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1. Introduction
The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is a model reaction for evaluating
the catalytic activity of nanomaterials. Moreover, 4-NP is considered one of the most toxic
water pollutants; therefore, the successful transformation to another chemical product is highly
interesting for both industry and academia [1–5]. 4-NP is derived from many processes in the
industry, such as agro chemistry, pigments and pharmaceutical factories [6–9]. Owing to its high
toxicity, new methods to remove this compound from the environment are desirable, such as the
direct conversion of 4-NP with reductant in the presence of metal nanoparticles (NPs) to produce
4-AP [10].

The 4-AP molecule is less toxic and is a useful chemical in many industrial applications, such
as in drugs (analgesic and antipyretics) and corrosion inhibitors [8,11]. Owing to the simplicity
of the reduction of 4-NP using sodium borohydride (NaBH4) as a reducing agent in excess, it
has become a model reaction for catalytic studies. The reaction can be easily monitored using
UV–Vis spectroscopy by observing the decrease in the absorption of the 4-nitrophenolate anion at
400 nm [12]. The conversion and rate constant of the reaction can be calculated. In addition, there
is only one product (4-AP) for this reaction and no by-products are formed [13,14]. Furthermore,
it can be catalysed by any immobilized or indeed free NPs in aqueous solution under mild
reaction conditions [12,15]. Although this reaction is thermodynamically favourable at ambient
conditions, it is kinetically hindered without catalyst, since the reduction potential of 4-NP to
4-AP is E° = 0.76 V, while that of borate to borohydride (H3BO3/BH4−) is E° = −1.33 V [13,16].

Gold NPs, free or immobilized onto the desired support, have been investigated under mild
conditions for the reduction of 4-NP [1–5]. Generally, the catalytic activity of gold NPs depends
significantly on several factors including particle size [17,18], metal loading [19] and shape of the
NPs used. It has been shown that when alloying gold with another metal, such as palladium
or platinum, the catalytic activity significantly improves, due to a synergistic effect between
the two metals [15]. Thus, Au NPs are often combined with other metals to prepare bimetallic
catalysts of high catalytic performance, traceable to changes in the interface electronic structure
[20]. Examples of such bimetallic systems with excellent catalytic activity, reusability and stability
are Ag–Au core–shell NPs, Ag–Au NP alloys and alloy–graphene hybrids [21–23].

Despite the excellent catalytic activities reported for the above-mentioned bimetallic systems,
Pd based NPs have undoubtedly exhibited the best overall catalytic performance for the
hydrogenation of 4-NP [24]. Previous studies showed that Pd-based bimetallic NPs are more
effective than Pt–Au bimetallic NPs [25–29]. Alloying of Au–Pd results in modifying electronic
and surface properties and in turn the adsorption and activation for substrates and thus yielding
relatively faster reaction rate constants compared to Au–Pt alloys [25]. However, very limited
studies are reported for the reduction of 4-NP over Au–Pd bimetallic systems [30–32].

Chen et al. [33] studied the catalytic activity of atomic ratios of Au and Pd in bimetallic NPs
for the reduction of 4-NP by synthesizing Au–Pd NPs supported on graphene nanosheets (GNs).
They reported that the activity of bimetallic Au–Pd/GN catalyst was higher than monometallic
Au/GN and Pd/GN catalysts by factors of 8 and 5, respectively, attributed to a synergistic effect
between Au and Pd species. Moreover, Au–Pd with molar ratio (1 : 1) showed the highest activity.
A similar Au–Pd ratio was reported for the same reaction by Fang et al. [31], who synthesized
Au–Pd bimetallic NPs deposited on ultrathin graphitic carbon nitride nanosheets. However,
recent work by Srisombat et al. [34] has shown a different optimal atomic ratio for Au–Pd
bimetallic catalysts, where the highest catalytic activity was obtained with Au:Pd atomic ratio 1 : 4
[35]. They concluded that the catalytic activity strongly depends not only on chemical constituents
of the catalyst, but also on the size of the Au–Pd NPs.

The sol-immobilization method using PVA and NaBH4 as stabilizing and reducing agents,
respectively, is an effective method to prepare small metal NPs with a narrow particle size
distribution, compared with conventional techniques such as wet impregnation and deposition–
precipitation. Rogers et al. [12] prepared monometallic 1 wt% Pd/TiO2 by the sol-immobilization
method using PVA stabilizer and NaBH4 reductant for the hydrogenation of 4-NP to 4-AP and







UV–Vis spectrometry and the absorbance at 400 nm was recorded and then used as an indication
of the decay in 4-NP concentration as a function of reaction time (up to 30 min). Apparent rate
constants (Kapp, min−1) were calculated for each catalyst under investigation and used for the
activity comparisons.

