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A B S T R A C T   

Study region: The study region is represented by seven irrigation districts distributed under 
different climate and topography conditions in Italy. 
Study focus: This study explores the reliability and consistency of the global ERA5 single levels 
and ERA5-Land reanalysis datasets in predicting the main agrometeorological estimates 
commonly used for crop water requirements calculation. In particular, the reanalysis data was 
compared, variable-by-variable (e.g., solar radiation, Rs; air temperature, Tair; relative humidity, 
RH; wind speed, u10; reference evapotranspiration, ET0), with in situ agrometeorological obser
vations obtained from 66 automatic weather stations (2008–2020). In addition, the presence of a 
climate-dependency on their accuracy was assessed at the different irrigation districts. 
New hydrological insights for the region: A general good agreement was obtained between observed 
and reanalysis agrometeorological variables at both daily and seasonal scales. The best perfor
mance was obtained for Tair, followed by RH, Rs, and u10 for both reanalysis datasets, especially 
under temperate climate conditions. These performances were translated into slightly higher 
accuracy of ET0 estimates by ERA5-Land product, confirming the potential of using reanalysis 
datasets as an alternative data source for retrieving the ET0 and overcoming the unavailability of 
observed agrometeorological data.   
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1. Introduction 

The quantitative estimation of the evapotranspiration (ET) fluxes exchanged within the soil-plant-atmosphere continuum is a 
precondition for rational irrigation scheduling, crop yield forecasting, and hydrological modelling applications (Hupet and Van
clooster, 2001). Nowadays, the crop reference ET (ET0) formulation, proposed by Penman-Monteith (P-M) and popularized by the 
FAO-56 paper as a reference methodology for calculating crop water requirements (Allen et al., 1998), is still largely used for practical 
purposes (Pereira et al., 2015). The use of the P-M approach calls for the necessity of having a reliable and complete set of site-specific 
agrometeorological data. In fact, the P-M approach calculates the ET0 for a standard surface, requiring a complete set of ground-based 
agrometeorological data, such as the air temperature (Tair), the wind speed (u2), the solar radiation (Rs), and the relative humidity 
(RH), to parameterize the surface and aerodynamic resistances. Commonly, agrometeorological variables are measured by automatic 
weather stations. Their data integrity is ensured by proper data quality assessment and control procedures (De Pauw et al., 2000). 
However, ground-based observations could be affected by several errors, mainly due to the sensor properties, such as their accuracy, 
settings, instrument drift or temporal data sampling frequency (Beven, 1979; Hupet and Vanclooster, 2001; Meyer et al., 1989). Other 
shortcomings are related to the agrometeorological time-series consistency. The time series can suffer from substantial time gaps 
(Capra et al., 2013) and often protocols for correcting and/or estimating poor quality or missing data need to be applied (see, e.g., 
Pereira et al., 2015). Moreover, the agrometeorological data representativeness of well-watered conditions needs to be checked before 
implementing them in the ET0 approach (Pereira et al., 2015). Despite the utmost importance of observed agrometeorological data for 
agriculture purposes, the agrometeorological networks are often sparse over the territory, especially in arid zones (De Pauw et al., 
2000). Sometimes, data access is another critical point for end-users because data is managed and distributed by different regional 
services at the National level (Pelosi et al., 2021). To compensate for the lack of spatial and temporal distributed information, other 
weather data sources have steadily developed, such as the use of interpolation methods from gauge-based observations, the adoption of 
satellite-based datasets, or the creation of gridded datasets obtained by adjusting the spatial interpolation estimates with satellite 
observations (Pelosi et al., 2020). Moreover, during the last century, great advances have been reached in agrometeorological data 
forecasting using global and regional numerical weather prediction (NWP) models. Several studies have already exploited their po
tential for supporting sustainable irrigation management (e.g. Negm et al., 2017; Chirico et al., 2018; Longo- Minnolo et al., 2020; 
Medina et al., 2018; Pelosi et al., 2016; Vanella et al., 2020). As an example, Vanella et al. (2020) showed that the use of forecast 
agrometeorological estimates provided by the Consortium for Small-scale Modelling (COSMO, http://www.cosmo-model.org) opens 
promising perspectives for assessing the ET0 in different agriculture contexts, particularly under conditions of water scarcity, instead 
than using past agrometeorological data. Besides the NWP models, the use of atmospheric reanalysis is another alternative weather 
data source. Atmospheric reanalysis has generated increasing interest in the recent decade, due to its ability to provide complete and 
consistent time-series of multiple meteorological parameters at a global scale by covering several decades (Tarek et al., 2020). From a 
theoretical point of view, the reanalysis process is a retrospective analysis of past historical data. This process makes use of the 
ever-increasing computational resources, recent versions of NWP models and assimilation schemes. In general, the reanalysis ap
proaches assimilate a wide array of atmospheric and ocean measured and remotely sensed information within a dynamical–physical 
coupled numerical model (Poli et al., 2016). One of the recognized advantages of using reanalysis approaches is that their outputs are 
not directly dependent on the density of ground-based observational networks. Thus they have the potential to provide variables in 
areas with little and/or no surface coverage (Tarek et al., 2020). Moreover, Pelosi et al. (2020) reported that reanalysis data can 
represent an efficient data source for planning and design studies applied to irrigation water management. 

Currently, several modelling centres provide reanalysis products at variable spatial and temporal scales (Lindsay et al., 2014; 
Chaudhuri et al., 2013). As an example, the European Centre for Medium-Range Weather Forecasts (ECMWF) periodically applies its 
forecast models and data assimilation systems to reanalyse archived observations for generating global data sets describing the recent 
history of the atmosphere, land surface, and oceans. The latest released ECMWF reanalysis products are ERA5 single levels (ERA5) and 
ERA5 Land (ERA5-L), which are being produced within the Copernicus Climate Change Service and freely distributed since 2019. The 
first dataset, ERA5, covers the entire globe from 1979 at a spatial resolution of about 30 km (depending on latitude). The second 
dataset, ERA5-L, has been produced by replaying the land component of the ERA5 climate reanalysis, with a horizontal spatial res
olution of 9 km. Specifically, ERA5-L uses air temperature (Tair), air humidity and air pressure, in a process of atmospheric forcing, as 
input to control the simulated land fields. These atmospheric variables are corrected to account for the altitude difference between the 
grid of the forcing and the higher resolution grid of ERA5-L (Muñoz-Sabater, 2019). A comprehensive review of the state-of-the-art 
associated with the use of ERA5-L for land and environmental applications is presented by Muñoz-Sabater et al. (2021). They 
demonstrated the added value of ERA5-L reanalysis products, in comparison to ERA-Interim and ERA5, for estimating a wide range of 
in situ observations, even if they have not evaluated the performance of the reanalysis products in predicting ET fluxes. 

The specific objective of this study was to explore the effectiveness of using the most advanced global ECMWF reanalysis data 
(ERA5 single levels and ERA5-L) as a potential data source for predicting the main agrometeorological variables and estimating the ET0 
in different climate contexts within the Italian territory, at daily and seasonal scales. In addition, visual Geographic Information System 
(GIS) based user-friendly tools have been developed in this study for guiding the users in the reanalyses data pre-processing steps. 

2. Materials and methods 

The methodological approach proposed in this study was carried out in the framework of the research project INtegrated Computer 
modeling and monitoring for Irrigation Planning in Italy (INCIPIT). The general aim of the INCIPIT project is to identify a shared set of 
modelling tools and monitoring techniques for the assessment of irrigation water uses in seven irrigation districts distributed over the 
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Italian territory. In this context, time series of daily values of the agrometeorological variables registered in 66 weather stations, 
referred to as the INCIPIT irrigation districts (Table 1 and Fig. 1), were collected. The use of the new generation ECMWF reanalysis 
datasets was then evaluated in comparison to the retrieved ground-based agrometeorological data for the ET0 estimation. 

2.1. Ground-based agrometeorological variables at the study sites 

The observed agrometeorological data was acquired on a daily scale from 66 weather stations located in six different Italian 
administrative regions (Campania, Emilia-Romagna, Lombardy, Apulia, Sardinia, and Sicily), within the reference period 2008–2020 
(from January 1st 2008 to December 31st 2020). Due to the trans-regional component of this study, the observed agrometeorological 
data were provided from multiple ground-based sources managed by different Regional meteorological agencies located in each of the 
irrigation districts of interest (Fig. 1 and Table 1). 

