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a b s t r a c t 

Artificial Intelligence (AI) has recently been shown as an excellent tool for the study of the liver; how- 

ever, many obstacles still have to be overcome for the digitalization of real-world hepatology. The authors 

present an overview of the current state of the art on the use of innovative technologies in different areas 

(big data, translational hepatology, imaging, and transplant setting). In clinical practice, physicians must 

integrate a vast array of data modalities (medical history, clinical data, laboratory tests, imaging, and 

pathology slides) to achieve a diagnostic or therapeutic decision. Unfortunately, machine learning and 

deep learning are still far from really supporting clinicians in real life. In fact, the accuracy of any tech- 

nological support has no value in medicine without the support of clinicians. To make better use of new 

technologies, it is essential to improve clinicians’ knowledge about them. To this end, the authors pro- 

pose that collaborative networks for multidisciplinary approaches will improve the rapid implementation 

of AI systems for developing disease-customized AI-powered clinical decision support tools. The authors 

also discuss ethical, educational, and legal challenges that must be overcome to build robust bridges and 

deploy potentially effective AI in real-world clinical settings. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Editrice Gastroenterologica Italiana S.r.l. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Artificial Intelligence (AI) can not only help improve the diagno- 

is and treatment of liver diseases but also can play a central role 

n future liver research. In line with available forecasts, European 

ountries have already started to create artificial neural networks; 

hus, it is possible to propose that AI will overcome current prej- 

dices and will soon be fully integrated into daily clinical practice. 

oreover, translational hepatology is an area that focuses mainly 

n the study of liver disorders and associated remedies and places 

articular emphasis on converting fundamental scientific findings 

nto practical applications to address unsolved questions in a wide 
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pectrum of liver disorders, including viral hepatitis, cirrhosis, and 

iver cancer. 

When correlating historical data with real-world and digital 

ata, there are a large number of open questions that can be bet- 

er addressed with AI techniques. For example, AI is suggested to 

1) predict the future distribution of liver diseases, (2) develop 

ost-effective solutions for liver disease diagnosis, (3) understand 

he progression of liver fibrosis, cirrhosis, and hepatocellular car- 

inoma (HCC), (4) determine the most effective treatment for dif- 

erent liver diseases, (5) identify the most effective treatments for 

lowing the progression of liver cirrhosis to decompensation and 

CC, and (6) develop predictive models for effective liver organ al- 

ocation and survival outcomes after liver transplantation [1–4] . 

However, to achieve these goals, several clinical problems have 

o be solved. Challenges remain in fully implementing AI tech- 

ologies in clinical practice, including the need to develop ro- 

ust approaches for structured and unstructured data collection, 
terologica Italiana S.r.l. This is an open access article under the CC BY-NC-ND 
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haring, and storage and the need to create guidelines, agreed 

ith researchers with different skills, for producing reliable results 

hrough the use of mathematical models. AI can predict a large set 

f clinically relevant features, but now it is time to prove that these 

pproaches work in a clinical setting by comparing algorithm per- 

ormance with that of conventional systems and further focusing 

ur effort on carefully designing large prospective trials. 

. Application of AI for interpreting big data derived from 

ranslational hepatology: obstacles to obtaining reliable results 

To develop trustworthy and practical AI systems in the area of 

ranslational hepatology, many issues must be addressed. First, the 

erm big data in hepatology, as well as in other fields, includes a 

arge panel of clinical parameters and analytics provided by omics, 

hich comprises epigenomics, transcriptomics, metabolomics, and 

etagenomics [5] . The future of big data in translational hepatol- 

gy will involve AI in three main steps: development and imple- 

entation of machine learning (ML) and deep learning (DL) ap- 

roaches that may link multiple analytics by network fusion meth- 

ds, translation of the results in clinical practice in terms of indi- 

idualizing patient management, and sharing of data with a large 

ommunity of clinicians and researchers. 

