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Abstract 

This scientific publication presents the application of artificial 
intelligence (AI) techniques as a virtual sensor for tailpipe emissions 
of CO, NOx, and HC in a high-performance vehicle. The study aims 
to address critical challenges faced in real industrial applications, 
including signal alignment and signal dynamics management. A 
comprehensive pre-processing pipeline is proposed to tackle these 
issues, and a Light Gradient Boosting Machine (LightGBM) model is 
employed to estimate emissions during Real Driving Emissions 
(RDE)-like cycles. The research compares two modeling approaches: 
a direct model and a two-stage model with separate models for the 
engine and the aftertreatment. The findings suggest that the direct 
model strikes the best balance between simplicity and accuracy. 
Furthermore, the study investigates two sensor setups: a standard 
configuration and an optimized one which incorporates an additional 
lambda probe in the exhaust line after the main catalyst. The results 
indicate a significant enhancement in performance for NOx and CO 
estimations with the introduction of the third lambda probe, while HC 
results remain relatively unchanged. Additionally, the AI model is 
tested on two different Electronic Control Unit (ECU) software 
calibrations, yielding excellent results in both cases. This suggests that 
machine learning models are robust to control software variation and 
can be used to optimize software calibrations in a virtual environment, 
reducing the reliance on extensive experimental testing. Moreover, the 
AI model's performance demonstrates compatibility with real-time 
implementation. In conclusion, this work establishes the viability and 
efficiency of artificial intelligence techniques in accurately estimating 
tailpipe emissions from an engine in an industrial context. The study 
showcases the potential for AI to contribute to emission estimation and 
optimization processes, offering a promising pathway for an 
innovative industrial practice. 

Keywords: virtual sensors, machine learning, artificial intelligence, 
emission prediction, industrial application, tailpipe emissions 

 

1) Introduction 

Engine manufacturers are being faced with a challenging task under 
the EU7 legislation, which mandates the respect of emissions limits 
under unusual and critical driving conditions, including instances of 
aggressive driving styles. Moreover, it introduces requirements for 
OEMs (Original Equipment Manufacturer) to achieve real-time 
monitoring of pollutant emissions [1]. However, a major obstacle is 
the unavailability of direct sensors that can measure emissions while 
the vehicle is in operation, as they are usually too heavy and 
voluminous for use in uncontrolled environments. Additionally, the 
homologation process requires extensive testing that covers nearly 
every possible condition that may be encountered during the engine's 
future employment. These emissions tests are costly, time-consuming, 
and challenging to reproduce accurately [2], [3].  
Engine manufacturers must therefore seek innovative solutions to 
optimize powertrain development and comply with the EU7 
regulations. One promising approach is the use of virtual sensors [4], 
which can indirectly estimate pollutant emissions leveraging signals 
already available to the engine control unit (ECU). To this end, data-
driven techniques, such as machine learning and deep learning, are 
used to simulate the complex thermal-fluid dynamics and chemical 

reactions within an engine. Although an analytical model could 
theoretically represent such a system, the 
complexity of thermochemical reactions makes this approach 
infeasible within a reasonable timeframe [5]. 
Similarly, after-treatment systems can be modeled using CFD and 
chemical kinetics to simulate the chemical reactions that take place 
within the system [6]. However, these models require detailed 
information about system components and are computationally 
expensive [7]–[9].  
Considering this, the use of data-driven techniques aimed at virtual 
sensing is a viable approach to minimize the need for physical tests. 
This, in turn, curtails both the duration and expenses involved in the 
developmental phase [10]. Additionally, such techniques make 
possible to measure emissions in real-time or offline in virtual 
environments across various driving conditions that may not be 
feasible to replicate using conventional measurement systems, such as 
PEMS, or in standard laboratory facilities [11].  
Previous research has explored solutions for virtual sensing of 
pollutant emissions [12], [13]. The primary focus of those works has 
been on predicting emissions at the exit of the engine and usually 
considering compression ignited engines [14]–[16]. This has proven 
useful for identifying critical maneuvers that result in increased 
emissions and improving engine calibration in these specific cases. 
The authors of this study have also investigated various data-driven 
regressors for this purpose on NOx [17], CO and HC [18] at the engine-
out section. Also, particulate matter and particulate number is a 
concern for the legislation and some studies have already proved the 
advantages of adopting virtual sensing for PN prediction at the engine-
out section [19]. 
However, the virtual sensing of gaseous emissions such as NOx, HC 
and CO at the tailpipe section is of particular interest for homologation 
purposes [20]. As such, this study aims to address this challenge by 
presenting a methodology for virtually sensing emissions at the 
tailpipe exit using information from the ECU's sensors and actuations, 
exploiting a Light Gradient Boosting Machine-based regressor [21]. 
 
