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A B S T R A C T

We present an approach to couple the resolution of Combinatorial Optimization problems with methods from
Machine Learning. Specifically, our study is framed in the context where a reference discrete optimization
problem is given and there exist data for many variations of such reference problem (historical or simulated)
along with their optimal solution. Those variations can be originated by disruption but this is not necessarily the
case. We study how one can exploit these to make predictions about an unseen new variation of the reference
instance.

The methodology is composed by two steps. We demonstrate how a classifier can be built from these data to
determine whether the solution to the reference problem still applies to a perturbed instance. In case the reference
solution is only partially applicable, we build a regressor indicating the magnitude of the expected change, and
conversely how much of it can be kept for the perturbed instance. This insight, derived from a priori information,
is expressed via an additional constraint in the original mathematical programming formulation.

We present the methodology through an application to the classical facility location problem and we provide an
empirical evaluation and discuss the benefits, drawbacks and perspectives of such an approach.

Although it cannot be used in a black-box manner, i.e., it has to be adapted to the specific application at hand,
we believe that the approach developed here is general and explores a new perspective on the exploitation of past
experience in Combinatorial Optimization.
1. Introduction

Solving Combinatorial Optimization problems can be highly chal-
lenging. Many problems have been shown to be computationally hard to
solve (Garey and Johnson, 1990), that is, no polynomial-time algorithm
exists. Despite this intrinsic complexity, the state-of-the-art modeling and
solving solutions can handle real-world instances via exact methods,
heuristics or a mix of the two.

Our rationale goes as follows: given a combinatorial problem, we as-
sume the existence of a reference problem instance Pref , derived from the
description of a system in its nominal state. This reference can bemodeled
via Mixed Integer Programming (MIP) and solved to its optimum x*ref via
state-of-the-art solvers based on branch-and-bound (BB) methods like
CPLEX (IBM, 2018). If a modification of the reference parameters occurs,
the problemneeds tobe solvedagain.Weoperateas ifwehad to respond to
this parameter perturbation (also referred to as disruption) under a tight
optimization time budget, aiming at accelerating the descent (for a
di), luca.mossina@isae-supaero.fr
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minimization problem) towards the optimum. Given the modifications
that have occurred in the past or that can be simulated a priori, one can
build adataset of resolutions. Through the exampleof the Facility Location
Problem, we study how one can extract information from this dataset to
facilitate the resolution of future perturbed instances. We cast this prob-
lem as a Supervised Learning problem to predict whether a modification
will affect and to what extent the reference optimal solution. According to
this prediction, additional constraints are added to theMIP formulation of
the perturbed instance. In order to evaluate the approach, the two for-
mulations are fed to the solver and the performances are compared.
Although a few steps of its implementation are specialized to the Facility
Location problem, we believe our framework provides a general view-
point to the use of data collected from the resolution of variations of the
same problem. We find convenient and effective to present the method-
ology through the well-known and flexible Facility Location perspective
(for example, to exploit clean data generation) but our aim is not to pro-
vide a standalone heuristic algorithm for the problem.
(L. Mossina), emmanuel.rachelson@isae-supaero.fr (E. Rachelson).
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1 Even the uncapacitated version of the FLP, for instance, has been proven to
be NP-hard (Cornu�ejols et al., 1983).
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Section 2 reviews the related literature on applyingMachine Learning
to Combinatorial Optimization problems. Section 3 provides a descrip-
tion of the Facility Location Problem and Section 4 introduces how the
prediction problem can be formulated mathematically and linked to
existing Machine Learning approaches. Experiments and numerical re-
sults are presented and discussed in Section 5. Section 6 discusses the
advantages and drawbacks of the proposed method and presents future
research directions.

2. Machine Learning for Combinatorial Optimization

The remarkable results achieved in recent years by Machine Learning
(ML), for example in the field of image recognition (Krizhevsky et al.,
2012) or Reinforcement Learning (Mnih et al., 2015), sparked a lot of
interest in the Operations Research community. Some results have
emerged in applications such as guiding the branching process in
branch-and-bound optimization algorithms, in the form of node explo-
ration ordering (He et al., 2014) and approximating performant
branching rules (Alvarez et al., 2017; Khalil et al., 2016; Lodi and Zar-
pellon, 2017). In Di Liberto et al. (2016) one can find algorithmic ideas
on how to handle the many existing heuristics already developed for
branch-and-bound methods.