The set of agrometeorological variables under investigation was composed of solar radiation (Rs, W m-2), maximum and minimum 
Tair measured at 2 m (◦C), maximum and minimum relative humidity (RH, %), wind speed measured at 2 m (u2, m s-1) and 10 m (u10, 
m s-1), respectively, and ET0 estimates calculated with the P-M approach (mm d-1). 

The selection of the weather stations was based on a twofold criterion. Firstly, they were identified by setting a maximum distance 
(50 km) between the centroid of each of the 7 irrigation districts under study (whose coordinates are reported in Table 1) and the 
candidate weather stations. Secondly, the selection was refined based on the temporal consistency (i.e. continuous time series) and 
completeness (i.e. the complete set of data) of the available agrometeorological series. Under these criteria, more than 50 million 
records were acquired from 66 weather stations, covering a great range of climatic conditions, mainly in terms of the different irri
gation district geographic locations (i.e., northern, central and insular Italy) and elevation features (Table 1). Note that the available 
dataset for Sardinia sites was only composed of the ET0 estimates. 

In particular, under the improved Köppen-Geiger classification, recently provided at 1-km resolution by Beck et al. (2018), a 
number of 7 weather stations located in Apulia are characterized by arid, steppe, cold climate (BSk); 24 sites, placed in Campania, 
Sicily (Eastern and Western part) and Sardinia, are featured by dry and hot-summer temperate climate (Csa); and 32 sites, located in 
Emilia-Romagna and Lombardy, are referred to no dry season, hot summer temperate climate conditions (Cfa). 

The quality of the ground-based data was checked according to the procedure proposed in Allen (1996). Daily ground-based data 
was aggregated in 4 periods for seasonality analyses on the astronomical basis, as follows: winter (1st January–19th March and 
21st-31st December), spring (20th March–20th June), summer (21st June– 22nd September), and autumn (23rd September–20th 
December). 

Table 1 
Denominations and locations of the investigated irrigation districts, climate characterization and number of referred weather stations, including the 
name of the regional meteorological agencies.  

Italian Region Irrigation districts Latitude 
(◦) 

Longitude 
(◦) 

Average 
altitude ( ±
standard 
error) (m, a.s. 
l.) 

Climate 
condition 

Number of 
weather 
station 

Regional meteorological 
agencies 

Lombardy n. 4 districts – Adda 
river basin 

45.37 9.54 150.0 ± 28.5 
Temperate, no 
dry season, hot 
summer (Cfa) 

21 Arpa Lombardia (https:// 
www.arpalombardia.it/) 

Emilia-Romagna 
n. 7 districts – 
Consorzio di Bonifica 
Renana 

44.52 11.24 274.2 ± 113.9 14 
Arpae Emilia-Romagna 
(https://simc.arpae.it/ 
dext3r/) 

Campania 
Consorzio di Bonifica 
del Bacino Inferiore 
del Volturno 

41.20 14.15 64.5 ± 26.8 

Temperate, dry 
and hot summer 
(Csa) 

6 Protezione Civile Campania 

Sicily 

Western 
n. 1 district “1 A” – 
Consorzio di Bonifica 
Sicilia Occidentale 

37.78 12.95 247.0 ± 94.3 5 
Servizio Informativo 
Agrometeorologico Siciliano 
(www.sias.regione.sicilia.it) 

Eastern 

n. 1district “Quota 
102.50” – Consorzio di 
Bonifica Sicilia 
Orientale 

37.39 14.74 435.3 ± 135.2 7 

Sardinia 

n. 2 districts “Cedrino” 
and “Posada” - 
Consorzio di Bonifica 
della Sardegna 
Centrale 

40.39 15.48 553.9 ± 139.6 6 
Sardegna Arpa (http:// 
www.sar.sardegna.it/) 

Apulia 
n. 1 district 10 
-Consorzio di Bonifica 
della Capitanata 

41.3 15.75 120.0 ± 37.5 Arid, steppe, 
cold (BSk) 

7 Consorzio di Bonifica della 
Capitanata  
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2.2. Reanalysis datasets description 

The technical characteristics of the used reanalysis datasets (ERA5 single levels and ERA5-L) and the related data-processing steps 
are described in Sections 2.2.1 and 2.2.2, respectively. 

2.3. Reanalysis data collection and characteristics 

In this study, the most advanced global reanalysis data produced in Europe by ECMWF has been used: ERA5 single levels (Hersbach 

Fig. 1. Location of the weather stations selected over the investigated irrigation districts within the Italian peninsula: (1) Lombardy; (2) Emilia- 
Romagna; (3) Campania; (4) Apulia; (5) Sardinia; and (6) Sicily (Eastern and Western sides). 

Table 2 
Main technical details of the reanalysis datasets used in this study.  

Reanalysis dataset characteristics ERA5 ERA5-L 

Data type Gridded 
Projection Regular latitude-longitude grid 
Horizontal coverage Global 
Horizontal resolution (atmosphere) 0.25◦ x 0.25◦ 0.1◦ x 0.1◦

Temporal coverage 1979 to present 1950 to present 
Temporal resolution Hourly  
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et al., 2020) and ERA5-L (Muñoz-Sabater, 2019). The main technical details of these reanalysis datasets are reported in Table 2. 
The ERA5 dataset is the 5th generation of ECMWF global reanalysis succeeding ERA-Interim and covering the entire globe from 

1979, at a spatial resolution of about 30 km. The ERA5-L dataset is generated for the entire globe with a native horizontal resolution of 
about 9 km (released on a regular 0.1◦ x 0.1◦ grid) by replaying the land component of ERA5 climate reanalysis, from 1981 to 2–3 
months before the present. Specifically, the atmospheric forcing in ERA5-L is provided by land fields of ERA5 atmospheric variables. In 
ERA5, Tair, air humidity and air pressure are corrected to account for the elevation difference between the grid of the forcing and the 
higher-resolution grid of ERA5-L, according to the so-called lapse rate correction (Muñoz-Sabater, 2019). Although ERA5-L runs at the 
enhanced spatial resolution, there is a limit that data are not provided for numerical grid points falling on the sea surface or in the 
proximity of the coastline (Pelosi et al., 2020). 

The ERA5 and ERA5-L reanalysis datasets were freely downloaded from the Climate Change Service Copernicus platform (https:// 
cds.climate.copernicus.eu/cdsapp#!/search?type=dataset) through the Climate Data Store web interface v.1.0 in Network common 
data form (NetCDF) format for the entire Italian domain (1221.79 ×916.46 km), as for the ground-based observations, within the 
reference period 2008–2020. The hourly agrometeorological variables of interest were: the Tair (’2m_temperature’, t2m, ◦C) and the 
dew point temperatures (Tdew, named as ’2m_dewpoint_temperature d2m, m s-1’); the Rs (’surface_solar_radiation_downwards’, ssrd, J 
m-2) and; the vertical and horizontal component of the wind speed (’10m_u_component_of_wind’, U10, m s-1, and ’10m_v_compo
nent_of_wind’, V10, m s-1). 

2.3.1. Data pre-processing steps 
Both hourly ERA5 single levels and ERA5-L data were aggregated at a daily time step to be compared variable-by-variable with the 

ground-based observations. 
The daily minimum and maximum Tair and Tdew values were obtained from the hourly data. The daily Tair comparisons were carried 

out considering the average of the daily maximum (Tmax) and minimum temperatures (Tmin). The daily Rs values were aggregated on 
24 h basis. The daily RH was calculated as the ratio between the actual (ea) and the saturation (eo(T)) vapour pressure using the 
average Tair and Tdew derived on 24 h basis as inputs, according to the formula proposed in Allen et al. (1998): 

RH = 100 •
ea

eo(T)
(1)  

ea = eo(Tdew) = 0.6108 • exp
(

17.27 Tdew

Tdew + 237.3

)

(2)  

eo(T) = 0.6108 • exp
(

17.27 Tair

Tair + 237.3

)

(3) 

The daily wind speed at 10 m (u10, m s-1) was calculated using the horizontal and vertical components (V10 and U10) retrieved by 
ERA5 and ERA5-L datasets, as reported in Allen et al. (1998). Note that the wind speed comparison between the ground-based and 
reanalysis observations was performed on the u10 basis. The wind speed at 2 m (u2) was rescaled, from the logarithmic wind profile, for 
being used as input in the ET0 calculation using the P-M approach (see Section 2.3). 

