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The impact of self-loops on Boolean networks
attractor landscape and implications for cell

differentiation modelling
Sara Montagna, Michele Braccini, and Andrea Roli

Abstract—Boolean networks are a notable model of gene regulatory networks and, particularly, prominent theories discuss how they
can capture cellular differentiation processes. One frequent motif in gene regulatory networks, especially in those circuits involved in
cell differentiation, is autoregulation. In spite of this, the impact of autoregulation on Boolean network attractor landscape has not yet
been extensively discussed in literature. In this paper we propose to model autoregulation as self-loops, and analyse how the number
of attractors and their robustness may change once they are introduced in a well-known and widely used Boolean networks model,
namely random Boolean networks. Results show that self-loops provide an evolutionary advantage in dynamic mechanisms of cells, by
increasing both number and maximal robustness of attractors. These results provide evidence to the hypothesis that autoregulation is a
straightforward functional component to consolidate cell dynamics, mainly in differentiation processes.

Index Terms—Genetic regulatory networks model; Boolean networks; Self-Loops; Cell Differentiation

F

1 INTRODUCTION

G Ene regulatory networks (GRNs) are usually char-
acterised by feedback loops that enable regular os-

cillations, such as in the case of circadian and cardiac
rhythms [1], and provide effective mechanisms for stabil-
ising network dynamics [2]. A prominent context in which
loops play a crucial role is cell differentiation, where these
mechanisms enable cells to regulate gene expression. In this
paper, we are interested in investigating the specific kind of
feedback represented by an autoregulation not mediated by
other genes. For the sake of clarity, in the following we will
refer to this very kind of feedback as direct autoregulation [3].

Among the different models for GRNs [4], in this paper
we focus on Boolean models [5], [6], [7], whose main as-
sumptions are that genes are either active or inactive and
that their interactions are modelled by Boolean functions. In
spite of these simplifying hypotheses, Boolean models have
been proven to successfully capture relevant phenomena in
cell biology [8], [9], [10]. Surprisingly, the generic properties
of Boolean networks exhibiting direct autoregulation have
not yet been investigated. In these models, direct autoreg-
ulation can be easily introduced in the form of self-loops—
directed arcs that exit from a node and are also input for
the same node—that denote a functional dependence of a
variable from itself. In a previous preliminary work [11], we
have found that the impact of self-loops in random Boolean
networks is to increase the average number of attractors and
reduce their average robustness. This last result is not in
agreement with biological networks, which are undoubtedly
robust and yet contain self-loops.

In this work we shed light on this conundrum by
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investigating in more depth the impact of self-loops in
Boolean networks on both the number of attractors and their
robustness. We first show that the number of nodes with a
self-loop is indeed positively correlated with the average
number of attractors and we provide a formal model for
this relation. Subsequently, we show that, if we restrict
statistics to networks with the same number of attractors,
the maximal robustness of the attractors increases with
the fraction of nodes with a self-loop. In other words, the
advantage of self-loops is still observable in Boolean models
but by comparing attractor robustness ceteris paribus. In
addition, our results show that the variability of attractor
robustness tends to increase with the fraction of nodes with
self-loops. This outcome suggests that direct autoregulation
may provide an advantage in the evolution of the basic
dynamic mechanisms of cells.

These results provide further support to the use of
Boolean networks for modelling cell dynamics (e.g. dif-
ferentiation processes) and suggest that self-loops have to
be taken into account in the ensemble approach [12], which
aims at identifying generic properties so as to match some
statistical features of the target biological systems.

August 9, 2019

2 BACKGROUND AND MOTIVATION

Boolean networks (BNs) have been introduced by Kauff-
man [5], [13] as GRN models and have been shown to
suitably capture important phenomena in biology [14],
[15], [16], [17], [18], [19], [20], [21]. A Boolean network
is a discrete-time discrete-state dynamical system whose
state is a n-tuple in {0, 1}n, (x1, . . . , xn). The state is up-
dated according to the composition of n Boolean functions
fi(xi1 , . . . , xiki

), where ki is the number of inputs of node i,
which is associated to Boolean variable xi. Each function
fi governs the update of variable xi and depends upon
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the value of variables xi1 , . . . , xiki
. A prominent BN model

is that of random BNs (RBNs), characterised by a random
topology (typically every node has exactly k inputs) and
random Boolean functions defined by setting the probability
to assign value 1 to each entry with probability b, called
bias. In its original—and most studied—formulation the k
incoming nodes are chosen randomly among the other n−1
nodes, without repetition and avoiding self-loops. In this
work we will refer to the synchronous and deterministic
BN update, whereby nodes update their state in parallel
and Boolean functions are deterministic. Under this update
scheme, each network state has only one successor and the
asymptotic states of the system are cyclic attractors or fixed
points.

