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Lagrangian matheuristics for the

Quadratic Multiple Knapsack Problem

Laura Galli∗ Silvano Martello † Carlos Rey † Paolo Toth†

Draft January 31, 2022

Abstract

The Quadratic Multiple Knapsack Problem (QMKP) is a challenging combinatorial
optimization problem combining the well-known Quadratic Knapsack Problem with
the Multiple Knapsack Problem. After a long stream of research devoted to meta-
heuristic approaches for large-scale instances, only recently some authors started
to study the mathematical properties of the QMKP and proposed exact solution
methods for benchmark instances of smaller size. In this paper, we propose the first
matheuristic approach for solving the QMKP approximately. The proposed method
exploits the strength of a Lagrangian relaxation for the natural quadratic formu-
lation of the QMKP to derive heuristic solutions. Postoptimization local search
procedures are embedded in the final framework. Experimental studies show that
the resulting deterministic matheuristic approach consistently delivers solutions of
very good quality in short computing times.

Keywords: Combinatorial optimization; Knapsack problems; Matheuristics; La-
grangian relaxation.

1 Introduction

In the Quadratic Multiple Knapsack Problem (QMKP), one is given n items, each having
a profit pi and a weight wi (i = 1, . . . , n), m knapsacks, each having a capacity ck (k =
1, . . . ,m), and an additional n × n symmetric profit matrix [pij]. The QMKP calls for
packing m disjoint subsets of items into the knapsacks so that the total weight in any
knapsack does not exceed its capacity, with the objective of maximizing the overall profit
given by: (i) the profit pi of each selected item i, plus (ii) a profit pij for each pair of
items (i, j) packed into the same knapsack. A natural mathematical formulation of the
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problem is the following binary quadratic program:

max
n∑
i=1

m∑
k=1

pixik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pijxikxjk (1)

s.t.
n∑
i=1

wixik ≤ ck (k = 1, . . . ,m) (2)

m∑
k=1

xik ≤ 1 (i = 1, . . . , n) (3)

xik ∈ {0, 1} (i = 1, . . . , n; k = 1, . . . ,m), (4)

where xik takes the value one iff item i is packed into knapsack k (i = 1, . . . , n; k =
1, . . . ,m). Note that the objective function (1) is the sum of a linear term and a quadratic
term expressing linear and pairwise profits, respectively. Inequalities (2) express the
traditional knapsack capacity constraints, while inequalities (3) forbid an item to be
packed into more that one knapsack. We assume throughout the paper that pi, wi, and
ck are positive integers (i = 1, . . . , n, k = 1, . . . ,m), and that pij is a nonnegative integer
with pij = pji (i, j = 1, . . . , n).

The QMKP comes from the combination of two intensively studied combinatorial op-
timization problems: the Quadratic Knapsack Problem (QKP) and the Multiple Knapsack
Problem (MKP). Both the QKP and the MKP are special cases of the QMKP, arising
when m = 1 (so constraints (3) become redundant) and when pij = 0 (i, j = 1, . . . , n)
(so the quadratic term in (1) vanishes), respectively. When both restrictions hold, the
resulting problem is the famous 0-1 Knapsack Problem (01KP). For the vast literature
on QKP, MKP, and 01KP, the reader is referred to the classical monographs by Martello
and Toth [15] and Kellerer et al. [14], as well as to the recent survey by Cacchiani et al.
[3].

While the 01KP is weakly NP-hard and can be solved in pseudo-polynomial time,
both the QKP and the MKP are strongly NP-hard, implying strong NP-hardness for
the QMKP as well. In addition to its theoretical intractability, the QMKP (which arises
in a number of real-world situations like, e.g., project management, capital budgeting,
product-distribution system design) is very difficult to solve in practice.

The QMKP was defined in 2006 by Hiley and Julstrom [12], who studied the case
(commonly encountered in the literature) in which all capacities are equal. They pro-
posed three heuristic algorithms for its approximate solution and a benchmark set of
instances with n ∈ {100, 200} and m ∈ {3, 5, 10}. In the following decade, a number of
meta-heuristic approaches was computationally tested on these instances. We mention
in particular those by Singh and Baghel [18] (genetic algorithm), Sundar and Singh [20]
(artificial bee colony), Soak and Lee [19] (memetic algorithm), Garcia-Martinez et al.
[10, 11] (strategic oscillation and a Tabu search), Chen et al. [5, 6] (threshold search and
evolutionary path relinking). The last approaches were later improved by Qin et al. [16]
and Tlili et al. [21]. A local branching approach was recently proposed by Aı̈der et al.
[1].

The study of exact methods for the QMKP started in 2019, when Bergman [2] pre-
sented the first exact algorithm for the problem, obtained from an exponentially-sized
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formulation, solved through Branch-and-Price. He used the generation scheme of [12]
to produce new (smaller) instances with n ∈ {20, 25, 30, 35} and m ∈ {3, 5, 10}. More
recently, Galli et al. [9] studied effective polynomial-size formulations and relaxations of
the problem leading to a decomposable structure, and proposed new medium-size bench-
mark sets (produced with the instance generator of [2]) with n ∈ {40, 45, 50, 55, 60} and
m ∈ {3, 5, 10}. Computational experiments showed that off-the-shelf solvers like CPLEX
applied to the decomposable model are competitive with the Bergman algorithm for small-
size instances. A combinatorial branch-and-bound algorithm was very recently proposed
by Fleszar [7] for the case where all knapsack capacities are equal, computationally im-
proving on the previous methods. In the following, we consider such a case. (Worth is
mentioning that all benchmark instances from the literature consider the same capacity
value for each knapsack.)

This paper is devoted to the study of matheuristic methods that can be derived from
the mathematical models of the problem. In Section 2, we introduce the Lagrangian
relaxation of (1)-(4) and its dual (see [9] for more details), which are used in Section 3
to obtain a matheuristic approach based on the solution of a variant of the set packing
problem. A postoptimization stage is introduced in Section 4, and the overall deterministic
algorithm is presented in Section 5. The outcome of computational experiments on small
and medium size instances is reported in Section 6. Conclusions follow in Section 7.

2 Lagrangian relaxation

Let us define a vector λ of nonnegative Lagrangian multipliers λi (i = 1, . . . , n), and relax
in a Lagrangian fashion cardinality constraints (3). We get

L(λ) =
n∑
i=1

λi + max
n∑
i=1

m∑
k=1

(pi − λi)xik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pijxikxjk (5)

s.t.
n∑
i=1

wixik ≤ ck (k = 1, . . . ,m) (6)

xik ∈ {0, 1} (i = 1, . . . , n; k = 1, . . . ,m). (7)

Note that the dualization of constraints (3) decomposes the model into m indepen-
dent (single) QKPs, sharing the same input for what concerns the items, with capacities
c1, c2, . . . cm, respectively. Further observe that, if two knapsacks have the same capacity
value, then the corresponding QKPs are identical. Therefore, for a given vector λ of
multipliers, upper bound L(λ) can be obtained by solving a single QKP for each different
capacity value, i.e., just one single QKP when all capacities are identical. Also note that
the Lagrangian linear profits (pi − λi) (i = 1, . . . , n) can take negative values.