The traveling salesman problem has been addressed via an ad-hoc
neural network architecture in a Reinforcement Learning context (Bello
et al., 2017; Khalil et al., 2017; Deudon et al., 2018), aiming at learning to
build a solution end to end.

Another field of application is the interaction between existing opti-
mization solvers and a priori knowledge on the problem. For instance,
Kruber et al. (2017) find an approach to automatically handle MIP
problem decompositions, by detecting if and what reformulation to apply
within a dedicated software. On the same topic, Basso et al. (2018) bring
evidence to why such an approach can be carried out, showing empiri-
cally that the role of an expert needed when using decomposition
methods can be, at least in part, automated via learning algorithms. In
Bonami et al. (2018), the authors present a method to select the best
resolution method for a Mixed Integer Quadratic Programming problem
from the different algorithms offered within the CPLEX framework.

Machine Learning has proven useful in producing a description of the
optimal solution of a yet unseen instance. Fischetti and Fraccaro (2019)
describe a real-world application with the problem of a wind turbine park
layout. Minimizing the complex turbulence induced by the positioning of
wind turbines generates a series of difficult combinatorial problems.
Where different configurations would need to be evaluated at a consid-
erable computational cost, the authors approximate the solution values to
these optimizations via ML, thanks to a dataset built a priori. On a similar
line lies the work of Larsen et al. (2018). When the problem of choosing
the optimal load planning for containers on freight trains cannot be
solved online because of time constraints and insufficient information
(tactical level), a set of offline cases can be collected and used to get a
description of the solution of a new instance, at an aggregate level. Such
description provides meaningful insights to decision makers in a
real-time context.

Strictly connected with our work, Xavier et al. (2019) consider a
number of ML techniques to extract information from previously solved
instances of Unit Commitment problems and leverage such pieces of in-
formation to improve the MIP performance when solving similar in-
stances again and again.

The interested reader is referred to Bengio et al. (2018) for a recent
survey on the subject.

We end the section by pointing out that our approach is inherently
apart of the line of work of Bello et al. (2017) and also slightly different
from Xavier et al. (2019). On the one side, we assume the existence of a
reference instance and we are using ML (through associated data) to
speed up the resolution of its variations occurred because of parameter
disruptions. In other words, we are not developing an end-to-end heu-
ristic to be applied to general instances of a Combinatorial Optimization
2

model, which is what Bello et al. (2017) do for the TSP. On the other side,
although Xavier et al. (2019) is also leveraging a group of solutions to
find common ingredients that could speed up resolution of a new one,
again they do not assume a reference instance as well as disruptions in its
parameters.

3. Capacitated facility location problems

Our application of choice will be that of the Single-Source Capaci-
tated Facility Location Problem (SSCFLP). Given a group of customers
and a list of potential facilities that can serve them, one must open a
certain number of facilities and assign a unique facility to each of the
customers. The goal of the problem is to satisfy the demand of the cus-
tomers while minimizing the associated operational and start-up costs.
The facilities are constrained in capacity, that is, the quantity of total
service each can provide is limited. When solving this problem one de-
termines which facilities must be opened and which customers they will
serve.

3.1. Mathematical programming formulation

The SSCFLP can be written as a Binary Integer Program, with decision
variables yj; xij 2 f0;1g, indicating respectively whether facility j is
activated (also referred to as open) and whether customer i is served by j.

minimize
x;y

X
i2I

X
j2J

cijxij þ
X
j2J

fjyj (1)

subject to
X
i2I

dixij � sjyj 8j 2 J (2)

X
j2J

xij ¼ 1 8i 2 I (3)

xij 2f0; 1g; yj 2f0; 1g 8i2 I;8j 2 J (4)

I ¼f1; 2;…;NCg; J ¼f1; 2;…;NFg; (5)

where i 2 I are the customers and j 2 J the available facilities; cij � 0 is
the cost of serving customer i from j; fj � 0 is the fixed cost for opening
facility j; di � 0 is the demand of customer i; sj � 0 is the capacity of
facility j; NF and NC are the number of facilities and of customers,
respectively.