However, there is a lack of extensive, varied, and high-quality 

atasets, which are necessary to develop and test AI models. In 

ddition, there is a lack of consistency of medical images in the 

ollection and annotation of medical pictures, posing a problem 

hat may affect how well AI models function across various in- 

titutions. Another issue is model explainability, which is essen- 

ial when dealing with healthcare [6] . In particular, retrospective 

atasets can be subject to selection bias; ML models can propa- 

ate this bias after training on small and poorly representative data 

7] . Explainability of the model represents a system that helps the 

esearcher and the end user recognize why a model is reaching 

 specific conclusion. To this end, DL is still suboptimal for direct 

linical applications until systems to open the blackbox are em- 

loyed [8] . Since physicians must have confidence in the precision 

nd dependability of the model’s predictions, this can be a signifi- 

ant hurdle to adopting AI in clinical practice. 

The need for data that are rich, include ethnic minorities and 

nder-represented populations, and are large in size has fueled 

ollaborations among clinical and research centers. However, the 

ata sharing legislation has progressively changed toward privacy 

rotection, especially in Europe, after approval of GDPR (General 

ata Protection Regulation), adopted on April 14, 2016, and became 

nforceable beginning May 25, 2018. One approach to addressing 

his challenge is through federated learning, a new data-sharing 

ethod, or swarm learning based on blockchain systems, repre- 

enting a promising trade-off between the need for large samples 

nd data protection [9] . 

Federated learning and swarm learning are ML approaches that 

llow for the training of models across multiple devices or loca- 

ions without centralizing or sharing the underlying data. In other 

ords, they enable the training of a model on a large dataset with- 

ut the need to share the data with a central location, thus pre- 

erving the privacy and security of the data. However, a feder- 

ted learning approach would require the participation of multiple 

nstitutions to share their data, models, and computation power. 

ach institution trains a model on its own data and shares the 

pdates with a central server, where they are aggregated to up- 

ate a global model. It requires a collaboration level and a consen- 

us on minimum datasets and business use cases that are seldom 

chieved in national and international settings, and this is probably 

he most complex challenge to tackle. 

More recently, experts on applications of AI in medicine have 

alled for a paradigm shift of research toward clinical deployment 
1456 
10] . To date, most studies have focused on training a model on 

etrospective data and validating it in other datasets without fully 

ddressing how to integrate this model in the stream of clinical 

ractice. A thorough examination and validation of AI models is 

equired, which can be a time- and resource-intensive procedure. 

Regulations and guidelines are required to guarantee the moral 

nd safe application of AI in clinical practice. Not less important 

ill be the harmonization of privacy regulations and data protec- 

ion laws. Finally, it is essential to educate hepatologists, data sci- 

ntists, and developers of AI systems to fully utilize the potential 

f AI in the field of translational hepatology. This will stop the de- 

elopment of erroneous expectations and enable a more efficient 

pplication of AI in the detection and treatment of liver disorders. 

t will also help data scientists understand the complexities of the 

edical profession better. The latter will enable them to develop 

I systems tailored to the specific needs of physicians (i.e., identi- 

ying the ideal biomarker patterns associated with the disease and 

atient data security) and that take into account the consequences 

f their decisions for the health and well-being of patients. Never- 

heless, the digital transition of healthcare requires all experts to 

ethink the work process and identify where AI can fill the gaps 

n current diagnostic and therapeutic frameworks. The ideal goal 

ould be not substituting the clinical workforce but rather the as- 

istance to liberate clinicians from repetitive and redundant duties. 

It is in the essence of being translational that makes hepatol- 

gy a discipline that must leverage the most advanced technology 

o translate basic scientific research into clinical practice and al- 

ow for tapping the potential of data toward the goal of improving 

utcomes and patients’ well-being. 

. Application of AI in diagnostic imaging 

As outlined above, AI has a clear potential to play a significant 

ole in the field of hepatology, particularly in the areas of imag- 

ng analysis to support diagnosis and prognostication of disease 

ourses. In fact, for some years (almost a decade), images of ra- 

iology, particularly in the instance of computed tomography (CT) 

nd magnetic resonance imaging (MRI), have become native dig- 

tal information, providing relative ease to be retrieved and an- 

lyzed for computational purposes. Imaging today is more than 

 picture; it is data. It must be acknowledged that this is fully 

rue for CT and MRI, which are almost invariably acquired and 

rchived by standardized criteria, while this is not so true for ul- 

rasonography, which is the most widely utilized imaging tech- 

ique as the first approach to patients at risk for any liver dis- 

ase and the most common technique detecting incident liver ab- 

ormalities. With this background, it is not surprising that imag- 

ng has been the most intense field of application of AI in hepa- 

ology, almost invariably requiring a CT or MRI investigation, en- 

bling a prompt availability of retrospective data, and has been the 

ost common and most rapidly growing topic of AI in hepatol- 

gy, as reported in Fig. 1 and extensively reviewed by Nam et al. 