2) Research Structure 

The authors introduce a data-driven modeling workflow for the real-
time prediction of tailpipe-out gaseous emissions. The methodology 
was applied and validated for predicting CO, NOx, and HC on 
experimental driving cycles. 
Sections 3-5 provide a detailed description of the experimental setup, 
the sensors installed in the exhaust line for the tests as well as the 
experimental campaign performed to generate the dataset for the study. 
Sections 6 and 7 are focused on the main criticalities of the 
experimental data, such as the problem of signals synchronization, and 
propose a pre-processing pipeline to address those issues, including a 
synchronization procedure based on local lagged cross-correlation and 
a sliding window for features engineering.  
Section 8 presents a discussion on the results about: the comparison 
between direct and two-stage modeling, the importance of the third 
lambda probe as additional features, and the model's robustness to 
changes in ECU software calibration. 
The concluding Section 9 outlines the observations regarding 
applicability and results, with particular emphasis on the main 
advantages highlighted in the study. 
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3) Experimental Setup 

The study presented is based on data coming from experimental tests 
on a vehicle equipped with a high-performance naturally aspirated V12 
engine, whose main specifications are reported in Table I.  

Table I. Engine main specifications 

Engine specifications 

Engine Type V12 

Displacement [cc] 6495.6 cc 

Aspiration Naturally Aspirated 

Combustion System DI Spark-ignition 

Number of cylinders 12 (6 per bank) 

Valves per cyl [#] 4 (2 int + 2 exh) 

Bore x Stroke [mm] 94.0 x 78.0 
  

A simplified scheme of the system under study is reported in Figure 1. 

 

Figure 1. Scheme of the system under study, with direct and two-
stage modeling approaches 

The engine-in section represents the section upstream of the engine, 
here intended in a more general way as the ensemble of operating 
conditions, actuations and sensors information that are collected by the 
ECU.  
The engine-out section represents the connection between the engine 
and the after-treatment system where emissions concentration achieves 
its maximum, before being partially eliminated by the catalyst. 
The tailpipe section represents the interface between the exhaust pipes 
and the external environment where the Portable Emissions 
Measurement Systems (PEMS), as well as any other measurement 
system, are installed to measure the emissions for homologation 
purposes. 
The emissions at the tailpipe section can be modeled with two different 
approaches: direct model and two-stage model. Both approaches are 
evaluated to find the best one, and further details about the comparison 
and the type of models are provided in Section 8. 

 

4) Exhaust line setup 

Exhaust pipeline   
The exhaust system configuration is shown in the scheme of Figure 2 
featuring two catalytic converters: the pre-cat and the main cat. These 
converters are responsible for reducing gaseous emissions in the 
exhaust gases.  

 
 

Figure 2. Functional layout and sensors of the exhaust line 

Six thermocouples have been installed at various sections of the line. 
They are positioned upstream and downstream of the catalytic 
converters and GPF (Gasoline Particulate Filter), as well as at the 
exhaust sampling locations to measure emissions accurately.  
Regarding sensor installation, the standard setup includes two lambda 
probes. The first probe, a UEGO (Universal Exhaust Gas Oxygen) 
type, is placed after the engine to monitor the air-fuel ratio. The second 
probe, an HEGO (Heated Exhaust Gas Oxygen) type, is located 
downstream of the pre-cat to diagnose the Oxygen Storage Capacity 
(OSC) of the catalyst. The optimized setup includes an additional third 
lambda probe, which is a UEGO type. It is situated downstream of the 
main catalyst to measure its oxygen content, allowing for monitoring 
of its saturation level and thus its conversion efficiency.  
This study aims to compare the accuracy of the emission models with 
and without the third lambda probe as an input. Furthermore, using the 
Feature Importance Permutation (FIP) algorithm [22], the significance 
of this additional probe in relation to the model's performance is 
quantified.  