3. Results and discussions

(a) X-ray diffraction
Figure 1 shows the XRD patterns for Au/TiO2, Pd/TiO2 and AuxPd1−x/TiO2 catalysts as well
as for bare TiO2 support. All diffraction patterns match well with the diffraction pattern for
commercial TiO2 (P25), which is a mixture of anatase (80–85%) and rutile (20–15%) phases. The
diffraction peaks at 27.5°, 36.2°, 54.5° and 69.2° correspond to the presence of the rutile phase
(JCPDS No. 21-1276) [37], whereas diffraction peaks at 2θ = 25.3°, 48.0°, 53.8° and 62.6° correspond
to the presence of the anatase phase (JCPDS No. 21-1272) [37]. No evidence for any other phases
upon the inclusion of Au and/or Pd NPs are presented. The diffraction peaks for any metallic
Au phases would be expected at 2θ = 38.2°, 44.4°, 64.6° and 77.5° for (111), (200), (220) and (311)
planes, respectively (JCPDS No. 04–0784) [38]. Also, diffraction peaks of any metallic Pd phases
would be expected to be at 2θ = 40.4°, 46.9°and 68.6°, which correspond to the Pd (111), (200)
and (220) phases, respectively, (JCPDS No. 01-087-0645) [38]. The absence of any diffraction peaks
for metallic Au and/or Pd phases suggests the confinement of these NPs in small crystallite sizes
which is below the detection limit of XRD instrument (less than 5 nm). These findings are expected
for the sol-immobilization route used for preparing very small supported NPs [12,39], which will
be confirmed later by TEM results. Moreover, the high metal dispersion on the TiO2 support could
also contribute to this observation, which is consistent with the data obtained by SEM-EDS (see
electronic supplementary material, figure S3).

(b) TEM analysis
TEM images presented in figure 2 show the distribution of Au and Pd NPs immobilized on
TiO2 exhibiting relatively good dispersion and narrow particle size range. No obvious sign of
serious aggregation could be seen over any catalysts. Moreover, the shape of the particles is
almost spherical to hemispherical for all catalysts. The inset graphs in figure 2 show the particle
size distributions in the range of 1–6 nm, for monometallic Au/TiO2 and Pd/TiO2 catalysts. The
mean particle size in diameter of the supported bimetallic AuxPd1−x NP samples are between
2.07 (±0.61 s.d.) and 3.20 (±1.10 s.d.) nm according to their projected surface areas. However,
Au0.5Pd0.5/TiO2 catalyst presents the narrowest particle size range (1–4 nm) and the smallest
mean particle size (approx. 2 nm in diameter) with a uniform spherical shape compared with
other Au and Pd combinations. These results are in good agreement with a recent study by
Cattaneo et al. [39], who synthesized Au0.5Pd0.5/TiO2 with small mean particle size (2.1 nm) by
using the sol-immobilization method. The mean particle size of all catalysts is summarized in
table 2. As we can observe from table 2, atomic ratio of Au : Pd = 1 : 1 is the optimum for obtaining
small mean metal particle size.

(c) X-ray photoelectron spectroscopy analysis
XPS analysis is employed to look further insight metal speciation, oxidation states and
surface compositions of supported AuxPd1−x NPs. The XPS profile of TiO2 support (electronic
supplementary material, figure S4) is also presented and results show that deposition of metal
NPs did not alter Ti4+ oxidation state of the support, which are in agreement with previous
reported data [40]. XPS core level spectra of Au(4f) and Pd(3d) are presented in figure 3a and
figure 3b, respectively. Their corresponding refined data are summarized in table 2. Figure 3a
shows the XPS core level spectra of all catalysts at Au(4f) region, which can be identified by the
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Figure 3. XPS core level spectra at (a) Au(4f) and (b) Pd(3d) regions obtained for monometallic Au/TiO2 and Pd/TiO2, catalysts
together with different bimetallic AuxPd1−x/TiO2 catalysts. (Online version in colour.)
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Figure 4. Representative example for XPS core level spectra fitting of Pd(3d) for Pd/TiO2 catalyst. (Online version in colour.)

Table 2. BE (eV) and their shifts (in parentheses) for Au 4f7/2 and Pd 3d5/2 regions obtained for mono- and bimetallic Au and
Pd catalysts. Mean particle sizes (nm) with standard deviation (in parentheses) extracted from TEM analysis are also presented.

BE in eV (chemical shifts)

catalyst Au4f7/2 Pd3d5/2 mean size in nm (s.d.) PdII/Pd0 Fractions

Au/TiO2 83.5 (0.5) — 2.60 (0.88) —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Au0.87Pd0.13/TiO2 83.37 (0.63) 334.56 (0.84) 2.57 (0.71) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Au0.75Pd0.25/TiO2 83.35 (0.65) 334.64 (0.76) 3.20 (1.10) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Au0.5Pd0.5/TiO2 83.31 (0.69) 334.69 (0.71) 2.07 (0.61) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Au0.25Pd0.75/TiO2 83.22 (0.78) 334.77 (0.63) 2.85 (0.72) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Au0.13Pd0.87/TiO2 83.1 (0.9) 334.89 (0.51) 2.64 (0.82) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pd/TiO2 — 334.99 (0.41) 2.62 (0.92) 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stirring rate, were first optimized over monometallic 1 wt% Au/TiO2 catalyst (see electronic
supplementary material for more details). Accordingly, the following reaction conditions were
chosen after optimization and used throughout this work for evaluating the activity of the
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Figure 5. Typical activity testing: (a) UV–Vis spectrum with no catalyst before and after addition of NaBH4, (b) 4-NP colour
changes before and after reduction and (c) UV–Vis spectra during the reduction of 4-NP by NaBH4 and formation of 4-AP over
1 wt% Au/TiO2 catalyst. (Online version in colour.)

synthesized catalysts; 4-NP/metal molar ratio = 13, NaBH4/4-NP molar ratio = 30, T = 30°C and
stirring rate = 1000 r.p.m.