4] . In particular, when dealing with radiology, a distinction should 

e made between two approaches: radiomics and broader AI. Ra- 

iomics consists of extracting a high number of quantitative fea- 

ures from medical images, while AI consists of advanced compu- 

ational algorithms, potentially, but not exclusively, including quan- 

itative features extracted from medical images that can accurately 

erform predictions for decision support. AI can be supervised or 

nsupervised; the difference is that one relies on labeled data to 

elp predict outcomes, while the other processes unlabeled or raw 

ata. Whatever approach is adopted, AI using radiology images has 

een addressed so far mainly to aid in reaching a more precise 

nd reproducible diagnosis of focal liver lesions, to predict progno- 

is (i.e., survival or recurrence) in treated or untreated tumors, and 

o estimate histological or molecular characteristics of lesions. 
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Fig. 1. Studies applying AI in liver histopathology and radiomics in the last 5 years. 
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Moreover, a very active and promising field of interest is the 

xtraction of radiomic features from MRI to support a more accu- 

ate diagnosis but, most importantly, to stratify patients for prog- 

osis in rare diseases, such as primary biliary cholangitis or pri- 

ary sclerosing cholangitis [11 , 12] . 

Another significant field of interest and potential application 

f AI is the analysis of histological microscopic slides. The source 

ata, in this case, are still almost invariably not in a digital format 

ince only very few laboratories have transitioned to a fully digi- 

alized archive, despite the transition toward the whole slide imag- 

ng (WSI) technique, which includes the digitalization of the whole 

istological section via a digital scanner, as soon as the section is 

tained and thus before microscopic observation, has started. In 

he instance of not having a whole slide digital imaging approach, 

lass slides must be scanned for research purposes through a mi- 

roscopic view and stored in a digital format [11] . To this end, it is

orth mentioning that the formats for image acquisitions (e.g., res- 

lution and compression) have not yet been universally standard- 

zed in pathology. However, it is conceivable to retrieve stained 

lass slides of the paraffin-embedded specimens, to be cut new 

nd stained and subsequently digitally scanned and stored in a 

ew-adopted standardized way. Therefore, both prospective and 

etrospective studies can be carried out in unremarkable modali- 

ies in multicentric investigations. 

It is worth reminding that pathological diagnosis, as well as 

adiological imaging interpretation, is significantly affected by in- 

erobserver variability, as we have already demonstrated for liver 

ancer assessment [13] , pointing to the benefit of building a re- 

roducible approach using digital tools. These factors contribute to 

istopathology being the second most common and growing field 

f application of AI in hepatology after radiology, as reported in 

ig. 1 [4] . 

Currently, AI contributes to boosting the power of diagnostic 

maging by providing automate processes of analysis and support- 

ng pathologists or radiologists for diagnosis, and prognostic strat- 

fication is extremely important [14] . In fact, the capacity of AI- 

riven software to propose the possible diagnosis of one or an- 

ther liver disease, thanks to the recognition of specific features, 

s already a reality in many applications and might soon be inte- 

rated into the clinical routine of specific referral centers, avoiding 

he possibility that the correct diagnosis may remain missed even 

or very long periods. 

. Application of robotics in liver surgery and transplantation 

The progress of AI allowed to improve the sensory capabili- 

ies of robots and to process information from the environment 
1457 
hrough the use of various tools (including cameras, microphones, 

asers, and contact sensors) as well as processing techniques of 

ensory information based on DL. Despite this, robotics and AI 

re two distinct disciplines. The fundamental feature that distin- 

uishes robotics from AI is the presence of the physical apparatus. 

his aspect poses great challenges in using robots in poorly struc- 

ured environments, where it is difficult to manage interaction for 

afety and efficiency reasons. The evolution of robotics originated 

n response to humans’ need for useful machines to assist them in 

hysical work. Today, robotics constitutes an effective technology 

n surgery and it is widely used in the operating theaters of the 

ost advanced hospitals. 