The objective function (1) quantifies the total cost of a given
assignment, composed of the fixed start-up costs

P
j2J

fjyj and operational

costs
P
i2I

P
j2J

cijxij. Constraints (2) ensure that the total demand of the cus-

tomers assigned to j does not exceed its capacity sj. Constraints (3) ensure
that each customer is served by exactly one facility. For convenience, we
write an instance as P ¼ ðc; f ;d; sÞ.

In the various forms of the Facility Location Problem (FLP), the binary
variables associated with facility activation make the problem compu-
tationally challenging.1 This is the reason why we specialize our meth-
odology to learn (about) them, see Section 4. For a comprehensive
treatment on exact formulations of the FLP, we refer the reader to the
work of Klose and Drexl (2005). Beyond mathematical programming and
exact methods, heuristics for the FLP have received a fair amount of
attention (Cornu�ejols et al., 1983; Guastaroba and Speranza, 2012,
2014).
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3.2. Perturbations in a reference instance

We assume the existence of a reference instance Pref ¼ ðcref ; f ref ; dref ;
sref Þ where the parameters are considered to be in their nominal state.
This problem has fx*ref ; y*ref g as its reference solution. In case a disruption
in the system occurs, for example an anomaly in the capacity, we wish to
learn whether the reference solution, or part of it, is still applicable
without running the full optimization. To that end, we wish to predict
what parts of the solution need to be changed by providing hints to the
solver, via an additional constraint. We shall write a perturbed instance
P

0 ¼ ðc0 ; f 0
; d

0
; s

0 Þ, which we see as a variation P
0 ¼ Pref þ ΔP, where a

disruption ΔP affected one or more of Pref ’s parameters. In practice, one
would proceed as in the following example. The given (simple) Pref with
capacities sref ¼ ð5000; 5000; 5000Þ is affected by a disruption and the
derived P0 has capacities s0 ¼ ð5000;5088;4304Þ. The ML algorithm will
take ΔP ¼ f0;88;�696g as input and predict how fx0*; y0*g could differ
from fx*ref ;y*ref g, before running the optimization for P0 (see Section 4). In
our case, the hint to the solver will specify how many (if any at all) of the
facilities active in Pref will be still active, without specifying which of the
three.
3.3. FLP and framework generality

The FLP basic structure can apply to different domains. Consider, for
instance, the airport system of a region. If a runway at a major airport has
problems or needs maintenance, one could think of this as a disruption.
One could then want to learn and predict how to react to the reduction of
the capacity of that runway, how much of the traffic would need to be
delayed, rescheduled or rerouted or, in general, how to be guided to
manage the disruption.

Overall, we could say that, on the one hand, our framework is more
suitable for operational problems than for strategic or tactical ones, to
which the FLP class mostly belongs. On the other hand, FLP features,
practically, a two-level structure, where deciding on a specific subset of
the variables (i.e., the location ones in FLP) heavily simplifies the prob-
lem. Thus, learning on the variations of this special subset over a refer-
ence solution is especially relevant and our framework can be designed
accordingly.

Indeed, this is the main design step that has to be considered to apply
the proposed framework to a Combinatorial Optimization problem:
deciding on which variables it is most relevant to learn so as to be able to
constrain the nominal formulation accordingly (see constraint (6) in the
next section).

4. Learning constraints

In this Section, we formalize the search for a constraint that will be
used to accelerate the resolution of SSCFLP instances facing disruptions.
We formulate this as a statistical learning problem and describe how we
couple it with MIP resolution.
4.1. Learning to bound the changes to a reference solution

Given the information gained from past resolutions or simulated data,
we investigate the possibility of predicting the number of facilities we
expect to change. We want to predict that “only a proportion ð1 � γÞ, say
0.15, of the facilities needs replanning”, and impose that as a constraint.
Indeed, it is well known in the case of MIPs with binary variables
(Fischetti and Lodi, 2003) that it is easy to express the neighborhood of a
feasible solution by a linear constraint and the resulting MIP is generally
way easier to solve than the original problem. In addition, for FLP it is
also well known that the critical choice is associated with the facilities to
open while the assignment of clients to facilities is easier to deal with.

Then, the problem boils down to predicting the proportion of facilities
3

opened in y*ref to be kept open in y0*, the optimal solution of the perturbed

instance P
0
. This estimation is a scalar value bγ determined via a function

ΓðΔPÞ, where Γ : R → ½0;1�. The function depends on the disruption of
the data of the original instance. Given the fðΔPk; γkÞg1�k�K data from the
K past resolutions, this is a regression problem, which we can tackle with
any Statistical Learning method (Hastie et al., 2009).

