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A Variational Approach to Additive Image Decomposition into Structure,
Harmonic, and Oscillatory Components\ast 

Martin Huska\dagger , Sung H. Kang\ddagger , Alessandro Lanza\dagger , and Serena Morigi\dagger 

Abstract. We propose a nonconvex variational decomposition model which separates a given image into piecewise-
constant, smooth, and oscillatory components. This decomposition is motivated not only by image
denoising and structure separation, but also by shadow and spot light removal. The proposed model
clearly separates the piecewise-constant structure and smoothly varying harmonic part, thanks to
having a separated oscillatory component. The piecewise-constant part is captured by TV-like non-
convex regularization, harmonic term via second-order regularization, and oscillatory (noise and
texture) term via a H - 1-norm penalty. There are interesting interactions between these three regu-
larization terms. We explore the effects of each regularization and the choice of parameters carefully.
We propose an efficient alternating direction method of multipliers based minimization for fast nu-
merical computation of the optimization problem. Various experiments are presented to show the
robustness against a high level of noise, applications to soft spotlight and shadow removal, and the
comparisons with other methods.
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1. Introduction. The task of decomposing images into their semantically different con-
tents is of great interest in various image processing methods, such as image restoration,
compression, segmentation, and object recognition. It can simplify the characteristics of the
image to achieve better results for different imaging tasks. For example, in [9], the proposed
model decomposes the given image into a piecewise-constant part and a harmonic part. This
method has the advantage that the structured part, the piecewise-constant component, is sep-
arated extremely cleanly without any noise. However, even for low levels of noise, the harmonic
part captures the general smooth field but including the noise, which eventually corrupts the
image. The seminal work of Meyer and Lewis [20], where the G-norm function space was
introduced, proposed to separate the image into a geometric part, e.g., using TV denoising
[24], and oscillatory texture or noisy part. Various work has followed [2, 3, 4, 5, 14, 17, 23].
In [23], for example, the G-norm is approximated by a negative Sobolev norm of H - 1.

In this work, we propose an additive image decomposition model, which separates an
observed image into a cartoon/structure component, a smooth part, and an oscillatory term.
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1750 M. HUSKA, S. H. KANG, A. LANZA, AND S. MORIGI

f = v + w + n = u + n

Figure 1.1. A noisy image f decomposed following model (1.1).

The structured part models homogeneous regions with sharp edges, the smooth part presents
smoothly varying intensity characterized by a small high-derivative norm, and an oscillatory
term is modeled by the use of an H - 1-norm penalty. We assume that the observed image
f in vectorized form, f \in \BbbR m of dimension m = m1 \times m2, is representable as the sum of a
piecewise-constant component v, a smooth component w, and an oscillatory component n,
such that

(1.1) f = v + w + n = u + n ,

where u := v + w represents the underlying noise-/texture-free piecewise-smooth image. In
case of noise, the oscillatory term n \in \BbbR m in (1.1) is assumed to be independent and identically
distributed (i.i.d.) additive white Gaussian noise, i.e., n \sim Gauss(0, \sigma 2), with known variance
\sigma 2. Figure 1.1 illustrates the objective of the separation task, where f is a balanced sum of v
and w and a realization of Gaussian noise characterized by \sigma = 10. The v is the shadow-free
image. The gradient magnitude of v is obviously sparse, and the first and second derivatives
of w are very small in magnitude.

Typical image decomposition models separate the image into two components. Levine in
[16] proposed an adaptive two-component decomposition model based on the edge detection of
the input image, using the Huber penalty for the structure component and the Lp norm for the
texture part. The authors in [14] used bounded mean oscillations space to model the oscillating
patterns (texture). The model in [2] is extended to color images in [5], providing a novel way
to solve the G-norm-related subproblem, since the projection algorithm proposed in [2] cannot
be used for color images. The work [17] extended the H - 1 space to the whole family of models
using H - s space. Later on in [29] the authors extended the TV-G decomposition model to
manifold-valued images using the Lp approximation to the G-norm. A rather different additive
two-component decomposition on manifolds into piecewise-constant (structure) and smooth
components is presented in [9], while the additive white noise is handled via the L2 residual.
Recently, in [18] a nonconvex nonsmooth structure-texture decomposition model has been
presented, where the structure component is modeled via a TV-like nonconvex penalty, while
the H - 1 space is used to approximate the G-norm for texture or noise separation. In [3], the
authors proposed a three decomposition variational model of structure, texture, and noise,
where the latter is captured by the negative Besov norm.

In addition to texture/noise removal, this work is closely related to retinex theory and
shadow removal. Retinex is a theory simulating how human perception of image intensity
gets distorted under certain uneven lighting conditions, i.e., the color-preservation propertyD
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VARIATIONAL IMAGE DECOMPOSITION 1751

of the human vision system [21]. Shadow removal and retinex both have similar difficulties
in the way that there is a large region of smooth gradient change independent of any edges
and details of the image. The proposed method efficiently separates the shadow and soft light
effects.

The main contributions of this work are summarized as follows:
\bullet We propose an effective three-part additive decomposition nonconvex variational model
to separate an image into piecewise-constant, smooth, and oscillatory components.
This shows an advantage over structure separation even for a high level of noise, and
shadow and spotlight removal.
\bullet We characterize our proposed model in terms of convexity and coercivity, and we
provide existence results for the nonconvexity, noncoercive variational problem.
\bullet We develop a fast and efficient algorithm for this model, based on an alternating direc-
tion method of multipliers (ADMM)-based minimization algorithm, and also outline
a simple strategy for an effective selection of all the parameters in the model and in
the proposed ADMM algorithm.

This paper is organized in the following way. In section 2, we propose a new three-
term variational model for image decomposition. Each of the three penalty terms is care-
fully considered in each subsection: subsection 2.1 details a TV-like nonconvex term for a
piecewise-constant component, subsection 2.2 shows the new harmonic term, and subsection
2.3 investigates the statistical properties of the H - 1-norm approximation for Gaussian noise
and the proposed H - 1-norm based regularization term. In section 3, insights on the effect of
different penalty terms are presented, and a careful discussion of the parameter selection is
discussed in section 4. In section 5, we discuss the existence of global minimizers for the pro-
posed variational problem, and we describe an efficient ADMM-based numerical method for
its solution. Various numerical examples are illustrated in section 6, which show an advantage
over a high level of noise, and shadow and noise removal. Comparisons with other methods
are presented. Conclusions are drawn in section 7.

2. The proposed nonconvex variational decomposition model. We propose a model
which separates a given image into piecewise-constant, smooth homogeneous, and oscillatory
components. For this objective, we look into the following model problem, which decomposes
a given image f into three components v, w, n having distinct features,

(2.1) \{ v\ast , w\ast , n\ast \} \in arg min
v,w,n

\biggl\{ 
\gamma 
\bigl( 
\| \nabla v\| 0 + \| \scrH w\| 22 + \| n\| G

\bigr) 
+

1

2
\| f  - (v + w + n)\| 22

\biggr\} 
,

where the given image f \in \BbbR m gets decomposed into three ideal components v\ast , w\ast , n\ast . The
\ell 0 pseudonorm \| x\| 0 counts the nonzero components of a vector x to induce sparsity. The
operator \scrH (\cdot ) represents a derivative of order higher than one, in particular, we use second-
order derivative in this paper, and \| \cdot \| 22 represents the square of the l2 norm. \| \cdot \| G is
the G-norm that models the oscillatory component. The scalar value \gamma > 0 represents the
regularization parameter balancing the regularization terms and the fidelity term.

The \ell 0 pseudonorm of \nabla v in (2.1) forces the gradient to be sparse encouraging the recovery
of piecewise-constant components, but its combinatorial nature makes the minimization of
(2.1) an NP-hard problem. Thus, it can be approximated by the sum of function valuesD
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1752 M. HUSKA, S. H. KANG, A. LANZA, AND S. MORIGI

\phi 1(\cdot ; a) as follows:

(2.2) \| \nabla v\| 0 := \# \{ i | | (\nabla v)i| \not = 0, i = 1, . . . ,m\} \approx 
m\sum 
i=1

\phi 1 (| (\nabla v)i| ; a) := \scrR 1(v),

where \phi 1(\cdot ; a) : [0,+\infty )\rightarrow [0, 1] is a nonconvex sparsity promoting penalty function, and

| (\nabla v)i| =
\sqrt{} 
| (\partial hv)i| 2 + | (\partial vv)i| 2

represents the ith gradient magnitude in terms of the \ell 2 norm. Detailed characteristics of
\phi 1(\cdot ; a) of this term will be given in section 2.1. The parameter a allows us to tune the
degree of nonconvexity of \phi 1(\cdot ; a), such that \phi 1(\cdot ; a) tends to the \ell 0 pseudonorm for a \rightarrow \infty .
Compared with the classical convex TV prior, it promotes sparsity of gradient norms of the
cartoon component more strongly, while better preserving sharp discontinuities [10, 11].

For the recovery of smooth functions, the use of TV-like penalties is not appropriate, since
fine scale details are lost and smoothly varying features produce staircase effects. Therefore,
we consider a second-order differential operator \scrH (\cdot ) in (2.1), and we define \scrR 2(w) as

(2.3) \scrR 2(w) :=

m\sum 
j=1

\phi 2(| (\scrH w)j | ) =
m\sum 
j=1

| (\scrH w)j | 2,

where \phi 2 : [0,\infty ) \rightarrow [0,\infty ), \phi 2(t) = t2. This induces w to be a smooth component with
relatively small first- and second-order derivatives. We penalize deviations from a piecewise-
constant model by constructing \scrR 1(v) with a gradient operator, while to penalize model
roughness or bumpiness (curvature), we use in \scrR 2(w) a second-difference operator. Using
this higher-order operator yields second-order Tikhonov regularization which favors ``smooth""
solutions.We present further details in subsection 2.2.

A usual convention through the Meyer's space approach, introduced in [20], is to define
the highly oscillating component n in terms of a vector field g, such that n = \nabla \cdot g, where an
appropriate space is chosen for the field components g = (gh, gv). In [3], the discrete version
of the Meyer's space G is introduced as

G = \{ n \in \BbbR m1\times m2
\bigm| \bigm| \exists g \in \BbbR m1\times m2 \times \BbbR m1\times m2 s.t. n = \nabla \cdot g\} ,

which leads to the G-norm of n defined as

(2.4) \| n\| G = inf
\Bigl\{ 
\| g\| \infty 

\bigm| \bigm| n = \nabla \cdot g, g = (gh, gv) \in \BbbR m1\times m2 \times \BbbR m1\times m2

\Bigr\} 
;

here \| g\| \infty = maxi,j | gi,j | , where | gi,j | =
\sqrt{} 

(ghi,j)
2 + (gvi,j)

2 for gi,j being the (i, j)th couple of

the vector field g. The space G is a very good space to model oscillating patterns such as
texture as well as noise, characterized by functions of zero mean, which attain a small norm
in G space [3]. In order to overcome the computational difficulties derived by working with
\| n\| G, the authors in [28] proposed to replace the space G with Gp = W - 1,p with 1 \leq p < +\infty ,
furthermore simplified for p = 2, as proposed in [23]. In this case, the space G2 is actuallyD
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replaced by the negative Sobolev space H - 1 which is the dual space of H1
0 , and is endowed

with the following seminorm,

(2.5) \| n\| H - 1 = inf

\left\{   \| g\| 2 =
\sqrt{} \sum 

i,j

| gi,j | 2
\bigm| \bigm| n = \nabla \cdot g

\right\}   ,

which is proved to be bounded for oscillatory functions [23]. In this paper, we adopt the norm
in (2.5) to model the oscillatory component, due to its potential to allow easier to handle
regularizers w.r.t. the classical G-norm. Let g be defined in the image vectorized form as
g \in \BbbR 2m, g := (gh1 , g

h
2 , . . . , g

h
m, gv1 , g

v
2 , . . . , g

v
m)T . We define the penalty \phi 3 : [0,\infty )\rightarrow [0,\infty ) to

be

(2.6) \scrR 3(g) := \phi 3

\left(  m\sum 
j=1

((ghj )
2 + (gvj )

2)

\right)  , where \phi 3(t) := t2.

In summary, combining the approximations (2.2), (2.3), and (2.6) with a data fitting term
\scrF (v, w, g) in the variational model (2.1), and introducing three parameters \gamma 1, \gamma 2, \gamma 3 \in \BbbR ++

with \BbbR ++ = (0,\infty ), to balance the regularization terms, we propose the following minimization
model

(2.7) \{ v\ast , w\ast , g\ast \} \in arg min
v,w\in \BbbR m,g\in \BbbR 2m

\scrJ (v, w, g),

where

\scrJ (v, w, g) := \gamma 1\scrR 1(v) +
\gamma 2
2
\scrR 2(w) +

\gamma 3
2
\scrR 3(g) +

1

2
\scrF (v, w, g)

:= \gamma 1

m\sum 
j=1

\phi 1(| (\nabla v)j | ; a) +
\gamma 2
2

m\sum 
j=1

\phi 2(| (\scrH w)j | ) +
\gamma 3
2
\phi 3

\left(  m\sum 
j=1

((ghj )
2 + (gvj )

2)

\right)  
+

1

2

m\sum 
j=1

[fj  - (vj + wj + (\nabla \cdot g)j)]2 .

Here, \scrR 1(v) is nonconvex, \scrR 2(w), \scrR 3(g), and \scrF (v, w, g) are smooth and convex functions, and
the overall model (2.7) is a nonconvex optimization problem. In this work, we denote by \BbbR +

and R++ the sets of nonnegative and positive real numbers, respectively. An accurate choice
of the parameters \gamma 1, \gamma 2, \gamma 3, affects the results. Figure 2.1(a) shows the graphs of the penalty
functions \phi 1(t; a) in \scrR 1(t) (solid line), \phi 2(t) (dashed line) in \scrR 2(t), and \phi 3(t) (dot-dashed
line) in \scrR 3(t). As it will be discussed in sections 4 and 5, a good set of parameters, including
a, allows for a suitable repositioning of the intersection points between these regularization
terms to enforce the efficacy of the proposed decomposition model.