Notably, Giulianotti et al. performed the first donation at the 

niversity of Illinois (Chicago) in 2011, and then published the 

rst liver resection using the da Vinci robotic system in 2012 [15] . 

ince then, the advantages and disadvantages of the robotic ap- 

roach have been compared to the laparoscopic approach in var- 

ous fields of liver surgery. The most cited ones are represented 

y the increased dexterity (thanks to articulated instruments that 

acilitate delicate dissections, such as near the hepatic hilum, and 

eticulous and precise sutures), the three-dimensional vision (also 

agnified and of greater stability), and the filtration of physiologi- 

al hand tremor [16] . Conversely, laparoscopy shows disadvantages 

uch as the lesser range and radius of movements that can be 

erformed, thus offering worse ergonomics, and a longer learning 

urve. Moreover, the employment of Firefly fluorescence technol- 

gy in surgical procedures displayed important advantages. As a 

atter of fact, such technology enables the acquisition of fluores- 

ent signals together with normal light endoscopic pictures. Over- 

ll, this system allows to mantain the fluorescence vision and the 

se of indocyanine green in order to guide the resection or to per- 

orm an intraoperative cholangiography [17] . 

The interest of applying the robotic platform in liver transplant 

LT) field raises from the proven advantages for both the recipient 

nd the donor, especially in case of a living donor hepatectomy. 

n 2019, the “Expert Consensus Guidelines on Minimally Invasive 

onor Hepatectomy for Living Donor Liver Transplantation – From 

nnovation to Implementation as Standard” established the non- 

nferiority of minimally invasive liver resections compared to open 

epatectomy of the donor. In particular, advantages were found for 

he liver donor (in terms of donor safety and improvement of long- 

erm donor quality of life) and recipient outcomes [18] . The world’s 

argest laparoscopic Mininvasive Donor Hepatectomies (MIDH) se- 

ies [19] estimates that approximately 60 pure laparoscopic donor 

epatectomies are needed in one year to standardize the proce- 

ure. However, Chen et al. suggested that 15 hepatectomies could 

e sufficient in the robotic learning curve with respect to the 45 

ecessaries in the laparoscopic approach [20] . From a series by 

roering et al., that performed a comparison with the open ap- 

roach, blood loss appears to be reduced, as well as the postoper- 

tive hospitalization time (since it is basically a laparoscopically as- 

isted surgery). By this way, patients could return to work sooner, 

ith better quality of life and resumption of sexual activity [17] . 

urthermore, the multi-input display technology TylePro allows to 

ee the preoperative radiological images, the intraoperative ultra- 

ound, and also the three-dimensional reconstructions, whose use 

as born from liver transplantology, on the same screen as the op- 

rating field. In the future, we could see an ever-greater autonomy 

f the robot through the integration of the presurgical data and 

D/3D images as well as the implementation of AI in surgery. In- 

erestingly, the presence of a second console allows undertaking 

ully tutored teaching courses, with the possibility of constant and 

recise guidance over the timely interaction and/or intervention 

y a senior. This aspect is of paramount importance in a surgery 

eld where both the teaching or tutoring and the protection of 

he donor patient are fundamental. Also, it is possible to practice 
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hanks to dedicated programs (e.g., SimNow DaVinci Intuitive Sur- 

ical) enabling the simulation of surgical operations in 3D high 

efinition and virtual reality. Hence, the robot fully satisfies the 

eeds of teaching and learning in surgery. 

There are few centers where robotic hepatectomy living donor 

ransplant programs are currently in place. In particular, the largest 

umbers (thanks also to greater seniority) are in Korea, Taiwan, 

nd South Arabia. As a matter of fact, their growth took advantage 

rom the presence on site of expert surgeons who brought their ex- 

erience and tutored the transplant surgeons in the first years. In 

he future this could evolve toward distance teaching courses with 

emotely connected consoles exploiting the robotic platform with 

elesurgery. Moreover, centers aspiring to embark on a surgery pro- 

ram will be able to receive mentorship without the need for the 

hysical presence of world experts in the field. 