Coming to the Lagrangian dual problem of finding L(λ?) = minλ≥0 L(λ), while the
optimal multipliers cannot be computed efficiently, “good” approximations of λ? can
be obtained by traditional subgradient optimization. A more sophisticated technique,
known as the proximal bundle method (see Frangioni [8]), which can be halted after a
prefixed number of iterations, yields either the optimal multiplier vector λ? or a good
approximation of it.
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The computer code ProximalBundle, implemented by Frangioni [8] and freely avail-
able at the GitLab repository, produces, at each iteration, a possibly improved vector λ of
Lagrangian multipliers and the corresponding upper bound L(λ). We denote as λ̃ the best
Lagrangian multiplier vector determined during the execution of the bundle procedure,
and with L(λ̃) the corresponding upper bound. In our case, each bundle iteration re-
quires the optimal solution of a QKP: this is obtained by executing the C code quadknap,
available at the home page of D. Pisinger. This code implements the QKP algorithm by
Caprara et al. [4], and is currently the most effective code for optimally solving the QKP
when the linear profits can take negative values. Since the QKP is a strongly NP-hard
problem, it might be necessary to halt the execution of quadknap after a certain elapsed
time (in which case the upper bound provided in the current iteration of the bundle pro-
cedure may no longer be valid). In the next section, we show that, in any case, the set
of QKP solutions provided by the bundle procedure can be used to derive an effective
matheuristic algorithm for the QMKP.

3 Matheuristic scheme

In this section, we introduce the basic idea underlying the Lagrangian deterministic
matheuristic for the QMKP. Our starting point is that of creating a family F of promising
subsets of items that can be used to construct a feasible partial solution to the QMKP by
filling “some” of the knapsacks. A promising subset is one that is likely to appear in a
good quality (possibly optimal) solution to the QMKP. To do that, we take advantage of
the subsets of items produced during the bundle iterations (as solutions to the QKP sub-
problems). In particular, our criterion for inserting a subset in F is that the upper bound
L(λ) produced at the corresponding bundle iteration be smaller than a given threshold

UBM = αL(λ̃) (where α is a prefixed parameter with α > 1). For the case of identical
subsets, only one copy is retained. We denote the selected subsets as

Bh ⊂ {1, . . . , n} (h = 1, . . . , s), (8)

where s = |F|. Let

ahi =

{
1 if item i ∈ Bh

0 otherwise
(h = 1, . . . , s; i = 1, . . . , n) (9)

be the corresponding incidence matrix, and observe that subsets Bh will normally have
nonempty intersections. Note that only “some” knapsacks will be filled according to the
subsets in F . (In fact, there may not even exist m disjoint subsets in F .) More precisely,
we define a parameter rmax < m representing the maximum number of (disjoint) subsets
of F that can be selected to fill the knapsacks. Our approach consists of two phases:

1. Select at most rmax disjoint subsets Bh from family F .
Let S? denote the family of selected subsets, and r = |S?|.

2. Pack the subsets in S? into knapsacks 1, . . . , r.
Then iteratively pack into knapsacks r+1, . . . ,m subsets of unpacked items obtained
by solving a series of (single) QKPs.
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3.1 Phase 1

This phase requires to solve a combinatorial problem that can be seen as a generalization
of the well-known Set Packing Problem (SPP), obtained by limiting the number of selected
subsets. We denote such problem as the Cardinality Constrained Set Packing Problem
(CCSPP). The CCSPP can then be formally defined as

(CCSPP) max
s∑

h=1

yh (10)

s.t.
s∑

h=1

ahiyh ≤ 1 (i = 1, . . . , n) (11)

s∑
h=1

yh ≤ rmax (12)

yh ∈ {0, 1} (h = 1, . . . , s), (13)

where yh takes the value one if subset Bh is chosen and the value zero otherwise. Con-
straints (11) ensure that the selected subsets are disjoint, while constraint (12) imposes
the maximum cardinality to the family of subsets. The pseudocode implementing Phase
1 is given in Algorithm 1.

Algorithm 1: Procedure Bundle

input : A QMKP instance I
output: A family S? ⊆ F of disjoint item subsets

A Lagrangian multiplier vector λ̃

1 execute ProximalBundle on (5)-(7);
2 let Bh (h = 1, . . . , s) be the subsets in family F ;
3 solve the CCSPP (10)-(13);
4 y? ← CCSPP optimal solution;
5 S? ← {Bh : h ∈ {1, . . . , s}, y?h = 1}.

In the special case where rmax = s the decision version of the CCSPP reduces to the
SPP, one of the famous Karp’s 21 NP-complete problems [13]. This proves that the
CCSPP is NP-hard.

The solution to the CCSPP in procedure Bundle is obtained through an MILP solver
(CPLEX 20.0 in our case).

3.2 Phase 2

The second phase of the matheuristic approach consists of either one or two steps, de-
pending on the r value produced by the previous phase. If r < m − 1, we iteratively
solve m − r − 1 (single) QKPs on the unpacked items, with Lagrangian linear profits
(pi − λ̃i). In any case, the m-th knapsack is assigned a set obtained by solving a QKP
with the original linear profits pi. We denote as QKP(T ) the (single) QKP induced by a
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subset T of items with knapsack capacity c and appropriately defined item profits. The
corresponding procedure is shown in Algorithm 2.

Algorithm 2: Procedure Pack

input : A family S? ⊆ F of disjoint item subsets
A Lagrangian multiplier vector λ̃

output: A feasible solution x to the QMKP

1 r := |S?|;
2 pack the r subsets of S? into knapsacks 1, . . . , r;
3 T ← set of the remaining (unpacked) items;
4 if r < m− 1 then
5 for ` := r + 1 to m− 1 do

6 execute quadknap(T) with linear profits pi − λ̃i (i ∈ T );
7 Q ← set of items in the QKP(T ) solution;
8 pack the items of Q into knapsack `;
9 T := T \Q

10 end

11 end
12 execute quadknap(T) with linear profits pi (i ∈ T );
13 Q ← set of items in the QKP(T ) solution;
14 pack the items of Q into knapsack m.

The core matheuristic scheme consists thus of consecutively executing procedures
Bundle and Pack.