The above-mentioned reanalysis datasets data pre-processing steps were performed using five ad hoc GIS-based toolboxes devel
oped in ArcPy (ESRI©) (see “Supplementary materials” section). The reanalysis post-processed data were extracted from the overall 
domain at the weather stations’ location variable-by-variable (Fig. 1). Finally, as for the daily ground-based data, the reanalysis data 
were aggregated in four periods for seasonality analyses using the same time step as used for the ground-based data. 

2.4. Calculating daily ET0 estimates 

Although ERA5 single levels and ERA5-L provide potential evapotranspiration data (ETp), this variable is conceptually different 
from ET0 estimates as defined in the FAO-56 paper (Allen et al., 1998). In particular, ETp is computed in ERA5 based on surface energy 
balance calculations with the vegetation parameters set to "crops/mixed farming" and assuming "no stress from soil moisture" 
(Hersbach et al., 2018), whereas, ETp in ERA5-L is computed as open water evaporation assuming that the atmosphere is not affected 
by the artificial surface condition (Muñoz 2019). Thus, in this study daily ET0 estimates were obtained by implementing the reanalysis 
of agrometeorological data through the Penman-Monteith (PM) method (Penman, 1956; Monteith, 1965), as follows: 

ET0 =
0.408 Δ • (Rn − G) + γ • Cn

T+273 • u2 •
(
es − ea

)

Δ + γ • (1 + Cdu2)
(4)  

where, Rn is the net radiation at the grass surface and G is the soil heat flux density (in MJ m-2 d-1 for a 24-h daily time step); Cn and Cd 
are constants, equal to 900 and 0.34, respectively, which vary according to the time step, the reference crop type and daytime/night- 
time ratio; T is the mean daily Tair (◦C); γ is the slope of the saturation vapour pressure curve at Tair (kPa ◦C-1); γ is the psychrometric 
constant (kPa ◦C-1); es is the saturation vapour pressure at Tair (kPa); ea is the average daily actual vapour pressure (kPa); and u2 is the 
average daily wind speed at 2 m height (m s-1). 

Note that the daily ET0 ground-based estimates (mm d-1) were provided at all site locations by the Regional meteorological agencies 
(Table 1), except for Campania and Emilia-Romagna regions for which daily ET0 values were estimated by Eq. 4 using the 
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Table 3 
Daily and seasonal performance obtained by comparing the predicted agrometeorological estimates from the ERA5 reanalysis dataset and the ground-based observations; RMSE, MAE, PBIAS and NRMSE 
refer to the root mean square error, the mean absolute error, the percent bias and the normalized root-mean-square error, respectively.  

Italian region Time-scale 

Air temperature (Tair) Solar radiation (Rs) Wind speed (u10) Relative humidity (RH) 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

◦C ◦C % W m-2 W m-2 % m s-1 m s-1 % % % % 

Lombardy 

daily 1.62 1.20 -0.38 0.11 35.03 26.41 1.76 0.23 0.69 0.52 -15.69 0.45 8.62 6.70 -2.95 0.12 
winter 1.63 1.24 6.97 0.32 25.59 19.30 11.86 0.32 0.71 0.52 -14.35 0.46 8.96 6.93 -4.42 0.11 
spring 1.62 1.16 -2.58 0.10 42.82 33.49 1.25 0.20 0.78 0.60 -21.24 0.44 8.26 6.40 -2.25 0.12 
summer 1.74 1.27 -1.33 0.07 41.86 33.34 -3.22 0.17 0.64 0.50 -18.39 0.43 9.35 7.40 -1.96 0.14 
autumn 1.47 1.11 1.96 0.14 24.86 18.89 9.39 0.33 0.63 0.47 -6.37 0.47 7.80 6.04 -3.00 0.10 

Emilia-Romagna 

daily 1.78 1.38 6.62 0.13 29.83 21.99 -0.09 0.18 1.39 0.93 -34.72 0.57 8.93 7.06 4.58 0.13 
winter 1.85 1.44 17.74 0.37 22.42 16.52 5.39 0.26 1.50 0.95 -33.60 0.61 9.76 7.41 5.18 0.13 
spring 1.77 1.33 5.35 0.11 38.07 28.92 0.70 0.17 1.42 1.00 -35.60 0.54 8.32 6.78 3.61 0.13 
summer 1.78 1.40 4.19 0.08 32.84 25.38 -3.58 0.13 1.25 0.93 -37.16 0.53 8.77 7.13 3.73 0.15 
autumn 1.73 1.35 8.95 0.16 21.68 16.30 3.42 0.25 1.40 0.84 -31.95 0.63 8.88 6.94 5.60 0.12 

Campania 

daily 2.26 1.83 -9.22 0.14 33.54 24.75 4.61 0.20 0.82 0.56 -18.13 0.43 7.87 6.16 -0.39 0.10 
winter 2.09 1.65 -12.54 0.23 26.88 20.90 13.89 0.29 1.02 0.65 -16.70 0.47 8.53 6.64 -1.56 0.11 
spring 2.55 2.14 -11.66 0.15 41.16 31.50 3.59 0.18 0.81 0.57 -23.63 0.41 7.54 5.86 2.77 0.10 
summer 2.43 1.99 -7.51 0.10 32.09 23.57 -0.46 0.12 0.63 0.48 -23.32 0.35 7.09 5.59 1.20 0.10 
autumn 1.92 1.50 -7.20 0.13 32.23 22.87 12.89 0.34 0.80 0.53 -8.12 0.45 8.30 6.60 -3.57 0.10 

Sicily 

Western 

daily 1.56 1.24 2.47 0.09 30.16 21.89 2.28 0.15 1.46 1.05 -7.75 0.45 11.13 8.50 8.78 0.17 
winter 1.64 1.31 9.37 0.15 28.20 21.97 4.73 0.23 1.71 1.24 -1.13 0.48 7.97 6.34 3.82 0.11 
spring 1.48 1.18 0.37 0.08 39.38 28.32 5.22 0.15 1.38 0.99 -12.95 0.40 12.46 9.71 11.86 0.20 
summer 1.57 1.26 -0.65 0.06 25.18 17.68 0.78 0.09 1.11 0.84 -17.11 0.37 14.08 10.87 15.30 0.24 
autumn 1.54 1.23 5.40 0.09 25.35 19.51 -2.71 0.19 1.61 1.14 0.01 0.51 8.52 6.85 5.46 0.12 

Eastern 

daily 1.47 1.19 0.38 0.09 33.11 24.43 1.89 0.17 1.35 1.12 -35.75 0.48 9.63 7.75 7.55 0.15 
winter 1.56 1.29 2.16 0.16 29.12 22.33 1.60 0.23 1.40 1.12 -29.53 0.46 9.49 7.53 7.09 0.13 
spring 1.42 1.13 0.42 0.08 42.74 31.45 5.12 0.17 1.35 1.15 -36.10 0.46 9.10 7.28 5.54 0.15 
summer 1.39 1.10 -0.95 0.06 30.69 22.33 1.33 0.11 1.37 1.19 -45.24 0.54 10.42 8.53 10.21 0.19 
autumn 1.52 1.24 1.52 0.10 27.35 21.44 -3.12 0.21 1.26 1.02 -32.31 0.48 9.45 7.66 7.70 0.13 

Apulia 

daily 1.46 1.15 4.14 0.09 45.03 30.72 -5.21 0.24 1.57 1.17 -19.43 0.58 19.02 15.30 -18.46 0.24 
winter 1.41 1.13 7.13 0.17 37.27 26.24 -4.77 0.33 1.81 1.31 -20.48 0.59 16.31 13.70 -15.42 0.19 
spring 1.55 1.21 4.60 0.09 54.82 38.86 -2.64 0.22 1.37 1.07 -17.74 0.49 21.73 17.74 -22.18 0.28 
summer 1.35 1.08 2.31 0.05 51.29 34.70 -6.32 0.18 1.54 1.18 -24.97 0.57 20.59 15.65 -21.36 0.30 
autumn 1.50 1.20 5.23 0.11 32.71 23.01 -8.31 0.28 1.53 1.11 -13.39 0.65 16.81 14.11 -15.74 0.19  
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Table 4 
Daily and seasonal performance obtained by comparing the predicted agrometeorological estimates from the ERA5-L reanalysis dataset and the ground-based observations; RMSE, MAE, PBIAS and 
NRMSE refer to the root mean square error, the mean absolute error, the percent bias and the normalized root-mean-square error, respectively.  

