0 and about 0.4 as light-tailed (obesity index < 0.75).

8. For samples with asymmetric Lorenz curves (L > 1.2), the Gini index seems to underestimate 

the tail heaviness, i.e. the surprise factor, whereas the shape parameter and the obesity index 

tend to overestimate the surprise factor compared to samples with lower Lorenz asymmetry 

coefficients.

Our results show that there is no perfect upper tail indicator. All indicators have specific 

advantages and disadvantages. For analysis of tail heaviness, where the surprise factor is taken 

as the benchmark, the UTR can be used for comparing records of similar lengths, but high 

sampling uncertainty should be kept in mind. Moreover, a constant σ/µ ratio needs to be 

assured for comparability of UTR across different locations. If sample size is different, which 

is often the case in practical applications, the combination of the GEV shape parameter, non-

parametric obesity and Gini indices is recommended. Also, for the Gini index, similar σ/µ 

ratios are required for comparability across various locations. We further recommend that 

these indices are accompanied by the Lorenz asymmetry coefficients. For samples 

characterized by asymmetric Lorenz curves, the Gini index shows a divergent tendency 

compared to other two. The results for such samples need to be interpreted with care, taking 

into account the over- and underestimation tendencies of the indices, compared to the samples 

with symmetric Lorenz curves.
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Table 1. Parameter choices for the analysis of key properties. For all analyses, the shape 

parameter ξ of the GEV was predefined as 0.5, 0.25, 0, 0.25 and 0.5. This range is expected 

to envelope the range that is typically found in hydro-meteorological time series (e.g. 

Papalexiou and Koutsoyiannis, 2013). Single values mark constant ones and several values 

indicate the variation of the parameter. For the analysis of scale invariance, location and scale 

parameters were paired, so that the ratio of µ and σ was kept equal to 2.5.

Focus of analysis Parameter
  Scale parameter, σ  Location parameter, μ  Sample size, n
Sample size 16 40 25, 50, 75, 100, 150
Location shift 16 20, 40, 80, 200 100
Scale invariance 16, 32, 80 40, 80, 200 100

Table 2. Parameter ranges for the surprise analysis, showing the ranges of the randomly 

sampled three parameters of the GEV distribution and two parameters of the lognormal 

distribution. The ratio of scale and location (σ/µ) is varied accordingly. For the lognormal 

distribution the ratio is given by  (e.g. Canchola, 2018) and, thus, it is only 
𝜎
𝜇 =  e𝜎2

𝐿 ― 1

dependent on the scale parameter of the lognormal distribution. 

Distribution Parameter range
GEV Shape parameter, ξ Scale parameter, σGEV Location parameter, μGEV σ/μ

0 to 1 1 to 15 2 to 40 0.03 to 1
Lognormal Scale parameter, σL Location parameter, μL σ/μ

 0.1 to 5 1 to 4 0.11 to 
262425

Table 3. Characteristics of the three example distributions of Figure 8.

Parameter Lognormal (orange) GEV (red) GEV (blue)
Shape parameter 0.63 0.61 0.62
Obesity index 0.85 0.79 0.81
Gini index 0.70 0.48 0.09
Upper tail ratio 43 168 20
Surprise factor (α = 1.5) 0.22 0.31 0.00
L 1.00 1.18 1.49
𝑋true

50yr 367 235 39
σ 155.9a 13 1
μ 57.8a 26 22
σ/μ 2.70a 0.50 0.05
a For the lognormal distribution, standard deviation, mean and coefficient of variation are given.
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Figure captions 

Figure 1. Schematic representation of Lorenz curves of three distributions with different 

Lorenz asymmetry coefficients.

Figure 2. Boxplots of upper tail indicators for synthetic sampling distributions as a function 

of the parent shape parameter and sample size. Note that the y axis of the UTR is cut at the 

90th percentile due to large outliers. For all boxplot graphics shown, the hinges represent the 

first and third quartiles, while the upper and lower whiskers represent the distance of 1.5 times 

the inter-quartile range from the upper and lower hinge, respectively.