4 Postoptimization

In this section, we show how to heuristically improve a feasible solution to the QMKP.
We adopt the following notation:

• z(x) = objective function value of a feasible solution x;

• xbest = incumbent solution, UB = upper bound on the optimal solution value.
These quantities are assumed to be global variables;

• K(i) = knapsack where item i is currently packed (i = 1, . . . , n). We assume that
an unpacked item i is packed into a dummy knapsack m+ 1;

• X(k) = set of items currently packed into knapsack k, with W (k) =
∑

i∈X(k)wi
(k = 1, . . . ,m) and W (m+ 1) =∞;

The postoptimization approach makes use of two procedures:

• a procedure Delete which, given a feasible solution, removes, according to two
possible criteria, some of the currently packed items;
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• a procedure LocalSearch which improves a feasible solution through classical local
search moves.

4.1 Item removal

For each knapsack k (k = 1, . . . ,m) and each item i ∈ X(k), we define a global profit
pi given by its profit pi plus the overall pairwise profit it currently produces. The items
of X(k) can be sorted either according to nondecreasing global profit, or according to
global profit per unit weight, and a prefixed percentage γ of the first sorted items is then
removed from X(k). The corresponding procedure is provided in Algorithm 3.

Algorithm 3: Procedure Delete

input : A feasible solution x to an instance I
a parameter d ∈ {1, 2}, a positive parameter γ < 1

output: A feasible solution x− to I with some items removed

1 x− := x ; /* initialize */

2 for k := 1 to m do
3 foreach i ∈ X(k) do pi := pi +

∑
j∈X(k)\{i} pij; /*global profit*/

4 if d = 1 then sort the items i ∈ X(k) by nondecreasing pi values
5 else sort the items i ∈ X(k) by nondecreasing pi/wi values;
6 nd := bγ · |X(k)|c;
7 remove the first nd items i from X(k) and set the corresponding x−ik to 0

8 end

4.2 Local search

In order to improve the solution produced by the Lagrangian matheuristic described in the
previous section, we embedded some classical local search basic moves from the literature
(item exchanges and relocations). The framework is inspired by a similar one successfully
adopted by Qin et al. [16] within a randomized, non-deterministic Tabu search algorithm
for the QMKP. The main characteristic of such scheme is that of alternating moves that
maintain feasibility and moves that can produce infeasible solutions, and repairing the
final solution if infeasible.

The deterministic local search method, presented in Algorithm 4, consists of two main
steps:

• Step 1 performs a local search that preserves feasibility. It iteratively invokes two
procedures:

– BestExchange tries to improve a feasible solution by swapping pairs of items;

– BestReloc tries to improve a feasible solution by moving items to a different
knapsack.
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Algorithm 4: Procedure Local Search

input : A feasible QMKP solution x
output: A possibly improved QMKP solution xbest

1 x′ := x;
2 /*Step 1. Feasible Local Search */
3 d := 1;
4 while d ≤ 2 do
5 if d = 1 then x ← BestExchange(x′) else x ← BestReloc(x′);
6 if z(x) > z(x′) then x′ := x, d := 1 else d := d+ 1;

7 end
8 xbest := x′ ;
9 /*Step 2. Infeasible Local Search */

10 Stop := Feas := false;
11 while Stop = false do
12 if Feas = true then
13 x̃← BestExchange(x′);
14 x← BestReloc(x′);
15 if z(x̃) > z(x) then x := x̃;
16 if z(x) > z(x′) then x′ := x, Feas := true else Feas := false;
17 xbest := x′

18 else
19 x̂ := x′;
20 for k := 1 to m do
21 if W (k) < ck then x← InfRelocA(x′, k) else x← InfRelocB(x′, k);
22 if z(x) > z(x̂) then x̂ := x

23 end
24 if z(x̂) = z(x′) then
25 Stop := true

26 else
27 Stop := false, x′ := x̂;
28 if x′ is feasible then xbest := x′, Feas := true else Feas := false

29 end

30 end

31 end
32 if x′ is infeasible then x′ ← Repair(x′);
33 if z(x′) > z(xbest) then xbest := x′
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Step 1 iterates BestExchange until no improvement is obtained, and then switches
to BestReloc (possibly returning later to BestExchange);

• Step 2 consists of a main while loop which alternates between a stage that pre-
serves feasibility and a stage that can produce infeasible solutions. The former stage
invokes in sequence both procedures above, iterating until no improvement is ob-
tained. The latter stage is then executed by invoking two procedures which can
produce an infeasible solution by relocating items:

– procedures InfRelocA and InfRelocB try to move a currently packed item to
a different knapsack, irrespective of a possible capacity violation.

If such relocating procedures are unable to produce an improved (even if infeasible)
solution, the local search terminates. Otherwise, one of the two stages is performed,
depending on the feasibility of the improved solution. When the while loop is
ended, if the incumbent solution is infeasible,

– procedure Repair removes, exchanges, or relocates items until a feasible solu-
tion is obtained.

A detailed description of the local search procedures follows.

4.2.1 Local search procedures

In this section, we provide more details on the inner local search procedures. Despite being
based on classical moves from the literature, for the sake of completeness the corresponding
pseudocodes are given in the Appendix.

Procedure BestExchange, shown in Algorithm 7, tries to exchange pairs of items (i,j)
(with j > i) not packed into the same knapsack, provided the exchange is both feasible
and profitable. (Note that one of the two items can currently be unpacked.) An i − j
exchange is feasible if both capacity constraints of knapsacks K(i) and K(j) are preserved.
The profit variation produced by the exchange is:

∆ =



∑
`∈X(K(j))\{j}

pi`+
∑

`∈X(K(i))\{i}

pj`−
∑

`∈X(K(i))

pi`−
∑

`∈X(K(j))

pj` if K(i) ≤ m andK(j) ≤ m

pj +
∑

`∈X(K(i))\{i}

pj` − pi −
∑

`∈X(K(i))

pi` if K(i) ≤ m and K(j) = m+ 1

pi +
∑

`∈X(K(j))\{j}

pi` − pj −
∑

`∈X(K(j))

pj` if K(i) = m+ 1 and K(j) ≤ m

where we assume that pii = 0 ∀i. An exchange is thus profitable if ∆ > 0.
Procedure BestReloc, shown in Algorithm 8, shares part of the structure of BestExchange.