The rest of this section discusses each proposed regularizer, followed by the effects of
different penalty terms in section 3, leading to a discussion on the parameter selection in
section 4. In section 5 we point out some important characteristics of the cost functional (2.7)
for its efficient minimization.D
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(a) (b)

Figure 2.1. (a) Graphs of \phi 1(t; a) (solid line), \phi 2(t) (dashed line), and \phi 3(t) (dot-dashed line), used in
\scrR 1(v), \scrR 2(w), and \scrR 3(g), respectively. For illustration purposes, we plot the scaled version of \phi 3 to underline
how the intersection points between \phi 1, \phi 2, and \phi 3 can be modified by tuning the regularization parameters
(more details in section 4 in relation to (4.3)). (b) Plot of the regularization term \phi 1(t; a) defined in ( 2.8) for
different values of the concavity parameter a.

2.1. \bfscrR \bfone (\bfitv ) penalty function. The \ell 0 pseudo-norm is often understood to be the ideal
regularizer to induce sparsity. The alternative \ell 1 norm is the convex relaxation of the \ell 0
pseudo-norm, and plays a fundamental role in sparse image/signal processing. However, the
\ell 1 norm in sparsity-inducing regularizers can be considered, in general, to be overrelaxed.
A substantial amount of recent work has argued for nonconvex regularizers in favor of their
superior theoretical properties and excellent practical performances [22, 12, 25]. For the
penalty \scrR 1 in (2.7), we require the following conditions for \phi 1(\cdot ; a), both for modeling and
minimization algorithm:

(a) be nonconvex, such that the regularizer \scrR 1 promotes sparsity of the gradient magni-
tudes of the piecewise-constant component v more effectively than the classical iso-
tropic TV regularizer;

(b) have the range in [0, 1] independent of the parameter a, so that the degree of noncon-
vexity represented by a can be freely tuned without affecting the \phi 1 upper bound.

(c) have a form such that the associated multivariate proximity operator

prox\alpha \phi (q) := argmin
x\in \BbbR m

\Bigl\{ 
\phi 1

\bigl( 
\| x\| 2; a

\bigr) 
+

\alpha 

2
\| x - q\| 22

\Bigr\} 
, q \in \BbbR m,

admits a closed-form expression.

Following these requirements, we chose the regularizer to be a reparameterized and rescaled
version of the minimax concave (MC) penalty [30], namely, a simple piecewise quadratic
function defined by

(2.8) \phi 1(t; a) =

\Biggl\{ 
 - a

2
t2 +

\surd 
2a t for t \in 

\bigl[ 
0,
\sqrt{} 
2/a

\bigr) 
,

1 for t \in 
\bigl[ \sqrt{} 

2/a,+\infty 
\bigr) 
.

In Figure 2.1(b), we show the plot of the MC penalty functions \phi 1(t; a) defined in (2.8) for
three different values a \in \{ 1, 3, 9\} of the concavity parameter. The solid dots on the graphsD
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represent the points
\bigl( \sqrt{} 

2/a, \phi 1

\bigl( \sqrt{} 
2/a; a

\bigr) \bigr) 
which separate the nonconvex quadratic piece of

the penalty from the constant one.
The MC penalty satisfies the following properties:

\phi 1(t; a) \in C1
\bigl( 
[0,\infty )

\bigr) 
\cap C\infty \bigl( [0,\infty ) \setminus 

\bigl\{ \sqrt{} 
2/a

\bigr\} \bigr) 
,

\phi \prime 
1(t; a) =

\Biggl\{ \surd 
2a - at for t \in 

\bigl[ 
0,
\sqrt{} 

2/a
\bigr) 
,

0 for t \in 
\bigl[ \sqrt{} 

2/a,\infty 
\bigr) 
,

\phi \prime \prime 
1(t; a) =

\Biggl\{ 
 - a for t \in 

\bigl[ 
0,
\sqrt{} 
2/a
\bigr) 
,

0 for t \in 
\bigl( \sqrt{} 

2/a,\infty 
\bigr) 
.

(2.9)

In particular, we notice that

a =
\bigm| \bigm| \bigm| min

t
\phi \prime \prime 
1(t; a)

\bigm| \bigm| \bigm| , t \in [0,+\infty ) \setminus \{ 
\sqrt{} 

2/a\} ,

such that the parameter a represents the degree of nonconvexity of \phi 1 and, hence, can be
referred to as the concavity parameter of \phi 1. Note that for a \rightarrow \infty , the \phi 1(\cdot ; a) converges to
the \ell 0 pseudo-norm graph, which attains a constant 1 everywhere except at the origin, where
it attains zero. This is stated by the following result together with the sparsity promoting
property of \scrR 1(v) inherited directly from the \phi 1(\cdot ; a) function.

Proposition 2.1. Let \phi 1(\cdot ; a) be the function defined in (2.9). Then for any vector v \in \BbbR m

we have

\scrR 1(v) :=
\sum 
j

\phi 1(| (\nabla v)j | ; a) \leq \| \nabla v\| 0.(2.10)

Let \mu := minj: | (\nabla v)j | >0 | (\nabla v)j | . If

(2.11) \mu \geq \=a :=
\sqrt{} 

2/a,

then the equality in (2.10) holds.

Proof. The result (2.10) follows from the fact that 0 \leq \phi 1(\cdot ; a) \leq 1. Moreover, from the
properties of \phi 1(\cdot ; a) we have

lim
a\rightarrow \infty 

\sum 
j

\phi 1(| (\nabla v)j | ; a) = \| \nabla v\| 0.

If the smallest nonvanishing gradient magnitude \mu is greater than \=a defined in (2.11), then
\phi 1(| (\nabla v)j | ; a) = 1 for every element j of nonzero gradient magnitude, thus equality holds.

We remark that (2.10) in Proposition 2.1 holds true for the vector v \in \BbbR m itself, i.e.,\sum 
j \phi 1(| vj | ; a) \leq \| v\| 0. However, we present the proposition in terms of the gradient to em-

phasize the ``accountability"" intensity changes for piecewise-constant parts.
The MC penalty in (2.8) provides a recognized alternative to any \ell p-norm based penalty,

with p, 0 < p < 1, and induces sparsity of the image gradient magnitudes more strongly than
the \ell 1 norm thus better favors piecewise-constant solutions.D
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2.2. \bfscrR \bftwo (\bfitw ) penalty function. The \scrR 2(w) term is designed to capture the smooth com-
ponent w. We promote sparsity of the second-order derivatives \scrH (\cdot ) and use \phi 2(t) = t2. We
define the regularizer \scrR 2(\cdot ) : \BbbR m \rightarrow [0,\infty ) as follows:
(2.12)

\scrR 2(w) =
m\sum 
j=1

\phi 2 (| (\scrH w)j | ) =
m\sum 
j=1

\bigl[ 
(\scrH hhw)

2
j + (\scrH hvw)

2
j + (\scrH vhw)

2
j + (\scrH vvw)

2
j

\bigr] 
=

m\sum 
j=1

| (\scrH w)j | 2.

The linear second-order operator \scrH (\cdot ) is applied to each pixel j = 1, . . . ,m of the image
w \in \BbbR m, which results in a vector of second-order derivatives

(\scrH w)j = ((\scrH hhw)j , (\scrH hvw)j , (\scrH vhw)j , (\scrH vvw)j)
T

along the principal horizontal (h) and vertical (v) directions and their mixture. This regular-
izer \scrR 2(\cdot ) is an extension to second-order Tikhonov regularization, which extends the neigh-
borhood Laplacian discretization by adding diagonal directions to the conventional horizontal-
vertical Laplacian discretization.

The variational decomposition model in [9], which decomposes the image into piecewise-
constant and smooth parts, uses the gradient norm to capture smooth functions, and in [8] a
combination of first- and second-order derivatives is applied for reconstruction of piecewise-
smooth signals. Another common way to include second-order derivatives as energy penalties
is to consider the Hessian Schatten-norm regularizer, as proposed in [15].

In this paper, the proposed term \scrR 2(w) in (2.12) which not only favors the smoothness
of the image, but also the use of linear operators, allowed us to simplify the computation
for w via normal equations, as detailed in section 5. Moreover, oscillations that usually
characterize Gaussian noise present smaller magnitudes of | \nabla (\cdot )| with respect to | \scrH (\cdot )| , unlike
what happens for smooth regions. This motivates us to exploit the second-order derivatives
to capture the pure smooth w image component and to increase the components' separation.

An insight into this separation is illustrated in Figure 2.2, where (a) is the histogram of
the gradient magnitudes | (\nabla (\cdot ))j | for every pixel j = 1, . . . ,m, and (b) is the histogram of
the second-order derivative magnitudes | (\scrH (\cdot ))j | for the components v, w, and n of the image
illustrated in Figure 1.1; here n represents a noise component. We notice that the minimum
nonzero magnitude | \scrH v| attains the same value as | \nabla v| (where minj: | (\nabla v)j | >0 | (\nabla v)j | = 0.39),
and the maximum magnitude | \scrH w| attains the value 0.001 that is approximately one order
smaller than the maximum magnitude of | \nabla w| (where maxj | (\nabla w)j | = 0.012). Therefore,
the use of the second-order-based operator \scrH (\cdot ), instead of the gradient-based operator, \nabla (\cdot ),
allows for a larger separation distance between w and v. For the oscillatory (noise) component
n, the nonzero gradient magnitudes range in [0.006, 0.29], while for the nonzero second-order
derivatives magnitudes | \scrH n| \in [0.01, 0.64]. Again, using the \scrH (\cdot ) operator gives a larger
separation distance between w and n components.

We note that other regularization terms can be utilized for each \scrR 1(v), \scrR 2(w), or \scrR 3(g),
as long as each regularization gives good separations, as illustrated in Figure 2.2. We chose
simple terms, e.g., a linear operator for \scrR 2(w) and an l2-norm for \scrR 3(g), for simpler and
faster computation.D
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(a) (b)

Figure 2.2. Effect of \scrR 2(w): The components v, w, and n are from Figure 1.1. (a) Histograms of | \nabla v| ,
| \nabla w| , and | \nabla n| ; (b) Histograms of | \scrH w| , | \scrH v| , and | \scrH n| . Logarithmic scale in the x-axis is applied. Notice a
larger separation distance between w and v, as well as between w and n, when the new proposed \scrH (second-order
derivative) is used.

2.3. \bfscrR \bfthree (\bfitg ) penalty function and statistical characterization of the \bfitH  - \bfone -norm for
Gaussian noise. In this section, we explore a faithful bound estimation of the H - 1-norm
approximation value \| g\| 2 of \| n\| H - 1 , as well as of the associated regularization term \scrR 3(g).
This is under the assumption that n is white additive Gaussian with known standard deviation
\sigma .

The additive noise is modeled as anm1\times m2 discrete random process\scrN := \{ N [i, j] : [i, j] \in 
\Omega \} (\Omega is the image domain) with N [i, j] denoting the scalar random variable modeling noise
at pixel [i, j]; we assume N [i, j] is zero-mean Gaussian with variance \sigma 2. Let \scrG be an m1\times m2

discrete random process \scrG := \{ G[i, j] = (Gh[i, j], Gv[i, j]) : [i, j] \in \Omega \} with G[i, j] denoting
the 2-dimensional vector random variable at pixel [i, j] with bivariate Gaussian distribution
having variance \sigma 2

g , that is,

(2.13) G[i, j] \sim Gauss

\biggl( \biggl[ 
0
0

\biggr] 
,

\biggl[ 
\sigma 2
g 0

0 \sigma 2
g

\biggr] \biggr) 
.

We assume that the two components Gh[i, j] and Gv[i, j] are uncorrelated as indicated by
the diagonal covariance matrix in (2.13), while the G[i, j]'s are identically distributed and
correlated. Given a single realization n := \{ n[i, j] \in \BbbR : [i, j] \in \Omega \} \in \BbbR m1\times m2 of the noise
process \scrN , and a single realization g := \{ g[i, j] = (gh[i, j], gv[i, j]) \in \BbbR 2 : [i, j] \in \Omega \} \in \BbbR m1\times m2

of the process \scrG , then the statistical representation of the relation n = \nabla \cdot g reads as

(2.14) n[i, j] = Dhg
h[i, j] +Dvg

v[i, j] \forall [i, j] \in \Omega 

with Dh, Dv linear transformations, explicitly represented by

(2.15) n[i, j] =
1

\delta 

\Bigl( 
gh[i+ 1, j] - gh[i, j] + gv[i, j + 1] - gv[i, j]

\Bigr) 
\forall [i, j] \in \Omega ,

with \delta \in \BbbR + being the discretization step. However, since here we want to analyze the
statistical characterization of the H - 1-norm we clearly will replace the realized, deterministicD
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values n[i, j] and g[i, j] with the associated random variables N [i, j] and G[i, j] when dealing
with relationships (2.14) and (2.15). The main result of the relation between the two discrete
probabilistic distributions followed by \scrG and \scrN is summarized in Proposition 2.2, whereas
results on the distribution of \scrR 3(\scrG ) are presented in Proposition 2.3.

Proposition 2.2. Let \scrN be an m1 \times m2 i.i.d. Gaussian noise process with variance \sigma 2, and
\scrG be an m1 \times m2 identically distributed and correlated random process with bivariate Gaussian
distribution having variance \sigma 2

g , which are related by (2.15). Then

(2.16) \sigma 2
g =

\delta 2\sigma 2

4(1 + \rho d)(1 - \rho g)
,

where \rho g and \rho d are scalar values representing Pearson's correlation coefficients between Gh[i+
1, j] and Gh[i, j] as well as between Gv[i, j + 1] and Gv[i, j], and between DhG

h[i, j] and
DvG

v[i, j], respectively.

Proof. By applying the sum rule for normal variables to (2.15), we have

Gh[i+ 1, j]

\delta 
,
Gh[i, j]

\delta 
\sim Gauss

\biggl( 
0,

\sigma 2
g

\delta 2

\biggr) 
=\Rightarrow DhG

h[i, j] \sim Gauss(0, \sigma 2
d) ,

Gv[i, j + 1]

\delta 
,
Gv[i, j]

\delta 
\sim Gauss

\biggl( 
0,

\sigma 2
g

\delta 2

\biggr) 
=\Rightarrow DvG

v[i, j] \sim Gauss(0, \sigma 2
d) ,

and \sigma 2
d is related to \sigma 2

g by the following

(2.17) \sigma 2
d =

2\sigma 2
g

\delta 2
(1 - \rho g) ,

where \rho g denotes Pearson's correlation coefficient between Gh[i+ 1, j] and Gh[i, j] as well as
between Gv[i, j + 1] and Gv[i, j]. Applying again the sum rule to (2.14), we state

(2.18) N [i, j] \sim Gauss(0, \sigma 2) with \sigma 2 = 2\sigma 2
d(1 + \rho d),

where \rho d is Pearson's correlation coefficient between DhG
h[i, j] and DvG

v[i, j]. Replacing
(2.17) into (2.18), the relation in (2.16) between \sigma g and \sigma follows.

