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Abstract
In the last two decades, significant research efforts have been dedicated to address-
ing the issue of spatial confounding in linear regression models. Confounding occurs 
when the relationship between the covariate and the response variable is influenced 
by an unmeasured confounder associated with both. This results in biased estima-
tors for the regression coefficients reduced efficiency, and misleading interpreta-
tions. This article aims to understand how confounding relates to the parameters of 
the data generating process. The sampling properties of the regression coefficient 
estimator are derived as ratios of dependent quadratic forms in Gaussian random 
variables: this allows us to obtain exact expressions for the marginal bias and vari-
ance of the estimator, that were not obtained in previous studies. Moreover, we pro-
vide an approximate measure of the marginal bias that gives insights of the main 
determinants of bias. Applications in the framework of geostatistical and areal data 
modeling are presented. Particular attention is devoted to the difference between 
smoothness and variability of random vectors involved in the data generating pro-
cess. Results indicate that marginal covariance between the covariate and the con-
founder, along with marginal variability of the covariate, play the most relevant role 
in determining the magnitude of confounding, as measured by the bias.
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1 Introduction

The issue of spatial confounding within linear regression models is particularly rel-
evant in environmental applications, when the aim is to assess the effect of spatially 
varying environmental variables, as for example pollutants, on other environmental 
outcomes. In this context, we delve into the issue of confounding and its far-reaching 
implications, that are useful to overcome such problem in the framework of complex 
environmental data.

The main focus of this paper is to evaluate the impact of unobserved significant 
information on the estimation of regression parameters, an issue known in the litera-
ture as confounding. It arises when the relationship between the covariate and the 
response variable is influenced by an unmeasured confounder associated with both 
(Fig. 1). This can result in severely biased estimates for the regression coefficients 
of the measured covariates. Such deviation from the true values takes place because 
the posited statistical model, assuming a random effect correlated with the covariate, 
tries to model data from a generative mechanism characterized by confounding. It is 
crucial to understand the consequences of confounding when the main objective is 
to estimate the relationship between the response and the covariates through regres-
sion coefficients.

Confounding can occur in various statistical models and research areas, such as 
epidemiology, environmental sciences, public health and physics. Spatial models are 
often employed in these fields, leading to extensive research on spatial confound-
ing. Previous studies have discussed the impact of spatially varying covariates and 
the introduction of spatial random effects on estimation (Clayton et al. 1993; Ber-
nardinelli et al. 1995; Reich et al. 2006). However, it is now widely recognized that 
confounding can still exist even with suitable correlation structures for the residuals. 
The literature on spatial confounding has focused on assessing the strength of spatial 
association between the covariate, the confounder and their interaction, to under-
stand its impact on the sampling properties of regression coefficient estimators. The 
parameters influencing spatial autocorrelation of the covariate and confounder are 
found to be of major relevance. In line with Paciorek (2010), it is commonly asserted 
that a confounder that is smoother than the covariates leads to lower bias and less 
confounding. In this paper we discuss this topic, investigating the dependence of 

Fig. 1  Inter-dependencies 
among variables that character-
ize the data generating process 
(1)-(2)
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confounding on several features of the data generative mechanism. The existing lit-
erature can be divided into two strands. The first strand aims to quantify and evalu-
ate the impact that spatial confounding has on regression coefficients (Paciorek 
2010; Page et al. 2017; Nobre et al. 2021), while the second one focuses on devel-
oping methods that account for spatial confounding to obtain accurate estimates of 
the parameters of interest (Reich et al. 2006; Hodges and Reich 2010; Hughes and 
Haran 2013; Hanks et al. 2015; Hefley et al. 2017; Thaden and Kneib 2018; Papa-
dogeorgou et al. 2018; Guan et al. 2023; Dupont et al. 2022; Yang 2021; Reich et al. 
2021; Marques et al. 2022; Hui and Bondell 2022). The main objective of this arti-
cle is to evaluate the sampling properties of parameter estimators in a simple setup 
with one covariate. A formal study of these sampling properties in the presence of 
confounding is conducted by defining the Data Generating Process (DGP) and a 
separate model for parameter estimation. This is intended to mimic the workflow of 
statistical analysis where data are interpreted as realizations of a random mechanism 
that the researcher tries to infer toward statistical modeling. In this spirit, confound-
ing is about the bias affecting the regression coefficient estimates when the postu-
lated model misses some relevant features of the DGP. Hypotheses underlying the 
posited model lead to different estimators of the regression coefficients such as Ordi-
nary Least Squares (OLS, in regression with spherical disturbances), Generalized 
Least Squares (GLS) and more generally maximum likelihood estimators in mixed 
linear regression models. These estimators can be cast as the same linear function 
of the data with appropriate weighting matrices: this allows a unified treatment of 
the sampling distribution of all these estimators, which is provided in our Sect. 3. 
The estimator sampling properties, such as bias, variance and mean square error, 
conditionally on the covariate process, are derived. They are random variables giv-
ing rise to ratios of dependent quadratic forms (QFs) in Gaussian random variables 
(Provost and Mathai 1992). Following Paolella (2018), it is possible to obtain their 
expected value, providing an analytic expression of the marginal sampling proper-
ties of the estimator by means of the Carlson’s function (Carlson 1963; Lauricella 
1893). These sampling properties serve as indicators of the effect that confounding 
has on target parameters.