It tries to move an item i (possibly unpacked) to a different (non dummy) knapsack k, pro-
vided the move is both feasible and profitable. In this case, the profit variation produced
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by the relocation is:

∆ =


∑
`∈X(k)

pi` −
∑

`∈X(K(i))

pi` if K(i) ≤ m

pi +
∑
`∈X(k)

pi` if K(i) = m+ 1

and the move is profitable if ∆ > 0.
The next two procedures, InfRelocA and InfRelocB, can produce infeasible solutions

in which the capacity constraint of some knapsack is violated. Procedure InfRelocA

is given in Algorithm 9. It tries to move to a specified knapsack k an item currently
packed into a more filled knapsack. The item i (if any) producing the highest normalized
objective function increase is selected, irrespective of a possible violation of the capacity
constraint of knapsack k. The normalization is performed as in Qin et al. [16], i.e., the
objective function increase is divided by wβi with β ∈ (0, 1). Procedure InfRelocB, shown
in Algorithm 10, shares part of the structure of InfRelocA, the main difference being that
the item is (possibly) moved to a less (or equally) filled knapsack.

The last procedure, Repair, shown in Algorithm 11, is only executed if the incumbent
solution produced by the previous steps turns out to be infeasible. It tries to iteratively
remove an item, exchange a pair of items, or relocate an item with the main objective of
reducing the weight surplus

σ =
m∑
k=1

max{0,W (k)− c}, (14)

where c is the (common) knapsack capacity, breaking ties by the largest profit of the
resulting solution. This strategy differs from the one adopted in the repair procedure by
Qin et al. [16] which privileges the largest resulting profit. At each iteration, the best
move is performed and the execution terminates as soon as a feasible solution is obtained.

4.3 Overall postoptimization

The overall postptimization starts by performing a local search on the current solution.
It then executes twice the sequence Delete – LocalSearch, for the two removal criteria
previously defined. We assume in the following that the incumbent solution xbest is a
global variable. The pseudocode is given in Algorithm 5.

5 Complete algorithm

In this section, we introduce our complete deterministic algorithmic framework, which
combines the matheuristic approach of Section 3, a “weighted” matheuristic variant, and
the postoptimization method of Section 4.

The basic idea for an effective implementation of the matheuristic approach is to
explore a large number of “high quality” combinations of the item subsets produced by
procedure Bundle and to avoid exploring previously generated solutions multiple times.
To this end, we define a weighted variant of the CCSPP in which:
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Algorithm 5: Procedure Postopt

input : A feasible solution x to an instance I
output: A possibly improved solution xbest to I

1 x ← LocalSearch(x);
2 for d := 1 to 2 do
3 del := true;
4 while del = true do
5 x− ← Delete(x,d);
6 x− ← LocalSearch(x−);
7 if z(x−) > z(x) then x := x− else del := false

8 end

9 end
10 if z(x) > z(xbest) then
11 xbest := x
12 end

(i) each subset Bh ∈ F is weighted by a measure gh (h = 1, . . . , s) of its “quality” (to
be defined later);

(ii) a fixed number r of disjoint subsets of F must be selected to fill the knapsacks;

(iii) a collection S− of subset families is forbidden.

The corresponding model is

(CCSPP1) max
s∑

h=1

ghyh (15)

s.t.
s∑

h=1

ahiyh ≤ 1 (i = 1, . . . , n) (16)

s∑
h=1

yh = r (17)∑
h∈S

yh ≤ |S| − 1 (S ∈ S−) (18)

yh ∈ {0, 1} (h = 1, . . . , s), (19)

where points (i)-(iii) above are implemented by equations (15), (17), and (18), respec-
tively.

The overall algorithm, procedure GMRT shown in Algorithm 6,

• starts by generating, through procedure Bundle, a family S? of item subsets, and
setting r = |S?|;

• defines, for each subset Bh (h = 1, . . . , s), two different types of weights:
g1h, the cardinality of subset Bh,
g2h, the sum of all linear and pairwise profits produced by subset Bh;
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Algorithm 6: Procedure GMRT

input : A QMKP instance I
output: A feasible solution xbest to I

1 S?, λ̃ ← Bundle(I);
2 r := |S?|, xbest = ∅ ; /* initialize */

3 for h := 1 to s do
4 g1h := |Bh|, g2h :=

∑
i∈Bh

pi +
∑

i∈Bh

∑
j∈Bh : j>i pij ; /* weights */

5 end
6 for r := 1 to r do
7 S− := ∅, ` := 1 ; /* initialize */

8 repeat
9 if ` is odd then

10 gh := g1h (h = 1, . . . , s)
11 else
12 gh := g2h (h = 1, . . . , s)
13 end
14 solve the CCSPP1 (15)-(19) with an MILP solver;
15 y? ← CCSPP1 optimal solution;
16 S? ← {Bh : h ∈ {1, . . . , s}, y?h = 1};
17 if S? 6= ∅ then
18 x ← Pack(S?,λ̃);
19 x← Postopt(x);
20 if z(x) > z(xbest) then
21 xbest := x;

22 if z(xbest) = L(λ̃) then
23 terminate ; /* Optimal solution found */

24 end

25 end
26 S− := S− ∪ S?
27 end
28 ` := `+ 1

29 until ` = `max or S? = ∅;
30 end
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• executes a series of iterations, one for each value r = 1, . . . , r. Each iteration consists
of repeatedly, in turn using weights g1h and g2h,

– generating a new QMKP solution from the sequence CCSPP1–Pack, and postop-
timizing it through Postopt;

– adding the new family S? produced by CCSPP1 to the current collection S−
of forbidden families.

An iteration ends when either CCSPP1 is no longer able to produce a solution (due
to the current S−) or a prefixed maximum number `max of repetitions is reached:
S− is then reset to empty, and the next iteration is performed.

The process is terminated if an optimal QMKP solution is found.
Preliminary computational experiments showed that larger instances (n ≥ 45 and

m ≥ 5) can require high computing times for the execution of the quadknap code at each
bundle iteration. For this reason, in the final version of the algorithm, we use two time
limits within the ProximalBundle code executed by the Bundle procedure invoked by
GMRT:

• TLB = time limit for the global execution of the ProximalBundle code. If TLB is
reached, the best Lagrangian multiplier vector λ̃ and the best upper bound L(λ̃)
found by the bundle code could be improved;

• TLQ = time limit for the execution of the quadknap code at each iteration of the
bundle code. If TLQ is reached, the upper bound computed at the current iteration
is not a valid upper bound for the current instance.

In addition, it turns out that by executing the GMRT algorithm with different TLB and/or
TLQ values, one can obtain different QMKP solutions that are not dominating each other.
Therefore, our final solution approach to the QMKP consists of running GMRT twice, with
two different pairs of time limits, (TLB 1,TLQ 1) and (TLB 2,TLQ 2), as follows:

• Run 1: during the first run of GMRT, we store in UB1 the best upper bound value
(and the corresponding Lagrangian multiplier vector) found at the bundle iterations
for which the CPU time of quadknap did not reach time limit TLQ 1. Note that
UB1 represents a valid upper bound for the current instance;

• Run 2: this run of GMRT is only performed when at least one of the two time
limits was reached in the first run. We set TLB 2 and TLQ 2 as the new time
limits, perform a “warm” start from the best valid upper bound UB1 (and the
corresponding Lagrangian multiplier vector) found in Run 1, and retain the best
QMKP solution found.