In Proposition 2.2 it is assumed that \scrG follows a bivariate Gaussian distribution. This
result was proved experimentally by employing a Monte Carlo simulation. In particular, we
generated 200,000 samples n \in \BbbR m1\times m2 of white Gaussian noise processes with different noise
standard deviations \sigma = \{ 10, 15, 20\} . First, we estimated the correlation coefficient between
gh[i, j] and gv[i, j] resulting in a value of 0.07 which implies Gh[i, j], Gv[i, j] in (2.13) have
very small to no correlation [1]. Then we estimated the coefficients \rho d and \rho g in (2.16).

In Table 2.1, together with the estimated values of \rho d, we report estimates of \rho gh , which is

the correlation between the realizations gh[i+1, j] and gh[i, j], and \rho gv , which is the correlation
between gv[i, j + 1] and gv[i, j], for increasing image dimensions m = \{ 1282, 2002, 2562, 4002,
5122, 10242, 20482, 40002\} . As expected, \rho gh and \rho gv are equal and we refer to them as \rho g.D
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Table 2.1
Pearson's correlation coefficients for varying \sigma and image dimension m; \rho g between adjacent pixels and \rho d.

\sigma = 10 \sigma = 15 \sigma = 20
m \rho d \rho gh \rho gv \rho d \rho gh \rho gv \rho d \rho gh \rho gv

1282 0.460 0.623 0.623 0.460 0.623 0.623 0.460 0.623 0.623
2002 0.462 0.650 0.650 0.462 0.650 0.650 0.462 0.650 0.650
2562 0.463 0.663 0.663 0.463 0.663 0.663 0.463 0.663 0.663
4002 0.464 0.681 0.681 0.464 0.681 0.681 0.464 0.681 0.681
5122 0.465 0.689 0.689 0.465 0.689 0.689 0.465 0.689 0.689

10242 0.466 0.701 0.701 0.466 0.701 0.701 0.466 0.701 0.701
20482 0.467 0.702 0.702 0.467 0.702 0.702 0.467 0.702 0.702
40002 0.467 0.702 0.702 0.467 0.702 0.702 0.467 0.702 0.702

Gh \sim Gauss(0, \sigma 2
g) DhG

h \sim Gauss(0, \sigma 2
d) DhG

h +DvG
v \sim Gauss(0, \sigma 2)

Gv \sim Gauss(0, \sigma 2
g) DvG

v \sim Gauss(0, \sigma 2
d) N \sim Gauss(0, \sigma 2 = 152)

Figure 2.3. Histograms of sample distributions obtained by Monte Carlo simulations using 20, 000 samples
of Gaussian noise realizations n with standard deviation \sigma = 15. The red solid line is the associated theoretical
probability distributions.

The estimated values of \rho d and \rho g, for both gh and gv, remain constant for each value of
the noise standard deviation \sigma , whereas with increasing dimensions m, the change follows a
logarithmic growth. For an arbitrary image dimension m, we suggest the following polynomial
regression for \rho d and \rho g in terms of the image dimension:

\rho d(x = log2(m)) = 1.29\times 10 - 5x3  - 8.35\times 10 - 4x2 + 1.81\times 10 - 2x+ 0.33 ,

\rho g(x = log2(m)) = 2.93\times 10 - 6x5  - 2.53\times 10 - 4x4 + 8.72\times 10 - 3x3  - 0.15x2 + 1.34x - 4.34 .

Assuming the number of samples sufficiently large, Monte Carlo simulations allowed the
validation of the asymptotic behavior of the variables Gh, Gv, DhG

h, DvG
v, DhG

h +DvG
v.

In particular, we generated 20,000 samples of Gaussian noise realizations n with the same
standard deviations \sigma = 15. For each sample n the values gh, gv, Dhg

h, Dvg
v, Dhg

h +Dvg
v

were computed, the normalized histogram of these values was constructed and shown in Figure
2.3. The associated theoretical probability distributions are illustrated in a solid red line. The
theoretical standard deviations \sigma g and \sigma d are computed by (2.16) and (2.17), respectively,D
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and the Pearson's correlation coefficients \rho d and \rho g are taken from Table 2.1. We notice that
all the variables, as expected, follow the Gaussian distributions asymptotically.

The following Proposition 2.3, which assumes i.i.d. Gaussian random processes \scrP , there-
fore uncorrelated, provides theoretically expected values for \| \scrP \| 2 and \scrR 3(\scrP ). Even though
the results in Proposition 2.3 cannot directly apply to \scrG due to its correlated nature, we will
use them to evaluate approximations of \| \scrG \| 2 and \scrR 3(\scrG ) supported by encouraging simulation
results. For further insight onto the sum of correlated squared Gaussian variables we refer the
reader to [7].

Proposition 2.3. Let \scrP be an m = m1 \times m2 i.i.d. random process consisting of random
variables P [i, j] following a bivariate Gaussian distribution with variance s2, then the following
relationships hold:

(i) \| \scrP \| 2 \sim G\Gamma (2, 2m, s
\surd 
2) has a generalized gamma distribution with expected value

\BbbE [\| \scrP \| 2] =
\surd 
2s

\Gamma (m+ 1/2)

\Gamma (m)
=
\surd 
2s e\mathrm{l}\mathrm{n} \Gamma (m+1/2) - \mathrm{l}\mathrm{n} \Gamma (m);

(ii) \scrR 3(\scrP ) =
\bigl( 
\| \scrP \| 22

\bigr) 2 \sim G\Gamma (1/2,m/2, 4s4) has a generalized gamma distribution with
scale parameter 1/2, shape parameters m/2 and 4s4, and expected value

\BbbE [\scrR 3(\scrP )] = 4s4(m+ 1)m.

Proof. The sum of 2m independent squared Gaussian distributed variables of variance s2

follows a Gamma distribution with shape parameter m and scale parameter 2s2:

(2.19) \| \scrP \| 22 =
\sum 

[i,j]\in \Omega 

\| P [i, j]\| 22 \sim \Gamma (m, 2s2).

The distribution of the \| \scrP \| 2 in (i) is then trivially obtained by taking the square root of the
gamma distributed variable (2.19) which follows the generalized gamma distribution

\| \scrP \| 2 =
\sqrt{} 
\| \scrP \| 22 \sim G\Gamma (2, 2m, s

\surd 
2)

with shape parameters 2 and 2m, and scale parameter s
\surd 
2. The generalized gamma distribu-

tion represents a generalization of the \chi distribution for non-standard-distributed variables.
The expected value is given in terms of the gamma function \Gamma (\cdot ) as

\BbbE [\| \scrP \| 2] =
\surd 
2s

\Gamma (m+ 1/2)

\Gamma (m)
,

thus concluding (i). From (2.19), the square of the gamma distributed variable results in

\scrR 3(\scrP ) = \phi 3(\| \scrP \| 22) =
\bigl( 
\| \scrP \| 22

\bigr) 2 \sim G\Gamma (1/2,m/2, (2s2)2) ,

with expected value \BbbE [\scrR 3(\scrP )] = 4s4 \Gamma (2(m/2+1))
\Gamma (2(m/2)) = 4s4(m+ 1)m, thus proving (ii).
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Table 2.2
Results on \sigma g estimations and validation of the expected values of \| g\| 2 and of the model regularization

term \scrR 3(g).

m = 2002 \sigma = 1 5 10 20 40 60

\sigma g 0.70 3.49 6.99 13.98 27.96 41.94
\=\sigma g 0.70 3.52 7.04 14.08 28.15 42.25

\=\sigma g/\sigma g 1.007 1.007 1.007 1.007 1.007 1.007

\BbbE [\| \scrG \| 2] 0.78 3.88 7.75 15.51 31.01 46.52
\| g\| 2 0.78 3.90 7.81 15.62 31.23 46.86

\| g\| 2/\BbbE [\| \scrG \| 2] 1.004 1.004 1.004 1.004 1.004 1.004

\BbbE [\scrR 3(\scrG )] 0.36 225.82 3613 5.78e+04 9.25e+05 4.68e+06
\scrR 3(g) 0.38 236.07 3786 6.08e+04 9.71e+05 4.92e+06

\scrR 3(g)/\BbbE [\scrR 3(\scrG )] 1.05 1.05 1.05 1.05 1.05 1.05

m = 4002 \sigma = 1 5 10 20 40 60

\sigma g 0.73 3.66 7.32 14.63 29.27 43.90
\=\sigma g 0.74 3.68 7.36 14.71 29.42 44.15

\=\sigma g/\sigma g 1.005 1.005 1.005 1.005 1.005 1.005

\BbbE [\| \scrG \| 2] 1.62 8.12 16.23 32.46 64.92 97.38
\| g\| 2 1.63 8.16 16.32 32.63 65.26 97.95

\| g\| 2/\BbbE [\| \scrG \| 2] 1.003 1.003 1.003 1.003 1.003 1.003

\BbbE [\scrR 3(\scrG )] 6.94 4337 69400 1.11e+06 1.78e+07 8.99e+07
\scrR 3(g) 7.17 4496 71903 1.15e+06 1.84e+07 9.33e+07

\scrR 3(g)/\BbbE [\scrR 3(\scrG )] 1.04 1.04 1.04 1.04 1.04 1.04

Even though Proposition 2.3 cannot be directly applied for our process \scrG due to the
correlations between pixel variables G[i, j] and G[k, l] for [i, j] \not = [k, l], for practical usage, we
approximate the expected values of \| \scrG \| 2 and \scrR 3(\scrG ) by results from Proposition 2.3 as

\BbbE [\| \scrG \| 2] \approx 
\surd 
2\sigma g e

\mathrm{l}\mathrm{n} \Gamma (m+1/2) - \mathrm{l}\mathrm{n} \Gamma (m) ,(2.20)

\BbbE [\scrR 3(\scrG )] \approx 4\sigma 4
g(m+ 1)m .(2.21)

This is justified by the Monte Carlo simulations reported in Table 2.2, where we present a
computational validation of Proposition 2.2 and approximations (2.20)--(2.21) with 20,000
realizations of a Gaussian noise process for each standard deviation \sigma in the ``range \sigma =
\{ 1, 5, 10, 20, 40, 60\} ""/255 and sample dimension m = m1\times m2 in the range m = \{ 2002, 4002\} .
In this table, we also consider \| g\| 2 = (

\sum m
i=1(g

h
i )

2 + (gvi )
2)1/2 for comparison with \scrR 3(g). For

each sample set, and for each increasing noise standard deviation value \sigma , we report in the
first block in Table 2.2 the standard deviation \sigma g computed according to formula (2.16) in
Proposition 2.2, and the experimental standard deviation \=\sigma g directly obtained from the sam-
ples. Analogously, in the second and third blocks of Table 2.2, we validate the approximation
drawn from (i) and (ii) of Proposition 2.3, respectively. The approximate expected values
\BbbE [\| \scrG \| 2] and \BbbE [\scrR 3(\scrG )] in Table 2.2 were calculated using the \sigma g value in (2.16). The reported
ratios, being constant across different values of \sigma and close to one, indicate a low relative
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Table 2.3
Comparison to

\surd 
C value computed via formula proposed by [3] and via (2.22) for different image size m.

m 322 642 1282 2562 5122

\surd 
C by [3] 0.843 0.906 0.965 1.021 1.073\surd 

C by (2.22) 0.840 0.904 0.964 1.021 1.073

error introduced as a consequence of neglecting the correlation between \scrG [i, j] and \scrG [k, l] for
[i, j] \not = [k, l].

Based on these statistical investigations, in the following we provide a formula which
relates the approximation to \| \scrG \| 22 with the L2 norm of the noise process \scrN .

Corollary 2.4. Let \scrN \in \BbbR m be a Gaussian noise process with known standard deviation \sigma ,
i.e., \scrN \sim Gauss(0, \sigma 2Im). Then, under the approximation drawn from Proposition 2.3, we
have

(2.22) \BbbE [\| \scrG \| 22] \approx C \cdot \BbbE [\| \scrN \| 22], C \approx 
2\sigma 2

g

\sigma 2
.

Proof. The norm of a Gaussian noise process of arbitrary standard deviation \sigma distributes
as \| \scrN \| 22 \sim \Gamma (m2 , 2\sigma 

2) , while \| \scrG \| 22 approximately distributes as defined in (2.19). Computing
the ratio of the respective expected values, we have

C \approx \BbbE [\| \scrG \| 22]
\BbbE [\| \scrN \| 22]

\approx 
2m\sigma 2

g

m\sigma 2

which concludes the proof.

This provides a statistical insight into the distribution of the H - 1-norm approximation
for Gaussian noise images. In [3], the authors proposed a formula to estimate the C value.
An alternative formula is obtained by substituting \sigma g as defined in (2.16) into (2.22) for
\delta = 1, thus obtaining C \approx 1

2(1+\rho d)(1 - \rho g)
. In Table 2.3, we report the calculated values of

\surd 
C

computed by the formula (2.22) and by Proposition 3.5 in [3]. We note that these values are
extremely similar and depend on the image dimension.

3. Effects of model penalty terms. In this section, we investigate the potential of each
penalty term in the proposed variational model (2.7), to discriminate between the different
image components. Towards this aim, let us consider our idealized variational model (2.1)
for additive decomposition, with terms \| \nabla v\| 0, \| \scrH w\| 2 with \scrH (\cdot ) of second order, and \| n\| H - 1

in (2.4) evaluated by the approximation given by (2.5). A good model is given by a choice
of spaces/norms so that, with the given desired properties of v, w, and n, we can obtain
\| \nabla v\| 0 << \| \nabla w\| 0, \| \nabla v\| 0 << \| \nabla n\| 0, \| \scrH w\| 2 << \| \scrH v\| 2, \| \scrH w\| 2 << \| \scrH n\| 2, and finally
\| n\| H - 1 << \| v\| H - 1 , \| n\| H - 1 << \| w\| H - 1 .D
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To illustrate this, six different synthetic test images u1 to u6 are presented, all having the
same dimension m = 5122 pixels, and defined as follows:

Chessboard: u1(i, j) =

\biggl\{ 
 - 80, sin(jz/512) cos(iz/512) \leq 0,
80, otherwise,

Diagonal stripes: u2(i, j) =

\biggl\{ 
 - 80, sin((i+ j)z/512) \leq 0,
80, otherwise,

Blurry stripes: u3(i, j) = 80 sin(jz/512),

Blurry chessboard: u4(i, j) = 80 sin(jz/512) cos(iz/512),

Shading stripes: u5(i, j) = j/2 + c sin(jz/512),

Noise image: u6(i, j) \sim Gauss(0, \sigma 2).