The drawback of such an approach is the potential introduction of
bias in the solution of P0 if the true optimum of P0 is far from fx*ref ; y*ref g
and the ML fails to detect it or if it cuts the optimum from the feasible
domain. In fact, in case the parameters ðc0 ; f 0

; d
0
; s

0 Þ generating P0
are very

different from Pref , a good model would impose no additional constraint,
thus falling back to the full problem.

The information on bγ ¼ ΓðΔPÞ can be modeled through the linear
constraint (6), thus yielding the new MIP

minimize
x;y

X
i2I

X
j2J

cijxij þ
X
j2J

fjyj

subject to all previous constraints andX
r2Rref

yr � bγ Nref ;

(6)

where Rref ¼ fj2 J
���y*ref ;j ¼ 1g is the set of indices of the facilities opened

in the reference solution, bγ 2 ½0;1� is the parameter predicted via ML and
Nref ¼

��Rref
�� is the number of facilities activated in the reference problem.

We do not attempt to identify directly which of the facilities need to
change or stay as in fx*ref ; y*ref g, but rather to restrict the number of fa-
cilities that can be changed. If bγ � 0, the disruption data conveys no
information as to the new optimum and all the facility allocations should
be left to the solver. In that case, it is likely that the variation on Pref is so
strong that prior information is of no help and we need to solve the
perturbed instance as a full problem in its original formulation.
Conversely, if bγ � 1, we conclude that all of the reference facilities are to
be left activated, without excluding further facilities from being acti-
vated.

4.2. Structuring the prediction problem

The overall problem of predicting bγ ¼ ΓðΔPÞ is a regression problem.
Previously solved instances Pk provide values ðΔPk; γkÞ to assemble a
training set. Then, most ML methods will search for Γ by minimizing a
loss function defined as an expected value of individual losses over the
training set, such as the least squares. Such methods can thus be sensitive
to the training samples’ distribution and might overfit to the majority
value. In the specific case of predicting the proportion of facilities to keep
open, the distribution of observed values for samples ðΔPk; γkÞ is strongly
affected by the fact that in many cases, all the facilities in the reference
solution should remain open (for details, see Section 5.1). To compensate
for this imbalance, our predictor’s architecture features two levels.

First, we fit a binary classifier to indicate whether the open facilities
in fx*ref ; y*ref g should all be kept open. If this is the case, then bγ :¼ 1
without any further computation because we assume that only the ca-
pacities have been perturbed/disrupted. Second, if we cannot assert that
all the reference active facilities need to be left active, we call a specific
regression function. This ΓðΔPÞ function is trained on all the data points
except those for which γk ¼ 1. Then, given a perturbed problem P0 , we
predict how much of the reference solution has to be changed, adding
that as constraint (6) to the original problem. Fig. 1 summarizes the bγ
estimation process and the resolution of a perturbed instance P

0
.

5. Experimental evaluation

Given the reference instance Pref and an instance P
0
derived by per-

turbing Pref , our aim is to provide a good solution to P
0
within a small

time budget.



Fig. 1. Learning to bound the SSCFLP.
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Our Pref is taken from the SSCFLP instances of Guastaroba and Sper-
anza (2014).2 We test our method on three different reference cases,
respectively capa1, capb1 and capc1. For conciseness, we refer to these as
A;B;C, and their corresponding MIP models as PAref ;P

B
ref ;P

C
ref . In each case,

we have NF ¼ 100 facilities available that share the same capacity sA ¼
sA1 ¼ sA2 ¼ … ¼ sA100.

5.1. Generation of training data

For each of the three instances, we produce three datasets of sizes
NA ¼ NB ¼ NC ¼ 10000. Given Pref , we generate our training data by
perturbing the capacities of the facilities. We randomly perturb between
5% and 50% of the facilities as follows.