Confounding has been a focal point in numerous environmental applications 
where different methods have been proposed for adjusting estimates of the regres-
sion coefficients. To name a few, Dominici et al. (2004) assess the pollution-mortal-
ity relationship due to unmeasured time-varying factors, Paciorek (2010) examines 
the association between ambient air pollution and birthweight in eastern Massachu-
setts, Papadogeorgou et  al. (2018) investigate the effects of power plant emission 
reduction technologies on ambient ozone pollution, Dupont et al. (2022) explore the 
temperature’s impact on the crown defoliation of trees, and Marques et  al. (2022) 
analyze the monthly precipitation variations in Germany. A shared characteristic 
among these methods is the reliance on unverifiable assumptions about the data 
generating process when information regarding confounding variables is absent. 
Although the issues addressed in this paper may not offer direct guidance for esti-
mating regression coefficients in the presence of unobserved relevant information, 
we believe that the theoretical insights presented in the following sections, eluci-
dating the connections between parameters of the data generating process and the 
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bias of estimates, can contribute to the development of novel methods. This will be 
object of future research.

The article is structured as follows: in Sect. 2, we introduce the data generating 
process and the statistical model adopted for inference. In Sect. 3, we elucidate the 
fundamental aspects of confounding in terms of quadratic forms, which enable us to 
furnish the marginal sampling properties of the estimator in a closed-form expres-
sion. Section 4 is dedicated to the introduction of measures concerning the marginal 
variability and smoothness of Gaussian random vectors. To show the relationship 
between these measures and the structure of the DGP, an application is presented in 
Sect. 5. The application concerns two models that are commonly applied in geosta-
tistical analysis and areal data modeling.

2  Analytic framework

Informally, confounding occurs when the regression coefficient of a response vari-
able on a covariate is estimated with lack of information on a third covariate, the 
confounder, which is associated with both. In this section we introduce the data gen-
erating process and the posited statistical model for estimation: sampling properties 
of regression coefficient estimators are derived, conditionally on the covariate distri-
bution. A formal definition of confounding concludes the section.

2.1  The data generating process

To introduce the problem of confounding, a stochastic generative model, i.e. the 
DGP, is considered. Specification of the DGP starts by the following conditional 
distribution of the n-dimensional response vector Y on the covariates X and Z:

where 1n is the n-dimensional unit vector and �y|x,z is the covariance matrix express-
ing the variability of the dependent variable Y  that is not explained by the linear 
relationship with the regressors X and Z . Moreover, By⋅0(xz) denotes the intercept 
term, while By⋅x(z) and By⋅z(x) are the partial regression coefficients that determine the 
strength and direction of the corresponding covariate’s influence. The subscripts of 
the partial regression coefficients aim at pointing out that they quantify the relation-
ship between the response (before the dot) and the covariate which is referred to 
(after the dot), in the presence of the other variable (within brackets) in the condi-
tional mean.

This paper aims at discussing how the features of the joint distribution of X and Z 
affect the sampling distribution of the estimators of By⋅x(z) . Without loss of general-
ity, we consider zero mean processes for both the covariate X and the confounder Z , 
so that 

(
X
⊤,Z⊤

)⊤
∼ N2n

(
0,�x,z

)
 where

(1)Y|X,Z ∼ Nn

(
By⋅0(xz)1n + By⋅x(z)X + By⋅z(x)Z, �y|x,z

)
,
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is the 2n-dimensional joint covariance matrix of X and Z , �x is the marginal covari-
ance matrix of X and �xz = �

⊤

zx
 is the cross-covariance matrix. Expression of each 

block of �x,z as the product of a scalar times a structure matrix R is useful for the 
following  developments. As observed by Paciorek (2010) and Page et  al. (2017), 
the treatment of X and Z as random processes allows for the derivation of analytic 
results that can give insights on confounding: in this paper we extend such analytic 
results leveraging on the theory of quadratic forms in Gaussian variables.