Catalytic converter  
The catalytic converter is a crucial component of automobile exhaust 
systems due to its ability to convert toxic exhaust gases into less 
harmful substances. To optimize catalyst conversion efficiency, the air 
fuel ratio must be maintained near the stoichiometric point [23]. While 
an excess of oxygen can enhance CO and HC oxidation, it can also 
impair the catalytic converter's ability to reduce NOx emissions [24] 
and vice-versa.  
In this regard, lambda sensors (oxygen sensors) play a crucial role in 
monitoring critical thresholds for optimal catalyst working 
conditions. However, the empirical behavior of the catalytic 
converter indicates that its efficiency at preventing emission peaks is 
related to the exhaust level in previous time steps. This historical 
information can be leveraged to estimate the magnitude and duration 
of emission peaks. The catalyst's temperature significantly affects its 
chemical efficiency, with low temperatures during the cold phase 
resulting in reduced efficiency. The gas flow speed also impacts 
catalyst efficiency, as the catalyst requires a specific amount of time 
for each reaction. When the exhaust flow approaches the maximum 
capacity of the chamber, part of the exhausts may bypass the catalyst, 
reducing its effectiveness.  
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5) Experimental Campaign 

The activity was conducted using a set of driving cycles with an RDE-
like speed profile reproduced on a test bench. The speed profile 
covered the typical operating ranges of an RDE cycle (urban, extra-
urban, and motorway) and was carried out in the vicinity of the 
Maranello plant, covering a route lasting approximately 30 minutes. 
The recorded speed track was subsequently reproduced in the Ferrari 
emission laboratories on a roller bench using a prototype vehicle. Ten 
driving cycles were conducted using two different ECU software: a 
first-attempt base calibration, which will be referred to as software A, 
and an optimized calibration for emissions reduction, which will be 
referred to as software B. In order to produce a fair final evaluation, 
two cycles (one software A and one software B) were withheld from 
the training set, resulting in the final dataset reported in  Table II. 

 Table II. Experimental dataset 

 

6a) System Insight and Issues 

The first premise to highlight is that emissions (target output of the 
model) are measured with a dedicated system, that can be a PEMS or 
a laboratory analyzer. Some ECU channels (inputs of the model) come 
from different kinds of sensors which retrieve data about intermediate 
stages of the system, such as the temperature of the gases or the oxygen 
concentration in the exhausts before and after the catalyst. These 
pieces of information, merged with values derived from direct 
actuation, compose a set of many time-series.  

Several issues are related to this system: 

 Lack of synchronization between emission measurement systems 
and ECU actuations, introducing a temporal offset in the whole 
experiment.  

 Mass transport that affects the time delay between the measured 
emissions and the operating conditions controlled by the ECU. 
This effect is much more evident when the target is to measure 
emissions at the exit of the tailpipe, because the air first and the 
exhausts then have to pass through the engine, the exhaust 
manifold, the pipes until the catalyst. The whole process duration 
is estimated to be between 2 and 5 seconds. 

 The effect of mass transport is not constant, because when engine 
speed and load change, the air speed changes as well and, 
consequently, the shift due to the transport of mass varies. 

 The effect of mass transport affects especially the output 
emissions, but also all the inputs that are measured by sensors 
installed in the path from the engine to the tailpipe (as lambda 
probes). 

For the aforementioned reasons, the alignment between tailpipe 
emissions and ECU channels is not a trivial task and a part of the pre-
processing must be dedicated to it [25], [26]. 