Being the asymptotic states of the system, attractors play
a prominent role in BNs [5], [22]. In particular, a recent
dynamical systems view of cell differentiation has been
proposed [15], [16], [18], [23] in which attractors—or subsets
of attractors—represent cell types. Accordingly, transitions
between attractors epitomise cell differentiation stages that
bring changes in the pattern of active/inactive genes. In
this view, for a network to be a viable model for cell
differentiation, one would require to have a suitable number
of attractors characterised by varying degrees of robustness,
so as to be able to reproduce the transitions between cell
types.

In [11] we presented a preliminary study that analyses
whether adding self-loops in RBNs affects attractor number
and type and, possibly, their robustness. We observed that
the number of attractors is higher in networks with self-
loops and grows quasi-exponentially with the number of
self-loops. At the same time, attractor robustness tends to
be smaller than in RBNs without self-loops.

These results are not completely coherent with the role
self-loops have in biological systems. Indeed, autoregula-
tory circuits—biological components that are (in)directly
influenced by their very product—are pervasive in biologi-
cal organisms and they are actively involved in conferring
mutational, environmental, recombinational, or behavioural
robustness. The effects of these circuits manifest themselves
as emergent properties on multiple scales, in time (devel-
opment/evolution), in space (populations) and on different
levels of the biological organization (from molecular up
to entire organisms). Buffering of noise and incomplete
penetrance [24], autocatalysis, homeostasis and buffering
gene dosage [25], genetic switches—like Sxl gene in sex
determination of Drosophila [26] and Cl protein in lytic
or lysogenic phase control in bacteriophage lambda [3]—
and chromatin mediated autoregulation [27] are just some
of the most prominent examples of the observable effects
of positive or negative, direct or indirect autoregulatory
circuits.

Autoregulation patterns assume particular relevance in
transcriptional regulation. Indeed, in the works by Alon
and colleagues [2], [28], [29], autoregulatory circuits have
been identified in transcription networks as network mo-
tifs, i.e. recurring building-block patterns found in complex
networks. Just to mention an example of their amount in a
real organism, E. coli presents 40 transcription factors that
regulate the transcription of their own genes, out of a total

of 420 transcription factor encoding genes.1

Particularly noteworthy to the purpose of this paper
are the functions that positive autoregulations carry out
in differentiation, and therefore in development. According
to [28], positive (negative) autoregulation occurs when a
transcription factor enhances (represses) its own rate of
production. It is the memory capacity typical of positive
circuits made by maintaining gene expression, and so acting
as genetic switches, that makes them important in biological
development. Therefore, autoregulation of important devel-
opmental regulatory proteins can lock-in their expression
and so induce the maintaining of attained cell fates or
developmental states [3]. Thomas in his works [25], [26],
[30] remarks the key role of autoregulation in the context of
cell differentiation firstly by demonstrating that a positive
loop is necessary for multistationarity and subsequently,
following the hypothesis of Delbrück, that differentiation
represents the biological aspect of the latter. In addition,
Alon [2] addresses a mathematical systematic study of the
mechanisms characterising autoregulation generic dynami-
cal properties: negative autoregulation speeds-up transcrip-
tion response time, whilst positive ones slow down the
transcription factors response time and are able to create
bi-stability. Huang et al. [31] study the interactions be-
tween two key transcription factors in blood differentiation,
namely GATA1 and PU.1, to understanding the discrete
cell fate decisions that multipotent cells undergo during
development. These two transcription factors promote the
erythroid or myelomonocytic lineage respectively. In a dy-
namical systems vision of cell differentiation, the authors
formulate a minimal mathematical model of the functional
interactions of the two above-mentioned transcription fac-
tors that in a qualitatively way reproduce—in the GATA1
and PU.1 plane—the observed experimental genome-wide
trajectories of the transcriptome during differentiation. In
addition to mutual inhibition, auto-stimulation of GATA1
and PU.1 turned out to be fundamental to give rise to
the metastable state characterized by the promiscuous ex-
pression of both transcription factors and representing the
progenitor cells.