In the last two years the first attempts at robotic liver implan- 

ation have been published, namely the first experience in 2021 

y Lee et al. [19] and the effort s by Suh later in 2022 [21] . The au-

hors highlighted that one of the major limitations of the robot, i.e. 

he absence of tactile feedback, was responsible for the potential 

raft damage during its manipulation of the suture threads [21] . 

his same Korean team successfully performed total hepatectomy 

sing the robot [22] . Beyond the implementation of hugely com- 

lex gestures in robotics, in the future we will have a robot with 

he possibility of automation through the integration of presurgi- 

al data and 2D/3D images. In addition, the implementation of AI 

n surgery might became real, opening a new era in liver trans- 

lantation. 

. Applicability of AI in the transplant setting 

The evaluation of liver transplant recipients depends on a com- 

lex, multidimensional, and nonlinear relationship between vari- 

bles pertaining to the donor, the recipient, and the surgical proce- 

ure. In the setting of liver transplantation, ML models have been 

eveloped to predict pre-transplant survival and management on 

he waiting list, including the risk of dying on the waiting list, to 

ssess donor-to-recipient matching during the allocation process, 

nd to predict the outcome [23 , 24] . Long-term outcome after solid 

rgan transplantation is even more difficult to predict than in the 

arly post-transplant period because it may also be influenced by 

onditions unrelated to the graft [24–26] , such as infections, malig- 

ancies, and metabolic or cardiovascular diseases [27–29] , together 

ith recipient characteristics, intraoperative variables, postopera- 

ive variables, and immunological complications [30] . On the other 

and, evaluating the pathology of the donor graft is one of the 

ain issues for forecasting post-LT outcomes. In particular, marked 

acrovescicular steatosis is associated with early allograft dysfunc- 

ion, primary nonfunction, and postreperfusion syndrome [25 , 31] . 

Several studies have focused on models quantifying steatosis, 

nflammation, hepatocellular ballooning, other morphological pat- 

erns, and the staging of liver fibrosis [26 , 32–34] . Once in use,

hese algorithms could play a significant role in overall donor liver 

ssessment and in the standardization of the assessment of donor 

ivers. 

The efficacy of liver transplantation is also hampered by organ 

hortage; the number of patients listed for LT exceeds the num- 

er of liver grafts available. This imbalance results in a significant 

roportion of patients who will die or be dropped out of the wait 

ist (WL) while waiting for organ. To counteract the negative im- 

act of organ shortages, notably in countries with medium to low 

rgan donation rates, predictive models of mortality have found a 

ajor application in the field of LT. The Model for End-stage Liver 

iseases (MELD) was developed and adopted in the USA 20 years 

go [35] , offering the highest priority for organ allocation to pa- 

ients listed with the highest MELD score in an attempt to min- 
1458 
mize the risk of death or drop out in the waitlist. Over the last 

ecade, some emerging limitations and epidemiological changes in 

he clinical profile of LT candidates have been translated into a 

onsistently declining precision of MELD, and individual graft al- 

ocation is increasingly questioned since mortality in the WL still 

verages an unacceptable 15–20% rate, peaking in some countries 

ith indications to 30%. Liver offering schemes should therefore 

agerly be revisited and moved toward precision medicine for re- 

ning liver transplantation indications and prioritization in the WL, 

oth in decompensated cirrhosis and HCC [36] . 

Recent developments in AI have demonstrated the potential 

o address, at best, the complexity of the liver transplantation 

rocess and to increase the accuracy of classical statistical mod- 

ls in improving the prediction of mortality in WL compared to 

ELD-based systems [37] . In Bertsimas et al.’s study, a state-of- 

he-art ML-based algorithm termed Optimized Prediction Of Mor- 

ality (OPOM) was designed. OPOM was derived from the retro- 

pective analysis of the US Organ Procurement and Transplanta- 

ion Network (OPTN) database, including decompensated cirrhosis 

erved by MELD and HCC patients served by an exception MELD 

ystem. OPOM allowed a better description of patients’ trajecto- 

ies and identification of key root nodes as specific bilirubin val- 

es in patients with low MELD scores (figure available on request). 

s a result, OPOM outperformed MELD to predict 3-month mor- 

ality in the waitlist. Simulation studies suggested that OPOM had 

he potential for a nationwide reduction in WL mortality by 17.5% 

i.e., 418 fewer deaths/year), peaking at 28–30% in patients with 

ELD scores between 16 and 25. In addition, a higher number of 

emale candidates received transplants when OPOM allocation was 

tilized. 