6b) Alignment technique 

It can be deduced that achieving a faithful representation of the 
examined system, with a temporal correspondence between input 

signals (ECU channels) and the resulting output (measured emissions), 
necessitates a two-step realignment process. First, a realignment is 
required among the different ECU channels, followed by a subsequent 
realignment between these channels and the measured emissions. The 
initial realignment pertains to various sensors (e.g., lambda probes and 
thermocouples) positioned at different locations in the exhaust line, 
thus capturing system information under distinct spatiotemporal 
conditions. As an example, Figure 3 shows the misalignment of the 
three lambda probes on the lean transition that occurs during a cut-off 
maneuver. The lean transition is read by the probes with a delay that is 
related to their position along the exhaust line, because of the mass 
transport.  
The second realignment addresses the temporal delay that invariably 
influences the emission measurements in relation to the corresponding 
input operating conditions. Since such a delay is much more significant 
than the previous one, for the purpose of this study the misalignment 
among the ECU channels is assumed to be negligible compared to the 
misalignment between the measured emissions and the ECU channels. 
 

 

Figure 3. Misalignment on the three lambda probes in the lean 
transition during a cut-off 

To address this issue, an alignment technique is developed that 
correlates the emissions with the third lambda probe. 
For exhaust gas analysis, a shared analyzer system is employed across 
multiple test cells within the laboratory. The extraction of exhaust 
gases for emission measurement occurs downstream of the third 
lambda probe. These gases are conveyed to the analyzers through a 
duct whose length depends on the distance between the test cell and 
the analyzers themselves. Accounting for these considerations, the 
proposed alignment technique utilizes the third lambda probe channels 
as time reference for defining the time shift to apply to the emissions 
channels. 
Among the ECU channels, the third lambda probe is chosen as the 
reference due to its proximity to the emission extraction point. 
Additionally, the third lambda probe, positioned immediately 
downstream of the primary catalytic converter, provides an indirect 
measure of the converter's filling state and, consequently, its emission 
reduction efficiency. Notably, the signal captured by the third lambda 
probe exhibits a strong correlation with emissions, particularly 
regarding CO and NOx. Under standard operating conditions, the 
aftertreatment system, specifically the TWC, has the capacity to absorb 
or release oxygen to facilitate emission reduction. Consequently, the 
third lambda probe detects a signal indicative of the stoichiometric 
ratio. However, if the catalytic system becomes fully saturated with 
O2, such as during a series of cut-offs, it loses the ability to absorb 
oxygen, resulting in a decrease in NOx reduction efficiency. In this 
scenario, unabsorbed excess air (and oxygen) from combustion passes 
through the catalyst and is detected by the third lambda probe, leading 

 
 Training cycles Test cycles 

Software A 3 (90 min) 1 (30 min) 

Software B 5 (150 min) 1 (30 min) 
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to readings indicating a lean mixture. Conversely, when the catalyst is 
completely empty of O2, the third lambda probe detects a rich mixture, 
and due to the absence of oxidation reactions, an increase in CO 
emissions is observed in the exhaust. Consequently, the third lambda 
probe is particularly correlated to CO and NOx peaks (Figure 4). 
To achieve alignment, a technique based on local lagged cross-
correlation between the target channel and the third lambda probe has 
been developed. As an example, the methodology applied to NOx is 
presented. 

The method adopted aims to leverage the information contained in 
these individual critical events to achieve the most robust alignment 
possible. As previously emphasized, a peak in emissions is typically 
determined by a deviation (either increasing or decreasing) from the 
unitary value read by the third lambda probe. 

The alignment algorithm consists of the following steps: 

1. Peaks detection: peaks in emissions and their corresponding 
peaks on the third lambda probe, meeting specific prominence 
and maximum amplitude criteria, are identified. 

2. Window application: a 10-second window centered around the 
maximum value of the lambda peak is constructed. 

3. Optimal local time-shift calculation: the lagged cross-correlation 
algorithm is applied with variable shift applied to the emissions 
within the window.  The shift that maximizes the Pearson 
coefficient [27] between the lambda signal and the target signal is 
selected as optimal. The process is repeated, and the optimal local 
shifts are found for each peak. 

4. Optimal global time-shift calculation: each peak exhibits a 
distinct local optimal shift depending on the instantaneous 
boundary conditions, such as mass transport, exhaust gas flow 
rate, and flow velocity at the exhaust. A weighted average of the 
local shifts relative to each peak is calculated, with weights 
proportional to the amplitude of the peaks.  

This approach assigns greater importance to higher peaks and yields a 
unique shift value to align the target signal along the entire driving 
cycle.  A scheme of the alignment procedure applied to NOx emissions 
is reported in Figure 4. 