In the light of the previous—non-exhaustive—list of
biological and modelling examples in which autoregulations
play relevant roles in the organism functions, especially in
transcription networks, we cannot ignore their roles also
in Boolean models of GRN. In fact, Boolean reconstructed
models of GRNs, obtained by making use of consolidated
biological knowledge of transcription factors interactions or
following ad-hoc procedures for synthesizing models able
to reproduce observed data, are characterised by autoreg-
ulations. As an example we cite the reconstructed Boolean
network representing the core endogenous network of early
myeloid cell-fate determination [32] that presents nearly
10% of nodes with self-loops. In [33] the authors have
reconstructed a BN model of the control mechanisms that
drive the epithelial-to-mesenchymal transition (EMT). In
that minimal GRN model autoregulations are necessary to
create the required stable attractor states and, in particular,
the hybrid cell state that presents in the gene expression pro-
file both the epithelial and mesenchymal features. Moreover,

1. according to [2]
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by analysing the database (https://cellcollective.org/#) of
Boolean-rule based computational models of large-scale bio-
logical networks available at the Cell Collective website [34],
we have ascertained that the 54% of networks has self-
loops. Nevertheless, a systematic study aimed at identi-
fying generic properties and qualitatively characterising
the impact of nodes with self-loops in BNs is missing.
Indeed, modelling and analysing specific genetic circuits is
a valuable and necessary step to pursue an ever-increasing
understanding of the mechanisms that underlie biological
organisms, but it suffers from limitations because these cir-
cuits are not actually functionally independent [31]. There-
fore, in order to frame up their effects in the dynamics of
the complex networks of which they belong, it is necessary
to address also this study in terms of generic properties.
Our work is in the track of the long-term research aiming
at constructing a synthetic network biology theory since
self-loop may represent a possible functional bricks.

3 METHODS

The experiments we performed concern RBNs in which the
main factor we control is the fraction of nodes with a self-
loop. Starting from a RBN with n nodes denoted by integer
values V = {1, 2, . . . , n}, k inputs per node and bias b, a
self-loop can be introduced in a node either by rewiring
an input or by adding a new one. The function of nodes
with self-loops may be arbitrarily altered or left random.
Two are the main reasons for investigating the impact of
autoregulation as self-loops in random Boolean models: the
first is that BNs are among the most used GRN models and
a wealth of results on RBNs is already available, therefore
we can compare our findings against an established and
well known literature. The second reason is that if self-loops
make RBNs somehow more adapt to model differentiation
processes, then they should be taken into account in artificial
evolution experiments and RBNs with self-loops may be
provide a promising initial condition for such studies.

We performed the experiments according to the follow-
ing experimental setting. Initial RBNs were created with
k = 2 and function bias b equal to 0.5—the value of these
parameters grounds on biological plausibility [13], [35], [36].
These networks have been modified by selecting at random
ns nodes in which rewiring or adding a link in self-loop.
For brevity, let’s denote by Vs ⊆ V the nodes with a self-
loop. When self-loops are introduced by rewiring, all nodes
in V have exactly k inputs; conversely, when self-loops
are added, the distribution of node in-degree changes as
ns nodes out of n have k + 1 inputs. We decided to test
both variants so to have a wider picture of the effects of
self-loops inserted in RBNs. Besides adding self-loops, a
decision has to be taken concerning the functions of nodes
in Vs: since we started from RBNs, the function may still
be random (with bias kept to b also in the case k + 1)
or it can be set to a specific Boolean function. This latter
case is the most relevant for GRN modelling, as self-loops
found in biological cells have usually a canalising role [37]
instead of playing any function. As originally introduced
by Kauffman [5], a canalising function is a Boolean function
in which there exists an input value that fully determines
the output value, regardless of the values of other inputs.

Table 1: Topological Configuration of Networks

Configuration Description

CONST-OR removed an incoming link and replaced the input
with a self-loop, and changed the node Boolean
function into an OR

AUGM-OR added a self-loop and changed the node Boolean
function into an OR between the node value and
the previous function

CONST-RND removed an incoming link and replaced the input
with a self-loop, without changing the node Boolean
function

AUGM-RND added a self-loop and extended the truth table ran-
domly (with the same bias used for generating the
original RBN)

We then chose to test also the case in which the Boolean
function of nodes in Vs is a either logical OR between the
value of the node itself and the other input (k constant case)
or the OR between node value and the random function
initially set, for the k+1 case. Formally, let i be a node in Vs
and fi the original function; then, the new Boolean function
f̂i is defined as follows:

• case k constant: f̂i = xi ∨ xj , where j is the other
input of i;

• case k + 1: f̂i = xi ∨ fi.

Note that in BN models there is actually no semantics asso-
ciated to 0 and 1. However, since for the sake of simplicity
we chose one specific canalising function—the logical OR—
this implies that if 1 is associated with the active state of
the node, OR acts as a canalising activating function—and,
clearly, OR with self-loops means self-activation. Anyway, if
we observe a specific effect of the OR function, it just means
that this effect can be achieved by any canalising function
of this kind. Our main interest is indeed on this canalising
functional role, whilst the case with random functions is
kept just for comparison. In Table 1 we sum up the set of
BN variants used in the experiments we performed.