To understand the consequences of lack of information concerning the unob-
served variable Z , it is customary to consider the conditional distribution Y|X mar-
ginalized over Z,

where

is the regression matrix of Y on X which depends on Z through the partial regres-
sion coefficient of Y on Z , By⋅z(x) , and through the regression matrix of Z on X , Az⋅x . 
A well-understood case in terms of confounding is the spherical DGP, obtained by 
considering diagonal structure matrices R = In in Equation (2), i.e.:

Under this DGP, the regression matrix Az⋅x corresponds to the scalar matrix Bz⋅xIn . 
This is due to the fact that cross-correlations cor(Xi, Zj) = 0 ∀i ≠ j . As a conse-
quence, the regression matrix in Equation (3) reduces to the scalar matrix:

The conditional distribution defined in Equation (1), combined with the joint distri-
bution (2), delivers the following joint distribution of Y , X and Z:

where the joint covariance matrix �y,x,z can be expressed as a function of the regres-
sion matrices Ay⋅z and partial regression coefficients as

(2)�x,z =

[
�x �xz

�zx �z

]
=

[
�2
x
Rx �xzRxz

�xzRzx �2
z
Rz

]

Y|X ∼ Nn(By⋅0(x)1n + Ay⋅xX, B
2
y⋅z(x)

�z|x + �y|x,z),

(3)Ay⋅x = �yx�
−1
x

= By⋅x(z)In + By⋅z(x)Az⋅x

(4)�x,z =

[
�2
x
In �xzIn

�xzIn �2
z
In

]
.

Ay⋅x =
(
By⋅x(z) + By⋅z(x)Bz⋅x

)
In.

⎛⎜⎜⎝

Y

X

Z

⎞⎟⎟⎠
∼ N3n

⎛⎜⎜⎝

⎛⎜⎜⎝

By⋅0(xz)In
0

0

⎞⎟⎟⎠
,

⎡⎢⎢⎣

�y �yx �yz

�xy �x �xz

�zy �zx �z

⎤⎥⎥⎦

⎞⎟⎟⎠

⎡⎢⎢⎣

�y�x,z +
�
By⋅x(z)In ∶ By⋅z(x)In

�
�x,z

�
By⋅x(z)In ∶ By⋅z(x)In

�⊤
Ay⋅x�x Ay⋅z�z

Ax⋅y�y �x Ax⋅z�z

Az⋅y�y Az⋅x�x �z

⎤⎥⎥⎦
.



438 Environmental and Ecological Statistics (2024) 31:433–461

1 3

The sufficient conditions that ensure its positive definiteness are �x,z ≻ 0 and 
�y|x,z ≻ 0 . Hence, regression matrices Ay⋅x and Ay⋅z do not impact positive definite-
ness of �y,x,z.

Developments proposed in this paper are aimed at illustrating how the degree of 
confounding changes with varying levels and structure of interdependence between 
the observed and unobserved variables.

2.2  The statistical model

After defining the DGP, this subsection introduces the posited statistical model for 
parameter estimation when only the realizations of Y and X are observed.

Given a phenomenon of interest, different model specifications can be proposed 
that reflect the researcher beliefs and assumptions. Starting from the following 
model:

one obtains the generalized least squares estimator

where J =
(
X̃

⊤
S
−1
X̃

)−1

X̃
⊤
S
−1 and X̃ =

[
1n ∶ X

]
 is the design matrix. When S = In 

estimator (5) corresponds to the OLS estimator. More complex models, i.e. linear 
mixed effect models, lead to different estimators that, conditionally on other model 
parameters, share the same functional form of estimator (5). We do not considered 
such estimators in this paper for the sake of simplicity. In line with the works of 
Paciorek (2010) and Page et al. (2017), we study the sampling properties of 𝛽x as an 
estimator of By⋅x(z) to investigate confounding.

2.3  Conditional sampling properties of  ̂̌
x

We start by presenting the sampling distribution of estimator (5) conditionally on X . 
In Sect. 3 the marginal sampling properties with respect to X will be obtained. As a 
first step, the following proposition introduces a well-known result adopted to study 
confounding in a spatial framework (see Paciorek (2010), Page et al. (2017), Nobre 
et al. (2021), Marques et al. (2022)).

Proposition 1 The estimator �̂ in (5) conditional on X has the following sampling 
distribution:

Y = �01n + �xX + � � ∼ Nn(0,S),

(5)�̂ =
(
𝛽0, 𝛽x

)⊤
= JY,
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Proof See the Appendix.   ◻

With reference to the estimator 𝛽x , it follows from Proposition 1 that:

and

where J2∙ indicates the second row of J. We emphasize that the subscript Y aims at 
stressing that bias and variance are obtained by integrating over Y , conditionally on 
X.

The main novelties introduced in this paper are based on the expression of condi-
tional bias and variance as ratios of quadratic forms in Gaussian random variables. 
This is formalized in the following proposition.

Proposition 2 Considering the DGP  in (1)-(2), bias and variance of 𝛽x can be 
expressed in terms of ratios of quadratic forms as:

where � = S
−1 −

S
−1
1n1

⊤

n
S
−1

1
⊤

n
S
−1
1n

 is the weighted centering matrix and S is a covari-

ance matrix depending upon the posited model.