1. Pick uniformly at random between 5% and 50% of the NF ¼ 100
facilities.

2. For each facility j picked at Step 5.1, apply a Gaussian noise to its
capacity: sj ← sj þ N ð0;σ2Þ, with σ ¼ 0:2� sj.

3. All the remaining data is left unchanged. This yields ΔPk.
4. Solve the perturbed instance Pk ¼ Pref þ ΔPk with a MIP solver and

get the number Yk of facilities that were in x*ref and are also in x*k .
5. Add the new point ðΔPk; γk ¼ Yk =NFÞ to the dataset.

After generating the data, we can observe the distribution of Y, the
number of original open facilities still open in the optimal solution of the
randomized instances. At their nominal values, the optimal solutions for
A, B and C have respectively 7, 11 and 11 facilities open. For instance,
given the k-th point in our generated data from case A, if Yk ¼ 4, this
means that after the perturbation of the capacities, out of the seven fa-
cilities open in the reference optimal solution, four were included in the
optimal solution of the derived problem Pk.

Fig. 2 presents three different scenarios. With instance A we see that
on average less than half of the 7 original facilities are kept open, that is,
the perturbations affect the new optimal solutions. In the case of B, for
most of the data points the original reference solution is still optimal after
the perturbations, as seen in the right-most bar of Fig. 2b. Case C is in-
termediate, with at least eight facilities out of eleven still open after the
variations of the capacities.

5.2. Learning the prediction model

As mentioned in Section 4.2, we need a binary classifier and a re-
gressor to account for sample distribution imbalance. The number of data
for binary classification depends on the shape of the generated data, that
is, on how many extreme cases we observe (rightmost column in histo-
grams of Fig. 2).

We split the training data into classification and regression data as
follows. In case A, we have 717 data points of value 7, corresponding to
the observations where all the facilities open in the reference solution are
to be left open in the perturbed instances. Thus, we set these 717 points
aside and randomly sampled an equal amount of points among the other
2 Data available at http://or-brescia.unibs.it/instances/instances_sscflp.
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points, yielding a learning data set of NClassificationA ¼ 1434. The
remaining 9283 points form the regression learning data.

This process was repeated for all the three cases, yielding the distri-
butions reported in Table 1.

In accordance to standard practice in ML (Hastie et al., 2009), at
learning time the data set was randomly split into a training and a test
partition, namely 2/3 training and 1/3 test. The predictive models were
fit on the training data but evaluated on the test data.

5.2.1. Comparison of ML algorithms: classification
For the binary classification task, we tested a set of binary classifiers

among which Extremely Randomized Trees (Extra Trees) (Geurts et al.,
2006), Neural Network classifier (Goodfellow et al., 2016), Logistic
Regression classification and Naive Bayes classification (Hastie et al.,
2009).

As it can be seen across Table 2, Extra Trees emerged as the best
performing in terms of accuracy and false positives errors on the test
data, that is, over the total of the prediction, howmany were predicted as
false positives. Here, false positives are cases where the reference solu-
tion’s open facilities should not be all kept open in the perturbed instance
but the classifier prescribes otherwise. This could introduce bias, making
this metric important for our task.

5.2.2. Comparison of ML algorithms: regression
For the regression task we selected Extremely Randomized Trees out

of a pool of models comprising Multiple Linear Regression, Extremely
Randomized Trees and a Multi-layer Perceptron artificial Neural
Network.

Table 3 reports the Mean Squared Error (MSE) computed on the test
partition. Extra Trees yielded the best performance of the tested methods.
While Neural Networks have recently been the object of intense research
and remarkable results, we think its poorer results can be explained by
the limited amount of training data (N � 10000) and the highly
nonlinear relations between features and response variable, for which
more data could have been needed.

Fig. 3a, c and 3e, plot the predictions of Y (number of facilities kept
open) versus the true values on the test data. The ideal case of perfect
predictions bY ¼ Y , is denoted by the red line. The green line is a simple

linear regression of the form bY ¼ bmY þ bb that graphically renders the
actual relation between Y and bY . Finally, Fig. 3b, d and 3f plot the dis-
tribution (as histograms) of the frequency of the absolute errors on the
number of facilities kept open after perturbation. Such an error is highly
distributed around 0, although some peaks occur with the predicted
value slightly higher than the observed one.

We remark that the data are highly concentrated around some central
values. The tails of the distribution are scarcely represented in our
training data, and the learning function cannot generalize well, as one
can see more prominently with instance A, where most of the data take
values 2, 3 or 4.