Attractors in BNs are unstable with respect to pertur-
bations (i.e. temporary node value flips), therefore after a
node flip the trajectory either returns to the same attractor
or it reaches another one [38], [39]. Attractor transition
probabilities are computed by exerting perturbations to each
attractor and the probability of returning to an attractor
after a perturbation is taken as an estimation of attractor
robustness. According to [40], robustness is a broader concept
than stability—which is a well-defined mathematical notion
in dynamical systems—as it is related to feature persistence
under a wider spectrum of perturbations of different nature.
The notion of attractor robustness used in this paper, which
is related to the concept of robust adaptation defined by
Kitano in [41], is not limited to determine single attractor’s
stability since it provides a quantitative measure, i.e. the
probability of returning to the same attractor.

This metric is clearly a function of the kind of perturba-
tion exerted. In this work we suppose that only one node
at a time can be perturbed and that only states belong-
ing to an attractor can be subject to such a perturbation.
This approach is common in dynamical systems, in which
stability is indeed evaluated in stationary states. Moreover,
the single flip hypothesis is based on the assumption that

https://cellcollective.org/#
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Figure 1: Average number of attractors in 2 ∗ 104 RBNs with 15 nodes as a fraction of self-loop varying from 0 to 1. Results
are shown for each of the four configurations.

perturbations are not frequent with respect to network up-
dates, so the probability of affecting more than one node
at a time is negligible; the same consideration holds for
perturbations occurring during transients, which typically
last a tiny fraction of time with respect to attractors along
BN trajectories. This assumption is reasonable in particular
when BNs are used to model cell dynamics [14], [17], [39].

In practice, we apply a logic negation to each node of
each state of each attractor in turn and we check in which at-
tractor the dynamics relaxes. The probability of a transition
between attractor A and attractor B is computed by taking
the frequency of transitions between A and B among all the
possible node flips along attractor A.2 As shown in [42], the
results obtained in this setting are equivalent to stochastic
simulation of perturbed BNs. This procedure produces a
probability transition matrix, that we name the Attractor
Transition Matrix (ATM), from [43]. The diagonal of the
ATM accounts for attractor robustness, as diagonal values
represent the probability of returning to the same attractor
after a perturbation. To get a more accurate evaluation of
attractor robustness, in this work we focus on minimum
and maximum values of the ATM diagonal, rather than one
single statistics such as the average that might obfuscate the
actual features of the distribution. To this purpose we define
the two following variables:

δmin = min diag(ATM) (1)

2. For large size networks one has to resort to sampling, instead of
enumerating all the possibilities.

δmax = max diag(ATM) (2)

4 RESULTS

In this section, we will first show the results on the number
of attractors. Subsequently, we will analyse statistics on
attractor robustness.

We run experiments for each of the four configurations
described in Table 1. In this work, we aim at providing a
detailed picture of the impact of self-loops on BNs and so we
choose completeness over statistics in the large. Therefore,
the number of nodes n is set to 15 so as to be able to perform
an exact computation of the ATM for every possible number
of nodes with self-loops ns ∈ {0, 1, . . . , n}. The outcome of
our study can be anyway generalised to large size networks.
However, small and medium-size networks are often used
to model the relations among a limited number of genes,
related to a specific function (e.g., the hematopoietic cell
differentiation). RBNs are generated with k = 2 and bias
b = 0.5. For each value of ns and for each variant, we took
statistics across 2 ∗ 104 randomly sampled RBNs.

4.1 Average number of attractors as a function of self-
loops

In this section we show how the average number of at-
tractors is affected by self-loops. Figure 1 is composed of
four plots, each referring to one of the four configurations
in Table 1. In each graph, the average number of attractors
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Figure 2: Comparison between the mathematical model and experimental results. Self-loop in OR inserted by adding an
input (left), and by rewiring one input (right). Logarithmic scale for the y axis.

is plotted as a function of the fraction of nodes with self-
loops, along with the average number of fixed points. The
outcome of these experiments confirms the results presented
in our previous work [11]: the average number of attractors
increases with ns/n. Curves follow the same trend in the
four plots and are well approximated by an exponential
function. However, we can observe two main differences
between OR (canalising functions) and RND functions:

1) The number of attractors increases much more in
networks with self-loops in OR than in those with
RND functions. The difference is roughly of an
order of magnitude: we can observe that with OR
they vary from an average value of 2.59 in all the
networks without self-loops until averages of 209.8
(CONST-OR), 436.9 (AUGM-OR), 58.6 (CONST-
RND) and 19.6 (AUGM-RND) in networks with 15
self-loops.

2) For CONST-OR and AUGM-OR, almost all attrac-
tors are fixed points even at low values of ns/n;
conversely, in the RND cases, is the average number
of cyclic attractors that grows with ns/n.