6 Computational experiments

The deterministic matheuristic algorithm presented in the previous sections was imple-
mented in C++ and computationally evaluated by comparing its results with those pro-
duced by the fastest exact algorithm for the QMKP, namely the branch-and-bound algo-
rithm recently proposed by Fleszar [7]. The comparison was performed using small and
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medium size benchmark instances from the literature. (No computational experiments
of other heuristic algorithms on these instances are reported in the literature.) The ex-
periments were performed on a single thread of an Intel c© CoreTM i7-8700K running at
3.70GHz with 32 GB RAM.

The following software was used:

• C++ code of the branch-and-bound algorithm by Fleszar [7], available at https:

//sites.google.com/view/kfleszar/research;

• C++ code ProximalBundle by Frangioni [8], available at https://gitlab.com/

frangio68/ndosolver_fioracle_project;

• C code quadknap, available at http://hjemmesider.diku.dk/~pisinger/codes.

html;

• MILP commercial software CPLEX 20.0.

The parameter values used for all our experiments are as follows:

– α = 1.02;

– β = 0.7;

– γ = 0.25;

– `max = 300;

– rmax =

{
min{3, dm/2e} if n ≤ 35

dm/2e if n > 35;

– TLB 1 = 500 seconds, TLQ 1 = 5 seconds;

– TLB 2 = 200 seconds, TLQ 2 = 3 seconds.

The benchmark instances consist of:

• two sets of small-size instances:

– HJ, based on the generating scheme of Hiley and Julstrom [12]. For each triple
(n,m, d) with n ∈ {20, 25, 30, 35}, m ∈ {3, 5, 10}, and d ∈ {0.25, 0.5, 0.75} (d
being the density, defined as the fraction of non-zero pairwise profits), five
instances were generated, for a total of 180 instances.
The linear and pairwise item profits and the weights are uniformly random
integers in (0, 100) and (1, 50), respectively.
The knapsack capacities are set to b0.8

∑n
i=1wi/mc;

– SS, 45 groups of five instances each, based on the generating scheme of Saraç
and Sipahioglu [17]. The resulting 225 instances have n = 30, m ∈ {3, 5, 10},
d = 0.5.
The linear and pairwise profits are randomly generated using a parameter
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ρ ∈ {1, 2, 3} which produces different degrees of correlation with the weights.
The item weights are drawn from uniform distributions with five different upper
limits depending on a parameter ψ ∈ {1, 2, 3, 4, 5}.
The knapsack capacities are as in HJ;

• HJM, one set of medium-size instances generated by Galli et al. [9] according to the
HJ scheme, using the instance generator by Bergman [2]. For each triple (n,m, d)
with n ∈ {40, 45, 50, 55, 60}, m ∈ {3, 5, 10}, and d ∈ {0.25, 0.5, 0.75}, five instances
were generated, for a total of 225 instances.

Benchmarks HJ and SS by Bergman [2], can be downloaded at the INFORMS address:
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_file/

ijoc.2018.0840-instances.sm2.zip.
Benchmark HJM by Galli et al. [9] can be downloaded from:

http://or.dei.unibo.it/instances/quadratic-multiple-knapsack-problem-instances.
Tables 1 and 2 provide the results for the small-size instances. The branch-and-bound

algorithm by Fleszar [7] was run with a time limit of 3600 seconds. All CPU times are
expressed in seconds. Each line refers to a triple (n,m, d) (Table 1) or to a 4-tuple (Table
2) and provides the average values over the corresponding five instances:

• the first group of four columns refers to the Fleszar [7] algorithm: the entries report
the best solution value found (BestF), the upper bound value (UB), the percentage
gap (%GapF) (computed as 100 (UB - BestF)/BestF), and the CPU time (Time);

• the second group of five columns refers to the “pure” metaheuristic algorithm of
Section 3, i.e., before the postoptimization phase: the entries report the best so-
lution value found (BestM), the percentage gap (%Gap) (computed as 100 (BestF

- BestM)/BestF), the CPU time (Time), the upper bound value (UB) computed
through the Lagrangian relaxation of Section 2, and the CPU time (T-UB) spent for
its computation;

• the third group of three columns refers to the complete algorithm GMRT of Section
5: the entries report the best solution value found (BestMP), the percentage gap
(%Gap) (computed as 100 (BestF - BestMP)/BestF), and the CPU time (Time) spent
in total for its computation.

For these instances, time limits TLB 1 and TLQ 1 were never reached in Run 1, so
the code never invoked Run 2. Tables 1 and 2 show that, on small-size instances, the
GMRT algorithm consistently delivers solutions of very good quality in short computing
times. In particular, on all HJ and SS instances, the percentage gap of GMRT is either
zero or very close to, and the computing times for n ≥ 30 are at least one order of
magnitude smaller than those taken by the exact algorithm by Fleszar [7]. The upper
bound values produced by GMRT are not very far from the tighter values obtained by such
algorithm. A comparison between the percentage gaps of the last two groups of columns
reveals the importance of the postoptimization phase, which significantly improves on the
matheuristic solution, with a fairly low impact on the overall CPU time.

15



Instance Fleszar Matheuristic Matheur.+Postopt
n m d BestF UB %GapF Time BestM %Gap Time UB T-UB BestMP %Gap Time

20 3 25 2289.20 2289.20 0.00 0.03 2286.00 0.16 0.07 2295.40 0.06 2289.20 0.00 0.09
20 5 25 1916.20 1916.20 0.00 0.07 1911.00 0.23 0.06 1918.20 0.05 1916.20 0.00 0.13
20 10 25 1199.00 1199.00 0.00 0.01 1198.00 0.10 0.05 1199.00 0.04 1199.00 0.00 0.05
20 3 50 3079.80 3079.80 0.00 0.09 3076.60 0.11 0.07 3093.60 0.07 3079.80 0.00 0.10
20 5 50 2296.60 2296.60 0.00 0.21 2268.80 1.16 0.07 2297.00 0.06 2296.60 0.00 0.25
20 10 50 1427.00 1427.00 0.00 0.01 1304.00 7.76 0.05 1433.60 0.04 1427.00 0.00 0.08
20 3 75 3553.80 3553.80 0.00 0.17 3530.60 0.62 0.07 3592.40 0.07 3543.80 0.27 0.12
20 5 75 2640.60 2640.60 0.00 0.16 2633.40 0.28 0.08 2653.80 0.06 2640.60 0.00 0.34
20 10 75 1639.60 1639.60 0.00 0.01 1591.80 2.66 0.05 1639.60 0.04 1639.60 0.00 0.06