Italian region  

Air temperature (Tair) Solar radiation (Rs) Wind speed (u10) Relative humidity (RH) 

Time-scale 
RMSE MAE PBIAS 

NRMSE 
RMSE MAE PBIAS 

NRMSE 
RMSE MAE PBIAS 

NRMSE 
RMSE MAE PBIAS 

NRMSE 
◦C ◦C % W m-2 W m-2 % m s-1 m s-1 % % % % 

Lombardy 

daily 1.80 1.42 -6.10 0.13 34.68 26.13 1.83 0.22 0.90 0.71 -29.11 0.58 8.43 6.59 2.03 0.11 
winter 1.76 1.35 -8.77 0.34 25.46 19.21 11.58 0.32 0.86 0.67 -25.24 0.56 8.70 6.74 1.03 0.11 
spring 2.07 1.68 -9.02 0.12 42.39 33.10 1.40 0.19 1.04 0.85 -36.42 0.58 8.38 6.54 4.58 0.12 
summer 1.86 1.48 -4.70 0.08 41.30 32.81 -3.06 0.17 0.90 0.73 -33.99 0.60 8.97 7.08 2.64 0.13 
autumn 1.47 1.14 -3.37 0.14 24.69 18.78 9.33 0.33 0.76 0.58 -17.58 0.57 7.58 5.97 0.30 0.09 

Emilia-Romagna 

daily 1.84 1.36 1.35 0.13 33.99 23.99 0.08 0.20 1.61 1.21 -45.22 0.66 10.83 8.56 9.07 0.16 
winter 2.08 1.50 6.36 0.41 26.10 18.35 5.85 0.30 1.69 1.19 -42.70 0.68 12.55 9.76 10.08 0.17 
spring 1.72 1.32 -1.37 0.11 44.33 31.97 0.89 0.19 1.66 1.30 -46.15 0.62 10.52 8.51 9.92 0.17 
summer 1.72 1.28 0.70 0.07 36.22 27.07 -3.51 0.14 1.53 1.24 -49.27 0.64 9.64 7.75 7.84 0.16 
autumn 1.83 1.35 4.68 0.17 24.26 17.74 3.63 0.28 1.57 1.08 -42.05 0.71 10.57 8.30 8.41 0.14 

Campania 

daily 2.60 2.18 -11.75 0.16 33.81 24.97 4.64 0.20 1.03 0.8 -30.59 0.54 8.23 6.28 3.22 0.11 
winter 2.58 2.11 -19.73 0.28 27.02 21.03 13.70 0.29 1.14 0.82 -24.34 0.53 9.55 7.12 4.10 0.12 
spring 2.95 2.59 -14.33 0.17 41.39 31.65 3.63 0.18 1.08 0.88 -39.80 0.54 8.52 6.59 6.46 0.12 
summer 2.53 2.16 -7.96 0.10 32.40 23.78 -0.37 0.12 0.95 0.79 -41.16 0.53 6.74 5.34 1.88 0.10 
autumn 2.28 1.85 -10.42 0.16 32.60 23.26 12.92 0.35 0.95 0.69 -16.33 0.53 7.96 6.13 0.64 0.10 

Sicily 

Western 

daily 1.37 1.09 -1.36 0.08 30.31 21.89 2.63 0.15 1.54 1.19 -7.19 0.47 9.72 7.99 9.32 0.15 
winter 1.44 1.13 -0.15 0.13 28.46 22.14 5.19 0.23 1.71 1.33 1.71 0.47 9.11 7.43 6.84 0.12 
spring 1.36 1.08 -2.47 0.08 39.75 28.45 5.61 0.15 1.44 1.11 -13.21 0.42 10.27 8.49 11.58 0.16 
summer 1.33 1.06 -1.61 0.05 25.12 17.50 1.02 0.09 1.30 1.04 -18.87 0.44 9.82 8.02 11.43 0.17 
autumn 1.36 1.09 -0.52 0.08 25.28 19.41 -2.28 0.19 1.67 1.29 1.39 0.53 9.61 7.96 7.91 0.13 

Eastern 

daily 1.31 1.05 -1.51 0.08 33.47 24.76 2.00 0.17 1.54 1.3 -41.43 0.55 11.52 9.29 10.45 0.18 
winter 1.32 1.06 -4.68 0.14 29.11 22.38 1.56 0.23 1.50 1.22 -31.06 0.49 12.41 10.16 12.44 0.17 
spring 1.28 1.03 -0.47 0.08 42.78 31.49 5.20 0.17 1.56 1.34 -42.29 0.53 9.67 7.79 7.93 0.16 
summer 1.36 1.08 -0.70 0.05 31.40 22.82 1.50 0.12 1.68 1.49 -56.64 0.66 11.57 9.28 10.08 0.21 
autumn 1.28 1.02 -2.16 0.08 28.19 22.16 -2.98 0.22 1.39 1.14 -35.86 0.53 12.30 10.03 11.09 0.17 

Apulia 

daily 1.97 1.44 -2.46 0.12 44.98 30.67 -5.29 0.24 1.75 1.34 -23.50 0.64 15.98 12.03 -11.92 0.20 
winter 1.86 1.38 -6.46 0.22 37.22 26.20 -4.99 0.33 1.95 1.45 -21.52 0.63 12.00 9.54 -7.37 0.14 
spring 2.20 1.58 -3.48 0.13 54.72 38.74 -2.66 0.22 1.59 1.27 -22.22 0.57 17.27 13.36 -13.46 0.22 
summer 1.90 1.40 -1.07 0.08 51.25 34.64 -6.34 0.18 1.76 1.39 -34.50 0.65 19.75 14.45 -17.89 0.29 
autumn 1.88 1.40 -1.49 0.13 32.71 23.03 -8.51 0.28 1.68 1.26 -14.31 0.71 13.41 10.63 -9.95 0.15  
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Fig. 2. Daily average predicted air temperature (Tair_ERA5 and Tair_ERA5-L, ◦C) versus observed (Tair_Obs, ◦C) values at the irrigation districts located in 
Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern Sicily (e, k) and Apulia (f, l) within the period 2008–2020. 
The black line and red line represent the 1:1 line and linear regression line, respectively. The terms b, R2 and n refer to the slope of the regression 
equation through the origin, the coefficient of determination and the number of observations, respectively. 
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Fig. 3. Daily predicted solar radiation (Rs _ERA5 and Rs _ERA5-L, W m-2) versus observed (Rs_Obs, W m-2) values at the irrigation districts located in 
Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern Sicily (e, k) and Apulia (f, l) for the period 2008–2020. The 
black line and red line represent the 1:1 line and linear regression line, respectively. The terms b, R2 and n refer to the slope of the regression 
equation through the origin, the coefficient of determination and the number of observations, respectively. 
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Fig. 4. Daily predicted wind speed (u10 _ERA5 and u10 _ERA5-L, m s-1) versus observed (u10_Obs, m s-1) values at the irrigation districts located in 
Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern Sicily (e, k) and Apulia (f, l) within the period 2008–2020. 
The black line and red line represent the 1:1 line and linear regression line through the origin, respectively. The terms b, R2 and n refer to the slope 
of the regression equation, the coefficient of determination and the number of observations, respectively. 
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agrometeorological information measured in situ. 

Fig. 5. Daily predicted relative air humidity (RH__ERA5 and RH__ERA5-L, %) versus observed (RH_Obs, %) values at the irrigation districts located in 
Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern Sicily (e, k) and Apulia (f, l) for the period 2008–2020. The 
black and red lines represent the 1:1 and the linear regression line through the origin, respectively. The terms b, R2 and n refer to the slope of the 
regression equation, the coefficient of determination and the number of observations, respectively. 
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2.5. Statistical indicators 

The comparisons between the reanalysis-based agrometeorological estimations, from ERA5 and ERA5-L, respectively, and the 
ground-based observations were assessed using different statistical metrics, such as the slope of the regression line forced by the origin; 
the coefficient of determination (R2); the root-mean-square error (RMSE; Eq. 5); the mean bias error (BIAS; Eq. 6); the mean absolute 
error (MAE; Eq. 7), and the normalized root-mean-square error (NRMSE; Eq. 8); calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Si − Oi)

2

n

√
√
√
√
√

(5)  

MAE =
1
n
∑

|Si − Oi| (6)  

PBIAS =

∑
(Si − Oi)
∑

Oi
· 100 (7)  

NRMSE =
RMSE

Ô
(8)  

where Si is the simulated value by ERA5 and ERA5-L dataset, respectively, Oi is the observed value from the ground-based agro
meteorological stations, where Ŝ and Ô are the averages of the data arrays of Si and Oi, and n is the number of observations. 