4.1.1 An analytical model
To generalising the previous results and being able to
make predictions for any value of n, ns and bias b, we
complemented this analysis with a theoretical estimation
of the average number of attractors as a function of these
parameters. The model we provide in this section is related
to the OR cases, as they are more significant for biological
cell modelling than the RND ones. As previously observed,

in the OR cases even for few nodes with self-loops almost
all attractors are fixed points. Therefore, as we want to
have a generalisation for any n, we estimate the number
of attractors in terms of number of fixed points. For ease of
the proof, we first focus on AUGM-OR and we subsequently
modify the model for the CONST-OR case. Our goal is then
to estimate the probability that a randomly chosen state
s = (x1, x2, . . . , xn) is a fixed point in the case in which
self-loops are added to nodes. In the following, we use fi(·)
to denote the application of the function of node i to its
inputs values.
Hence we want to estimate:

p∗(s) = P{s is a fixed point | s is randomly chosen} (3)

s is a fixed point iff s = F (s), i.e. (x1, x2, . . . , xn) =
(f1(·), f2(·), . . . , fn(·)).

Let us focus on node i with two external inputs
corresponding to a Boolean function with bias b and a self-
loop in OR and estimate the probability p∗i = P{xi = fi(·)}.
We have two cases: (a) xi = 1 and (b) xi = 0.

a) P{xi = 1 ∧ fi(·) = 1} = P{fi(·) = 1 | xi = 1} P{xi =
1} = 1 · q = q, where q is the probability of assigning 1 to
value xi.

b) P{xi = 0 ∧ fi(·) = 0} = P{fi(·) = 0 | xi = 0} P{xi =
0} = (1 − b)(1 − q), because b is the probability that—on
average—f(·) = 1.
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Figure 3: Density function of the number of attractors for the CONST-OR configuration. It has been computed from
experimental data on 2 ∗ 104 runs with same ns. The sixteen plots show how it changes with ns ∈ {0, 1, . . . , 15} (the
number of self-loops ns is reported in bold letters in the title of each plot). Logarithmic scale for the x axis.

Hence, p∗(xi) = q + (1 − b)(1 − q). We suppose that initial
states are randomly chosen, thus q = 1

2 . Moreover, in our
experiments we have b = 1

2 , therefore p∗(xi) = 3
4 . For a

node without self-loops we apply an analogous argument
and obtain p∗(xi) = bq + (1− b)(1− q); in our experiments
p∗(xi) = 1

2 . Finally, we can derive a formula for the prob-
ability of a fixed point of a network with n nodes and ns
nodes with a self-loop added in OR under the hypothesis
that all p∗i are independent:

p∗(s) = [q+(1− b)(1− q)]ns [bq+(1− b)(1− q)](n−ns) (4)

For b = 1
2 = q we have p∗(s) = ( 34 )

ns ( 12 )
n−ns .

The comparison between the theoretical value of fixed
points and its experimental estimation—based on the statis-
tics on BNs we have performed from simulations of RBNs—
is shown in Figure 2 (left). The model predicts with high
precision the number of fixed points, which is a good
estimation of the overall number of attractors. The model
slightly overestimates the number of fixed points because
we suppose that nodes are independent—in fact, the func-
tional dependence among nodes might rule out some con-
figurations that can, in principle, be fixed points. However,
this discrepancy is negligible in this case.

Following a similar reasoning we can derive an analo-
gous formula for the CONST-OR case, in which self-loops
are inserted by rewiring an incoming arc and substituting
the Boolean function with an OR. In this case we have:

p∗(s) = [q +
1

2
(1− q)]ns [bq + (1− b)(1− q)](n−ns) (5)

For b = 1
2 = q we have p∗(s) = (34 )

ns 1
2

(n−ns).
The constant value 1

2 in Equation 5 represents the proba-
bility that—on average—variable xi with value 0 does not
change its value after the application of the OR function.
The comparison between the theoretical value of fixed
points and its experimental estimation is shown in Figure 2
(right, dotted line with squares). As we can observe, in this
case the hypothesis of independence introduces an error,
especially when the number of nodes with self-loop is high.
For this case we should apply the chain rule for computing
the conjunct probability that every node is constant. Let us
denote by xi the event that xi does not change its value after
the update. Thus we have: p∗(s) = P{x1 ∧ x2 ∧ . . .∧ xn} =
P{x1} P{x2 | x1} P{x3 | x2 ∧ x1} · · ·P{xn | xn−1 ∧ . . . ∧
x1}.
The dependence among nodes can be simplified because
in this topology the nodes with self-loop depend only on
one other node as in a ring topology. Hence: p∗(s) ≈
P{x1} P{x2 | x1}ns−1 = 3

4 ( 23 )
ns−1( 12 )

n−ns , as in the
most constrained case x2 depends on x1 and, in this case,
x2 is constant in two out of the three cases in which x1 is
constant. In this way, we can provide also a lower bound on
the number of fixed points, as depicted in Figure 2 (right).