Recently, a study used a combined approach for addressing the 

isk of dropout in patients listed for HCC in the OPTN database. 

irstly, the authors focused on ML to identify independent pre- 

ictors of dropout in this population. Then, they designed a Cox- 

odel for dropout of HCC patients integrating six predictors iden- 

ified by a random forest model [38] . The predictive model reached 

 c-index of 0.74 in the validation set. However, the training set 

as retrospective and did not consider critical predictors as tumor 

rogression in the waitlist or response to therapy. 

These exploratory studies demonstrate the potential of AI to 

efine current predictive models both pre- and post-liver trans- 

lantation. According to current guidelines, a careful assessment 

f AI-based models on external prospective cohorts with simula- 

ion studies is mandatory to detect potential dysfunctions before 

doption in real life. 

. Artificial Intelligence in hepatology: educational aspects 

Aside from ethical issues and the undoubtful perspectives of 

dvancement in terms of precision medicine, diagnostic power, 

ecision-making, and resource allocation and management, AI ap- 

lication in hepatology (and in medicine in general) also involves 

 series of issues and challenges regarding educational aspects. 

ndeed, to effectively use this methodology, there are several as- 

ects to consider, even before considering its application on a large 

cale. This is evident by the fact that, even if AI already provides 

uited and practical approaches for the interpretation of medical 

ata aimed at assisted diagnosis and personalized therapy, more 

nd more in the field of hepatology, the most crucial obstacle to 

ts practical application is the lack of specific background knowl- 

dge of the professional figures involved. In fact, it is emblematic 

hat the most advanced aspect of AI application in hepatology is 

epresented by radiomics, where already available image process- 

ng algorithms are adapted and applied to the medical diagnosis of 

iver tumors. Artificial vision generally has a well-established range 

f methodological standards that can be relatively easily processed 
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y AI algorithms that already exist for image recognition and have 

een suitably “adapted” to recognize liver masses. Different is the 

ase of other clinical/laboratory data, where the data collection, 

atabase management, information technology (IT) standards, and 

nterpretation must be built practically from scratch with more 

hallenging technical efforts. As previously reported, this aspect is 

articularly important when considering other “omics,” in which 

 large amount of data needs to be implemented and interpreted 

orrectly. Therefore, there is a need to prepare the new generations 

f medical and computer engineering students for this method- 

logical revolution that will see the application of AI in medical 

roblems more and more frequently. This point is essential, con- 

idering that these students are fully involved in the AI revolution 

nd, thus, they need to be provided of the necessary scientific tools 

o “communicate” with each other in a productive manner. To this 

urpose, universities need to design dedicated courses in existing 

egree programs to teach the meaning and potential of AI and to 

reate other degree programs from scratch, with the specific aim 

f training professionals in AI applied to medical sciences. In Italy, 

here are already some examples of this effort: the University of 

alerno has already started a master’s degree in “Computer Engi- 

eering for Digital Medicine,” as well as a specific course in “Ar- 

ificial Intelligence Applied to Medicine” in the master’s degree of 

edicine and Surgery. 

. AI and ethical and legal aspects 

The integration of AI in clinical practice is rapidly increasing, 

nd by relying on diagnostic and prognostic algorithms, clinicians 

re helped in the decision-making process to generate personalized 

reatments in many clinical settings [10 , 39] . However, there is still 

 debate on how AI assistance may affect medical performance; 

n the one hand, it can improve the sensitivity of clinical experts, 

hile, on the other hand, it may lower their specificity. Studies 

howed that AI predictions based on explainable algorithms de- 

eloped with a transparent model showed substantial benefits in 

ettings such as liver transplantation ( see dedicated section ), antivi- 

al therapy, and chemotherapy or in helping to anticipate strategic 

ecisions to curb the local burden of pandemics such as COVID-19 

40–43] . On the other hand, the potential benefits of AI using ML 

ystems are hampered by their black-box nature, which poses new 

mportant ethical and legal challenges spanning from data qual- 

ty to medical–legal questions arising from the incorporation of AI 

nto clinical practice [10 , 39 , 44] . Because of the uncertainty gener-

ted by the lack of scrutiny of the recommendations provided by 

I algorithms, clinicians will be unable to take appropriate steps 

o mitigate their concern that algorithm inaccuracy could lead to 

atient injury and medical liability [44–46] . 