The difference in reproducing the agrometeorological variables by ERA5 and ERA5-L products, respectively, was assessed by 
applying the least-squares linear regression method and by comparing the outputs of the regression lines in terms of slope (for p-values 
< 0.05). This statistical analysis was conducted using the R software (R Core team, 2020). 

The evaluation of the topographic effect on the agrometeorological variables obtained by the reanalysis datasets was assessed by 
comparing the elevation of the selected weather stations (Table 1) with the average elevation observed at the cell-size of the ERA5 
single levels and ERA5-L datasets (30 and 9 km), respectively (see “Supplementary materials” section). In particular, the main zonal 
statistics (count, mean, minimum, maximum, standard deviation, and median values) of the elevation values were extracted at the 
level of the cell containing the weather stations (Table 1) from a digital elevation model, with a spatial resolution of 75 m, released by 
the Italian Ministry of the Environment and the Protection of the Territory and the Sea. 

3. Results 

3.1. Agrometeorological variable-by-variable comparisons 

The description of the main results obtained by comparing the ERA5 and ERA5-L reanalysis agrometeorological estimates (Tair, Rs, 
u2, RH and ET0), respectively, and the relative ground-based variables are reported hereafter variable-by-variable for the irrigation 
districts under study (Table 1), referring to the period 2008–2020. 

The overall performance (in terms of RMSE, MAE, PBIAS and NRMSE values) of the comparisons are given in Tables 3 and 4 at the 
different explored time scales (daily and seasonal). Note that Sardinia sites are not included in Tables 3 and 4 because no data was 
available. Figs. 2–6 report the scatterplots outputted by comparing the daily ERA5 and ERA5-L estimates, respectively, versus the 
observed variables for the irrigation districts under study, as well as the parameters of the regression analyses (b and R2). 

Fig. 6. Daily predicted crop reference evapotranspiration (ET0_ERA5 and ET0_ERA5-L, mm d-1) versus observed (ET0_Obs, mm d-1) values at the irrigation 
districts located in Lombardy (a, h), Emilia-Romagna (b, i); Campania (c, j), Western Sicily (d, k), Eastern Sicily (e, l), Sardinia (f, m) and Apulia (g, 
n) for the period 2008–2020. The black and red lines represent the 1:1 and the linear regression line through the origin, respectively. The terms b, R2 

and n refer to the slope of the regression equation, the coefficient of determination and the number of observations, respectively. 
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In general, the results of the least-squares linear regression analysis carried out to compare the daily reanalysis datasets (i.e., ERA5 
and ERA5-L) versus the observed agrometeorological data showed significant differences in terms of slopes values for all the variables 
of interest also at the seasonal level. 

3.1.1. Air temperature (Tair) 

3.1.1.1. Tair: ERA5 versus ground-observations. Daily average Tair values were estimated with good accuracy by the ERA5 reanalysis 
dataset at all the irrigation districts under study (Table 3), showing average RMSE values of 1.46 ◦C, 1.70 ◦C and 1.76 ◦C; and MAE 
values of 1.15 ◦C, 1.29 ◦C and 1.42 ◦C under Bsk, Cfa and Csa climate conditions, respectively. The average values of NRMSE varied 
between 0.09 and 0.14; reaching minimum and maximum values under Bsk and Csa-Cfa climate conditions, respectively. The PBIAS 
values varied from 0.38% (in Eastern Sicily study sites) to 6.62% (in Emilia-Romagna study sites) and − 9.22% (in Campania study 
sites); showing average values of − 2.12%, 3.12% and 4.14% under Csa, Cfa and Bsk climate conditions, respectively, with average R2 

values varying between 0.94 (Csa) and 0.97 (Bsk). The slope values (b) ranged from 0.91 to 1.04, indicating a site-specific under
estimation of 9% and overestimation of 4% in Campania and Emilia-Romagna study sites, respectively (Fig. 2a-f). 

On a seasonal basis, the best Tair performance was observed in autumn, showing average RMSE, MAE, PBIAS, b and R2 values of 
1.61 ◦C, 1.27 ◦C, 2.64%, 1.01 and 0.89, respectively. Similar performances were obtained in spring-summer seasons (with average 
RMSE, MAE, PBIAS, b and R2 values of 1.72 ◦C, 1.35 ◦C, − 0.62%, 0.99 and 0.79, respectively), while a slightly lower accuracy was 
observed in winter (with average RMSE, MAE, PBIAS, b and R2 values of 1.70 ◦C, 1.34 ◦C, 5.14%, 1.00 and 0.72, respectively). The 
same trend was observed in terms of NRMSE values. Specifically, the Tair predictions reached the best performance in Apulia study sites 
during winter and summer (with RMSE and MAE values of 1.35 and 1.08 ◦C, respectively), followed by spring and autumn in Eastern 
Sicily and Lombardy study sites; whereas the lowest Tair performance was obtained in Campania study sites during all seasons 
(Table 3). 

3.1.1.2. Tair: ERA5-L versus ground-observations. Daily average Tair values were predicted with acceptable accuracy by the ERA-L 
reanalysis dataset at all the irrigation districts under study (Table 4), resulting in average RMSE values of 1.76 ◦C, 1.82 ◦C and 
1.97 ◦C; and MAE values of 1.44 ◦C, 1.39 ◦C and 1.44 ◦C under Csa, Cfa and Bsk climate conditions, respectively. The average NRMSE 
values varied between 0.08 and 0.16; with similar values under Csa, Cfa and Bsk climate conditions The PBIAS values ranged between 
1.35% (in Emilia-Romagna study sites) to − 11.75% (in Campania study sites); showing average values of − 4.87%, − 2.38% and 
2.46% in Csa, Cfa and Bsk climate conditions, respectively. The average R2 values ranged from 0.93 (Csa) to 0.95 (Cfa and Bsk); and the 
slope values (b) ranged from 0.89 to 0.99, indicating a maximum and minimum underestimation of 11% and 1% in Campania and 
Emilia-Romagna study sites, respectively (Fig. 2g-l). 

Seasonally greater Tair predictions were retrieved in summer and autumn seasons, resulting in average RMSE, MAE, PBIAS, b and R2 

values of 1.73 ◦C, 1.36 ◦C, − 2.39%, 0.97 and 0.81, respectively; whereas, slightly lower Tair performance were observed in spring and 
winter seasons, showing average RMSE, MAE, PBIAS, b and R2 values of 1.89 ◦C, 1.48 ◦C, − 5.38%, 0.93 and 0.80, respectively. A 
similar trend was observed in terms of NRMSE values. Specifically, the Tair predictions reached the best performance at Eastern Sicily 
study sites during spring and autumn-winter periods (with average RMSE, MAE, PBIAS, b and R2 values of 1.28 ◦C, 1.02 ◦C, − 1.31%, 
0.98 and 0.92, respectively) and in summer in Western Sicily study sites (Table 4); whereas the lowest Tair performance was obtained in 
Campania study sites during all seasons (Table 4). 

3.1.2. Solar radiation (Rs) 

3.1.2.1. Rs: ERA5 versus ground-observations. ERA5 dataset showed good performance in estimating daily Rs under all the examined 
climate conditions (Table 3), showing average RMSE values of 32.27 W m-2, 32.43 W m-2, and 45.03 W m-2; MAE of 23.67 W m-2, 
24.20 W m-2 and 30.72 W m-2, and NRMSE of 0.17, 0.21 and 0.24 in Csa, Cfa and Bsk, respectively. Average PBIAS values ranged 
between 0.83% (Cfa) to 2.93% (Csa) and − 5.21% (Bsk), corresponding to R2 values of 0.88, 0.86 and 0.80, respectively. The slope 
terms (b) presented the same trend with values from 1.00 to 0.96 and 0.91 under Csa, Cfa and Bsk climate conditions, respectively. 

Seasonally, the best Rs performance was retrieved in autumn (with average RMSE, MAE and PBIAS values of 27.36 W m-2, 
20.34 W m-2, and 1.93%, respectively; and b and R2 terms of 0.88 and 0.67, respectively) at all site locations (except for Campania 
locations), followed by winter and summer. Slightly lower Rs performance was obtained in spring, resulting in average RMSE, MAE, 
PBIAS, b and R2 values of 43.17 W m-2, 32.09 W m-2, 2.20%, 0.96 and 0.48, respectively. In absolute terms, the best Rs predictions 
were reached in Western Sicily study sites during summer (also in terms of NRMSE values) and in Emilia-Romagna study sites for the 
other seasons (Table 3); whereas the lowest Rs performance was obtained in Bsk climate condition (Apulia study sites) during all 
seasons and in Campania sites for the autumn season in terms of NRMSE (Table 3). 