To generalise analytical model results, Figures SM16 and
SM17 of Supplementary Material report model predictions
varying the bias for the analysed topological OR configura-
tions (CONST-OR, AUGM-OR). We can observe that in the
CONST-OR configuration the bias value does not impact the
theoretical value of fixed points, while in the AUGM-OR
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Figure 4: Empirical cumulative distribution function (ECDF) of the number of attractors for the CONST-OR configuration.
It has been computed from experimental data on 2 ∗ 104 runs with same ns, with ns ∈ {0, 1, . . . , 15} (see legend).

case analytical model predictions change with bias values.
As a final note, we observe that the model indeed cap-

ture an exponential relation between the average number
of attractors and the fraction of nodes with self-loops, as
empirically noted in Figure 1.

For the sake of completeness, we also introduce the
analytical model for the estimation of the average number of
fixed points for the RND cases. The model presented above
can be reduced to the following formula [bq+(1−b)(1−q)]n:
since all nodes have random functions we can not make
a distinction between nodes with a self-loop ns and those
without. Given that the average outcome of the Boolean
functions in RBN ensembles of random functions follows
the bias parameter, in Figure SM18 we report the theoretical
estimations of the average number of fixed points varying
bias values for the RND cases (CONST-RND, AUGM-RND).
It is noteworthy that, for both the RND cases, the theoretical
average number of fixed points is 1—regardless of the bias—
and the experimental value reported in Figure 1 is perfectly
in agreement with it.

4.2 Distribution of attractor number

To providing a more detailed picture of the overall attractor
number trend we analysed the distribution of the number
of attractors of the BNs across the 2 ∗ 104 networks with
same configuration and number of self-loops. Moreover, this
analysis is useful to study attractor robustness, which is
influenced by the number of attractors, i.e. by the ATM size:
in BNs a higher number of attractors is likely to correspond
to a lower probability of returning to the same attractor after
a perturbation, as on average the more the attractors, the

smaller their basin of attraction.3 For the sake of brevity,
we discuss here the case of CONST-OR, and we refer to
Supplementary Material for additional data and results on
the other three configurations.

Figure 3 and Figure 4 show the density and the empirical
cumulative distribution of the number of attractors, respec-
tively, for each possible value of the number of self-loops in
the network.

Density functions in plots of Figure 3 are computed
with the algorithm implemented in ksdensity of Matlab
(R2018a). The function returns a probability density estimate
for the vector data containing the attractor number from
our 2 ∗ 104 experimental results. The result is somehow
surprising: for each network setting with at least one self-
loop, the density is non-monotonic and a peak can be identi-
fied; in other terms, the probability of randomly sampling a
network with a given number of attractors is not uniformly
distributed, but rather most networks have a number of
attractors close to the value corresponding to the maximal
density. This peak varies with the number of nodes with
self-loops. For instance, in networks without self-loops the
value of the density function for a landscape with only
one attractor is 0.79, while, once rewiring one node input
with a self-loop, two attractors constitute the most common
landscape and we have a value of 0.56. Peak value and
position for the 16 experiments are summarised in Table 2.
Peaks of density functions move right as self-loops are
added to the network: the probability to have few attractors
decreases while the probability to have a large number of
attractors increases. Moreover, the peak gets lower while
tails of density function get higher and longer. Generally

3. In fact, this is a rough reckon that holds on average, because the
values in the ATM are computed by considering single perturbations
occurring along attractor states, while the attractor basin is defined in
terms of a fraction of the entire state space.
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Figure 5: δmin and δmax as a function of the number of attractors m for the CONST-OR configuration. They have been
computed from experimental data on 2 ∗ 104 runs with same ns. The sixteen plots show how they change with ns ∈
{0, 1, . . . , 15} (the number of self-loops ns is reported in bold letters in the title of each plot). x axis limits change with ns
from 1 to the largest number of attractors for which at least 30 sampled BNs have been found.

speaking the peak moves to the right while it drops down.
Accordingly, we extracted the maximum number of attrac-
tors observed (Amax) as a function of the number of self-
loops ns (see Table 3).

A similar qualitative behaviour is obtained with
the other three configurations (AUGM-OR, CONST-RND,
AUGM-RND), has shown respectively in Figure SM1, Fig-
ure SM6 and Figure SM11 of Supplementary Material.