It is important to note that the local lagged cross-correlation method 
does not aim to accurately represent the physical phenomenon of 
misalignment between the ECU channels and the emission trace. 
Instead, it proposes a mathematical criterion that allows to align the 
emission target signal on various test scenarios. 

Among the simplifications introduced by the proposed methodology, 
the following are noteworthy: 

 A constant delay in emissions is assumed throughout the entire 
test duration. 

 The effect of operating conditions on mass transport and temporal 
misalignment of the measured channels is considered negligible. 

 The measurement delay between lambda probes in different 
sections of the exhaust line and ECU actions is considered 
negligible. 

 The proposed method requires that at least one peak of emissions 
is detected during the driving cycle.  

However, the obtained results validate the robustness of this 
alignment procedure, and the simplifications introduced can be 
deemed acceptable. 

 

Figure 4. Synchronization procedure with local lagged cross-
correlation between Lambda 3 and NOx 

7) Features Engineering 

Since the acquisition frequency of the ECU channels can vary, all the 
channels have been resampled to 10 Hz, chosen as a uniform sampling 
frequency.  The complete set of features used as input for the model is 
reported in Table III.  
 

Table III. List of input features available 

 
The LightGBM model utilizes those signals as its input features. They 
comprise engine speed, and load and engine actuations, including 
spark advance, injection timing, injection pressure, and valves opening 
and closing angles. Additionally, the model considers measurements 
of the gas temperature in different sections of the exhaust line, the 
coolant temperature, and the three lambda sensors. 
The second lambda sensor in the system is a HEGO sensor. However, 
by leveraging the knowledge of its characteristic curve across various 
temperatures, it is possible to compute the linear value of the lambda 
ratio. It is worth noting that this calculation is more accurate the more 
the lambda value is close to one, given that HEGO sensors 
characteristic tends to saturate for lambda values significantly different 
from the unity.  

Features Description 

Engine speed - 

Engine load - 

P inj Injection pressure 

T inj Injection duration 

SA Spark Advance 

IVO Intake Valve Opening 

EVC Exhaust Valve Closing 

Lambda 1 (UEGO) 1st lambda probe, downstream of the engine 

Lambda 2 (HEGO) 2nd lambda probe, downstream of the pre-cat 

Lambda 2 (UEGO) 2nd lambda probe, linearized mathematically 

Lambda 3 (UEGO) 3rd lambda probe, downstream of the main cat 

T Water Engine coolant temperature 

T Cat IN Exhausts temperature before the pre-cat 

T Cat OUT Exhausts temperature after the pre-cat 

T GPF OUT Exhausts temperature after the GPF 

T M1 Exhausts temperature inside the pre-cat 

T M2 Exhausts temperature inside the main cat 
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An analysis based on the Feature Importance Permutation (FIP) 
algorithm has been made to highlight the most relevant features for the 
prediction of each pollutant species, with a particular focus on the 
importance of the third lambda probe. 
To account for the temporal dependence of the output values, a 
backward sliding window of fixed width has been applied to the input 
features. The width of the sliding window specifies the number of 
contiguous samples from each input channel that are used to predict 
emissions in a specific time sample n. The function in (1) defines the 
calculated emissions at sample n and relies on the inputs from sample 
n−w up to sample n, where w denotes the window width as measured 
in number of samples. 

𝑦(𝑛) = 𝑓(𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑤))   (1) 

Previous research [28] reported a sensitivity analysis that demonstrated 
that increasing the window width led to improved accuracy, but also 
resulted in a concomitant increase in the computational costs. Based 
on the findings of this analysis, the optimal balance was achieved with 
a window width of 50 samples, which corresponds to a time frame of 
5 seconds. 