The first two images u1 and u2 are piecewise-constant scalar fields with sharp edges; u3 and
u4 represent smooth-gradient scalar fields with varying frequency of oscillations according to
parameter z; u5 is a combination of constant-gradient slope with oscillations, which represents
a nonzero mean scalar field, and the image u6 is a realization of Gaussian noise with different
standard deviations \sigma . Figure 3.1 shows these test cases with varying parameters z, and Table
3.1 shows the associated norm values which characterize the three penalty terms in (2.1).

First, in Table 3.1, the piecewise-constant images such as u1 and u2 attain the smallest
\| \nabla u\ast \| 0 compared to the other two norms \| \scrH u\ast \| 2, and \| u\ast \| H - 1 , e.g., when z = \pi , \| \nabla u\ast \| 0
values are around 500, while other norm values are much bigger. For u1, \| \nabla u1\| 0 is smaller
compared to other norms until z = 16\pi , then for z = 64\pi and 128\pi , \| \scrH u1\| 2 and \| u1\| H - 1

values become more comparable with \| \nabla u1\| 0. This effect is consistent with the visual effect,
that for z = 64\pi or 128\pi , the image no longer looks like a piecewise-constant image, but it
looks more like a texture. In fact, for z = 128\pi , we notice that the approximated H - 1-norm
values are the smallest. Across the images, \| \nabla u\ast \| 0 for u1 and u2 are the smallest around 500,
compared to \| \nabla u\ast \| 0 of the other blurry or noisy images u3 to u6 above 130,000.

Second, for blurry smooth images u3 and u4, notice the small values of \| \scrH u\ast \| 2 < 0.5, in
comparison to the other norms above 100,000. Comparing across the images, Table 3.1 shows
that the slope image u5 also give small \| \scrH u\ast \| 0 values, around 9 and 0, since this image is
also dominated by a smooth component.

Third, as z increases, the details become finer in each row, and decreasing H - 1-norm
values represent this fact accordingly. Also notice that in the last column of Table 3.1, H - 1-
norm values are similar around 31,000--38,000 across the rows. This gives a clear idea what
level of detail is preferred in the H - 1-norm.

Fourth, the mean of the image affects the norm values. Images u5 are a combination of
slope and sine functions with increasing oscillations and fixed magnitude c = 40 (first three
columns), and increasing amplitude of the oscillating part fixing z = 16\pi (next three columns).
As oscillations increase from left to right \| \scrH u5\| 2 values increase, but \| \nabla u5\| 0 and \| u5\| H - 1

values stay relatively the same. This effect is due to the nonzero mean of the texture; in such
cases H - 1-norm values remain large.

Fifth, for the noise images u6, the H
 - 1-norm value is always smaller compared to \| \nabla u6\| 0

and \| \scrH u6\| 2. The H - 1-norm values increase as the noise level increases. Comparing theD
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z = 1\pi 2\pi 8\pi 16\pi 64\pi 128\pi 

z = 1\pi 2\pi 8\pi 16\pi 64\pi 128\pi 

z = 0.5\pi 2\pi 4\pi 16\pi 32\pi 128\pi 

z = 0.5\pi 1.5\pi 4\pi 8\pi 32\pi 64\pi 

c = 40, z = 4\pi 16\pi 64\pi z = 16\pi , c = 0 10 80

\sigma = 1 \sigma = 5 \sigma = 10 \sigma = 20 \sigma = 40 \sigma = 60

Figure 3.1. Case study images u1 - 6 for different z values, frequencies z/2\pi , and standard deviations \sigma .

\| u6\| H - 1 values with other images, when \sigma = 60, the noisy u6 gives a similar value of the
H - 1-norm around 33,000, due to the image resolution, and the visual effect is similar across
images with similar norm values. We can see that the H - 1-norm value stays small only for
the noise images u6, and relatively large for nontexture but oscillating images u1 - 5.D
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Table 3.1
Case study: model norms approximating values corresponding to the images u1, . . . , u6 in Figure 3.1.

Chessboard z = 1\pi 2\pi 8\pi 16\pi 64\pi 128\pi 

\| \nabla u1\| 0 \approx 513 1531 7540 15272 54944 89920
\| \scrH u1\| 2 \approx 5147 8868 19830 28507 57700 81730
\| u1\| H - 1 \approx 2.48e6 2.39e6 527582 255416 63056 31843

Diagonal stripes z = 1\pi 2\pi 8\pi 16\pi 64\pi 128\pi 

\| \nabla u2\| 0 \approx 511 1024 4096 8192 32768 65536
\| \scrH u2\| 2 \approx 10215 14449 28891 40856 81711 115556
\| u2\| H - 1 \approx 2.10e6 2.34e6 554548 272684 67252 33494

Blurry stripes z = 0.5\pi 2\pi 4\pi 16\pi 32\pi 128\pi 

\| \nabla u3\| 0 \approx 132257 232915 247452 260769 261632 261632
\| \scrH u3\| 2 \approx 0.27 4.36 17.45 278.93 1113 16950
\| u3\| H - 1 \approx 676799 1.99e6 1.14e6 296022 148488 38027

Blurry chessboard z = 0.5\pi 1.5\pi 4\pi 8\pi 32\pi 64\pi 

\| \nabla u4\| 0 \approx 142514 247336 259889 261389 261109 258047
\| \scrH u4\| 2 \approx 0.38 3.46 24.62 98.48 1571 6224
\| u4\| H - 1 \approx 719103 1.63e6 628639 305844 74601 37304

Shading stripes (c, z) = (40, 4\pi ) (40, 16\pi ) (40, 64\pi ) (0, 16\pi ) (10, 16\pi ) (80, 16\pi )

\| \nabla u5\| 0 \approx 227040 254455 261632 261632 226701 256769
\| \scrH u5\| 2 \approx 8.72 139.46 2204 0 34.87 278.93
\| u5\| H - 1 \approx 1.95e6 1.97e6 1.95e6 1.95e6 1.95e6 1.99e6

Noise image \sigma = 1 5 10 20 40 60

\| \nabla u6\| 0 \approx 258999 261992 262108 262132 262139 262141
\| \scrH u6\| 2 \approx 2287 11396 22861 45657 91493 136451
\| u6\| H - 1 \approx 499.45 2796 5164 10581 22403 33071

Table 3.1 shows the norm values for images in the range [0, 255]. When the image inten-
sity range changes, the reported values would change, but their relative behavior would be
preserved.

4. Model parameter selection. Learning from the previous section, we propose simple
strategies for an effective, automatic selection of all the parameters \gamma 1, \gamma 2, \gamma 3 that balance the
energies in the minimizing function \scrJ in (2.7). The goal is to adjust the model parameters
in such a way that each regularization term \scrR 1(v), \scrR 2(w), \scrR 3(g) perform as well as possible.
This can be achieved by balancing the energy contribution from each term to the total energy
\scrJ with suitable \gamma 1, \gamma 2, \gamma 3 parameter values, such that

\gamma 1 \approx 
1

\scrR 1(v)
, \gamma 2 \approx 

1

\scrR 2(w)
, \gamma 3 \approx 

1

\scrR 3(g)
.

We propose to estimate the values for \scrR 1(v), \scrR 2(w), \scrR 3(g) using some a priori knowledge of
the image components v, w, and n.

First of all, the estimate of \gamma 1 follows Proposition 2.1 which states that \scrR 1(v) is a good
approximation of the \ell 0 pseudo-norm penalty. The value \scrR 1(v), defined by the sum of sparsity
inducing functions \phi 1(\cdot ; a), approximately represents the number of image pixels that form
edges and can be estimated by simple edge detection filters on f . Similarly, the minimumD
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jump (\mu in Proposition 2.1) can be estimated, thus, in order to satisfy (2.11), the value \=a is
set as

(4.1) \=a = \tau \mu = \tau min
j: | (\nabla v)j | >0

| (\nabla v)j | , 0 < \tau < 1,

and consequently the value for a is given by (2.11). In general, for images with values in the
range [0, 1], the value \=a is less than 0.1. The higher the \gamma 1 value, the fewer edges of different
gradient magnitudes are captured in v.

Second, the penalty \scrR 2(w) is a quadratic penalty term which relies on the convex function
\phi 2(\cdot ). We assume that the second-order derivatives of w have small magnitudes; see, for
example, the images u3 - 5 of Table 3.1. Having a priori knowledge on the smooth image
component we expect, we could compute a value \=t as

(4.2) \=t := max
j
| (\scrH w)j | .

Alternatively, we experimentally set \=t = 10 - 3a. Values smaller than \=t are captured by \scrR 2(w),
while higher values should be penalized by \scrR 1(v). This suggests that \=t be set by the abscissa
of the intersection point between the functions \phi 1(\cdot ) and \phi 2(\cdot ). This is illustrated in Figure
2.1(a) where \=t is marked by a circle. Then the parameter \gamma 2 is obtained by solving

(4.3)
\gamma 2
2
\phi 2(\=t) = \gamma 1\phi 1(\=t; a) \Rightarrow \gamma 2 =

2\gamma 1\phi 1(\=t; a)
\=t2

.

This procedure allows a control over what magnitudes should be favored either by \scrR 1(v) or
\scrR 2(w).

Finally, in general, the value of \scrR 3(g) depends on the frequency and magnitude of the
oscillatory signal as shown in Table 3.1: \scrR 3(g) increases with signal magnitude and decreases
with increasing frequency. When the proposed variational model (2.7) is applied to noisy
images, where n represents white Gaussian noise, assuming we know the noise level \sigma which
degraded the observed image f , we can estimate the term \scrR 3(g) by (2.21), and set \gamma 3 to be
the inverse of its approximated expected value \BbbE [\scrR 3(g)], that is,

(4.4) \gamma 3 =
1

4\sigma 4
g(m+ 1)m

,

where \sigma g is defined in Proposition 2.2.
When instead the proposed variational model (2.7) is applied to images with a textured

component, as in the example illustrated at the end of section 6, \scrR 3(g) does not follow a
generalized gamma distribution. An insight on the selection of parameter \gamma 3 is suggested by
the decomposition results v and n w.r.t. the relative ratio \gamma 1/\gamma 3. Figure 4.1 illustrates the
decomposition of the input image f consisting of six different frequencies with the same am-
plitude. Increasing the relative ratio \gamma 1/\gamma 3 shifts the oscillatory signal into the n\ast component.
Suitable choices for \gamma 3 w.r.t. a fixed \gamma 1 allow for good control on the scale of the texture
to capture in the n\ast component in terms of frequency and/or oscillations. The larger is the
relative ratio \gamma 1/\gamma 3, the more oscillations of smaller frequencies are captured in n\ast .

In summary, a general strategy for an automatic selection of the parameters \gamma 1, \gamma 2, and
\gamma 3, when either \gamma 1 or \gamma 3 can be estimated, consists ofD
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v\ast :

n\ast :

Input image f \gamma 1
\gamma 3

= 1
10

\gamma 1
\gamma 3

= 1 \gamma 1
\gamma 3

= 10

Figure 4.1. Effect of the ratio \gamma 1/\gamma 3 on the dispensation of the piecewise-constant oscillations in f into v
and n.

1. computing the estimation for \gamma 3 (alternatively \gamma 1);
2. setting \gamma 1 = \tau \gamma 3 for \tau > 1 (alternatively, \gamma 3 = \tau \gamma 1 for \tau < 1);
3. estimating \=a via (4.1) and \=t via (4.2);
4. computing \gamma 2 via (4.3).

5. ADMM-based numerical solution. In this section, we first provide details on the
discretization of the differential operators. We analyze the existence and uniqueness of the
optimization problem (2.7) and finally describe an efficient algorithm, based on the ADMM
strategy, to obtain the numerical solution of the proposed variational model (2.7).

5.1. Discrete differential operators. Given a grayscale image z represented as a matrix
m1 \times m2, the first-order and the second-order differential operators at a pixel (i, j) are dis-
cretized using the following standard finite difference approximations: (\nabla hz)i,j \approx zi,j+1 - zi,j ,
(\nabla vz)i,j \approx zi+1,j  - zi,j , (\scrH hhz)i,j \approx zi,j - 1  - 2zi,j + zi,j+1, (\scrH vvz)i,j \approx zi - 1,j  - 2zi,j + zi+1,j ,
(\scrH hvz)i,j = (\scrH vhz)i,j \approx zi,j + zi+1,j+1  - zi,j+1  - zi+1,j for 1 < i < m1, 1 < j < m2. Dis-
cretizations for boundary pixels come from assuming antireflective boundary conditions for z
[26].

If the image z is represented in column-major form as an m-dimensional column vector
with m = m1m2, the discretized first- and second-order differential operators are represented
by matrices D := (DT

h , D
T
v )

T \in \BbbR 2m\times m and H := (HT
hh, H

T
vv, H

T
hv, H

T
vh)

T \in \BbbR 4m\times m, respec-
tively, with Dh, Dv, Hhh, Hvv, Hhv, Hvh \in \BbbR m\times m coefficient matrices of the finite difference
operators approximating the first-order horizontal and vertical partial derivatives and the
second-order horizontal, vertical, and mixed horizontal-vertical partial derivatives.

Using matrices D and H, the discretized gradient and the discretized second-order differ-
ential operator at a pixel j of the vectorized image z are defined as follows:

(\nabla x)j \approx (Dx)j := ((Dhx)j , (Dvx)j)
T \in \BbbR 2 ,(5.1)

(\scrH (x))j \approx (Hx)j := ((Hhhx)j , (Hvvx)j , (Hhvx)j , (Hvhx)j)
T \in \BbbR 4 .(5.2)

In analogy with the continuous setting, we define the discrete version of the divergence
operator in terms of the adjoint\nabla \ast of the gradient\nabla that, applied to a vector field g = (gh, gv),D
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is
\nabla \cdot g =  - \nabla \ast g \approx DT g .