A different perspective is shown in Figure 4 where
we plotted the empirical cumulative distribution function
(ECDF) of each of the 16 different attractors number distri-
butions related to the CONST-OR configuration presented
in Figure 3 with ns ∈ {0, 1, . . . , 15}. Figure 4 supports our
previous analyses showing that 95% of networks are under
the ECDF curve for attractor number gradually bigger. As
extreme examples: if ns = 0 then ECDF <= 0.95 for
i <= 6, while if ns = 15 then ECDF <= 0.95 for
i <= 512.

A generalisation of this pattern can be attained by find-
ing a fit between the ECDF of attractor number and a known
discrete distribution. Indeed, for few self-loops the distribu-
tion is well fitted by a Poisson distribution. Unfortunately,
this fit considerably degrades with increasing number of
self-loops; in this latter case, we found a good match with
a geometric distribution which tends to reproduce with
more accuracy the tail of the attractor number distribution.
Nevertheless, the geometric distribution completely misses
the peak of the density. Even though continuous, the Weibull
distribution [44] provides an overall good trade-off, being
defined as a function of two parameters. This result would

Table 2: Density function max values and corresponding
position, i.e. number of attractors.

ns density fun. max value x ≡ no. attractors

no self-loops 0.7904 1
1 self-loop 0.5619 2
2 self-loops 0.4673 2
3 self-loops 0.1857 2
4 self-loops 0.1187 4
5 self-loops 0.0861 4
6 self-loops 0.0603 5
7 self-loops 0.0435 4
8 self-loops 0.0315 8
9 self-loops 0.0228 10
10 self-loops 0.0165 16
11 self-loops 0.0119 25
12 self-loops 0.0086 34
13 self-loops 0.0064 45
14 self-loops 0.0049 67
15 self-loops 0.0039 102

suggest that the distribution of the number of attractors of
the BNs is a mixture of exponential and Rayleigh distribu-
tion. A formal study of this issue is planned for future work.

4.3 Attractor robustness

The second relevant feature affected by the number of
nodes with self-loops is attractor robustness. In our previous
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Table 3: Max number of attractors as a function of self-loops ns

ns 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Amax 48 104 66 136 120 123 192 216 212 384 480 560 1200 1050 1545 1601

preliminary study [11] we observed that the median value of
attractor robustness decreases with the number of self-loops.
In fact, the distribution of these values is rather wide and a
single statistical parameter might miss important features of
the phenomenon. Moreover, as the distribution of the num-
ber of attractors of the BNs is not uniform, a fair comparison
should be achieved by comparing robustness among BNs
with the same number of attractors. Therefore, we look here
at the minimum and maximum values of robustness—δmin

and δmax—averaged across networks with the same number
of attractors. In this way we have more balanced results
across the 16 different settings, on top of which we can
make a comparison and discussion: are self-loops affecting
attractor robustness in networks with a different setting
but same number of attractors? We computed averages of
δmin and δmax on 30 networks randomly selected from the
sampled pool of BNs with a given number of attractors;
in case 30 networks are not available, statistics are not
computed.4 We stop computing the averages at the largest
number of attractors for which at least 30 sampled BNs have
been found.

Figure 5 shows the trend of δmin and δmax as a function
of the number of attractors across all 16 configurations
of self-loops. We can observe that, in each plot, attractor
robustness decreases with an increasing number of attrac-
tors: both δmin and δmax follow a quasi-monotonically de-
creasing function (with few local exceptions). This confirms
the overall picture we got in our previous work. Results
obtained for 15 self-loops has to be interpreted with a bit
of ingenuity. In this case, δmin = 0 for all the networks and
δmax = 1, independently of the number of attractors. The
reason of this phenomenon is that in these peculiar networks
in which every node regulates itself in OR, there are at
least two fixed point attractors: (0, 0, . . . , 0) and (1, 1, . . . 1).
The first is unstable, as any node flip will switch to 1 at
least one node which will keep this value forever; whilst
the second is stable for every possible single flip, as any
node perturbation 1 → 0 will be immediately reverted at
the subsequent update step. In general, we can observe a
tendency of δmin to decrease, while δmax increases with the
number of self-loops, denoting that variability in attractor
robustness increases. This trend is shown in Figure 6.

If we restrict the analysis to a limited number of attrac-
tors feasible for BNs with any number of self-loops and we
consider δmax at a given number of attractorsm, we observe
a notable fact: the maximum robustness grows with the
number of self-loops (see Figure 7, right—the trend is shown
for 1 ≤ m ≤ 20). The picture emerging from the analysis
of δmin (Figure 7, left) is somewhat more complicated: the
trend of minimum robustness is increasing for BNs with

4. Indeed, as for some topological configurations and ranges of ns the
computational cost for finding a RBN with a given number of attractors
might be extremely high, we considered as statistical significant only
averages computed across 30 samples, which is the minimal number
suggested by a commonly applied rule of thumb [45].

few attractors and it decreases in networks with more than
12 attractors, while it does not significantly vary for an
intermediate number of attractors.