5.2.3. Sensitivity analysis
A natural question for ML algorithms is the sensitivity of the learning

results to the amount of data. To assess that, for each of the three reference
instances, we repeated ten times the following procedure: we set apart 500
data points to be used as test data, that is, the data on which is tested the
performance of the trainedmodel; then, we trained four times the learning
model (Extra Trees in both classification and regression) on, respectively, a
subsample of 500, 1000, 2000 and 5000 data points. Due to the lack of
data points (see Table 1), for the classification task in reference instance A,
we run the same test as above but on a smaller scale: 100 test data points,
and 100, 200 and 500. The four predictionmodels were tested on the same
test data, to avoid introducing noise in this phase. The results of this
experiment are reported in Fig. 4, where Fig. 4a, c, and 4e (resp. 4b, 4d and
4f) concern the classification (resp. regression) task and the 10 lines
correspond to the 10 different tests.

http://or-brescia.unibs.it/instances/instances_sscflp


Fig. 2. Number of facilities kept after reoptimization.

Table 1
Training Data: repartition between binary classification and regression.

Reference Classification Regression Total

A 1434 9283 10000
B 8056 5965 10000
C 7686 6179 10000

Table 2
Comparison of binary classifiers.

Reference Model Accuracy False Positive Errors

A Extra Trees 0.756 0.106
Neural Net 0.717 0.160
Logistic 0.648 0.189
Naive Bayes 0.641 0.191

B Extra Trees 0.840 0.049
Neural Net 0.857 0.083
Naive Bayes 0.782 0.100
Logistic 0.629 0.192

C Extra Trees 0.864 0.033
Neural Net 0.858 0.085
Naive Bayes 0.776 0.104
Logistic 0.616 0.199

Table 3
Comparison of regression models by Mean Squared Error.

Reference Linear Regression Extra Trees Neural Net

A 0.998 0.883 0.975
B 2.087 1.780 2.099
C 1.114 0.750 1.097

A. Lodi et al. EURO Journal on Transportation and Logistics 9 (2020) 100023
The analysis of the results in Fig. 4 does not provide surprises: both
the accuracy of the classification (the higher the better) and the MSE of
5

the regression (the smaller the better) improve if more data are used for
training. A certain variability can be observed among the 10 lines, which
is also expected and it seems that the best results obtained with 5000
points (500 for the classification task for reference instance A) are
comparable with those in Tables 2 and 3 that are obtained with roughly
double of the data points. In other words, it would be relatively safe to
halve the number of points for learning.
5.3. Optimization results

We report the performance of our method on the three references A;B
and C, generating three batches DA;DB and DC of 50 new instances, un-
seen during training. We apply the same procedure followed to generate
the learning data (Section 5.1).

To measure the effect of the ML bound (see constraint (6)) with
respect to resolution time, each instance in DA (but also DB and DC) is
optimized twice (with and without bound) with time limits tlim 2
f5;10; 30; 60; 120g seconds. At the end of the time-limited run, we re-
cord the objective value and the effective solving time (some instances
are optimized before the limit is reached).

Our ML constraint (6) cannot make the solution infeasible, as the total
number of active facilities is not bounded, but it could cut off the optimal
solution. For instance, one could predict all of the reference facilities to
be open (bγ ¼ 1) while none of them should be. We run the optimization
with 3600 seconds of time limit, to measure the difference in objective
values after a long run, with and without the additional constraint.

5.3.1. Experimental setup
For each iteration of our experiments, we proceed as follows. A per-

turbed instance is generated as detailed in Section 5.1. The instance is
then solved once for each time limit without the additional constraint.
The objectives and effective times are recorded. The ML algorithm is run
(see Section 4) and constraint (6) is introduced in the model’s formula-
tion. The constrained model is then solved once for each time limit. To



Fig. 3. References A (a,b), B (c,d) and C (e,f): Learning, regression.
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verify that the optimal solution was preserved by the introduced bound
constraint, we run both models with and without constraint (6) for a full
hour to check if any remarkable deviation has been caused by the ML.

When using a highly-optimizedMIP solver like CPLEX, it is sometimes
hard to evaluate the impact of model modifications (imposed by the user)
because the complex algorithmic components within the solver might
mitigate the effect of those modifications. For this reason, it is common
practice to deactivate, for testing purposes, some of those CPLEX algo-
rithmic ingredients.