Figure 3. Boxplots of upper tail indicators for synthetic sampling distributions with sample 

size of 100, varying location parameter (20, 40, 80 and 200) and a constant scale parameter 

of 16.

Figure 4. Boxplots of upper tail indicators for synthetic sampling distributions with sample 

size of 100, varying location parameter (20, 40 and 200) and constant σ/µ ratio.

Figure 5. Scatter plots of upper tail indicator vs surprise factor for 103 synthetic ‘true’ 

distributions drawn from parent lognormal distributions. Each of the 104 sampling 

distributions from the ‘true’ distribution contains 50 values and the surprise factor is 

estimated for a 50-year event with α = 1.5.

Figure 6. Scatter plots of upper tail indicator vs surprise factor f or 103 synthetic ‘true’ 

distributions drawn from parent GEV distributions. Each of the 104 sampling distributions 

from the ‘true’ distribution contains 50 values and the surprise factor is estimated for a 

50-year event with α = 1.5.

Figure 7. Upper tail indicators, surprise factor and Lorenz asymmetry coefficient of the 

synthetic ‘true’ distributions plotted in the Lorenz space. Each point represents the point of 

maximum distance to the line of equality (inflection point of the Lorenz curve) of one GEV 

distribution and is coloured according to the selected parameter in the respective legend. The 

division into classes of the Lorenz asymmetry coefficient is illustrated on the bottom right.
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Figure 8. Three example distributions: density plots with log-scaled x axis (left) and the 

corresponding Lorenz curves (right).

Figure 9. GEV-based surprise analysis with different degrees of surprise α.
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Schematic representation of Lorenz curves of three distributions with different Lorenz asymmetry 
coefficients. 
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Boxplots of upper tail indicators for synthetic sampling distributions as a function of the parent shape 
parameter and sample size. Note that the y axis of the UTR is cut at the 90th percentile due to large 

outliers. For all shown boxplot graphics, the hinges represent the first and third quartiles, while the upper 
and lower whisker represent the distance of 1.5 times the inter-quartile range from the upper and lower 

hinge, respectively. 
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Boxplots of upper tail indicators for synthetic sampling distributions with sample size of 100, varying location 
parameter (20, 40, 80 and 200) and a constant scale parameter of 16. 

479x276mm (300 x 300 DPI) 

Page 31 of 38

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Boxplots of upper tail indicators for synthetic sampling distributions with sample size of 100, varying location 
parameter (20, 40 and 200) and constant σ/µ ratio. 
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Scatter plots of upper tail indicator vs. surprise factor for 103 synthetic ’true’ distributions drawn from 
parent lognormal distributions. Each of the 104 sampling distributions from the ’true’ distribution contains 50 

values and the surprise factor is estimated for a 50 yr-event with α = 1.5. 
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Scatter plots of upper tail indicator vs. surprise factor for 103 synthetic ’true’ distributions drawn from 
parent GEV distributions. Each of the 104 sampling distributions from the ’true’ distribution contains 50 

values and the surprise factor is estimated for a 50 yr-event with α = 1.5. 
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Upper tail indicators, surprise factor and Lorenz asymmetry coefficient of the synthetic ’true’ distributions 
plotted in the Lorenz space. Each point represents the point of maximum distance to the line of equality 

(inflection point of the Lorenz curve) of one GEV distribution and is colored according to the selected 
parameter in the respective legend. The division into classes of the Lorenz asymmetry coefficient is 

illustrated in the bottom right figure. 
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Three example distributions: Density plots with log-scaled x axis (left) and the corresponding Lorenz curves 
(right). 
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Three example distributions: Density plots with log-scaled x axis (left) and the corresponding Lorenz curves 
(right). 
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GEV based surprise analysis with different degrees of surprise α. 
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