Analogous results, even if less striking, hold for the
AUGM-OR. Conversely, the RND cases do not show this be-
haviour. Figures summarising results for these settings can
be found in Supplementary Material. Figure SM3 (AUGM-
OR), Figure SM8 (CONST-RND) and Figure SM13 (AUGM-
RND) show δmin and δmax as a function of the number
of attractors m: the sixteen plots in each figure show how
they change with ns ∈ {0, 1, . . . , 15}. Figure SM4 (AUGM-
OR), Figure SM9 (CONST-RND) and Figure SM14 (AUGM-
RND) show δmin and δmax and ATM diagonal values as a
function of the number of attractors. Results are shown for
ns ∈ {0, 4, 8, 12}. Figure SM5 (AUGM-OR), Figure SM10
(CONST-RND) and Figure SM15 (AUGM-RND) show δmin

and δmax on 30 networks with the same number of attractors
m, where m ∈ {1, . . . , 20}.

5 DISCUSSION AND CONCLUSION

The overall outcome of our analysis is that the addition of
self-loops with canalising function to RBNs affects:

(a) the distribution of the number of attractors, mainly
by gradually increasing the maximum number, mov-
ing right the peak of the density function and making
the distribution flatter; in particular as the fraction of
self-loops increases, density function peak becomes
gradually less substantial and tails longer;

(b.1) the maximum attractor robustness in two ways: it de-
creases with the number of attractors, but gradually
increases adding self-loops if compared across BNs
with the same number of attractors;

(b.2) the minimum attractor robustness in two ways: it
decreases with the number of attractors, and exhibits
a composite behaviour if compared across BNs with
the same number of attractors but different number
of self-loops (it grows for BNs with few attractors
and decreases for many attractors, while it is approx-
imately steady for an intermediate number).

Given these experimental results, we claim that self-loops
in BNs can positively influence their dynamic behaviour—
according to the characteristics required for modelling cell
differentiation—but the fraction of self-loops must be accu-
rately chosen to guarantee the best balance between number
of attractors (cell types) and attractor robustness (cell type
stability). Our claim is that in the range 25–45% of nodes
with a self-loop in the network, we can observe a substantial
advantage in robustness without exceeding in the amount of
attractors. From the analysis we conducted on the Cell Col-
lective [34] database, we found that, among the GRNs with
self-loops (54% of the networks available, as discussed in
Section 2), the average value of the fraction of self-loops
is 0.2100 with a standard deviation of 0.2104. Details on
the distribution are shown in Figure 8. This analysis on
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Figure 6: δmin, δmax and ATM diagonal values as a function of the number of attractors for CONST-OR configuration.
Results are shown for ns ∈ {0, 4, 8, 12} (see title in each plot).

real networks confirms our hypothesis and leads to the
conclusion that a fraction of about 30% self-loops can bring
an evolutionary advantage to BN dynamic, especially once
modelling cellular differentiation processes.

In particular, simulation results enable us to formu-
late an evolutionary hypothesis that may be tested in sil-
ico by means of BNs. Let us suppose that attractors—or
sets of attractors—represent cell types. Our conjecture is
that autoregulation may have appeared in evolution as a
functional component that makes it straightforward to (i)
increasing the number of attractors (i.e. cell types) without
severely perturbing the other dynamical properties of the
network and (ii) consolidating dynamical attractors, e.g. by
increasing the robustness of some of them (in other words,
to increasing the maximum attractor robustness in a BN
with m attractors, a moderate rewiring adding self-loops
would be a quite effective procedure). Indeed, a system is
evolvable if, subject to mutations on its structure, it exhibits
variability in phenotypic traits that may undergo selection.
Besides this, by being quite simple and local modifications,
self-loops are good candidates as mutation perturbations
in evolutionary schemes. As a future work, we plan to
investigate this evolutionary hypothesis.

Some questions may be raised concerning the proper-
ties of the model we studied in comparison with RBN
models studied in the current literature. A first question
may arise about the dynamical regime—ordered, disordered

or critical—of RBNs with self-loops.5 To the best of our
knowledge, this property has not yet been studied so far
and we are currently investigating it. However, it should
be observed that in the case in which OR functions are
introduced with self-loops, the canalising effects are very
likely to keep the networks in an ordered regime. Moreover,
one may ask to what extent the results obtained for CONST-
OR and AUGM-OR differ from those that can be attained in
classical RBNs in which the function of some nodes is forced
to be an OR. In fact, we addressed this question in a previous
work [11] and found that the the two models produce
strikingly different results. Therefore, the effect of self-loops
in RBNs can not solely be ascribed to the specific Boolean
function used, but it crucially depends on the topological
feature of autoregulation.
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