In our special case, we are interested in evaluating the effect of the
ML-predicted constraint (6) as a way to fast dive toward good solutions of
a modified SSCFLP instance with respect to the solution of a reference
one. To achieve this goal, we have found useful to run CPLEX without the
presolve feature and we first report the results of this configuration. We
nonetheless performed all experiments and report the results with CPLEX
default, i.e., with presolve activated. We show that the overall message
provided by the experiments is in both cases very similar.

Finally, given the interest, especially in the academic community, of
using non-commercial MIP solvers, we report in Appendix A the results
obtained by replacing CPLEX with the most widely adopted of those
solvers, namely SCIP (default version) (Gleixner et al., 2017).
6

5.3.2. Experimental results
Within 3600 seconds, most of the runs attain an optimality gap of the

order of 0:05% or manage to reach optimality. The bias introduced by the
learned bound is on average around 0:03% and at most of the order of
0:5%. That is, at the 3600 seconds time limit, the objective value of the
ML-bounded run is on average 0:03% higher than the objective for the
regular run, but never greater than 0:5%.

Fig. 5a, c and 5e compare the values of the objective functions of the
constrained and unconstrained resolutions at the time limit. Each point
represents the same perturbed, unseen, instance optimized twice: once
with the ML bound and once without. The color coding helps deter-
mining the time limit imposed on this pair of runs. On the x axis one can
see the objective value without ML, on the y axis the value with the ML
bound. Points on the lower left corner correspond to runs with longer
time limits, where the difference between the two approaches becomes
more negligible. The points below the line are runs for which our method
outperformed the original formulation.

In Fig. 5b, d and 5f, the same information is presented focusing on
the temporal dimension. On the x axis is the effective resolution time,
which can be inferior to the time limit. Along the y axis is the objective
value at the time limit. The points aligned at the bottom of Fig. 5d and



Fig. 4. References A (a,b), B (c,d) and C (e,f): sensitivity to data quantity.
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f are those for which the optimal solution was found before the time
limit expired. For short resolution times, the ML-constrained formu-
lation yields better objective function values than the original formu-
lation without cutting the optimal solution which is eventually found
given more computational time. On average, the blue points repre-
senting the objective of the ML-bounded model lie below the red ones
of the unbounded model. In case C, our method allows for superior
performances than those obtained simply via the solver. In case A we
are still on average improving the performances or at least keeping in
line with the unbounded model. Here, the amplitude of the pertur-
bations imply completely different solutions, making the transfer of
information from the original solution to the new one difficult, i.e.,
very little remains the same. We remark however that, on average, our
approach avoids cutting the optimal solution and thus prevents a sort
of negative transfer.

As noted above, we operated with the presolve feature switched off.
For completeness, we run all of the experiments a second time with the
presolve feature activated (Fig. 6). The results reflect what was observed
7

previously, although the presolve heuristics of CPLEX manage to reduce
in part the effect of our approach in case B (Fig. 6 c and d).

The declared interest of our methodology is on applying it for a short
computing time, i.e., in a recovery-mode fashion. This is the reason why,
in the previous experiments, we concentrated on short time limits.
Nevertheless, a natural question to ask is which is the effect of the
constraint learned by ML on the overall computing time/quality of the
solution when the standard time limit of 3600 is kept. In the attempt of
answering such a question, we have computed the quantity

ΔOBJ ¼ objFree � objML

objFree
%;

where obj refers to the objective value at 3600 seconds of optimization.
WheneverΔOBJ > 0, the final solution of the ML-constrained instance has
yielded a lower, hence better, solution value. Whenever this value is
negative, it means that, in the long term, the ML constraint has introduced
some bias (but not necessarily within the shorter time limits, i.e., in
5–120 s).



Fig. 5. References A (a,b), B (c,d) and C (e,f): optimization results.
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This quantity alone, however, does not explain the whole picture. We
also introduced the quantity

ΔTime ¼ timeFree � timeML

to account for the corresponding optimization time for the two cases,
with and without the ML constraint. Indeed, in some cases, the optimi-
8

zation was completed before the limit of 3600 s. Hence, whenever
ΔTime > 0, the ML-constrained optimization was completed ΔTime seconds
before the non constrained version. We point out that this could corre-
spond to two cases: both instances were solved in less than 3600 seconds
or the ML-constrained arrived at the optimum while the other, at 3600,
still had not reached it. The inverse is true for negative values.