Avg 2226.87 2226.87 0.00 0.08 2200.02 1.45 0.06 2235.84 0.06 2225.76 0.03 0.14
25 3 25 3002.40 3002.40 0.00 0.20 2981.20 0.73 0.14 3014.20 0.13 3000.20 0.08 0.20
25 5 25 2559.00 2559.00 0.00 0.67 2559.00 0.00 0.13 2565.80 0.11 2559.00 0.00 0.32
25 10 25 1781.20 1781.20 0.00 0.08 1771.00 0.60 0.12 1784.40 0.09 1773.80 0.44 0.53
25 3 50 4275.00 4275.00 0.00 1.08 4275.00 0.00 0.18 4294.80 0.17 4275.00 0.00 0.27
25 5 50 3272.80 3272.80 0.00 2.49 3272.80 0.00 0.13 3282.80 0.11 3272.80 0.00 0.33
25 10 50 2093.20 2093.20 0.00 0.14 2087.20 0.29 0.09 2093.20 0.08 2093.20 0.00 0.10
25 3 75 5155.00 5155.00 0.00 3.46 5137.00 0.35 0.26 5178.40 0.25 5155.00 0.00 0.39
25 5 75 3774.80 3774.80 0.00 5.99 3774.80 0.00 0.21 3807.20 0.17 3774.80 0.00 1.26
25 10 75 2420.20 2420.20 0.00 0.16 2408.80 0.47 0.14 2427.00 0.13 2417.40 0.12 2.14

Avg 3148.18 3148.18 0.00 1.58 3140.76 0.27 0.16 3160.87 0.14 3146.80 0.07 0.61
30 3 25 4194.80 4194.80 0.00 0.73 4161.60 0.79 0.41 4202.80 0.39 4194.80 0.00 0.52
30 5 25 3550.40 3550.40 0.00 6.51 3540.20 0.29 0.26 3557.60 0.22 3550.40 0.00 0.58
30 10 25 2558.40 2558.40 0.00 10.86 2558.40 0.00 0.19 2562.40 0.17 2558.40 0.00 3.34
30 3 50 5858.60 5858.60 0.00 19.09 5829.20 0.49 0.83 5903.20 0.79 5850.80 0.13 1.07
30 5 50 4609.40 4609.40 0.00 21.39 4595.80 0.27 0.28 4611.20 0.27 4609.40 0.00 1.12
30 10 50 2963.20 2963.20 0.00 6.35 2890.80 2.08 0.21 2964.60 0.19 2963.20 0.00 6.61
30 3 75 7210.20 7210.20 0.00 42.83 7207.00 0.04 1.02 7287.80 0.97 7210.20 0.00 1.30
30 5 75 5362.00 5362.00 0.00 30.57 5347.20 0.28 0.35 5375.80 0.26 5362.00 0.00 1.03
30 10 75 3283.40 3283.40 0.00 2.16 3260.40 0.73 0.24 3291.80 0.14 3281.00 0.08 1.02

Avg 4398.93 4398.93 0.00 15.61 4376.73 0.55 0.42 4417.47 0.38 4397.80 0.02 1.84
35 3 25 5277.80 5277.80 0.00 10.74 5272.40 0.11 2.34 5304.00 2.26 5272.40 0.11 2.75
35 5 25 4463.00 4463.00 0.00 87.35 4416.60 1.06 0.63 4472.80 0.51 4462.80 0.00 1.87
35 10 25 3318.60 3318.60 0.00 45.29 3309.60 0.28 0.51 3323.60 0.27 3317.60 0.03 10.96
35 3 50 7730.60 7730.60 0.00 443.02 7704.00 0.34 3.57 7768.00 3.47 7723.00 0.09 3.87
35 5 50 6000.20 6000.20 0.00 1412.79 5955.60 0.73 0.83 6021.00 0.80 6000.00 0.00 3.02
35 10 50 4062.20 4062.20 0.00 86.65 4028.80 0.84 0.33 4068.60 0.26 4041.80 0.50 3.18
35 3 75 9944.40 9944.40 0.00 271.80 9904.60 0.38 3.03 9993.40 2.98 9944.40 0.00 3.46
35 5 75 7204.20 7204.20 0.00 731.79 7189.20 0.20 1.52 7226.60 1.03 7202.60 0.02 5.82
35 10 75 4482.60 4482.60 0.00 260.15 4449.60 0.73 1.83 4498.40 0.40 4479.60 0.07 26.77

Avg 5831.51 5831.51 0.00 372.18 5803.38 0.52 1.62 5852.93 1.33 5827.13 0.09 6.86
Over. Avg 3901.37 3901.37 0.00 97.36 3880.22 0.70 0.57 3916.78 0.48 3899.37 0.05 2.36

Table 1: HJ instances. Average values over 5 instances.
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Instance Fleszar Matheuristic Matheur.+Postopt
n m ψ ρ BestF UB %GapF Time BestM %Gap Time UB T-UB BestMP %Gap Time

30 3 1 1 1610.20 1610.20 0.00 65.83 1609.80 0.03 0.66 1618.00 0.63 1610.20 0.00 1.17
30 3 1 2 1425.60 1425.60 0.00 60.97 1425.00 0.04 0.64 1427.40 0.50 1425.60 0.00 0.89
30 3 1 3 1818.00 1818.00 0.00 135.44 1818.00 0.00 0.98 1821.80 0.82 1818.00 0.00 1.56
30 3 2 1 3530.40 3530.40 0.00 63.08 3529.80 0.02 0.78 3544.00 0.64 3530.40 0.00 1.20
30 3 2 2 3032.00 3032.00 0.00 96.54 3030.00 0.07 0.64 3039.00 0.56 3030.00 0.07 1.16
30 3 2 3 3714.00 3714.00 0.00 340.36 3707.60 0.18 1.02 3720.40 0.95 3710.80 0.09 1.83
30 3 3 1 5263.20 5263.20 0.00 159.68 5260.20 0.06 1.09 5289.80 0.98 5263.20 0.00 1.92
30 3 3 2 4188.80 4188.80 0.00 282.75 4188.20 0.01 0.59 4193.60 0.54 4188.20 0.01 0.98
30 3 3 3 5340.80 5340.80 0.00 533.46 5336.00 0.09 0.77 5360.40 0.68 5338.80 0.03 1.65
30 3 4 1 6971.80 6971.80 0.00 69.28 6971.80 0.00 0.98 6990.80 0.90 6971.80 0.00 1.68
30 3 4 2 5964.40 5964.40 0.00 628.57 5960.60 0.07 0.80 5975.80 0.72 5963.60 0.01 1.37
30 3 4 3 7120.80 7120.80 0.00 436.66 7120.40 0.01 0.74 7143.00 0.69 7120.80 0.00 1.35
30 3 5 1 9039.00 9039.00 0.00 62.49 9033.60 0.06 1.02 9059.20 0.91 9037.00 0.02 1.79
30 3 5 2 6566.80 6566.80 0.00 229.49 6565.20 0.02 0.50 6570.20 0.46 6565.40 0.02 0.65
30 3 5 3 8242.80 8242.80 0.00 240.64 8234.80 0.10 0.82 8274.20 0.73 8235.20 0.09 1.62