3.1.2.2. Rs: ERA5-L versus ground-observations. Daily Rs values were predicted with good accuracy by the ERA5-L reanalysis dataset at 
all study sites (Table 4), resulting in average RMSE values of 32.53 W m-2, 34.33 W m-2 and 44.98 W m-2, and NRMSE values of 0.17, 
0.21 and 0.24 under Csa, Cfa and Bsk climate conditions, respectively. Average MAE values ranged from 23.87 W m-2 (Csa) to 
25.06 W m-2 (Cfa) and 30.67 W m-2 (Bsk); and PBIAS values varied between 0.96% (Cfa) to 3.09% (Csa) and − 5.29% (Bsk). The R2 

values and slope terms (b) varied from 0.80 to 0.86 and 0.87, and from 0.91 to 0.96 and 1.00, under Bsk, Csa and Cfa climate con
ditions, respectively (Fig. 3g-l). 
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At the seasonal level, the Rs predictions reached the best performance in autumn at all climate conditions (except for Campania 
locations also in terms of NRMSE), with average RMSE, MAE and PBIAS values of 27.96 W m-2, 20.73 W m-2, and 2.02%, respectively; 
and b and R2 terms of 0.92 and 0.65. The lower performance was observed in spring under all climate conditions, with average RMSE, 
MAE and PBIAS values of 44.23 W m-2, 32.57 W m-2, and 2.35%, respectively; and b and R2 terms of 0.98 and 0.46, respectively. 
(Table 4). Intermediate Rs performances were observed in winter and summer (Table 4). Partially different results were observed in 
terms of NRMSE showing greater performances in summer followed by spring and winter-autumn seasons. The Rs predictions reached 
the best performance in Western Sicily during spring and summer periods (Table 4) and in autumn and winter seasons under Cfa 
climate conditions (Lombardy and Emilia-Romagna study sites); whereas the lowest Rs performance was obtained under Bsk climate 
condition (Apulia study sites) during all seasons also in terms of NRMSE values (Table 4). 

3.1.3. Wind speed (u10) 

3.1.3.1. u10: ERA5 versus ground-observations. The performances of the ERA5 dataset in predicting daily u10 values are shown in 
Table 3 and Fig. 4a-f. The ERA5 accuracy shows a specific pattern as a function of the climate conditions, resulting in average RMSE 
values of 1.04 m s-1, 1.21 m s-1 and 1.57 m s-1 under Cfa, Csa, and Bsk climate conditions, respectively. Similar behaviour is observed 
in terms of average MAE values, ranging from 0.73 m s-1 (Cfa) to 0.91 m s-1 (Csa) and 1.17 m s-1 (Bsk). Inversely, PBIAS values were 
equal to − 19.43%, − 20.54%, and − 25.21% from Bsk to Csa and Cfa climate conditions, respectively. Lower R2 values were obtained 
at all study sites, with b terms ranging from 0.66 and 0.74 in Cfa-Bsk and Csa climate conditions, respectively. A similar trend was 
observed in terms of NRMSE values. 

ERA5 performance increased in summer-autumn/spring periods (with average RMSE, MAE, PBIAS, NRMSE, b and R2 values of 
1.16 m s-1, 0.87 m s-1, − 22.53%, 0.46, 0.70 and 0.18, respectively). Lower performance was observed in winter, resulting in average 
RMSE, MAE, PBIAS, NRMSE, b and R2 values of 1.36 m s-1, 0.97 m s-1, − 19.30%, 0.51, 0.71 and 0.22, respectively. In particular, 

Table 5 
Daily and seasonal (winter, spring, summer and autumn) performance obtained by the comparison between predicted crop reference evapotrans
piration (ET0) by ERA5 and ERA-L reanalysis dataset, respectively, and the ground-based observations; RMSE, MAE, PBIAS and NRMSE refer to the 
root mean square error, the mean absolute error, the percent bias and the normalized root-mean-square error, respectively.  

Italian region Time-scale 

ERA5 ERA5-L 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

mm d-1 % mm d-1 % 

Lombardy 

daily 0.62 0.42 -6.28 0.25 0.61 0.42 -7.92 0.25 
winter 0.29 0.19 -0.36 0.34 0.30 0.21 -9.45 0.35 
spring 0.75 0.58 -7.38 0.21 0.75 0.59 -8.68 0.21 
summer 0.88 0.69 -7.94 0.20 0.85 0.67 -7.55 0.19 
autumn 0.32 0.21 0.42 0.33 0.31 0.21 -5.45 0.32 

Emilia-Romagna 

daily 0.70 0.51 -13.00 0.24 0.70 0.52 -13.70 0.24 
winter 0.40 0.28 -15.04 0.37 0.44 0.31 -20.70 0.41 
spring 0.77 0.62 -11.67 0.20 0.79 0.64 -12.37 0.20 
summer 0.97 0.79 -13.33 0.19 0.94 0.76 -12.68 0.18 
autumn 0.44 0.31 -14.24 0.33 0.45 0.31 -16.92 0.34 

Campania 

daily 0.65 0.48 -11.25 0.23 0.62 0.45 -10.44 0.22 
winter 0.43 0.30 -9.95 0.35 0.47 0.32 -15.58 0.38 
spring 0.77 0.63 -12.57 0.21 0.73 0.59 -11.16 0.20 
summer 0.82 0.69 -12.39 0.17 0.73 0.58 -9.33 0.15 
autumn 0.43 0.29 -4.79 0.30 0.47 0.31 -8.08 0.33 

Sicily 

Western 

daily 0.69 0.51 -3.32 0.20 0.57 0.43 -1.06 0.17 
winter 0.44 0.34 7.91 0.28 0.40 0.31 2.91 0.25 
spring 0.74 0.57 -5.57 0.17 0.59 0.45 -1.81 0.14 
summer 0.91 0.71 -7.55 0.16 0.71 0.54 -2.46 0.13 
autumn 0.56 0.42 4.90 0.28 0.53 0.39 1.49 0.26 

Eastern 

daily 0.62 0.46 -6.62 0.19 0.57 0.42 -4.21 0.18 
winter 0.38 0.29 -5.20 0.25 0.37 0.28 -8.36 0.24 
spring 0.63 0.49 -3.49 0.16 0.60 0.46 0.55 0.15 
summer 0.87 0.68 -9.03 0.16 0.75 0.58 -4.98 0.14 
autumn 0.46 0.35 -7.47 0.25 0.46 0.34 -9.18 0.25 

Sardinia 

daily 0.71 0.52 4.20 0.26 0.68 0.50 5.60 0.24 
winter 0.56 0.41 16.80 0.47 0.45 0.33 5.91 0.37 
spring 0.74 0.57 0.83 0.21 0.74 0.58 4.94 0.21 
summer 0.90 0.67 1.54 0.19 0.92 0.71 6.74 0.20 
autumn 0.59 0.43 10.94 0.38 0.48 0.36 3.24 0.31 

Apulia 

daily 0.90 0.67 7.90 0.31 0.88 0.64 5.86 0.30 
winter 0.60 0.48 23.67 0.51 0.55 0.42 10.91 0.47 
spring 1.03 0.81 10.83 0.28 0.99 0.77 9.18 0.27 
summer 1.18 0.89 -0.37 0.22 1.18 0.90 1.04 0.22 
autumn 0.66 0.50 20.15 0.47 0.61 0.45 12.30 0.44  
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relatively better performance was observed in Campania (summer) and Lombardy study sites (for the rest of the seasons) (Table 3), 
whereas, lower performance was registered during winter and summer in Apulia study sites, during spring for Emilia-Romagna and 
autumn for Western Sicily study sites, respectively (Table 3). 