Proof See the Appendix.   ◻

When S = In , � reduces to the centering matrix M = In − 1n1
⊤

n
∕n . Equation (6) 

highlights that when both By⋅z(x) ≠ 0 and Ax⋅z ≠ 0 , the estimator 𝛽x is biased. Moreover, 
it is worth noting that the conditional variance of 𝛽x depends on the structure of all pro-
cesses included in the DGP. Indeed, given that

Equation (7) can be re-written as

�̂|X ∼ N2

(
J(By⋅0(xz)1n + Ay⋅xX), J�y|xJ

⊤
)
.

Bias Y
[
𝛽x|X

]
= By⋅z(x)J2∙ �zx�

−1
x
X

�Y

[
𝛽x|X

]
= J2∙�y|xJ

⊤

2∙

(6)Bias Y
[
𝛽x|X

]
= By⋅z(x)

X
⊤
�Az⋅xX

X
⊤
�X

,

(7)�Y

[
𝛽x|X

]
=

X
⊤
��y|x�X

(X⊤
�X)2

,

�y|x = �y|x,z + B
2
y⋅z(x)

�z|x = �y|x,z + B
2
y⋅z(x)

(
�z − Az⋅x�xA

⊤

z⋅x

)
,
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The first term expresses the conditional variance when Y does not depend on Z . 
When Y depends on Z , i.e. By⋅z(x) ≠ 0 , the first term between brackets inflates the 
variance with a magnitude depending on �z while the second term, which is non-
null when Az⋅x ≠ 0 , deflates the conditional variance. In fact, correlation between X 
and Z produces a reduction of �Y

[
𝛽x|X

]
 , as stated in the following theorem.

Theorem  1 The conditional variance of the estimator 𝛽x assumes the maximum 
value when X and Z are independent:

Proof See the Appendix.   ◻

Summarizing, as the dependences expressed via Ax⋅z and By⋅z(x) increase, the con-
ditional variance decreases and the conditional bias increases. Interpretation of bias 
and variance of 𝛽x as a ratio of quadratic forms allows for a formal treatment of the 
relationship between the magnitude of confounding and some features of the DGP. In 
particular, Sect. 3 frames the confounding problem within the context of the theory of 
quadratic forms, delivering analytic results on the marginal bias that, to the best of our 
knowledge, have been obtained only by simulation in previous papers.

2.4  Formal definition of confounding

Both Propositions 1 and 2 show that the bias of the estimator 𝛽x depends on the cor-
relation structure of the DGP through the relationship that ties the confounder to 
the response variable and to the observed covariate. The following definition of 
confounding is coherent with the one proposed by Thaden and Kneib (2018), with 
adapted notation.

Definition 1 Let (Y⊤,X⊤,Z⊤)⊤ follow the DGP of Equations (1)-(2). Then, the 
regression of Y on X is defined confounded by Z if both the following conditions are 
verified: 

 (i) Y and Z are conditionally dependent given X ( Y ̸⟂ Z|X ), i.e. By⋅z(x) ≠ 0

 (ii) X and Z are dependent ( X ̸⟂ Z ), i.e. Az⋅x ≠ 0

An alternative and equivalent way to define confounding, explicitly related to the 
joint covariance matrix of the distribution of Y,X and Z follows.

Definition 2 Let (Y⊤,X⊤,Z⊤)⊤ follow the DGP of Equations (1)-(2). The regression 
of Y on X is confounded by Z if both �yz ≠ 0 and �xz ≠ 0.

�Y

[
𝛽x|X

]
=

X
⊤
��y|x,z�X

(X⊤
�X)2

+ B
2
y⋅z(x)

(
X
⊤
��z�X

(X⊤
�X)2

−
X
⊤
�
(
Az⋅x�xA

⊤

z⋅x

)
�X

(X⊤
�X)2

)
.

�Y

[
𝛽x|X

] ≥ �Y

[
𝛽x|X,Az⋅x = 0

]
.



441

1 3

Environmental and Ecological Statistics (2024) 31:433–461 

In other words, confounding occurs if the unobserved variable is related with 
both the response and the covariate. As shown in Fig. 1, the confounder Z influences 
the response and covariate simultaneously via By⋅z(x) and Az⋅x , respectively. In the 
same spirit of Thaden and Kneib (2018), we highlight that the overall effect of the 
confounder can be expressed through the regression matrix Ay⋅z . The so-called indi-
rect effect is linked to the regression matrix Ax⋅z , while the direct one is linked to the 
partial regression coefficient By⋅z(x).

Confounding is not related to either the sole DGP or the posited model itself, but 
rather pertains to the characteristics of the DGP that the model fails to capture. The 
following section frames the confounding problem within the context of the theory of 
quadratic forms, offering some marginal results concerning bias and variance of 𝛽x that 
are exploited to investigate the links between DGP, posited model and confounding.

3  Main features of confounding in terms of quadratic forms

Given the importance of quadratic forms in this work, a brief introduction to the subject 
is given below.