8) Results 

Direct Model Vs Two-stage Model 
The system being examined consists of two distinct components: the 
engine, which generates emissions during the combustion process, and 
the after-treatment system, which reduces or eliminates those 
emissions before they are released into the environment, as shown in 
Figure 1.  
This study compares two different approaches for developing a virtual 
sensor of the tailpipe emissions: the first, known as the "direct model", 
treats the engine and after-treatment system as a unique black box, 
receiving input solely from the ECU and aiming at estimating the 
emissions at the tailpipe. In contrast, the second method, known as the 
"two-stage model", considers the engine and the after-treatment 
system as two separate systems. First, the instantaneous engine-out 
emissions are estimated using the first-stage model that replicates the 
engine system. These results are then used as an additional input for 
the second-stage model, which emulates the behavior of the after-
treatment system. The ultimate objective of the second-stage model is 
to estimate the emissions at the tailpipe using input from the ECU and 
the engine-out emissions predicted by the first-stage model.  

 
 

Figure 5. Comparison between direct and two-stage model on a 5-
fold cross validation 

The results obtained from the 5-fold cross-validation analysis (Figure 
5) indicate that the direct model exhibits slightly inferior performance 
compared to the two-stage model across all validation subsets. This 
outcome was expected, as the two-stage model incorporates also the 
engine-out emissions within the input. However, given the marginal 

improvement in performance offered by the two-stage model, the 
decision has been made to proceed with the direct model. This choice 
primarily arises from practical considerations during implementation. 
The two-stage model necessitates the experimental measurement of 
both tailpipe emissions (target of the second model) and engine-out 
emissions (target of the first model) in the training phase. This 
requirement entails a more extensive effort in the experimental 
campaign, which may not always align with the company's timelines. 
Furthermore, the two-stage model involves the concatenation of two 
models, thereby introducing two distinct sources of error. In contrast, 
the direct model has demonstrated nearly identical performance while 
maintaining a lower degree of complexity by virtue of the use of a 
single model. 
 
Features correlation analysis 
To explore the relationships among these features, a correlation 
analysis is conducted using hierarchical clustering. This analytical 
approach effectively emphasizes the interdependence among the 
different input signals. The clusters are formed utilizing the Ward's 
linkage method [29]. By employing this technique, valuable insights 
into the data structure are obtained, facilitating a better understanding 
of how these signals relate to each other. 

 
Figure 6. Dendrogram of hierarchical clustering on the input features 

The dendrogram in Figure 6 shows how clusters are composed using 
U-shaped links to connect parent and child clusters. The U-link's curve 
indicates a cluster merge, while its arms show the specific merged 
clusters and their distance apart. This distance is also the cophenetic 
distance between the original observations in the child clusters.  
The temperatures are grouped together within the same cluster due to 
their high degree of correlation, which imparts redundant 
information. Likewise, the second lambda sensor (referred to as 
HEGO) and its associated linearized value (referred to as UEGO) are 
clustered together. This clustering is done to address their strong 
interdependency. Another cluster merges engine load and valve 
opening/closing angles. This is driven by the fact that the ECU 
controls valves actuations at varying angles in response to the 
engine's load conditions. Finally, the temperature at the catalytic 
converter inlet, precisely measured downstream from the exhaust 
manifold, exhibits significant correlation with both the exhaust gas 
flow rate and the engine speed. These variables serve as indicators of 
the thermal power generated by the engine itself, thereby warranting 
their inclusion in the same cluster.no conversion 

Importance of features and of the third lambda sensor 
The FIP algorithm results reported in Figure 7, show the importance of 
the selected input feature for the prediction of each pollutant species. 
The third lambda probe has been found to have a significant impact 
especially on the estimation of CO and NOx emissions. This implies 
that the installation of this sensor in experimental setups is essential to 
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obtain a correct estimate of these species. The other two lambda probes 
are not given much weight, except for the second probe, which has a 
significant weight for CO only. This result may seem counterintuitive, 
because in extreme conditions of catalyst saturation or depletion, the 
aftertreatment system should have almost zero conversion efficiency, 
and the emissions should almost entirely bypass it. In this condition, 
theoretically, the air-fuel ratio measured at the engine outlet (at the first 
lambda probe) should be a good indicator of the emissions generated. 
However, this does not emerge from the FIP analysis, probably 
because the after-treatment system under study is homologated 
according to the last emissions legislation and is equipped with a very 
high catalytic volume and a control system able to avoid low 
conversion efficiency conditions. Therefore, the experimental tests 
remain in low catalytic efficiency for a negligible amount of time 
compared to the duration of the entire test, making this phenomenon 
not influent on the overall test. 
 