3.1.3.2. u10: ERA5-L versus ground-observations. The accuracy and performance indicators of the ERA5-L dataset in predicting daily 
u10 values are shown in Table 4 and Fig. 4g-l. Similarly to ERA5, the ERA5-L accuracy shows a specific pattern as a function of the 
climate conditions, resulting in average RMSE values of 1.26 m s-1, 1.37 m s-1 and 1.75 m s-1 in Cfa, Csa, and Bsk climate conditions, 
respectively; showing similar trends in terms of average MAE values, that ranged from 0.96 m s-1 (Cfa) to 1.10 m s-1 (Csa) and 
1.34 m s-1 (Bsk). Conversely, PBIAS values varying between − 23.50% (Bsk) to − 26.40% (Csa) and − 37.17% (Cfa); with R2 and 
NRMSE values varying from 0.06 (Bsk) to 0.25 (Cfa) and 0.45 (Csa) and from 0.64 to 0.62 and 0.52, under Bsk, Cfa and Csa climate 
conditions, respectively. The slope terms (b) ranged from 0.58 (Cfa) to 0.64 (Bsk) and 0.72 (Csa), indicating an underestimation 
varying from 28% to 36% and 42%, under Csa, Bsk and Cfa climate conditions, respectively. 

At the seasonal level, the u10 predictions reached the best performance in autumn, with average RMSE, MAE and PBIAS values of 
1.34 m s-1, 1.01 m s-1, and − 20.79%, respectively; and b and R2 terms of 0.68 and 0.26, respectively. Lower performance was 
observed in winter, resulting in average RMSE, MAE, PBIAS, b and R2 values of 1.47 m s-1, 1.11 m s-1, − 23.86%, 0.70 and 0.32, 
respectively. Moderate u10 performances were observed in the other seasons (Table 4). Slight differences were observed in terms of 
NRMSE values. Specifically, the u10 predictions reached the best and worst performance at Lombardy and Apulia study sites, 
respectively, during all seasons (Table 4). 

3.1.4. Relative humidity (RH) 

3.1.4.1. RH: ERA5 versus ground-observations. Good accuracy was observed in the estimation of daily RH values by ERA5 at all study 
sites (Table 3), resulting in a similar trend of RMSE and MAE, with values of these indicators ranging from 8.78% to 9.55% and 19.02%, 
and from 6.88% to 7.47% and 15.30% under Cfa, Csa and Bsk climate conditions, respectively. Similar behaviour was observed in 
terms of NRMSE, PBIAS and b values, showing better performances from Cfa to Csa and Bsk climates (Fig. 5a-f). The slope terms and R2 

values ranged from 0.81 to 1.04, and from 0.34 to 0.66, respectively. 
On a seasonal basis, the ERA5 accuracy was better in autumn and winter (average RMSE, MAE and NMRSE values of 10.07%, 

8.06% and 0.13), followed by spring and summer seasons (average RMSE, MAE and NMRSE values of 11.23%, 8.96% and 0.16, 
respectively). In particular, the best ERA5 performance was retrieved at Campania (spring-summer), Lombardy (autumn) and Western 
Sicily (winter) study sites. Lower accuracy was obtained at Apulia study sites for all seasons. 

3.1.4.2. RH: ERA5-L versus ground-observations. The daily RH estimates predicted by ERA5-L in comparison to the ground-based 
measurements resulted in RMSE values ranging between 9.63% and 9.82% under Cfa and Csa climate conditions, respectively, 
reaching 15.98% in Bsk conditions (Fig. 5g-l). Similar trend was observed in terms of NRMSE values. This behaviour resulted in MAE 
and PBIAS values of 7.57%, 7.85%, 12.03% and 5.55%, 7.66%, − 11.92% under Cfa, Csa and Bsk conditions, respectively. Similar 
trends were observed for the b and R2 terms, showing values of 1.04–1.06 and 0.86 and 0.41–0.52 and 0.27 under Cfa-Csa and Bsk 
conditions, with overestimation of 4–6% in Cfa and Csa and underestimation of 14% at Apulia study site (Bsk). 

At the seasonal level, the overall best RH performance was observed in autumn (Table 4), with average RMSE, MAE, PBIAS and 
NRMSE values of 10.24%, 8.17%, 3.07% and 0.13, respectively. Similar performances were retrieved in winter and spring, with 
slightly lower ERA5-L accuracy during summer (Table 4). Specifically, the best performance was observed at Campania (in summer) 
and Lombardy study sites (in the other seasons); whereas lower performance at Emilia-Romagna (in winter) and Apulia study sites (in 
the other seasons) (Table 4). 

3.1.5. Reference evapotranspiration (ET0) 

3.1.5.1. ET0: ERA5 versus ground-observations. Daily ET0 estimates obtained using as inputs the agrometeorological information 
provided by the ERA5 dataset showed good accuracy in comparison to the ground-based ET0 estimates (Table 5 and Fig. 6a-m). In 
particular, the daily ET0 estimates reached the best performance under Csa-Cfa climate conditions (with average RMSE, MAE and 
NRMSE values of 0.66 mm d-1, 0.48 mm d-1, and 0.23, respectively). Lower performance was observed at Bsk, resulting in average 
RMSE, MAE and NRMSE values of 0.90 mm d-1, 0.67 mm d-1, and 0.31, respectively. Positive average PBIAS values were obtained at 
Bsk (7.90%), whereas negative average PBIAS values of − 4.25% and − 9.64% resulted under Csa and Cfa climate conditions. 

At the seasonal level, the ET0 performance was greater during winter and autumn periods (with average RMSE, MAE, BIAS, b and 
R2 values of 0.47 mm d-1, 0.34 mm d-1, 1.98%, 0.93 and 0.58, respectively), and lower, but still satisfactory, in spring and summer 
(with average RMSE, MAE, BIAS, b and R2 values of 0.85 mm d-1, 0.67 mm d-1, − 5.58%, 0.93 and 0.59, respectively). Similar values 
were observed in terms of NRMSE values among the seasons (Table 5). Better accuracy was obtained at Lombardy (winter-autumn 
seasons), Campania (summer) and Eastern Sicily (spring) study sites; whereas, lower accuracy was reached at Apulia study sites for all 
seasons (Table 5). 

3.1.5.2. ET0: ERA5-L versus ground-observations. Overall, ERA5-L provided daily ET0 estimates with good accuracy (Table 5 and 
Fig. 6h-n). Specifically, the daily ET0 estimates reached the best performance under Csa and Cfa conditions (with average RMSE, MAE 
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and NRMSE values of 0.63 mm d-1, 0.46 mm d-1 and 0.22, respectively) (Table 5 and Fig. 6h-n). The lower performance was observed 
at Bsk, with average RMSE, MAE and NRMSE values of 0.88 mm d-1, 0.64 mm d-1 and 0.30, respectively. Positive average PBIAS values 
were obtained under Bsk (5.86%); whereas under Csa and Cfa climate conditions resulted in values ranging from − 2.53% to 
− 10.81%, respectively. 

At the seasonal level, the ET0 performance resulted better in winter and autumn (with average RMSE, MAE, BIAS, b and R2 values of 
0.50 mm d-1, 0.36 mm d-1, − 3.84%, 0.90 and 0.64, respectively), and lower, but still quite satisfactory, in spring and summer (with 
average RMSE, MAE, BIAS, b and R2 values of 0.77 mm d-1, 0.60 mm d-1, − 3.53%, 0.94 and 0.63, respectively). As for the ERA5, 
similar values were observed in terms of NRMSE values among the seasons (Table 5). Greater accuracy was obtained at Lombardy 
(winter-autumn seasons) and Western Sicily (spring-summer seasons) study sites, while lower accuracy was obtained at Apulia study 
sites for all seasons (Table 5). 

4. Discussion 

Climate reanalysis data have been widely used for hydrological and meteorological applications. However, it is still difficult to 
quantitatively estimate their accuracy due to their variability both at spatial and temporal scales, especially under complex topography 
and pronounced climatic heterogeneity (i.e., the rainfall) (Jiao et al., 2021). Often, ground variables are taken into account in the 
reanalysis process (such as air pressure, Tair, RH and u10) to improve the reanalysis data quality. However, if the data assimilation 
approach can improve data accuracy, by adding physically meaningful information from the predictive model, this is still subject to 
uncertainty. The main sources of uncertainty are due to numerical simulations, assimilation schemes and errors associated with the 
observation systems (Dee et al., 2011). In this sense, some studies showed that it is difficult to completely replace observational data 
with reanalysis information for describing the true state of the atmosphere (Bengtsson et al., 2004), e.g., for long-term climate trend 
studies (Liu et al., 2018) and/or for capturing seasonal and inter-annual changes (Jiao et al., 2021). 