3.1  Quadratic forms in Gaussian random variables

Considering the random vector X ∼ Nn(0,�x) , it is possible to define the quadratic 
form (QF, see Provost and Mathai 1992, for a comprehensive overview of the topic) 
associated to a matrix A ∈ ℝn×n as:

Decomposing the covariance matrix as follows �x = �
1∕2
x

�
1∕2
x

 , we note that QA(X) 
can be expressed as a function of a standard multivariate normal vector � = �

−1∕2
x

X:

where Ã = �
1∕2
x

A�
1∕2
x

 . Many properties of QA(X) , such as moments and distribution 
function, are strictly related to the eigenvalues of the matrix Ã . We indicate them 
with

and, if Ã is symmetric, they are such that 𝜆
(
Ã
)
1
≥ 𝜆

(
Ã
)
2
≥ ⋯ ≥ 𝜆

(
Ã
)
n
 . Indeed, 

the expected value is

and the moment generating function is

QA(X) = X
⊤
AX.

QA(X) = �⊤
Ã� = QÃ(�),

�
(
Ã
)
=
(
𝜆
(
Ã
)
1
,… , 𝜆

(
Ã
)
n

)⊤
,

(8)�X[QA(X)] =

n∑
i=1

𝜆(A�x)i =

n∑
i=1

𝜆
(
Ã
)
i
= tr

(
Ã
)
,
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Once QFs are defined, our attention moves to ratios of powers of dependent QFs. 
Let us consider a further positive semi-definite matrix B ∈ ℝn×n , then we introduce 
the following ratio of QFs

where p ≥ 0 , q ≥ 0 are integers and B̃ = �
1∕2
x

B�
1∕2
x

 . Computing the expectation of 
such random variable is of primary interest for the developments in the paper. It rep-
resents a well-known problem of numerical probability and is faced in several 
works, such as Magnus (1986), Roberts (1995) and Bao and Kan (2013). The latter 
provides an up-to-date review and includes most of the exploited results. Firstly, 
�X

[
R
p,q

A,B
(X)

]
 exists if and only if rank(B̃) > 2q , and it can be numerically evaluated 

as

where 𝜙(t1, t2) = |In − 2t1Ã − 2t2B̃|−1∕2 is the joint moment generating function of 
X
⊤
AX and X⊤

BX , and | ⋅ | denotes the determinant.
Since many statistical quantities can be written as ratios of quadratic forms, the 

computation of their expected value has been very important for statisticians. The 
most popular method for its numerical evaluation is to make use of the results in 
Sawa (1978) and Cressie et al. (1981). This method is by far the most widespread 
one in the literature and Xiao-Li (2005) provides a very good review of the litera-
ture on the subject. We are concerned about obtaining computationally efficient 
expressions of the expectation of the ratio of dependent QFs defined in (9). Rela-
tively straightforward expressions are available for moments of a QF in spherical 
normal variables. These moments appear as simple integrals which can be evalu-
ated numerically in a straightforward manner.

3.2  Marginal sampling properties

The marginal moments of 𝛽x can be retrieved using the law of iterated expecta-
tion and the law of the total variance. We find it convenient to represent the esti-
mator marginal sampling properties in terms of a hypergeometric function: Carl-
son’s function R(a;b, z) (see Carlson (1963) for more details). Its extensive use is 
justified by two distinctive properties, symmetry and homogeneity. The former 

𝜙QA(X)
(t) = �X

[
etQA(X)

]
= |In − 2tA�x|−1∕2 =

n∏
i=1

(
1 − 2t𝜆

(
Ã
)
i

)−1∕2
.

(9)R
p,q

A,B
(X) =

(X⊤
AX)p

(X⊤
BX)q

=
(�⊤Ã�)p

(�⊤B̃�)q
= R

p,q

Ã,B̃
(�)

(10)
1

Γ(q) ∫
∞

0

tq−1
�p

�t
p

1

�(t1, t2)
||||t1=0,t2=−t

dt,
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means that it is invariant under permutations of the subscript 1,… ,m and the lat-
ter implies:

We consider the special case in which

where B(a, a�) = Γ(a)Γ(a�)∕Γ(a + a�) is the beta function expressed via a  gamma 
function, Γ(⋅), and a′ is defined by a + a� = b =

∑m

i=1
bi ∈ ℚ⧵{0}.

Let  us consider an n-dimensional vector � . Assuming sz = 2� , bi =
1

2
 

∀ i = 1,… ,m , and posing:

the right-hand side of Equation (11) can be re-written as follows:

where Ip,q(�) denotes the integral characterized by the powers of the QFs’ ratio, p 
and q, and the n-dimensional vector of denominator matrix eigenvalues. Carlson 
(1963) states that the R function reduces to another function of the same type with 
one less variable if one of its variables zi vanishes. This property is helpful for the 
operative computation. The next statement formalizes the analytical results enabling 
to compute the exact marginal sampling properties of estimator 𝛽x with no use of 
simulation study.