Fig. 6. References A (a,b), B (c,d) and C (e,f): optimization results with presolve.
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Fig. 7. References A (a,b), B (c,d) and C (e,f): left without presolve, right with presolve.
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Table 4
Comparative results between CPLEX with “warm start” and the ML-constrained
model.

Reference Presolve Time Limit (sec.s)

5 10 30 60 120

capa1 False 0.45 0.45 0.35 0.30 0.45
capa1 True 0.30 0.20 0.45 0.20 0.35
capb1 False 0.50 0.65 0.55 0.35 0.25
capb1 True 0.40 0.50 0.50 0.40 0.30
capc1 False 0.85 0.80 0.70 0.80 0.50
capc1 True 0.45 0.25 0.40 0.40 0.40
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Fig. 7 reports the results of the experiment on our three datasets of 50
unseen instances each, the left (resp. right) plots being with CPLEX
without (resp. with) presolve. Overall, the results indicate that 1) the bias
introduced by the ML model is never too high (number and distance of
the points below the horizontal axis), 2) there are a few cases in which
not only the ML-constrained optimization is faster but also obtains a
better solution (because of the standard solver reaching time limit, first
quadrant), and 3) the prevalence with or without presolve is for points
(instances) on the horizontal axis, i.e., with the same solution value but
on the right-hand side of the vertical axis, i.e., in which the ML-
constrained optimization is faster.

A final experiment compares our framework with CPLEX standalone
fed by the reference solution as a “warm start”. The experimental setting
is as follows. For every reference instance A, B and C, we used 20 per-
turbed instances and solved them with CPLEX powered by the reference
solution as a “warm start” and with the ML constraint (6) for all 5 time
limits. We count the number of times solving theML-constrained instance
provided a better solution and Table 4 reports such a number normalized
by 20. In other words, an entry 0.45 in Table 4 indicates that ML-
constrained solution has been better in 45% of the cases.

The results in Table 4 show that using the reference solution as a
“warm start” is certainly a good heuristic for solving the perturbed in-
stances. Nevertheless, there is still a significant number of instances in
which the ML-constrained model achieves a better solution (especially if
the CPLEX presolve is deactivated). We note that the ML-constrained
model could benefit from the “warm start” as well but we decided to
not use it to assert the quality of the learned constraint itself. In other
11
words, both the “warm start” and the ML constraint (6) can be combined.

6. Conclusions and perspectives

We have shown that the existing or simulated data of a recurring
optimization problem can be exploited to gain insight into the optimi-
zation process. We have used these data to fit a binary classifier and a
regressor. We predict whether a perturbed instance, derived from a
reference one, will share all or a part of its optimal solution with the
solution of the reference instance. This piece of information, translated
into an additional constraint, is given to a solver and allows to dive faster,
on average, towards a good solution. Moreover, we empirically illus-
trated that this additional constraint preserves the optimal solution and
thus prevents negative transfer.

Building upon these results, we plan on extending the reach of our
approach by experimenting with other, more operational families of
problems, where, potentially, different types of constraints should be
considered. This will be the way of fully demonstrating the wide appli-
cability of the approach, especially in the context of online variations of a
reference problem. In addition, the framework should be tested on
problems in which a clear two-level structure is not straightforward to
spot, so as to assert if some implicit information can be inferred. Finally,
it would be interesting to extend our framework to a case in which there
is more than one reference instance, so as to potentially develop a
method that is a combination between the current one and that of Xavier
et al. (2019).
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Appendix A

Results with SCIP

The MIP solver SCIP, whose source code is accessible for academic purposes, has a considerable adoption in academic research, which is why it is
interesting to test our approach in conjunction with such a solver. The experiments reported in Fig. 8 are the same as those in Section 5.3, with the
exception of the time limits of 5 seconds; for such a short time limit, most of the runs did not yield a feasible solution and we did not report it. What was
observed previously with CPLEX is true here as well, although the effect of constraint (6) is amplified. The additional bound constraint allows the solver
to dive much faster towards a good solution. Even at the 120 seconds mark, the gap between the two objective values is still considerable.
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Fig. 8. References A (a, b), B (c,d) and C (e,f): optimization results with the SCIP solver.
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