 

 

 
Figure 7. Features importance for CO, NOx and HC prediction 

On the other hand, for HC emissions, the algorithm considers the 
lambda probes to be less important. This is because, during the driving 
cycle, there are no phases, outside of the cold start, where significant 
events occur in terms of HC production at the tailpipe. For this reason, 
the physical phenomenon that primarily influences HC production is 
strongly linked to the operating conditions, and in particular to the 
engine load, and to achievement of the light-off temperature of the 
catalytic converter, rather than the lambda value measured by the 
downstream probe (Figure 7).  

Model prediction with different ECU software 
This section presents the performance of three direct models for 
estimating NOx, CO, and HC mass flow rates and cumulative masses 
at the tailpipe.  
Figure 8, Figure 9 and Figure 10 display the results obtained by the 
model, which are compared to the experimental measurements from 
two driving cycles, referred to as A and B respectively for the test with 
the base ECU software calibration and for the test with the optimized 
calibration. Notably, it is crucial to emphasize that HC emissions 
(Figure 10) are primarily formed during the initial phase of the driving 
cycles, before the catalyst reaches its light-off temperature, while are 
negligible in the hot phase. This can be partially due to the higher 
conversion efficiency of the HC in slightly rich conditions [30] and to 
side reactions occurring in the TWC in presence of water [31], that 
lead to abatement of HC and formation of CO (2). 

𝐶 𝐻 + 3𝐻 𝑂 →   3𝐶𝑂 + 6𝐻     (2) 

This observation underscores the importance of the catalyst's state and 
temperature for a correct estimation of HC emissions. This finding is 
supported by the results obtained from the FIP algorithm, which 
indicates the exhausts temperature after the catalyst as the second most 
important feature. It is important to note that even if this measurement 
does not directly indicate the catalyst's temperature, it provides a 
qualitative indication of the exothermal phenomena occurring inside 
it. The comparison makes a distinction between scenarios with and 
without the inclusion of the third lambda probe as an input, represented 
respectively by red dashed lines and blue dashed lines. 
The mass flow rate, estimated using virtual sensor models, exhibits a 
strong correlation with the corresponding experimental data for all 
pollutant species when the third lambda probe is included within the 
inputs. Furthermore, the virtual sensor models excel in estimating the 
most critical maneuvers where peaks of emissions are produced, with 
remarkable precision in terms of timing and, despite some minor 
errors, the models accurately predict the magnitude of the peaks as 
well.  
 

 
Figure 8. Experimental and calculated CO mass flow rate and 

cumulative mass on test cycles 

In terms of cumulative emissions, the virtual sensor models 
successfully capture the overall trend. However, in certain cases, there 
is a slight deviation in the total cumulative value due to the inaccurate 
prediction of isolated peaks, which affects the cumulative calculation. 
Nonetheless, the overall trend of cumulative emissions is well-
modeled, indicating the capability of virtual sensors to capture the 
long-term emission patterns and highlighting the robustness and 
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reliability of the virtual sensing technique in capturing the dynamic 
nature of pollutant emissions during various driving scenarios. 
Removing the third lambda probe leads to a significant drop of 
accuracy for CO and NOx prediction. Indeed, the prediction without 
the additional lambda sensor (blue dashed line) diverges significantly 
more from the experimental signal (black solid line) than the prediction 
with the third lambda probe (red dashed line), which is almost 
superimposed on the experimental signal in terms of both mass flow 
rate and cumulative mass (Figure 8 and Figure 9).  
On the contrary, HC prediction is unaffected by the presence of the 
third lambda probe, because, in this case the main phenomenon 
causing HC formation is the cold start phase.  
 

Figure 9. Experimental and calculated NOx mass flow rate and 
cumulative mass on test cycles 

Figure 10. Experimental and calculated HC mass flow rate and 
cumulative mass on test cycles 

Table IV reports the percentage errors on total masses made by the 
virtual sensors for all the species considering both test cycles and both 
model configurations, with and without the additional lambda probe. 
In the case of CO, the additional lambda sensor leads to an error 
reduction of approximately 14% for test A and 9% for test B. For NOx, 
the error reduction is even 40% for test A, while it is negligible for test 
B. However, this is only a consideration made on the total amount of 
mass, which is affected by error compensation. This means that in the 
total mass calculation, overestimations are compensated by 
underestimations. However, looking at the general trend of the two 
predictions in test B, the one with the third lambda sensor is much more 
coherent with the experimental signal. 