Theorem 2 The expected value and variance of the estimator 𝛽x defined in (5) may 
be expressed in terms of Carlson’s R functions as follows:

R(a;b1,… , bm;sz1,… , szm) = s−aR(a;b1,… , bm;z1,… , zm).

(11)∫
∞

0

ta−1
m∏
i=1

(1 + szit)
−bi dt = B(a, a�)R(a;b, sz),

a = q, a� =
n

2
+ p − q, m = n + 2p,

∫
∞

0

tq−1
n+2p∏
i=1

(1 + 2�it)
−1∕2 dt

= B
(
q,

n

2
+ p − q

)
R
(
q;
1

2
1n+2p, 2�

)
= Ip,q(�),

�Y ,X

[
𝛽x
]
= By⋅x(z) + By⋅z(x)

n∑
j=1

c1,jjI
1,1

hj
(�)

�Y ,X

[
𝛽x
]
=

n∑
j=1

c2,jjI
1,2

hj
(�) − Bias2

Y ,X

[
𝛽x
]
+

+ B
2
y⋅z(x)

n∑
i=1

n∑
j=1

(c1,iic1,jj + 2c2
1,ij
)I2,2
hij
(�),
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where

The eigenvalues (�1,… , �n) , such that � = diag(�) , are derived from the spec-
tral decomposition �1∕2

x
��

1∕2
x

= P�P
⊤ and c1,ij , c2,ij are the (i,  j)-th entries of the 

matrices

and

respectively.

Proof See the Appendix.   ◻

The evaluation of the  integrals involved in the previous theorem is carried out 
by computing Carlson’s R functions: such computations exploit algorithms imple-
mented in the R-package QF (Gardini et al. 2022).

To highlight the effect of confounding on the marginal variance, we rewrite it as:

where �Y ,X

[
𝛽x|Az⋅x = 0

]
 denotes the marginal variance in absence of confounding. 

It can be shown (Narcisi 2023) that the confounding-dependent (cd) part of the mar-
ginal variance, � cd

Y ,X

[
𝛽x
]
 , corresponds to

Note that this component can take both negative and positive values, i.e. confound-
ing can increase or decrease the marginal variance of the estimator with respect to 
the case X⊥Z . Following the results above, the marginal Mean Square Error (MSE) 
can be expressed as

Exact computation of these quantities allows to study the impact of some relevant 
features of the DGP on the sampling properties of 𝛽x , as will be shown in Sect. 5. In 
the following section, we provide some approximations to exact formulae aiming to 
highlight the role of correlation and cross-correlation structures.

hij =

⎧
⎪⎨⎪⎩

1 i, j = 1,… , n − 1,

3 i = n, j = 1,… , n − 1 and j = n, i = 1,… , n − 1,

5 i = j = n.

C1 = P
⊤
�
1∕2
x

��zx�
−1∕2
x

P

C2 = P
⊤
�
1∕2
x

��y|x��
1∕2
x

P,

�Y ,X

[
𝛽x
]
= �Y ,X

[
𝛽x|Az⋅x = 0

]
+ �

cd
Y ,X

[
𝛽x
]
,

�X

[
Bias2

Y

[
𝛽x|X

]]
− Bias2

Y ,X

[
𝛽x
]
− B

2
y⋅z(x)

�X

[
X
⊤
�Az⋅x�xA

⊤

z⋅x
�X

(X⊤
�X)2

]
.

(12)MSE Y ,X

[
𝛽x
]
= Bias2

Y ,X

[
𝛽x
]
+ �

cd
Y ,X

[
𝛽x
]
+ �Y ,X

[
𝛽x|Az⋅x = 0

]
.
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4  Links between DGP structure and confounding

We start by considering the spherical DGP (4): in this case, the conditional bias 
is constant with respect to X . As a consequence, marginal and conditional biases 
coincide:

This simplification with respect to the bias Formula (6) is due to the fact that the 
regression matrix of Z on X is scalar, i.e. Az⋅x = Bz⋅xIn . This is the key point that 
enables the deterministic bias in (13)  and allows a clear-cut interpretation of the 
effect of the DGP structure on the bias, which is an increasing function of the mar-
ginal covariance �zx and a decreasing function of the marginal variance �2

x
 of the 

random vector X . Note that the marginal variance of Z , �2
z
 , does not contribute 

explicitly to Equation (13).
When Az⋅x is not a scalar matrix, it is not immediate to measure the sources of 

confounding. Understanding the links between the DGP structure and the bias is a 
more complicated task that can be addressed by leveraging on the theory of quad-
ratic forms: in Sect. 4.1 we introduce a measure of marginal variability of a Gauss-
ian random vector and a measure of marginal covariance between Gaussian random 
vectors that deliver the simple counterparts �2

x
 and �xz as special cases when the 

DGP is spherical. Additionally, we introduce a measure of similarity between the 
components of a Gaussian random vectors, aimed at describing the smoothness of 
the DGP.