Figure 5 shows a typical activity measurement over 1 wt% Au/TiO2 catalyst. Blank 4-NP
solution showed absorption band at approximately 317 nm. After the addition of fresh solution
of NaBH4, the absorption peak was shifted to 400 nm (figure 5a) due to the formation of
nitrophenolate anion accompanied by a colour change from light to dark yellow (figure 5b).
This peak was remained unaltered over time (examined for approx. 24 h), which suggests that
the reaction does not proceed without a catalyst [52–54]. Subsequently, the reduction of 4-NP
by NaBH4 over the prepared catalysts (1 wt% Au/TiO2 as an example) was then monitored by
measuring the changes in the absorbance at 400 nm as a function of time and emerging of a new
peak at approximately 300 nm for the product formation, 4-AP ( figure 5c).

(i) Kinetic studies

In these experiments, the concentration of NaBH4 is significant much higher than that of 4-NP
(4-NP/NaBH4 = 30) so it could be considered that the reaction rate could be nearly independent
of the NaBH4 concentration. Thus, a pseudo-first order reaction kinetics could be applied to
evaluate the apparent rate constant (Kapp) for the hydrogenation of 4-NP [31,55]. For the reduction
of 4-NP, the ratio of its concentration at time = t (Ct) to the initial value at t = 0 (C0) could be
directly calculated by the ratio of their corresponding absorbance: At/A0 (where A = absorbance
at 400 nm). So far the kinetic equation for the reduction of 4-NP could then be written as

dCt

dt
= −KappCt or ln

(
Ct

C0

)
= ln

(
At

A0

)
= −Kappt.

The plot between ln(At/A0) as y-axis and time as x-axis can provide us the value of Kapp, as
shown in figure 6a over 1 wt% Au/TiO2 catalyst as a representative example.

The catalytic performance of all catalysts was evaluated for the reduction of 4-NP by NaBH4
under the same optimized mild reaction conditions and the corresponding Kapp values were
obtained and used for activity comparisons in agreement with the experimental procedure
reported in literature [12]. For simplicity, the Kapp values (in min−1) were plotted as a function of
Pd mole fractions. As a result, a volcano like-shape curve is obtained, as shown in figure 6b.

As can be seen, the activity increased significantly from 0.14 (for Au/TiO2) to 0.22 min−1 when
the Pd content was increased from 0 to 0.13 (Au0.87Pd0.13/TiO2 catalyst). Further increase of Pd
content was accompanied with a significant increase in the Kapp until reached a maximum value
of 0.38 min−1 with Au:Pd atomic ratio of 1 : 1 (Au0.5Pd0.5/TiO2 catalyst). Further increase of Pd





Furthermore, XPS analysis on the used catalyst revealed that the surface atomic ratio of both Au
and Pd NPs are in metallic state (Au:Pd = 53:47) with no significant changes when compared to
the fresh catalysts (Au:Pd = 46:54). This suggests the high stability of the prepared NPs using the
sol-immobilization route.

4. Conclusion
The sol-immobilization method was successfully used to immobilize a series of 1 wt% of
AuxPd1−x NPs (where x = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) onto TiO2, (P25-commercial support),
as the chosen support. The catalytic performance of the prepared supported NPs in the catalytic
reduction of 4-NP to 4-AP under mild reaction conditions was evaluated focusing on the
structural optimization of Au–Pd supported bimetallic NPs by varying Au:Pd atomic ratio.
The catalytic results showed that monometallic Pd NPs are more active than Au under the
same reaction conditions (Kapp = 0.2 and 0.14 min−1 for monometallic Pd and Au, respectively).
However, the inclusion of Pd atoms into Au NPs and thus formation of Au–Pd alloy NPs
significantly enhanced the catalytic performance compared with the monometallic Au and
Pd catalysts, with the highest activity observed for the synthesized Au0.5Pd0.5/TiO2 catalyst
(Kapp = 0.38 min−1). TEM and STEM results clearly showed the formation of random alloy
Au–Pd NPs in all the bimetallic catalysts, with the smallest narrowest size ranges observed
for Au0.5Pd0.5/TiO2 catalyst, which might be responsible for the highest activity. These results
suggest that incorporation of small additives of Au atoms to Pd atoms can significantly enhance
the catalytic activity and stability when compared with the monometallic counterparts, in the case
of the hydrogenation of 4-NP to 4-AP.
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