As anticipated, the relative error on HC does not depend on the 
introduction of the third lambda sensor, as already stated in the 
previous paragraph. 
Overall, the performances with ECU software A and B are comparable, 
proving the robustness of the model to different calibrations. 
 
One concluding aspect worth contemplating pertains to the 
computational time, which is remarkably reduced, requiring a mere 
approximate of 1.5 seconds for estimating emissions throughout an 
entire 30-minute driving cycle. The employed models were executed 
on a computing system equipped with an Intel(R) Xeon(R) CPU @ 
3.20GHz and 64GB of RAM. 
 

Table IV. Summary of relative errors on cumulative emissions 

 
 
9) Conclusions 

The capability to predict tailpipe emissions is a significant advantage 
for OEMs in terms of development time and costs. The main 
advantage of machine learning models is their enormous 
computational speed, which allows driving cycles to be simulated in 
a short period of time, reducing the number of required experimental 
tests and enabling real-time implementation. 
This study has highlighted some critical issues associated with the 
industrial implementation of machine learning techniques for emission 
prediction, including: sampling of signals acquired at different 
frequencies, lack of synchronization between emissions (measured 
with a dedicated system) and ECU signals, or the problem of managing 
the dynamics of the signals. 
A methodology has been presented that includes a pre-processing 
pipeline aimed at overcoming these critical issues, proposing an 
alignment based on local lagged cross-correlation and the introduction 
of a sliding window to take into account the dynamics of the inputs. 
The goodness of this pipeline, applied on top of a LightGBM-based 
regressor, was evaluated on a real industrial application, where several 
considerations were made on two types of modeling (direct and two-
stage), highlighting minimal differences between the two approaches 
and preferring the direct methodology for its greater simplicity. 
In addition, the importance of input features has been investigated, 
highlighting that, especially for CO and NOx, it is essential to install a 
UEGO lambda probe downstream of the main catalyst to obtain a 
reliable prediction. 
Finally, the comparison between two different ECU software 
calibrations has proved that this modeling workflow is robust to 
software changes and can therefore be used, in the development phase, 
to quantify in a virtual environment the impact that a particular 
calibration has on emissions. 
 
With a view to a future ECU implementation, this study has also shown 
that such an application is compatible with real-time implementation 
thanks to the very fast computational time of the LightGBM. However, 
the challenge of applying data-driven algorithms to virtual sensor 
technology for gaseous emissions estimation remains a complex task.   

 

Relative error on 
cumulative CO 

Relative error on 
cumulative NOx 

Relative error on 
cumulative HC 

No 3rd 
lambda 

Default 
No 3rd 
lambda 

Default 
No 3rd 
lambda 

Default 

Test A -18.8% 4.5% 66.8% 16.8% -9.8% -8.8% 

Test B 15.1% 6.4% -10.1% -11.9% 4.7% 4.9% 
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Some steps need to be implemented in real-time: data acquisition from 
ECU, data pre-processing (resampling and alignment), estimation of 
CO, NOx and HC through LightGBM models, identification of 
possible anomalies or critical conditions and communication of the 
results to the final device in real-time (OBD or ECU). 
Despite these aspects have not been directly examined in this work, the 
possibility of integrating the pipeline within the ECU for OBM (on-
board monitoring) applications remains open.  
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Definitions/Abbreviations  

 
 

ECU  Engine Control Unit   

EVC  Exhaust Valve Closing  

FIP  Feature Importance Permutation  

GPF  Gasoline Particulate Filter  

HEGO  Heated Exhaust Gas Oxygen  

IVO  Intake Valve Opening  

LightGBM  Light Gradient Boosting Machine  

OEM Original Equipment Manufacturer 

RDE  Real Driving Emission  

SA  Spark Advance  

TWC  Three-Way Catalyst  

UEGO  Universal Exhaust Gas Oxygen 

  

  

  

  

  

  

  

  

  

  

  

  