Using these discretizations of the differential operators and making all the penalty terms
explicit, the minimization problem (2.7) reads as

(5.3) \{ v\ast , w\ast , g\ast \} \in arg min
v,w\in \BbbR m,g\in \BbbR 2m

\scrJ (v, w, g)

with

(5.4) \scrJ (v, w, g) = \gamma 1

m\sum 
j=1

\phi 1 (| (Dv)j | ; a) +
\gamma 2
2
\| Hw\| 22 +

\gamma 3
2
\| g\| 42 +

1

2

\bigm\| \bigm\| f  - (v + w +DT g)
\bigm\| \bigm\| 2
2
.

5.2. Analysis of the model. In this section, we outline some important analytical prop-
erties of our cost functional \scrJ in (5.4), with particular focus on its convexity and coercivity,
aiming at proving the existence of global minimizers. We remark that some of the reported
results (or their proof) depend on the discretization choices outlined in section 5.1 for the
differential operators D and H. However, analogous results could be obtained in a similar
manner for other discretization schemes.

In the following Proposition 5.1, whose proof is provided in Appendix A, we analyze \scrJ 
with focus on its convexity. To simplify the notations, we introduce the total optimization
variable x :=

\bigl( 
v;w; gh; gv

\bigr) 
\in \BbbR 4m.

Proposition 5.1. For any \gamma 1, \gamma 2, \gamma 3, a > 0 and any f \in \BbbR m, the function \scrJ in ( 5.4) is
proper, continuous, bounded from below by zero, and nonconvex in x. Moreover, \scrJ is strongly
convex in w and strictly convex in g for any \gamma 1, \gamma 2, \gamma 3, a > 0 and any f \in \BbbR m, whereas it is
convex (strongly convex) in v if parameters \gamma 1, a satisfy

(5.5) a \leq (<)
1

\gamma 1 \lambda \mathrm{m}\mathrm{a}\mathrm{x}
\Leftarrow \Rightarrow a = \tau c

1

\gamma 1 \lambda \mathrm{m}\mathrm{a}\mathrm{x}
, \tau c \in [0, 1] (\tau c \in [0, 1)) ,

where \lambda \mathrm{m}\mathrm{a}\mathrm{x} \in \BbbR ++ denotes the maximum eigenvalue of matrix DTD, which is equal to 8 for
D defined in section 5.1.

Motivated by nonconvexity of the cost function \scrJ , which does not allow us to obtain
uniqueness results for its global minimizers, in the following we analyze the behavior of \scrJ at
infinity, in particular coercivity, and demonstrate the existence of global minimizers.

First, in the following Lemma 5.2 we provide explicit forms for the null spaces of the finite
difference matrices D and H defined in section 5.1. Then, in Proposition 5.3 we state the
existence results.

Lemma 5.2. Let z \in \BbbR m be the vectorized (column-major) form of an m1\times m2 image with
m = m1 \times m2, and let D \in \BbbR 2m\times m and H \in \BbbR 4m\times m be the discretization of \nabla and \scrH given
in section 5.1 which compute the discrete first- and second-order partial derivatives of image
z. Then, the null spaces of D and H are the 1-dimensional and 3-dimensional linear spaces
of (vectorized) m1 \times m2 constant and affine images, respectively; in the formulas

(5.6) null(D) = span
\Bigl( 
h(1)

\Bigr) 
\subset \BbbR m, null(H) = span

\Bigl( 
h(1), h(2), h(3)

\Bigr) 
\subset \BbbR m
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with basis vectors h(1), h(2), h(3) \in \BbbR m defined by
(5.7)

h(1) = 1m , h(2) = vec

\left(   1 2 . . . m2
...

...
...

...
1 2 . . . m2

\right)   
\right\}     m1 rows , h(3) = vec

\left(     
1 . . . 1
2 . . . 2
... . . .

...
m1 . . . m1

\right)     
\underbrace{}  \underbrace{}  

m2 columns

.

Proof. It follows from the definitions of matrices D and H given in section 5.1 that

null(D) = \{ z \in \BbbR m: (Dz)j = 02 \forall j = 1, . . . ,m\} ,(5.8)

null(H) = \{ z \in \BbbR m: (Hz)j = 04 \forall j = 1, . . . ,m\} .

Recalling the finite difference choices outlined in section 5.1 and noting that here we are
considering a vectorized image z, we have

(5.9) (Dz)j =

\biggl( 
0
0

\biggr) 
\Leftarrow \Rightarrow 

\biggl( 
 - 1 0 1
 - 1 1 0

\biggr) 
\underbrace{}  \underbrace{}  

D

\left(  zj
zj+1

zj+m1

\right)  =

\biggl( 
0
0

\biggr) 
,

(5.10) (Hz)j =

\left(    
0
0
0
0

\right)    \Leftarrow \Rightarrow 

\left(  1 0  - 2 0 1 0
0 1  - 2 1 0 0
0 0 1  - 1  - 1 1

\right)  
\underbrace{}  \underbrace{}  

H

\left(        

zj - m1

zj - 1

zj
zj+1

zj+m1

zj+1+m1

\right)        =

\left(  0
0
0

\right)  ,

where in (5.10) we neglected the fourth row of matrix H as it coincides with the third one. It
is easy to prove that the solutions of underdetermined linear systems in (5.9) and (5.10), which
correspond to the null spaces of coefficient matrices D \in \BbbR 2\times 3 and H \in \BbbR 3\times 6, respectively,
read

(5.11) null
\bigl( 
D
\bigr) 
= span

\bigl( 
\alpha 0

\bigr) 
\subset \BbbR 3 , null

\bigl( 
H
\bigr) 
= span

\bigl( 
\alpha 1, \alpha 2, \alpha 3

\bigr) 
\subset \BbbR 6

with basis vectors \alpha 0 \in \BbbR 3 and \alpha 1, \alpha 2, \alpha 3 \in \BbbR 6 given, e.g., by
(5.12)

\alpha 0 = (1, 1, 1)T , \alpha 1 = (1, 1, 1, 1, 1, 1)T , \alpha 2 = (1, 2, 2, 2, 3, 3)T , \alpha 3 = (2, 1, 2, 3, 2, 3)T .

A 2-dimensional visualization of the basis vectors is given in Figure 5.1.
Hence, conditions (5.9) and (5.10) are equivalent to saying that image z is locally (i.e., over

the local stencils for D and H) constant and affine, respectively. In order to prove that such
local properties extend to the whole image, we notice that, by shifting one pixel horizontally
or vertically (i.e., moving from pixel j to pixels j\pm 1 or j\pm m1), the intersection of the shiftedD
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\alpha 0 \alpha 1 \alpha 2 \alpha 3

1 1

1

1 11

1

1 1

2 31

2

2 3

2 22

1

3 3

Figure 5.1. 2-dimensional visualization of basis vectors \alpha 0 \in \BbbR 3, \alpha 1, \alpha 2, \alpha 3 \in \BbbR 6 defined in ( 5.12).

local stencil with the original one is made by one pixel for D and three pixels for H (see the
red-bordered stencils depicted in Figure 5.1). This means that the local constant or affine
configurations must be the same for all pixels and, hence, the null spaces of D and H are
given by the 1-dimensional and 3-dimensional linear spaces of (vectorized) m1 \times m2 constant
and affine images, respectively. In (5.7) we report one among the infinity of possible sets of
basis vectors for the two null spaces.

Proposition 5.3. For any \gamma 1, \gamma 2, \gamma 3, a > 0 and any f \in \BbbR m, the function \scrJ in (5.4) is not
coercive in x, nevertheless it admits global minimizers.

Proof. Proving that \scrJ is not coercive in x is immediate by considering how the restriction
of \scrJ to the line l(t) = (f ; 0m; 02m) + t (1m; - 1m; ; 02m), t \in \BbbR , behaves at infinity. In fact, it
follows from definition (5.4) that
(5.13)

lim
| t| \rightarrow \infty 

\scrJ (l(t)) = lim
| t| \rightarrow \infty 

\left\{   \gamma 1
m\sum 
j=1

\phi 1 (| (Df)j | ; a)

\right\}   \leq \gamma 1m < +\infty \forall \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++ \forall f \in \BbbR m ,

where the second-last inequality comes from definition (2.8) of \phi 1, namely, from
maxt\in \BbbR + \phi 1(t; a) = 1 \forall a \in \BbbR ++. Proving that, in spite of noncoercivity, \scrJ admits global
minimizers for any \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++ and any f \in \BbbR m is less straightforward. In fact, for f
a constant image, the limit in (5.13) is equal to zero, which is the minimum value that the
(nonnegative) function \scrJ can ever attain at (finite) domain points x \in \BbbR 4m. We proceed as
follows. First, we detect all the possible paths of noncoercivity for \scrJ , namely, paths towards
infinity in the domain \BbbR 4m of \scrJ along which the value of \scrJ does not tend towards +\infty . Then,
we compute all the possible limit values of \scrJ along these paths and, finally, we prove that
these or lower values are attained by \scrJ at (finite) domain points x \in \BbbR 4m. This implies that,
even if a global infimizer exists at infinity, then a corresponding, i.e., characterized by the
same function value, global minimizer exists as well.

Paths of noncoercivity. We start by noting that the function \scrJ in (5.4) is given by the
sum of four nonnegative terms. Hence, whenever the value of one of these terms goes to +\infty ,
the value of the total function \scrJ goes to +\infty as well. Then, the term (\gamma 3/2)\| g\| 42 is coercive
in g, hence possible paths of noncoercivity for \scrJ must be sought by keeping g bounded (that
is, letting only \| (v;w)\| 2 approach +\infty ). The nonconvex regularization term in \scrJ is bounded
from above by \gamma 1m < +\infty , hence it does not affect coercivity of \scrJ . The sum of the twoD
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remaining terms in \scrJ is a quadratic function of y := (v;w) \in \BbbR 2m which can be written as
(5.14)

\scrQ (y) = \gamma 2
2
\| Q1y\| 22 +

1

2
\| Q2y  - z\| 22 =

1

2
yT
\bigl( Q \in \BbbR 2m\times 2m\underbrace{}  \underbrace{}  
\gamma 2Q

T
1 Q1 +QT

2 Q2

\bigr) 
y  - zTQ2 y +

1

2
\| z\| 22

with

(5.15) Q1 = (0m;H) \in \BbbR 2m\times 2m, Q2 = (Im, Im) \in \BbbR m\times 2m, z = f  - DT g \in \BbbR m .

The Hessian matrix Q in (5.14) is symmetric positive semidefinite and its null space, given by
the intersection of the null spaces of Q1 and Q2, is given by

null(Q) =
\bigl\{ 
(v;w) \in \BbbR 2m : v =  - w, w \in null(H)

\bigr\} 
.

The paths of noncoercivity for\scrQ are thus only those approaching at infinity a direction parallel
to null(Q). Along all other paths, \scrQ and, hence, \scrJ tend to +\infty .

Limit values. In order to compute the limit values of \scrJ along all its paths of noncoercivity,
it suffices to analyze the behavior at infinity of the restrictions \scrJ x0 of \scrJ to the family of
parameterized affine subspaces \scrS x0 \subset \BbbR 4m with parameter x0 =

\bigl( 
v0;w0; g0

\bigr) 
\in \BbbR 4m, of the

form

(5.16) \scrS x0 = x0 + \scrV , \scrV = span
\Bigl( 
\nu (1), \nu (2), \nu (3)

\Bigr) 
, \nu (i) =

\Bigl( 
h(i); - h(i); 02m

\Bigr) 
, i = 1, 2, 3 ,

where h(i) \in \BbbR m, i = 1, . . . , 3, are defined in (5.7) and represent the basis vectors of null(H),
i.e., of the subspace of affine images (see Lemma 5.2). Based on (5.16) and on the definition
of \scrJ in (5.4), the restrictions read

\scrJ x0 (t1, t2, t3) = \scrJ 
\Bigl( 
x0 + t1 \nu 

(1) + t2 \nu 
(2) + t3 \nu 

(3)
\Bigr) 

= \scrJ 
\Bigl( 
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3) , w0  - t1 h
(1)  - t2 h

(2)  - t3 h
(3) , g0

\Bigr) 

=

\widetilde \scrJ x0 (t1,t2,t3)\underbrace{}  \underbrace{}  
\gamma 1

m\sum 
j=1

\phi 1

\biggl( \bigm\| \bigm\| \bigm\| \bigm\| \Bigl( D \Bigl( v0 + t1 h
(1) + t2 h

(2) + t3 h
(3)
\Bigr) \Bigr) 

j

\bigm\| \bigm\| \bigm\| \bigm\| 
2

; a

\biggr) 
+

\gamma 2
2
\| Hw0\| 22 +

\gamma 3
2
\| g0\| 42 +

1

2

\bigm\| \bigm\| f  - (v0 + w0 +DT g0)
\bigm\| \bigm\| 2
2\underbrace{}  \underbrace{}  

\scrJ x0

, (t1, t2, t3) \in \BbbR 3 ,(5.17)

where the latter term \scrJ x0 depends on x0 but not on (t1, t2, t3), hence the behavior of \scrJ x0

at infinity, i.e., for \| (t1; t2; t3)\| 2 \rightarrow \infty , depends mainly on the former term \widetilde \scrJ x0(t1, t2, t3). It
comes from the definitions of matrix D in section 5.1 and of vectors h(1), h(2), h(3) in (5.7)
that Dh(1) = 02m, Dh(2) =

\bigl( 
1m; 0m

\bigr) 
, Dh(3) =

\bigl( 
0m; 1m

\bigr) 
. It follows that

D
\Bigl( 
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3)
\Bigr) 

= Dv0 + t2(1m; 0m) + t3(0m; 1m)
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and, hence,

(5.18) | 
\bigl( 
D
\bigl( 
v0 + t1 h

(1) + t2 h
(2) + t3 h

(3)
\bigr) \bigr) 

j
| = | (Dv0)j + (t2; t3)| , j = 1, . . . ,m .