Avg 4921.91 4921.91 0.00 227.02 4919.40 0.05 0.80 4935.17 0.71 4920.60 0.02 1.39
30 5 1 1 1509.60 1509.60 0.00 354.06 1505.80 0.26 0.46 1514.40 0.41 1509.40 0.01 4.56
30 5 1 2 1382.00 1382.00 0.00 159.25 1381.20 0.05 0.57 1384.20 0.22 1382.00 0.00 1.75
30 5 1 3 1740.00 1740.00 0.00 805.66 1739.60 0.02 2.07 1743.60 0.45 1740.00 0.00 11.05
30 5 2 1 3342.60 3342.60 0.00 637.74 3339.60 0.09 1.92 3355.40 0.39 3340.20 0.07 6.42
30 5 2 2 2933.00 2933.00 0.00 345.75 2929.40 0.13 0.82 2941.00 0.26 2932.80 0.01 3.19
30 5 2 3 3511.60 3511.60 0.00 723.43 3511.20 0.01 0.58 3520.40 0.32 3511.20 0.01 5.92
30 5 3 1 4984.80 4984.80 0.00 594.26 4983.60 0.02 0.51 4996.20 0.41 4983.60 0.02 3.60
30 5 3 2 4041.40 4041.40 0.00 901.17 4040.60 0.02 0.52 4048.40 0.24 4040.60 0.02 2.79
30 5 3 3 5036.80 5036.80 0.00 1877.67 5033.60 0.06 1.18 5048.20 0.37 5036.80 0.00 8.09
30 5 4 1 6546.60 6546.60 0.00 758.69 6530.60 0.23 0.93 6569.80 0.42 6540.80 0.08 6.08
30 5 4 2 5726.60 5736.20 0.16 2127.03 5719.40 0.13 0.95 5741.60 0.28 5720.60 0.11 4.62
30 5 4 3 6704.00 6704.80 0.01 1905.60 6703.20 0.01 0.86 6726.20 0.34 6703.20 0.01 9.43
30 5 5 1 8517.00 8517.00 0.00 1209.14 8508.60 0.11 0.95 8549.80 0.47 8513.60 0.04 7.24
30 5 5 2 6274.80 6287.00 0.20 2129.79 6274.20 0.01 0.49 6295.40 0.24 6274.20 0.01 3.48
30 5 5 3 7762.80 7762.80 0.00 1431.44 7756.40 0.07 1.58 7794.00 0.35 7757.20 0.06 9.38

Avg 4667.57 4669.08 0.02 1064.05 4663.80 0.08 0.96 4681.91 0.34 4665.75 0.03 5.84
30 10 1 1 1366.40 1366.40 0.00 286.16 1357.80 0.63 0.80 1369.80 0.25 1365.60 0.05 6.48
30 10 1 2 1290.20 1290.20 0.00 4.49 1288.40 0.14 0.49 1291.00 0.18 1289.80 0.03 4.09
30 10 1 3 1640.00 1640.00 0.00 96.81 1636.80 0.18 1.67 1645.80 0.20 1638.00 0.11 11.80
30 10 2 1 3069.40 3069.40 0.00 649.28 3063.00 0.21 0.68 3071.80 0.22 3068.80 0.02 9.10
30 10 2 2 2746.80 2746.80 0.00 17.91 2746.20 0.02 0.56 2753.80 0.15 2746.20 0.02 8.92
30 10 2 3 3265.60 3265.60 0.00 74.16 3265.60 0.00 0.59 3276.40 0.20 3265.60 0.00 18.75
30 10 3 1 4575.40 4575.40 0.00 187.47 4572.60 0.07 0.46 4582.40 0.29 4575.20 0.00 15.82
30 10 3 2 3776.40 3776.40 0.00 8.13 3774.00 0.06 0.23 3778.60 0.12 3774.60 0.04 4.96
30 10 3 3 4678.00 4678.00 0.00 439.50 4673.20 0.12 0.53 4685.80 0.21 4673.20 0.12 18.63
30 10 4 1 5989.80 5989.80 0.00 509.02 5981.20 0.13 0.28 5994.00 0.22 5989.80 0.00 4.80
30 10 4 2 5319.20 5319.20 0.00 99.11 5316.60 0.05 0.63 5322.20 0.16 5319.20 0.00 12.26
30 10 4 3 6259.20 6259.20 0.00 310.73 6257.60 0.02 0.17 6267.20 0.14 6259.20 0.00 9.59
30 10 5 1 7863.00 7882.00 0.21 902.33 7840.20 0.29 0.87 7883.20 0.27 7860.40 0.03 12.25
30 10 5 2 5866.80 5866.80 0.00 45.38 5866.80 0.00 0.13 5868.60 0.10 5866.80 0.00 2.33
30 10 5 3 7151.20 7151.20 0.00 40.58 7127.20 0.30 0.29 7158.00 0.16 7151.20 0.00 14.19

Avg 4323.83 4325.09 0.01 244.74 4317.81 0.15 0.56 4329.91 0.19 4322.91 0.03 10.27
Over. Avg 4637.77 4638.69 0.01 511.93 4633.67 0.09 0.77 4649.00 0.42 4636.42 0.03 5.83

Table 2: SS instances. Average values over 5 instances.
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Table 3 provides the results for the medium-size instances HJM. In this case too, the
algorithm by Fleszar [7] was run with a time limit of 3600 seconds. Each line refers to a
triple (n,m, d) and provides the average values over the corresponding five instances:

• the first group of four columns refers to the Fleszar [7] algorithm, and reports the
same information as in the previous tables;

• the second group of five columns refers to Run 1. The entries report the best
upper bound value UB found and the CPU time T-UB needed to obtain it, the best
solution value found (BestMP), the percentage gap (%Gap), computed as 100 (BestF

- BestMP)/BestF and the related CPU time (Time);

• the third group of two columns refers to Run 2, and reports the best upper bound
value UB found by the two runs and the CPU time T-UB of Run 2;

• the fourth and fifth group of three columns each summarize the overall results
(best solution value, percentage gap and CPU time) produced by the matheuristic
approach before and after postoptimization, respectively.

