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Spectra 1. 1H NMR spectrum of higginsianin D (1) (CDCl3, 400 MHz).

Spectra 2. 13C NMR spectrum of higginsianin D (1) (CDCl3, 100 MHz).
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Spectra 3. HSQC spectrum of higginsianin D (1) (CDCl3, 400/100 MHz).

Spectra 4. HMBC spectrum of higginsianin D (1) (CDCl3, 400/100 MHz).



5

Spectra 5. COSY spectrum of higginsianin D (1) (CDCl3, 400 MHz).

Spectra 6. NOESY spectrum of higginsianin D (1) (CDCl3, 400 MHz).
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Spectra 7. HR ESIMS of higginsianin D (1), recorded in positive modality.

Spectra 8. 1H NMR spectrum of higginsianin E (2) (CDCl3, 400 MHz).
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Spectra 9. 13C NMR spectrum of higginsianin E (2) (CDCl3, 100 MHz).

Spectra 10. HSQC spectrum of higginsianin E (2) (CDCl3, 400/100 MHz).
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Spectra 11. HMBC spectrum of higginsianin E (2) (CDCl3, 400/100 MHz).

Spectra 12. COSY spectrum of higginsianin E (2) (CDCl3, 400 MHz).
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Spectra 13. NOESY spectrum of higginsianin E (2) (CDCl3, 400 MHz).

Spectra 14. HR ESIMS of higginsianin E (2), recorded in positive modality.
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Table S1. The first nine low-energy structures of the truncated model of higginsianin D 

(4R,5R,8R,9S,10R,21S)-1 with energies and populations estimated at ωB97X-D/def2-TZVP/PCM 

level.

Abs. min. (24.5%) +0.29 kcal(mol (15.0%) +0.45 kcal/mol (11.5%)

+0.63 kcal/mol (8.6%) +0.76 kcal/mol (6.8%) +0.79 kcal/mol (6.5%)

+0.90 kcal/mol (5.5%) +0.90 kcal/mol (5.5%) +1.11 kcal/mol (3.8%)
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Table S2. The first nine low-energy structures of the truncated model of higginsianin E 

(4R,5R,8R,9S,10R,21R)-2 with energies and populations estimated at ωB97X-D/def2-TZVP/PCM 

level.

Abs. min. (19.9%) +0.11 kcal(mol (16.6%) +0.40 kcal/mol (10.2%)

+0.40 kcal/mol (10.2%) +0.43 kcal/mol (9.6%) +0.65 kcal/mol (6.7%)

+0.76 kcal/mol (5.5%) +0.94 kcal/mol (4.1%) +0.95 kcal/mol (4.0%)
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Figure S1. Comparison between experimental 13C chemical shifts of higginsianin D and E 

measured in CDCl3 and the shifts calculated for the truncated models of (4R,5R,8R,9S,10R,21S)-1 

and (4R,5R,8R,9S,10R,21R)-2 using the procedure described in the main text with final ωB97X-

V/6-311+G(2df,2p)//ωB97X-D/6-31G(d) energy estimation and geometry optimization and 

ωB97X-D/6-31G(d) shielding calculations. The comparison is restricted to the dihydrofuran-2-one 

moiety (i.e. carbon atoms from C-20 to C-27, plus the ester group).