Taking the limit, with a little abuse of notation (the limit does not formally exist), we have
(5.19)

lim
\| (t1;t2;t3)\| 2\rightarrow \infty 

| (Dv0)j+(t2; t3)| =
\biggl\{ 

+\infty if \| (t2; t3)\| 2 \rightarrow \infty ,
| (Dv0)j+(\=t2; \=t3)| < +\infty if | t1| \rightarrow \infty , (t2; t3)\rightarrow (\=t2; \=t3)\in \BbbR 2,

j = 1, . . . ,m. Based on (5.17)--(5.19) and on the fact that limt\rightarrow +\infty \phi 1(t; a) = 1, \forall a \in \BbbR ++,
we can thus write

(5.20) lim
\| (t1;t2;t3)\| 2\rightarrow \infty 

\scrJ x0 (t1, t2, t3) =

\Biggl\{ 
l
(1)
x0 if \| (t2; t3)\| 2 \rightarrow \infty ,

l
(2)
x0 if | t1| \rightarrow \infty , (t2; t3)\rightarrow (\=t2; \=t3)\in \BbbR 2

l
(1)
x0 , l

(2)
x0 \in \BbbR + given by

(5.21) l (1)x0
= \gamma 1m + \scrJ x0 , l (2)x0

= \gamma 1

m\sum 
j=1

\phi 1

\Bigl( 
| (Dv0)j+(\=t2; \=t3)| ; a

\Bigr) 
+ \scrJ x0 .

After noting that l
(2)
x0 \leq l

(1)
x0 , we complete the proof by demonstrating that, for any \gamma 1, \gamma 2, \gamma 3,

a \in \BbbR ++, f \in \BbbR m, x0 \in \BbbR 4m, and any (\=t1, \=t2) \in \BbbR 2, there exists a point x = (v;w; g) \in \BbbR 4m

such that \scrJ (x) \leq l
(2)
x0 . In fact, e.g., for

(5.22) x = (v, w, g) =
\bigl( 
v0 +D(\=t2h

(2) + \=t3h
(3)) , w0  - D(\=t2h

(2) + \=t3h
(3)) , g0

\bigr) 
\in \BbbR 4m ,

we have that \scrJ (x) = l
(2)
x0 .

Noncoercivity of function \scrJ for v and w being opposite constant images is quite evident
from the expression of \scrJ in (5.4). It is also evident that global (and also local) minimizers
of \scrJ are defined modulo opposite constant offsets for v and w, namely, if x\ast =

\bigl( 
v\ast ;w\ast ; g\ast 

\bigr) 
is a minimizer for \scrJ , then any y\ast (t) =

\bigl( 
v\ast + t 1m;w\ast  - t 1m; g\ast 

\bigr) 
, t \in \BbbR , is also a minimizer.

This property, which is typical of all variational decomposition models where the cartoon
component is sought by promoting the sparsity of its gradients, makes our model in some
way ``redundant"" and lets the employed optimization algorithm (when convergent) be a naive
responsible for the selection of one among the infinity of equivalent minimizers. In order to
make this selection more transparent, different strategies at the modeling level are possible. In
Proposition 5.4 below we outline the most natural one, which ensures the equivalence between
the original model and its modified version in terms of minimum cost function value.

Proposition 5.4. For any \gamma 1, \gamma 2, \gamma 3, a > 0 and any f \in \BbbR m, the function \scrJ in (5.4) is
constant along straight lines in its domain \BbbR 4m of direction defined by the vector

(5.23) d :=
\bigl( 
1m; - 1m; 02m

\bigr) 
.

Hence, any constrained model of the form

(5.24) x\ast \in argmin
x \in \scrC c,q

\scrJ (x)
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with \scrC c,q \subset \BbbR 4m one among the infinity of (4m  - 1) dimensional affine feasible sets defined
by

(5.25) \scrC c,q =
\bigl\{ 
x \in \BbbR 4m : cTx = q with cTd \not = 0

\bigr\} 
, c \in \BbbR 4m , q \in \BbbR ,

admits solutions and the solutions are equivalent to those of the unconstrained model (5.3)--
(5.4) in terms of (minimum) cost function value.

Proof. Proving that \scrJ (x) = \scrJ (x + t d) \forall x \in \BbbR 4m \forall t \in \BbbR , with d defined in (5.23), is
straightforward:

\scrJ 
\bigl( 
x+ t d

\bigr) 
= \scrJ (v+ t 1m, w - t 1m, g + t 02m)

= \gamma 1

m\sum 
j=1

\phi 1

\Bigl( 
| (Dv)j +������\bigl( 

D
\bigl( 
t 1m

\bigr) \bigr) 
j
| ; a
\Bigr) 
+

\gamma 2
2
| (Hw)j  - ������\bigl( 

H
\bigl( 
t 1m

\bigr) \bigr) 
j
| 2 + \gamma 3

2
\| g\| 42(5.26)

+
1

2

\bigm\| \bigm\| f  - (v+���t 1m + w - ���t 1m +DT g)
\bigm\| \bigm\| 2
2

= \scrJ (x) \forall x \in \BbbR 4m, \forall t \in \BbbR ,(5.27)

where in (5.26) we fact (stated in Lemma 5.2) that constant images are mapped to the zero
vector by matrices D and H. This implies that, if x\ast \in \BbbR 4m is a minimizer of \scrJ , the straight
line y\ast (t) = x\ast + t d, t \in \BbbR , contains an infinity of minimizers equivalent to x\ast in terms of
function value, namely, \scrJ 

\bigl( 
y\ast (t)

\bigr) 
= \scrJ 

\bigl( 
x\ast 
\bigr) 
\forall t \in \BbbR .

We now notice that any (4m  - 1)-dimensional affine hyperplane \scrC c,q defined in (5.25) is
not parallel to the vector d (due to condition cTd \not = 0), hence it intersects any straight line
of direction d in one and only one point. Therefore, if y\ast (t) = x\ast + t d, t \in \BbbR , is a set of
equivalent minimizers for \scrJ , there is one and only one element of the set which also belongs
to a feasible set \scrC c,q of the form in (5.25). Since according to Proposition 5.3 the function \scrJ 
admits global minimizers, it follows that the restriction of \scrJ to any feasible set \scrC c,q also admits
global minimizers which are characterized by the same (minimum) cost function value.

Solving numerically constrained models of the form in (5.24)--(5.25) is slightly more com-
plicated (and, in general, less efficient) than solving the unconstrained model (5.3)--(5.4). A
second strategy that can be used to eliminate redundancy of the unconstrained model without
imposing hard constraints consists in adding to our cost function \scrJ in (5.4) a ``very small""
regularization term capable of making \scrJ not constant on straight lines parallel to the vector
d in (5.23). This is the strategy we use in the ADMM-based numerical solver presented in the
following section 5.3, where we implicitly add (in the sense that we add the term by directly
including a regularization matrix \kappa I in the system of normal equations) the regularization
term (\kappa /2)\| x\| 22 with \kappa \in \BbbR ++ being a very small parameter.

5.3. Applying ADMM to the proposed model. In this section, we illustrate in detail the
ADMM-based iterative algorithm used to numerically minimize the proposed unconstrained
model (5.3)--(5.4) which presents a good separable structure. We first resort to the variable
splitting technique to deal with the nondifferentiability of the nonconvex penalty term \phi 1(\cdot ; a).
By introducing the auxiliary variable t :=Dv \in \BbbR 2m, we formulate the following constrained
optimization problem,

\{ v\ast , w\ast , g\ast , t\} \leftarrow arg min
v,w,g,t

\scrJ (v, w, g, t) s.t. t = Dv,
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with

\scrJ (v, w, g, t) = \gamma 1

m\sum 
j=1

\phi 1 (| tj | ; a) +
\gamma 2
2

m\sum 
j=1

| (Hw)j | 2 +
\gamma 3
2
\| g\| 42 +

1

2

\bigm\| \bigm\| f  - (v + w +DT g)
\bigm\| \bigm\| 2
2
.

The corresponding augmented Lagrangian functional for the optimization problem reads as

\scrL (v, w, g, t; \rho ) = \gamma 1

m\sum 
j=1

\phi 1 (| tj | ; a) +
\gamma 2
2

m\sum 
j=1

| (Hw)j | 2 +
\gamma 3
2
\| g\| 42

 - \langle \rho , t - Dv\rangle + \beta 

2
\| t - Dv\| 22 +

1

2

\bigm\| \bigm\| f  - (v + w +DT g)
\bigm\| \bigm\| 2
2
,(5.28)

where \beta > 0 is a penalty scalar parameter, and \rho \in \BbbR 2m represents the vector of Lagrange
multipliers associated with the linear constraint t = Dv.

To simplify notations, in the following we denote by x := (v;w; g) the (4m)-dimensional
column vector formed by stacking the three optimization variables v, w \in \BbbR m, g \in \BbbR 2m. We
then consider the following saddle-point problem:

find (x\ast , t\ast , \rho \ast ) \in \BbbR 4m\times \BbbR 2m\times \BbbR 2m

s.t. \scrL (x\ast , t\ast ; \rho ) \leq \scrL (x\ast , t\ast ; \rho \ast ) \leq \scrL (x, t; \rho \ast ) \forall (x, t, \rho ) \in \BbbR 4m\times \BbbR 2m\times \BbbR 2m .(5.29)

An ADMM-based iterative scheme is applied to approximate the solution of the saddle-
point problem (5.28)--(5.29). Having zero-initialized vectors t(0) and \rho (0), the kth iteration of
the proposed alternating iterative scheme reads as follows:

x(k+1) = argmin
x\in \BbbR 4m

\scrL (x, t(k); \rho (k)) ,(5.30)

t(k+1) = argmin
t\in \BbbR 2m

\scrL (x(k+1), t; \rho (k)) ,(5.31)

\rho (k+1) = \rho (k)  - \beta (t(k+1)  - Dv(k+1)) .(5.32)

For the x-subproblem (5.30), the first-order optimality conditions read

(5.33)

\left(   (v(k+1) + w(k+1) +DT g(k+1)  - f) +DT\rho (k)  - \beta DT (t(k)  - Dv(k))

(w(k+1) + v(k+1) +DT g(k+1)  - f) + \gamma 2H
THw(k+1)

D(DT g(k+1) + v(k+1) + w(k+1)  - f) + 2\gamma 3
\bigm\| \bigm\| g(k+1)

\bigm\| \bigm\| 2
2
g(k+1)

\right)   =

\left(  0
0
0

\right)  .

By replacing the nonlinear term
\bigm\| \bigm\| g(k+1)

\bigm\| \bigm\| 2
2
in the third equation with the value at the previous

iteration k, (5.33) reduces to the following linear system of equations,

(5.34) Lx(k+1) = y ,

where
(5.35)

L =

\left(  I + \beta DTD I DT

I I + \gamma 2H
TH DT

D D DDT + 2\gamma 3
\bigm\| \bigm\| g(k)\bigm\| \bigm\| 2

2
I

\right)  , y =

\left(  f + \beta DT (t(k)  - 1
\beta \rho 

(k))

f
Df

\right)  
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which is solved for x(k+1) = (v(k+1);w(k+1); g(k+1))T . The block in (5.35) containing the
discretized operator HTH slightly worsens the conditioning of the linear system. A suitable
approximate solution of (5.34) is determined by solving the following system of regularized
equations,

(5.36) (L+ \kappa I)x(k+1) = y

with a small scalar parameter \kappa > 0, that allows the system to be efficiently solved using
iterative preconditioned conjugate gradient linear solver.

The t-subproblem (5.31) can be written omitting the constant terms as

(5.37) t(k+1) = argmin
t\in \BbbR 2m

\left\{   \gamma 1
\sum 
j

\phi 1(| tj | ; a) - \langle \rho , t\rangle +
\beta 

2
\| t - Dv\| 22

\right\}   .

The minimization problem in (5.37), rewritten in componentwise form, is equivalent to the
following m independent 2-dimensional problems of the form

(5.38) t
(k+1)
j = argmin

t\in \BbbR 2

\biggl\{ 
1

\alpha 
\phi 1(\| t\| 2; a) +

1

2
\| t - qj\| 22

\biggr\} 
with j = 1, . . . ,m, \alpha = \beta /\gamma 1, and qj = (Dv(k))j + \rho 

(k)
j /\beta . Necessary and sufficient conditions

for strong convexity of the cost functions in (5.38) are demonstrated in [9]. In particular, the
problems in (5.38) are strongly convex if and only if the following condition holds:

(5.39) a < \alpha =\Rightarrow \beta > a\gamma 1 =\Rightarrow \beta = \tau (a\gamma 1) for \tau > 1.

Under the assumption (5.39), the unique solutions of problems in (5.38) can be obtained in
closed form as

t
(k+1)
j = min(max(\nu  - \zeta /\| qj\| 2, 0), 1) qj ,

where \nu = \alpha 
\alpha  - a and \zeta =

\surd 
2a

\alpha  - a .
We remark that the condition on \beta in (5.28) only ensures the convexity conditions (5.39)

of t-subproblem (5.38), but does not guarantee convergence of the overall ADMM scheme.
In the case that convexity conditions (5.39) are satisfied, following [6], the convergence of
the proposed two-block ADMM-based minimization algorithm could be investigated in future
work.

In the numerical experiments, we set the coefficient \tau in (5.39) to be \tau = 5, the \beta value
to be 50, and \kappa in (5.36) to be \kappa = 10 - 9. This setting has always guaranteed the ADMM
convergence in our experiments.

6. Numerical examples. In this section, we present experimental results on the additive
decomposition of synthetic and real images. We first validate the proposed variational model
(2.7) for the decomposition of images corrupted by an increasing level of additive Gaussian
noise (Example 1) and different blending of the additive components (Example 2). Then, weD
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investigate the performance of our model when applied to specific applications such as soft
shadow removal and spotlight removal (Example 3). Finally, we compare our proposal to
three interesting variational models, namely, [3], [9], and [18], proposed in literature for the
additive decomposition of images (Example 4).

The code has been implemented in the MATLAB environment and Windows OS. When
the ground truth images are known, quantitative measurements to evaluate the quality of the
decomposition are provided by signal-to-noise ratio (SNR) values, defined by

SNR(x\ast , x) := 10 log10
\bigl( 
\| x - E[x]\| 22 / \| x\ast  - x\| 22

\bigr) 
with x\ast the computed estimate of the original image x and E[x] denoting the mean value of
x.

For the oscillatory component n, we report the experimental standard deviation (ESD) of
the signal defined as

(6.1) ESD(n) =
\| n\| 2\surd 
m

.

Relying on the discrepancy principle, given a known, or estimated, value for the noise standard
deviation \sigma , the values of ESD(n) should approach it. For all the experiments, we terminate
the iterations of the ADMM algorithm as soon as two successive iterates satisfy either of the
two following conditions:

(6.2) k > 400 ,
\bigm\| \bigm\| x(k+1)  - x(k)

\bigm\| \bigm\| 
2
/
\bigm\| \bigm\| x(k)\bigm\| \bigm\| 

2
< 10 - 6 .