The results in Table 3 show that on larger HJ instances Fleszar’s exact method con-
sistently hits the time limit of 3600 seconds, with few exceptions, mostly on the smaller
(n = 40) instances. For such cases, columns BestF and UB in the first group provide the
best solution and upper bound values, respectively, computed by the branch-and-bound
algorithm before the time limit. Already Run 1 of GMRT (second group of columns) regu-
larly provides solutions of better quality with computing times that are one or two orders
of magnitude smaller. The next group of two columns is only reported to examine the
effect of Run 2 on the upper bound computations: we can observe that: (i) the second
run is only executed for relatively large values of n; (ii) a moderate increase of computing
time occasionally allows to improve the upper bound values.

The overall performance of the proposed approach is summarized in the last two groups
of columns, before and after the postoptimization phase, respectively. The results show
that: (i) before postoptimization the best solutions found are worse than those obtained by
Fleszar’s algorithm; (ii) after postoptimization, the overall algorithm favorably compares
with Fleszar’s algorithm (negative percentage gap values), providing good solutions in
CPU times of few hundred seconds; (iii) the execution of Run 2 further improves the
results obtained after the execution of Run 1, with a moderate increase of CPU time.

7 Conclusions

Recent literature on the QMKP shows an increasing attention by different authors to
develop exact methods for this challenging combinatorial optimization problem. We pro-
pose the first deterministic Lagrangian matheuristic for solving the QMKP approximately.
Our method relies on the strength of the Lagrangian relaxation for the natural quadratic
formulation of the QMKP, which can be exploited to generate “high quality” subsets of
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items to be packed into the knapsacks. Experimental studies show that the method is
competitive with the currently best performing exact algorithm by Fleszar [7] on small
HJ instances with n ≥ 30, and on all SS instances, consistently delivering solutions of
very good quality in much shorter computing times. On the medium-size HJM instances,
the proposed method outperforms the algorithm by Fleszar [7] both in terms of solution
quality and computing time. The results show that the QMKP is very difficult to solve,
especially when n and/or m grow. Directions for future research could thus be the de-
velopment of faster exact algorithms to solve large problem instances. In particular, we
believe that our Lagrangian matheuristic could be embedded within an exact framework
to quickly generate high quality solutions and upper bounds.
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Appendix: Local Search procedures

Algorithm 7: Procedure BestExchange

input : A feasible QMKP solution x
output: A possibly improved QMKP solution x′

1 Stop := false;
2 while Stop = false do
3 Stop := true;
4 for i := 1 to n− 1 do
5 ∆i := 0;
6 for j := i+ 1 to n do
7 if K(j) 6= K(i) and the i− j exchange is feasible and profitable
8 then ∆i := ∆, j∗ := j;

9 end
10 if ∆i > 0 then
11 exchange items i and j∗ and update the relative variables;
12 Stop := false;

13 end

14 end

15 end
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Algorithm 8: Procedure BestReloc

input : A feasible QMKP solution x
output: A possibly improved QMKP solution x′

1 Stop := false;
2 while Stop = false do
3 Stop := true;
4 for i := 1 to n do
5 ∆i := 0;
6 foreach k ∈ {1, . . . ,m} \ {K(i)} do
7 if the relocation of item i to knapsack k is feasible and profitable
8 then ∆i := ∆, k∗ := k;

9 end
10 if ∆i > 0 then
11 relocate item i to knapsack k∗ and update the relative variables;
12 Stop := false;

13 end

14 end

15 end

Algorithm 9: Procedure InfRelocA

input : A feasible or infeasible QMKP solution x′,
a knapsack index k ∈ {1, . . . ,m}

output: A possibly improved (feasible or infeasible) QMKP solution x

1 x := x′, Maxgain := 0;
2 for κ := 1 to m do
3 if κ 6= k and W (κ) ≥ W (k) then
4 foreach i ∈ X(κ) do

5 ∆κ :=
∑
`∈X(κ)

pi`, ∆k :=
∑
`∈X(k)

pi`, gain :=
∆k −∆κ

wβi
;

6 if gain > Maxgain then Maxgain := gain, i∗ := i

7 end

8 end

9 end
10 if Maxgain > 0 then
11 relocate item i∗ to knapsack k and define the relative solution x
12 end
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Algorithm 10: Procedure InfRelocB

input : A feasible or infeasible QMKP solution x′,
a knapsack index k ∈ {1, . . . ,m}

output: A possibly improved (feasible or infeasible) QMKP solution x

1 x := x′, Maxgain := 0;
2 foreach i ∈ X(k) do

3 ∆k :=
∑
`∈X(k)

pi`;

4 for κ := 1 to m do
5 if κ 6= k and W (κ) < W (k) then

6 ∆κ :=
∑
`∈X(κ)

pi`, gain :=
∆κ −∆k

wβi
;

7 if gain > Maxgain then Maxgain := gain, i∗ := i, k∗ := κ

8 end

9 end

10 end
11 if Maxgain > 0 then
12 relocate item i∗ to knapsack k∗ and define the relative solution x
13 end
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Algorithm 11: Procedure Repair

input : An infeasible QMKP solution x′

output: A possibly worse feasible QMKP solution x

1 while x′ is infeasible do
2 σ∗ := +∞, ∆∗ := 0;
3 foreach i ∈ {1, . . . , n} \X(m+ 1) do
4 compute surplus σ and profit variation ∆ produced by removing i;
5 if (σ < σ∗) or (σ = σ∗ and ∆ > ∆∗)
6 then σ∗ := σ, ∆∗ := ∆, move := remove(i);

7 end
8 foreach item pair (i, j) with i, j ∈ {1, . . . , n}, j > i and K(j) 6= K(i) do
9 compute surplusσ and profit variation ∆ produced by exchanging i and j;

10 if (σ < σ∗) or (σ = σ∗ and ∆ > ∆∗)
11 then σ∗ := σ, ∆∗ := ∆, move := exchange(i, j);

12 end
13 foreach item-knapsack pair (i, k) with i ∈ {1, . . . , n} \X(m+ 1)
14 and k ∈ {1, . . . ,m} \K(i) do
15 compute surplusσ and profit variation ∆ produced by relocating i into k;
16 if (σ < σ∗) or (σ = σ∗ and ∆ > ∆∗)
17 then σ∗ := σ, ∆∗ := ∆, move := relocate(i, k);

18 end
19 update solution x′ by executing move

20 end
21 x := x′
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