Substantially, AI transforms the traditional therapeutic relation- 

hip between physicians and patients into a new triadic doctor–

achine–patient relationship [44–48] . This revolution complicates 

he attribution of responsibility in malpractice lawsuit experts at- 

empting to define a new legal framework that considers the AI 

ole in healthcare, reducing as much as possible the existing het- 

rogeneity of approaches across countries regarding medical liabil- 

ty [44–46 , 4 8 , 4 9] . 

Although a major aim of AI is to help reduce the risk of po- 

ential medical errors, paradoxically, an overreliance on AI systems 

ould become dangerous, particularly when clinicians do not have 

he sufficient technological knowledge to understand the proper 

unctioning of AI systems and their limits and safety ( see dedicated 

ection ). Problems arise when it is difficult to rely on alternative 

ystems that, in parallel, could provide information on the relia- 

ility of any particular result provided by AI since any AI-helped 

ction will never be faultless. 
1459 
Experts extensively discussed the possibility of giving the AI 

ystems a legal personhood so that they would become di- 

ectly responsible for their own decisions and actions. However, 

f AI systems are recognized as a legal personhood with an ac- 

ive part in the decision-making process, it will be unaccept- 

ble to attribute any error to the human factor. The safety of 

he health care system relies on an organizational framework 

hat warrants the well-functioning of all interdependent compo- 

ents and services: people, technology, and their interaction. Thus, 

he basic concept is that errors can derive from human behav- 

or but also from malfunctioning of technologies, even though 

hey are supposed to be “intelligent.” The Committee of Legal Af- 

airs of the European Parliament stated that “AI-systems have nei- 

her legal personality nor human conscience, and that their sole 

ask is to serve humanity” ( https://commission.europa.eu/system/ 

les/2022-09/1 _ 1 _ 197605 _ prop _ dir _ ai _ en.pdf ) [44] . To date, giv- 

ng AI a legal personality is considered inadequate because even 

upposed intelligent technologies are not substantially differ- 

nt from any other non-AI-based sophisticated technology al- 

eady used ( https://commission.europa.eu/system/files/2022-09/1 _ 

 _ 197605 _ prop _ dir _ ai _ en.pdf ) [44] . 

However, since the experts’ opinions always conflict when deal- 

ng with the most advanced knowledge and technology, AI liability 

ssues when applied to healthcare assistance remain open. Accord- 

ngly, introducing AI systems in clinical practice prompts to build 

nfrastructures to deal with critical issues such as data, quality, pri- 

acy and security, and safe data sharing [50–52] . Special attention 

hould be paid to mitigating bias throughout the whole cycle of 

edical AI, from data collection to after deployment, particularly 

hen hurting marginalized groups [53 , 54] . As predictive models 

eveloped by ML algorithms are based on data on which the whole 

I system is built, one major target of AI ethics will be to address 

he biases of AI models associated with the quality and quantity of 

he data used [55] . Regulation and governance of medical AI re- 

uires the implementation of standardized safe AI practices and 

he establishment of a transparent reporting of the performance 

f AI systems. This policy will make clinicians less skeptical and 

ore reliant on their AI-assisted decision-making without losing 

ontrol over their own care because of the potentially unexplained 

I results. 

Finally, since medical doctors are currently held liable when 

hey deviate from the standard of care and patient injury occurs, 

 special concern is accountability, as it is not yet clear whether 

evelopers, sellers, or healthcare providers should be held account- 

ble if a given AI system makes mistakes even after being clinically 

alidated. 

. Conclusion 

In conclusion, to fully exploit the great potential of AI in health- 

are, some crucial technological, educational, and ethical issues 

eed to be addressed. Furthermore, all the societal complexities of 

I applications need to be considered in proving their medical util- 

ty and economic value and in developing strategies for their wider 

pplications. New liability frameworks and collaborative networks 

or multidisciplinary guidelines will facilitate the rapid implemen- 

ation of AI systems for developing disease-customized AI-powered 

linical decision support tools. 
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