Example 1: Degradation by different noise levels. We test the performance of our model
(2.7) in decomposing a piecewise-smooth image f , shown in Figure 6.1, first column, obtained
as a composition of a piecewise-constant rectangle shape v with smoothly varying illumination
w, and different noise degradations n. The test image u, in Figure 6.1, top row, represents
a nontrivial case in which, even if the w and v components of the noise-free image u are
well-separable (in fact | (Hw)j | \in [0, 0.34] and | (Dv)j | \in [85.14, 120.41] for all j), the noise
degradation corrupts not only the image but also the separability.

We set the model parameters following the discussion reported in section 4. In particular,
we set \=a = 0.5minj(| (Dv)j | ) = 42.57 (see (2.11)); and consequently a = 2/\=a2 = 0.001,
\=t = 10 - 3\=a = 0.043; \gamma 1 = 1/\#(| Dv| ) = 1/1055; \gamma 2 = \gamma 2\phi 1(\=t, a)/\=t

2 = 0.0012; see (4.3).
The parameter \gamma 3 is computed according to the formula (4.4), where \sigma g is defined for the
different levels of noise. In particular, the noisy images f , see Figure 6.1 first column, have
been degraded by a Gaussian additive noise characterized by standard deviations in the range
\sigma = \{ 5, 25, 35, 100\} which lead to the following estimates of \gamma 3:

\sigma = 5, \sigma = 25, \sigma = 35, \sigma = 100,

\sigma g = 3.49, \sigma g = 17.47, \sigma g = 24.46, \sigma g = 69.90,

\gamma 3 = 1/9.55e11, \gamma 3 = 1/5.97e14, \gamma 3 = 1/2.29e15, \gamma 3 = 1/1.53e17.

The results are reported in each row of Figure 6.1 (from the second column) for increasing
noise level \sigma . In each column, the resulting denoised image u\ast = v\ast +w\ast , and its componentsD
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u 0.4v 0.6w

SNR(f\sigma =5) = 21.18 SNR(u\ast ) = 46.05 SNR(v\ast ) = 46.51 SNR(w\ast ) = 40.64 ESD(n\ast ) = 4.88

SNR(f\sigma =25) = 7.20 SNR(u\ast ) = 32.00 SNR(v\ast ) = 30.39 SNR(w\ast ) = 28.88 ESD(n\ast ) = 24.89

SNR(f\sigma =35) = 4.28 SNR(u\ast ) = 26.63 SNR(v\ast ) = 24.71 SNR(w\ast ) = 27.49 ESD(n\ast ) = 34.58

SNR(f\sigma =100) =  - 4.84 SNR(u\ast ) = 13.78 SNR(v\ast ) = 10.68 SNR(w\ast ) = 16.72 ESD(n\ast ) = 99.28

Figure 6.1. Example 1: Decomposition results for different levels of additive Gaussian noise with \sigma =
\{ 5, 25, 35, 100\} . The column u\ast shows clean denoised image, v\ast shows the piecewise-constant part, w\ast the
captured smooth part, and n\ast the noise.

v\ast , w\ast , and n\ast are shown. Even for severely corrupted images, the effect of the proposed
regularization term \scrR 3(g), weighted by an appropriate parameter \gamma 3, well captures the noise
oscillations. It achieves ESD values close to the noise standard deviation used to corrupt the
original image. In the case of strong noise, as in the last row of Figure 6.1 where the noise is
stronger than the edge magnitudes, the smallest rectangle goes into the n\ast component.
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input image f SNR(v\ast ) = 28.05 SNR(w\ast ) = 39.42 SNR(n\ast ) = 21.11

input image f SNR(v\ast ) = 27.50 SNR(w\ast ) = 42.12 SNR(n\ast ) = 17.82

Figure 6.2. Example 2: Decomposition results for different types of texture without noise. The column v\ast 

shows the piecewise-constant part, w\ast the captured smooth part, and the oscillatory texture is captured in n\ast .

Example 2: Different textures. In this example, we evaluate the performance of our
decomposition model when the oscillatory function represents the texture component of a
noise-free image (the first column of Figure 6.2). In particular, we kept the original components
v and w as in the previous example adding a texture pattern inside the rectangle areas. In the
first row of Figure 6.2 the texture is represented by horizontal stripes, while in the second row,
the texture component is represented by a chessboard-like pattern. In the remaining columns
of Figure 6.2 we report the resulting components v\ast , w\ast , and n\ast , respectively. Both visually
and quantitatively we can appreciate the texture captured entirely in n\ast attaining the texture
image SNR(n\ast ) = \{ 21.11, 17.82\} , respectively, keeping high quality reconstruction of both v\ast 

and w\ast as well.

Example 3: Different blending. We validate our model under different blendings of the
v and w image components. This leads to different magnitudes of the first- and second-order
derivatives and, consequently, affects the component separability. In Figure 6.3, the different
images u are obtained by the linear mixtures of a piecewise component v, a QR code image,
and a smooth component w, namely,

(6.3) u(t) := (1 - t)v + t w , t \in [0, 1].

Then, they are corrupted by additive Gaussian noise of standard deviation \sigma = 15; the
resulting degraded images f(t) are shown in the first column of Figure 6.3 for t = \{ 0.2, 0.5, 0.8\} ,
respectively. For visualization purposes, the images illustrated in the second and third columns
of Figure 6.3 have been slightly modified: the image v\ast TH is thresholded (TH) using the mean
value of v\ast as the threshold value, and the image w\ast 

HS is histogram stretched (HS).D
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SNR(f(0.2)) = 16.72 SNR(v\ast TH) = 29.81 SNR(w\ast 
HS) = 12.10 ESD(n\ast ) = 14.76

SNR(f(0.5)) = 13.31 SNR(v\ast TH) = 29.27 SNR(w\ast 
HS) = 25.72 ESD(n\ast ) = 14.87

SNR(f(0.8)) = 10.26 SNR(v\ast TH) = 18.56 SNR(w\ast 
HS) = 29.18 ESD(n\ast ) = 14.96

Figure 6.3. Example 3: (first column) Noisy image f given by blending w and v according to (6.3) for
t = \{ 0.2, 0.5, 0.8\} ; (second column) v\ast component, (third column) w\ast component, (fourth column) n\ast noise.

For all the three blendings considered, the recovered noise component n\ast approaches the
standard deviation of the noise \sigma = 15, as illustrated in the last column. From top to
bottom, the edges of the QR code images v become less significant with respect to the noise
contribution. The noise interferes more with edges of v, thus achieving worse SNR(v\ast ) results.
On the other hand, the stronger the w component is, the better its recovery is, as highlighted
by the increasing SNR(w\ast ) values. This experiment demonstrates how the proposed model
efficiently decomposes an image even when the contributions of each component in terms of
gray-level intensities are not equally balanced.

Example 4: Soft light and shadow removal. Our decomposition model (2.7) can be
successfully applied to remove soft shadows and soft light effects. Soft shadows and the ``dual""
effect of soft light are ubiquitous, but remain notoriously difficult to extract from photographs
without damaging the underlying content. Currently shadow removal algorithms rely on
shadow detection by an initial segmentation which turns out to be somewhat easy in natural
scenes with umbra, but particularly difficult in the case of penumbra (soft shadow), even moreD
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SNR(f) = 14.44 SNR(u\ast ) = 20.83 v\ast w\ast + 0.5 ESD(n\ast ) = 10.72

SNR(f) = 18.64 SNR(u\ast ) = 27.14 v\ast w\ast + 0.5 ESD(n\ast ) = 10.15

SNR(f) = 14.01 SNR(u\ast ) = 16.01 v\ast w\ast + 0.5 ESD(n\ast ) = 4.93

SNR(f) = 14.01 SNR(u\ast ) = 16.01 v\ast w\ast + 0.5 ESD(n\ast ) = 4.93

Figure 6.4. Example 3: Soft shadow removal for noisy input images f in the first column. The second
column shows denoised images u\ast , and the third column shows the structure part of f in v\ast components. The
shadows are well separated in w\ast and shown in the forth column, and the noise n\ast is captured in the last column.

challenging in the case of noisy images. For shadow removal, the proposed decomposition
model (2.7) is directly applied to the noisy corrupted images, the smooth component w in
(2.7) captures the shadow contribution, while the noise is separated in the n component, and
the structures are enhanced in the v component.

In Figure 6.4 (first column) we show four images corrupted by additive Gaussian noise with
standard deviation \sigma = \{ 10, 10, 5, 5\} , which represent the initial data f . In particular, the
first two rows report images representing optical illusion examples. The change of lightning
makes us perceive the shadowed objects/areas to be of different colors, even though in the
image these parts have the same intensity. The first image is the Logvinenko illusion in which
the top faces of the cubes have the same intensity value; and the second image is the Adelson's
checkerboard illusion where the fields (squares) A and B have the same intensity value. These
images are typically used in Retinex theory models [13, 19].D
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SNR(f) = 5.56 SNR(u\ast ) = 19.55 v\ast \mathrm{H}\mathrm{S} w\ast 
\mathrm{H}\mathrm{S} ESD(n\ast ) = 29.76

SNR(f) = 7.64 SNR(u\ast ) = 19.98 v\ast \mathrm{H}\mathrm{S} w\ast 
\mathrm{H}\mathrm{S} ESD(n\ast ) = 29.59

Figure 6.5. Example 4: Soft light removal on noisy input images f in the first column. The second column
u\ast shows denoised image, and the third column v\ast shows the structure part of f . The spotlight is well separated
in w\ast shown in the forth column.

Figure 6.4 shows the separation result; the denoised image u\ast , the piecewise-constant
part v\ast , the soft shadow in w\ast where a constant 0.5 is added for visualization purposes, and
the recovered noise n\ast . As we expected the component w\ast captured the soft shadow. The
ESD values clearly indicate that the noise added to the images is accurately recovered. The
soft cast shadow images illustrated in the last two rows of Figure 6.4 represent particularly
difficult cases in which the input images f contain noise-like texture located on the tiles.
Together with the image compression artifacts, the crevices ``edges"" between the tiles are
numerically oversmoothed. The SNR values are thus slightly less significant in these cases;
nonetheless, applying our decomposition algorithm produces visibly denoised u\ast , and even
correctly separates the soft shadow component w\ast .

Finally, we demonstrate the performance of our decomposition model (2.7) on images f
with a visible soft light effect which are corrupted by additive Gaussian noise with \sigma = 30 (first
column of Figure 6.5). The result shows a clear separation: the denoised image u\ast = v\ast +w\ast ,
the piecewise constant v\ast and the spot light w\ast , together with the noise component n\ast . The
proposed method separates the image in an excellent way, clearly showing the details in v\ast ,
and a clear location of spotlights in w\ast .

Example 5: Comparison to related works. We explore similarities and differences to
some previous work, [3, 9, 18], where variational formulations are adopted for the additive
decomposition of images.

In Figure 6.6, we compared our results with the two-component decomposition model
introduced in [9], which similarly decomposes the observed noisy input f into v\ast (cartoon)
and w\ast (smooth) components, treating the noise via the \ell 2 fidelity residual. For comparison,
we applied our decomposition model to the same synthetic image [9, Figure 8.5], illustrated
in Figure 6.6 (first row) which has been corrupted by Gaussian noise. Increasing values of
noise degradation, i.e., standard deviation \sigma = \{ 5, 15\} , are shown in Figure 6.6. The smallerD
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u v w

\sigma = 5

SNR(f) = 20.93

Results using model in [9]

SNR(u\ast ) = 27.84 SNR(v\ast ) = 27.03 SNR(w\ast ) = 22.23 ESD(u\ast  - f) = 3.02

ours

SNR(u\ast ) = 35.38 SNR(v\ast ) = 32.46 SNR(w\ast ) = 35.40 ESD(n\ast ) = 4.84

\sigma = 15

SNR(f) = 11.41

Results using model in [9]

SNR(u\ast ) = 23.60 SNR(v\ast ) = 14.88 SNR(w\ast ) = 14.08 ESD(u\ast  - f) = 12.78

ours

SNR(u\ast ) = 24.47 SNR(v\ast ) = 21.19 SNR(w\ast ) = 26.43 ESD(n\ast ) = 14.74

Figure 6.6. Example 5: Comparison to [9] for \sigma = \{ 5, 15\} . For low levels of noise (top two rows), SNR
values are higher for the proposed method. For a high level of noise \gamma = 15, not only are the SNR values higher
for the proposed method, but also for [9] the residues are present in w\ast and n\ast .
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SNR(f) = 11.83 SNR(v\ast ) = 26.30 SNR(w\ast ) = 27.71 ESD(n\ast ) = 9.94

SNR(f) = 4.97 SNR(v\ast ) = 19.05 SNR(w\ast ) = 17.70 ESD(n\ast ) = 34.29

Figure 6.7. Example 5: Comparison to [3]. These results are obtained by applying the proposed decomposi-
tion model. The model in [3] would decompose these images into structure, texture, and noise, thus the smooth
function w\ast would be incorporated into the structure component, resulting in staircase effects.

level of noise \sigma = 5 corresponds to the one used in [9]. For low level of noise, results are well
recovered also by the variational model in [9]. However, the SNR values attained by our model
are higher and also the quality of the decomposition is improved: the third row of Figure 6.6
shows a much cleaner component w\ast , validating the use of an H - 1-norm penalty to capture
the oscillatory component instead of the \ell 2 residual. For a higher level of noise, \sigma = 15, by
applying [9] the noise component is not well-separable with respect to the v component, and
the regularization term \| \nabla w\| 22 underperforms compared to the \| \scrH w\| 22 regularization term
introduced in our model (2.7). This is confirmed by a visual comparison in the last two rows
of Figure 6.6, where the smooth component w\ast using [9] incorporates visible residuals from v
and noise n. The combination of the higher-order regularization term on w and the H - 1-norm
based term on n, poses an advantage of the proposed method.