This study explored the potential of using the new released ECMWF climate reanalysis datasets (i.e., ERA5 and ERA5-L) for proving 
daily and seasonal agrometeorological information (Tair, Rs, RH, u10 and ET0) by determining their performance against measured 
ground-based observations within the Italian territory in the reference period 2008 – 2020. Moreover, since new user requirements are 
constantly emerging in society (Muñoz-Sabater et al., 2021), ad hoc user-interfaces GIS-based user-friendly tools have been developed 
in this study for supporting the needs of a diverse set of users, next to the climate and weather research motivations, within the 
reanalysis data pre-processing steps (Fig. 1.S-4. S). 

Herein, a generally good agreement was observed between the ability of ERA5 and ERA5-L products in reproducing the agro
meteorological variables of interest (commonly used for ET calculation) in comparison to the ground-based observations collected at 
66 study sites distributed over 7 irrigation districts. Specifically, the daily Tair estimates offered the most accurate reanalysis pre
dictions, followed by the RH, Rs, and u10 variables, which still provided satisfactory results (Tables 3–4, Figs. 3–5). Similar (i.e., for RH) 
or slightly improved statistical metrics were obtained by ERA5 in comparison to ERA5-L (i.e., showing lower RMSE values than ERA5- 
L, for Tair and Rs, respectively, in 67% and 83% of the total number of the investigated irrigation districts). This can be attributed to the 
fact these variables are more homogeneous at the spatial scales provided by ERA5 products in comparison to ERA5-L (Fig. 5. S in 
Supplementary materials section). The u10 performance was always more consistent for ERA5 than ERA5-L in comparison to the 
observations at all irrigation districts, most likely because ERA5-L does not consider the influence of the sea surface in its products 
(Muñoz-Sabater, 2019). Altogether, the daily Tair, Rs, RH, and u10 estimates were more accurate during the autumn season for both 
reanalysis datasets (Tables 3–4). 

The influence of topographic features on the accuracy of the reanalysis data was also investigated, following the evidence that it 
could be significant provided by previous studies. For example, Gao and Hao (2014) evaluated the relationship existing between the 
elevation of the climate reanalysis data from ERA-Interim and the observed station’s elevation. These authors pointed out that dif
ferences in elevation can affect the accuracy of the reanalysis data, especially in areas with relatively higher altitudes. Analogous 
considerations are reported by Longo-Minnolo et al. (2022) for a Sicilian watershed, with elevation values ranging between 0 and 
3313 m a.s.l., for which the highest RMSE values were observed in the ERA5-L cells with relatively higher variations in altitude. To 
overcome these shortcomings in mountainous areas, other authors suggest applying altitude correction procedures, especially for 
water vapour, precipitation and Tair estimates (Zhao et al., 2008; Feng et al., 2012; Hu et al., 2013; Negm et al., 2018). For altitudes 
below 1000 m (a.s.l.), however, Jiao et al. (2021) found a good agreement between climate reanalysis and observational data. Similar 
results emerged from this study, where no specific relationships were obtained between the elevation changes and the goodness of 
reanalysis datasets in reproducing the agrometeorological variables of interest, at the site-by-site scale, within the seven irrigation 
districts under investigation (Table 1). These findings show that the accuracy of the reanalyses products is strongly connected with the 
climatic conditions rather than the topographic distribution of the selected study sites. Due to the above-mentioned explanations and 
for maintaining the integrity of the reanalysis datasets, no topography corrections were applied in this study. 

The performance of reanalysis data strongly depends on the different climate conditions characterizing the investigated sites, as 
shown by Tarek et al. (2020). Specifically, these authors observed that Tair and precipitation estimated by ERA5 are systematically 
more performant in comparison to ERA-Interim at all the 13 Northern America climate zones under study. In addition, they reported 
that in situ measurements are higher than ERA5 for Cfa and hot-summer humid continental (Dfa) climate zones; elsewhere, these 
differences are less pronounced. In this sense, they did not experience the difference in hydrological modelling performance using both 
ERA5 products and observations over 9 of the 13 climate zones. For the remaining regions (Bsk, Cfa, Dfa, and warm-summer humid 
continental climate, Dfb), the use of observations resulted in improved hydrological modelling performance. In agreement with Tarek 
et al. (2020), in our study site-specific performance depended on the different investigated climate conditions (Table 1). In particular, 

D. Vanella et al.                                                                                                                                                                                                        



Journal of Hydrology: Regional Studies 42 (2022) 101182

17

the major part of the variables of interest (Rs, RH, u10 and ET0) resulted in greater and lower performance under Csa and Bks climate 
conditions, respectively, by both reanalysis datasets, except for Tair estimates provided by ERA5 that shows an inverted pattern due to 
the influence of the sea temperature in this product (Hersbach et al., 2020). Intermediate performance was observed under Cfa climate 
zones. 

The good quality of the reanalysis data was translated into reliable daily and seasonal ET0 estimates (with an underestimation from 
2 up to 13% for the climate classes under study). Specifically, as for the other variables, ET0 estimates were more accurate in autumn/ 
winter than in spring/summer by both reanalysis datasets in terms of RMSE values (Table 5 and Fig. 6). In addition, ERA5-L reproduces 
with greater accuracy and higher spatial resolution the ET0 observations at most of the study sites even under different climate 
conditions, i.e., showing lower RMSE values than ERA5 in 86% of the total number of the irrigation districts under study. Thus, the high 
accuracy obtained in this study when estimating ET0 by reanalysis products (resulting in RMSE and NRMSE values ranging between 
0.57 and 0.90 mm d-1 and from 0.17 to 0.31, respectively) suggests the potential use of this information for calculating the daily crop 
evapotranspiration rates aiming at supporting the irrigation scheduling. In this sense, Rolle et al. (2021) have recently estimated the 
global irrigation requirement of 26 crops by implementing the Hargreaves-Samani method (Hargreaves and Samani, 1985) to calculate 
ET0, by using information on Tair and Rs retrieved by the ERA5 dataset. Other studies assessed the use of a blended set of weather input 
data composed of ERA5-L outputs and different sources of climate data (i.e., reanalysis data and satellite-based radiation data) to 
evaluate the ET0 for the Campania region (Pelosi et al., 2020; Pelosi and Chirico, 2021). Pelosi et al. (2021) combined the ERA5-L 
products with multispectral satellite imagery for estimating the past crop evapotranspiration. Under this scenario, the results of the 
present study may contribute to the informed use of reanalysis data in water management applications in Italy and elsewhere. 

5. Conclusion 

This study explores the performance of the ERA5 single levels and ERA5-L in depicting the agrometeorological data from 2008 to 
2020 in comparison to observational data measured at 66 sites distributed over 7 irrigation districts over the Italian territory. Spe
cifically, the main findings that can be drawn from this study are the following:  

– the daily average Tair estimates offered the most accurate reanalysis predictions, followed by RH, Rs, and u10 variables. This was 
translated into reliable daily ET0 estimates resulting in RMSE and NRMSE values ranging between 0.57 and 0.90 mm d-1 and from 
0.17 to 0.31, respectively;  

– similar or slightly improved statistical metrics were obtained by ERA5 in comparison to ERA5-L in estimating RH, Tair and Rs; 
whereas the u10 and ET0 performances were more consistent by ERA5 and ERA5-L, respectively, when compared to the obser
vations at the majority of the irrigation districts under study;  

– the Rs, RH, u10 and ET0 estimates resulted in higher and lower performance under Csa and Bks climate conditions, respectively, by 
both reanalysis datasets; conversely, a reverse pattern was obtained for Tair estimates provided by ERA5, being more accurate under 
Bsk. Intermediate performance was observed under Cfa climate zones. 

These results help to improve our understanding of the uncertain sources of reanalysis data under different climate conditions, the 
rational application of these datasets and the potential improvements for the next product generation. In addition, they open promising 
perspectives for the use of reanalysis data as an alternative data source to estimate ET0 for irrigation water management in different 
climate contexts, overcoming the limited availability of observed agrometeorological data in many areas. 
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De Pauw, E., Göbel, W., Adam, H., 2000. Agrometeorological aspects of agriculture and forestry in the arid zones. Agric. For. Meteorol. 103 (1–2), 43–58. 
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data 

assimilation system. Q. J. R. Meteorol. Soc. 137 (656), 553–597. 
Feng, L., Zhou, T., 2012. Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J. Geophys. Res. Atmos. 117. 
Gao, L., Hao, L., 2014. Verification of ERA-Interim reanalysis data over China. J. Subtrop. Resour. Environ. 2014 (9), 75–81. 
Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1 (2), 96–99. 
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