4.1  Variability and smoothness of Gaussian random vectors

Let X ∼ Nn

(
0,�x

)
 , with �x = �2

x
Rx where Rx reflects the covariance structure of the 

random vector X , while �2
x
 acts as a scaler. The random variable

i.e. the sampling variance of X , is a quadratic form in Gaussian random variables 
whose expected value, which we dub the expected sampling variance is, as indicated 
in Equation (8)

where �̄�MRx
 is the mean of positive eigenvalues of MRx . When Rx = In , as in the case 

of spherical DGP, �̄�MRx
= 1 and �X[Vx] = �2

x
 . When Rx ≠ In , �X[Vx] ≠ �2

x
 depends 

on the eigenvalues of MRx : this must be taken into account when studying the effect 
of confounding under non-spherical (or structured) DGPs.

The same logic holds for the covariance between two random vectors X and Z , 
through the expected value of their sampling covariance defined as:

(13)Bias Y ,X
[
𝛽x
]
= BiasY

[
𝛽x|X

]
= By⋅z(x)Bz⋅x = By⋅z(x)

𝜎zx

𝜎2
x

.

Vx =
X
⊤
MX

n − 1
=

1

n − 1

n∑
i=1

(Xi − X̄)2,

(14)EVx = �X[Vx] = �̄�MΣx
= 𝜎2

x
�̄�MRx

,
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where Vxz is the sampling covariance of X and Z . It equals �xz only when Rxz = In.
The relevance of these QFs can be emphasized by noting that, in a linear regres-

sion model, the variability of the response variable Y is decomposed as follows:

Thus, the variability of the response variable can be obtained as a function of 
expected sampling variances and covariances of the explanatory variables. As they 
are defined, such quantities show that the eigenvalues of variance and covariance 
matrices of the DGP are suitable quantities for quantifying the explanatory power of 
the covariates.

As a further tool to investigate the features of the DGP that determine the magni-
tude of confounding, we introduce an indicator for measuring the level of similarity 
between components of a random vector, which depends upon the correlation struc-
ture implied by the covariance matrix: this is strictly related to the level of smooth-
ness of the DGP. Recalling that the correlation matrix Cx of a random vector X is 
obtained from the covariance matrix as

we define the random vector s = diag
(
�x

)− 1

2X and the random variable

This stochastic variable is designated as the sampling inverse smoothness of X , a 
terminology rooted in its expected value �X

[
ISx

]
= �̄�MCx

 being inversely related the 
smoothness of the underlying process. Note that �X

[
ISx

]
= 1 if Rx = In.

In order to illustrate how marginal variability and inverse smoothness are related 
to the DGP structure, we consider two widely adopted models in spatial statistics: 
the Gaussian Random Field with exponential covariance function, which is a special 
case of the Matérn covariance function (Matérn 1986), largely used in geostatistical 
analysis and the Conditional Auto Regressive (CAR) model (Besag 1974; Rue and 
Held 2005), widely used for areal data modeling. Both models are parameterized by 
a spatial correlation parameter denoted as � in what follows.

With regard to the first model, �x = �2
x
Rx , with the ij-th entry of Rx being

where dij is the Euclidean distance between points i and j. The range parameter � 
regulates the decay of spatial correlation as a function of the distance. The smooth-
ness of the process, intended as the strength of correlation between nearby points in 
space, grows with �.

(15)EVxz = �X,Z

[
Vxz

]
= �X,Z

[
X
⊤
MZ

n − 1

]
= �̄�MΣxz

= 𝜎xz�̄�MRxz

(16)EVy = B
2
y⋅x(z)

EVx + B
2
y⋅z(x)

EVz + 2By⋅x(z)By⋅z(x)EVzx + �2
y|x,z.

Cx = diag
(
�x

)− 1

2�x diag
(
�x

)− 1

2 = diag
(
Rx

)− 1

2Rx diag
(
Rx

)− 1

2 ,

ISx =
s⊤Ms

n − 1
.

Rx(i, j) = exp

(
−
dij

�

)
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In this case Rx is a correlation matrix ( Rx = Cx ): as a consequence, �̄�MRx
= �̄�MCx

 
and EVx = �2

x
�X

[
ISx

]
 , i.e. expected inverse smoothness and expected sampling vari-

ance are proportional, with proportionality constant �2
x
.

Consider now the CAR model, where �x = �2
x
Rx , with Rx = (In − �W)−1 . Here, 

a spatial lattice structure is described by the n × n neighborhood matrix W specified 
as wii = 0 , wij = 1 if area i is neighbor to area j and wij = 0 otherwise. The sufficient 
condition ensuring positive definiteness of the covariance matrix is � ∈ (�min, �max) , 
where �min and �max are the inverse of the smallest and largest eigenvalues of W 
respectively (Cressie 1993). Moreover, � is a measure of (conditional) spatial auto-
correlation. In what follows we adopt the lattice of the 115 Missouri’s counties to 
build W.