In Figure 6.7, we represent the different separation capabilities of our model compared with
the three-component variational model proposed in [3]. The model in [3] tackles the structure-
texture-noise decomposition of an observed noisy input image, using TV, negative Sobolev,
and negative Besov norms, respectively. We recreated the piecewise-constant synthetic image
presented in [3] and added an additional smooth-gradient bell function w, as illustrated in the
first row of Figure 6.7. The model in [3] decomposes the noisy corrupted image into the square
in the center as the structure component, the horizontal stripes as the texture component, and
a separate noise component. Our proposed model instead, separates the structure component
v which combines the square and the stripes, the noise term n, and also the smooth component
w. A similar example without the square box is shown in the second row of Figure 6.7, where
v\ast contains only horizontal stripes and a higher noise degradation. The proposed modelD
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f u\ast v\ast w\ast + 0.4 2n\ast + 0.4

f u\ast v\ast w\ast + 0.4 2n\ast + 0.4

f u\ast v\ast w\ast + 0.4 2n\ast + 0.4

Figure 6.8. Example 5: Structure-texture decomposition, comparison to [18]. From top to bottom we set
\gamma 1/\gamma 3 = \{ 0.25, 0.25, 15\} . In these images, n\ast captures the fine detailed textures.

separates them clearly, while the model in [3] recovers the smooth function w into the v\ast 

component producing inevitable staircases effects.
In the last example illustrated in Figure 6.8, we compare our decomposition model with

the two-term decomposition model in [18]. The authors proposed a structure-texture decom-
position based on [23] with the TV regularizer replaced by a parameterized nonconvex penalty
function. Comparing the two models term by term, the structure component term in [18] is
similar to our \scrR 1(v) and their texture term is similar to the H - 1-norm based term \scrR 3(g).
The additional term \scrR 2(w) makes the difference, allowing for a more significant structure
decomposition u = v + w, a piecewise-smooth contribution, which better fits the mixture
composition of real images. In Figure 6.8, the comparisons to [18] are shown. Ad hoc \gamma 3
values are selected to enable \scrR 3(g) to capture the correct texture scales, while taking into
account the influence of the relative ratio \gamma 1/\gamma 3 on the final decomposition result, as shown in
section 4. For the three examples of piecewise-smooth images considered we set the parameter
ratios \gamma 1/\gamma 3 = \{ 0.25, 0.25, 15\} . The first and second rows of Figure 6.8 show two results for
two different parts of the Barbara image where we set \gamma 1/\gamma 3 = 0.25 which allows us to capture
small scale texture in n\ast , while in v\ast only the main structure is kept. The image in the third
row of Figure 6.8 is characterized by the amount of fur texture which overwhelms the face
feature edges, thus even for the increased ratio \gamma 1/\gamma 3 = 15 the fur texture is not entirely
captured in n\ast .

TheH - 1-norm term captures the oscillating patterns, this includes both noise and textures
at a sufficiently small scale detail. This example demonstrates how to successfully apply our
model to separate textured regions from noise-free images.D
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7. Conclusion. We proposed a new method to decompose a given image f into piecewise-
constant, smooth homogeneous, and oscillating components which can represent noise and/or
textured parts. The variational model is composed of a TV-like nonconvex regularization, to
capture the piecewise-constant part, a new harmonic term, and an H - 1-norm based penalty
which captures the oscillating patterns. This includes both noise and textures at a sufficiently
small scale detail. In-depth experimental analysis gave us an insight on the nature of the three
different metrics (norms) involved in the proposed variational model, allowing for an interest-
ing highlight on the interactions between these regularization terms. This led to automatic
selection of free parameters in the cost functional. A theoretical analysis on the coercivity and
convexity of the proposed variational model highlighted the existence of global minimizers.
The variational model is then solved by an efficient ADMM-based algorithm which reduces
the solution to a sequence of convex optimization subproblems. Various experiments are pre-
sented to show the robustness against a high level of noise, flexibility of decomposition for
various applications such as soft light and soft shadow removal.

Appendix A. Proof of Proposition 5.1.

Proof. It comes immediately from the definition of our cost function \scrJ in (5.4) and of the
penalty function \phi 1 in (2.8) that \scrJ is proper, continuous, and bounded from below by zero.

In order to demonstrate that the function \scrJ defined in (5.4) can never be convex jointly
in (v;w; g) with g = (gh; gv), it is sufficient to prove that the restriction of \scrJ to a straight line
in its domain \BbbR 4m is not convex for any \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++ and any f \in \BbbR m. In particular,
we choose the straight line parameterized as follows:

(A.1) \ell (t) = t
\bigl( 
1; - 1; 0m - 2\underbrace{}  \underbrace{}  

v

; 0m\underbrace{}  \underbrace{}  
w

; 0m\underbrace{}  \underbrace{}  
gh

; 1; 0m - 1\underbrace{}  \underbrace{}  
gv

\bigr) 
, t \in \BbbR .

To derive an explicit expression for the restriction \scrJ \ell (t), we first introduce details on the
two submatrices Dh, Dv of D = (DT

h , D
T
v )

T which, as described in section 5.1, represent
the forward finite difference discretizations of the first-order horizontal and vertical partial
derivatives of a vectorized m1 \times m2 image (with m = m1m2), respectively. More precisely,
matrices Dh, Dv \in \BbbR m\times m are defined by

(A.2) Dh = Lm1 \otimes Im2 , Dv = Im2 \otimes Lm1 , Ln =

\left(      
 - 1 1 0 0 . . .

0  - 1 1 0 . . .

0 0  - 1 1

...
...

. . .
. . .

\right)      ,

where \otimes is the Kronecker product operator and Ln \in \BbbR n\times n denotes the unscaled forward
finite difference operator approximating the first-order derivative of an n-sample 1-dimensional
signal. We have not specified the last row of Ln, which induces the boundary conditions
for operators Dh and Dv, since the following proof holds true independently of the chosen
boundary conditions.

We note that, for v, gh, gv and Dh, Dv defined as in (A.1) and (A.2), respectively, we have

(Dv)1 = t ( - 1; - 2) , (Dv)2 = t (1; 1) , (Dv)j = ((Dhv)j ; (Dvv)j) = 0 for j = 3, . . . ,M,

\| g\| 42 = \| gv\| 42 = t4 , DT g = DT
v g

v = t ( - 1; 1; 0m - 2) .(A.3)D
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Hence, placing (A.1) into the expression (5.4) of function \scrJ and then using (A.3), we have
that the restriction \scrJ \ell of \scrJ to the straight line in (A.1) reads

\scrJ \ell (t) =
1

2
\| f\| 22 +

\gamma 3
2

t4 + \gamma 1

\Bigl( 
\phi 1

\Bigl( \surd 
5 | t| ; a

\Bigr) 
+ \phi 1

\Bigl( \surd 
2 | t| ; a

\Bigr) \Bigr) 

=
1

2
\| f\| 22 +

\gamma 3
2

t4 + \gamma 1 \times 

\left\{             
 - 7 a

2
t2 +

\Bigl( \surd 
5 +
\surd 
2
\Bigr) \surd 

2a | t| for | t| \in 
\Bigl[ 
0,
\sqrt{} 

2
5a

\Bigr) 
,

1 - a t2 + 2
\surd 
2a | t| for | t| \in 

\Bigl[ \sqrt{} 
2
5a ,
\sqrt{} 

1
a

\Bigr) 
,

2 for | t| \in 
\Bigl[ \sqrt{} 

1
a ,+\infty 

\Bigr) 
,

(A.4)

where (A.4) comes easily from the definition of \phi 1 in (2.8). It is then immediate to note that
\scrJ \ell is infinitely many times differentiable for | t| \in 

\bigl( 
0,
\sqrt{} 

2/(5a)
\bigr) 
and that the second-order

derivative \scrJ \prime \prime 
\ell satisfies

\forall \gamma 2 \in \BbbR ++ \forall f \in \BbbR m, | t| \in 

\Biggl( 
0,

\sqrt{} 
2

5a

\Biggr) 
(A.5)

=\Rightarrow \scrJ \prime \prime 
\ell (t) = 6 \gamma 3 t

2  - 7 \gamma 1 a < 0 for | t| <
\sqrt{} 

7

6

\gamma 1a

\gamma 3
.

Here it follows from (A.4) and (A.5) that

\forall \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++ \forall f \in \BbbR m,(A.6)

\exists \delta \in \BbbR ++ : \scrJ \prime \prime 
\ell (t) < 0 \forall | t| \in (0, \delta ) , \delta = min

\Biggl\{ \sqrt{} 
7

6

\gamma 1 a

\gamma 3
,

\sqrt{} 
2

5a

\Biggr\} 
.

From (8), we can conclude that the restriction \scrJ \ell in (A.4) and, hence, the total function \scrJ in
(5.4), are nonconvex (in the variables t and (v;w; g), respectively) for any \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++

and any f \in \BbbR m.
In order to analyze convexity of the function \scrJ in (5.4) separately with respect to the

variables v, w, and g, first we rewrite \scrJ in the three following equivalent forms:

\scrJ (v, w, g) =

\scrJ v(v)\underbrace{}  \underbrace{}  
\gamma 1

m\sum 
j=1

\phi 1 (| (Dv)j | ; a) +
1

2
\| v\| 22 + \scrA v(v, w, g) ,(A.7)

\scrJ (v, w, g) =

\scrJ w(w)\underbrace{}  \underbrace{}  
\gamma 2
2
\| Hw\| 22 +

1

2
\| w\| 22 + \scrA w(v, w, g) ,(A.8)

\scrJ (v, w, g) =

\scrJ g(g)\underbrace{}  \underbrace{}  
\gamma 3
2
\| g\| 42 +

1

2

\bigm\| \bigm\| DT g
\bigm\| \bigm\| 2
2

+ \scrA g(v, w, g) ,(A.9)
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where \scrA v, \scrA w, \scrA g, in (A.7)--(A.9) are affine functions of variables v, w, g, respectively. It
follows that \scrJ is convex in the variables v, w, g if and only if \scrJ v, \scrJ w, \scrJ g, in (A.7)--(A.9) are
convex in the same variables.

First, we notice that the quadratic function \scrJ w in (A.8) is clearly strongly convex for any
\gamma 2 \in \BbbR ++, whereas the quartic function \scrJ g in (A.9) is strictly convex (and coercive) for any
\gamma 3 \in \BbbR ++. Hence, the total function \scrJ is strongly convex in the variable w and strictly convex
(and coercive) in the variable g for any \gamma 1, \gamma 2, \gamma 3, a \in \BbbR ++ and any f \in \BbbR m.

Deriving convexity conditions for \scrJ v in (A.7) is less straightforward. First, we rewrite the
penalty function \phi 1( \cdot ; a) : \BbbR + \rightarrow \BbbR defined in (2.8) in the following equivalent form

(A.10) \phi 1(t; a) =  - a

2
t2 + q(t; a) , q(t; a) :=

\Biggl\{ \surd 
2a t for t \in 

\bigl[ 
0,
\sqrt{} 
2/a

\bigr) 
,

a

2
t2 + 1 for t \in 

\bigl[ \sqrt{} 
2/a,+\infty 

\bigr) 
where the introduced function q( \cdot ; a) : \BbbR + \rightarrow \BbbR is clearly continuous, convex, and monoton-
ically increasing on its entire domain \BbbR + for any a \in \BbbR ++. Then, based on (A.10), we can
rewrite the function \scrJ v in (A.8) as follows,

\scrJ v(v) =
1

2
\| v\| 22 + \gamma 1

m\sum 
j=1

\Bigl( 
 - a

2
| (Dv)j | 2 + q (| (Dv)j | ; a)

\Bigr) 
=

1

2

\bigl( 
\| v\| 22  - \gamma 1a \| Dv\| 22

\bigr) 
+ \gamma 1

m\sum 
j=1

q (| (Dv)j | ; a)

=
1

2
vT
\bigl( 
Im  - \gamma 1aD

TD
\bigr) 
v\underbrace{}  \underbrace{}  

\scrJ (1)
v (v)

+ \gamma 1

m\sum 
j=1

q (zj(v); a) , zj(v) := | (Dv)j | , j = 1, . . . ,m,\underbrace{}  \underbrace{}  
\scrJ (2)
v (v)

(A.11)

where the introduced functions zj : \BbbR m \rightarrow \BbbR +, j = 1, . . . ,m, are all continuous and convex

on their entire domain \BbbR m. Each term of the summation defining \scrJ (2)
v in (A.11) is convex

(as the composition of a convex function, zj , and a convex monotonically increasing function,

q). It follows that \scrJ (2)
v is convex for any \gamma 1 \in \BbbR ++ and, hence, the total function \scrJ v in

(A.11) is convex (strongly convex) if the quadratic function \scrJ (1)
v is convex (strongly convex)

or, equivalently, the Hessian matrix Im - \gamma 1aD
TD of \scrJ (1)

v is positive semidefinite (definite).
By introducing the eigenvalue decomposition of the symmetric positive semidefinite matrix
DTD \in \BbbR m\times m,

(A.12) DTD = V T\Lambda V , \Lambda = diag(\lambda 1, . . . , \lambda m) , V TV = V V T = Im

with \lambda i, i = 1, . . . ,m, indicating the real nonnegative eigenvalues of DTD, we then have

Im  - \gamma 1aD
TD = V TV  - \gamma 1a V

T\Lambda V = V T (Im  - \gamma 1a\Lambda )V(A.13)

= V Tdiag (1 - \gamma 1a \lambda 1, . . . , 1 - \gamma 1a \lambda m) V .
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Since V is orthogonal, then the Hessian matrix in (8) is positive semidefinite (definite) if and
only if the diagonal matrix in (8) is positive semidefinite (definite), that is, if and only if

1 - \gamma 1a \lambda j \geq (>) 0 \forall j = 1, . . . ,m \Leftarrow \Rightarrow 1 - \gamma 1a \lambda \mathrm{m}\mathrm{a}\mathrm{x} \geq (>) 0 \Leftarrow \Rightarrow a \leq (<)
1

\gamma 1\lambda \mathrm{m}\mathrm{a}\mathrm{x}
.

(A.14)

This proves condition (5.5), with the equivalent formulation in terms of the coefficient \tau 
following straightforwardly. We finally note that for a gradient discretization matrix D =
(DT

h , D
T
v )

T defined as in section 5.1, or, more formally, as in (A.2), the eigenvalues of matrix
DTD are upper bounded by \lambda \mathrm{m}\mathrm{a}\mathrm{x} = 8. This can be easily derived by using Gershgorin's
theorem [27]; we refer the reader to [6] for details.

Acknowledgment. We greatly appreciate the anonymous referees for their valuable and
useful comments.
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