In the CAR case, Rx ≠ Cx , hence expected sampling variance and expected 
inverse smoothness show different behaviors with respect to �.

Figure 2, left panel, shows the behavior of �X

[
ISx

]
 as a function of � in the Expo-

nential model: coherently with the well-known theory concerning the exponential 
correlation function, smoothness is an increasing function ( �X

[
ISx

]
 is a decreasing 

function) of both � . On the other hand, the expected sampling variance EVx is a 
decreasing function of � . Figure 2, middle panel, displays the relationship between 
� and �X

[
ISx

]
 when considering the CAR model: it can be noticed that smoothness 

increases with � (inverse smoothness decreases), confirming the interpretation of � 
as a spatial correlation parameter. Moreover, when 𝜃 < 0 , implying negative spa-
tial correlation, �X

[
ISx

]
> 1 , meaning that the DGP is less smooth than the spheri-

cal DGP, while positive values of � deliver a smoother process with respect to the 
spherical DGP. In the right panel of Fig. 2 it can be noticed that the expected sam-
pling variance EVx decreases when 𝜃 < 0 and increases when 𝜃 > 0 . Hence, in the 
case of the CAR model, expected smoothness and expected sampling variance show 
different behaviors as functions of the smoothness parameter �.

To summarize, a sample from the exponential model is expected to be smoother 
and less variable as � increases, on the other hand a sample from the CAR model is 
expected to be smoother as � increases, while variability increases as � approaches 
the boundaries 

(
�min, �max

)
.

Fig. 2  Left panel: marginal inverse smoothness and variance, exponential model. Middle panel: marginal 
inverse smoothness, CAR model. Right panel: marginal variance, CAR model
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A thorough discussion of the relationships between smoothness and variability is 
out of the scope of this paper: here, we are interested in showing how these features 
of the DGP relate to confounding. In particular, in the following subsection, we pro-
vide an approximation to the marginal bias that is strictly related to the quantities 
introduced in this section and that will be useful to discuss the relevance of variabil-
ity and smoothness as determinants of bias.

4.2  Approximation of estimator bias

Equations (14)-(15) can be exploited for obtaining the first-order Taylor series 
approximation of the marginal bias, i.e. the expected value of a ratio is approximated 
by the ratio of expected values:

In the case of spherical DGP, ET is the exact value for the bias.
When � = M , i.e. when the OLS estimator is considered, the approximation coin-

cides with the ratio between EVzx and EVx : approximate bias is an increasing func-
tion of the expected sampling covariance and a decreasing function of the expected 
sampling variance. The marginal variability of the confounder, EVz , has no direct 
impact on bias, with the only caveat that �z must satisfy the conditions that guaran-
tee positive definiteness of the DGP joint covariance matrix. Note that the smooth-
ness of the DGP does not enter explicitly in Equation (17), suggesting that such fea-
ture of the DGP is not a relevant determinant of bias, as will be discussed in Sect. 5.

(17)BiasY ,X
[
𝛽x
]
≈ By⋅z(x)

�X

[
X
⊤
�Az⋅xX

]

�X

[
X
⊤
�X

] = By⋅z(x)

�̄�ΔΣzx

�̄�ΔΣx

= ET .

Table 1  Joint confounder-covariate covariance matrices and regression matrices of Z on X specified for 
DGPs A-C

DGP �
x,z

A
z⋅x

A
[

R(𝜃
x
) 𝜌R(𝜃

z
)

𝜌R(𝜃
z
)⊤ R(𝜃
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)
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�R(�

z
)R(�

x
)−1

B ⎡⎢⎢⎢⎢⎣

R(�
z
) + R(�

x
)

2

�√
2

R(�
z
)

�√
2

R(�
z
) R(�

z
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⎤⎥⎥⎥⎥⎦

�
√
2

�
R(�

x
)R(�

z
)−1 + I

n

�−1
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⎢⎢⎣

R(𝜃
x
) 𝜌R(𝜃

x
)
1

2

�
R(𝜃

z
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1

2

�⊤
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z
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⎥⎥⎦
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5  Applications

This section provides a study of the marginal sampling properties of 𝛽x under sev-
eral DGPs: concerning the conditional distribution Y|X,Z in Equation (1), we 
set By⋅x(z) = By⋅z(x) = 1 and �y|x,z = In . As for the specification of the joint covari-
ance matrix �x,z in Equation (2), we consider  the  three DGPs summarised in 
Table  1, where regression matrices Az⋅x are reported as well. Moreover, we fix 
�2
x
= �2

z
= �zx = 1.

Parameter � governs the strength of cross-correlation between X and Z and deter-
mines positive definiteness of �x,z . A sufficient condition to ensure the positive defi-
niteness in DGP-A is 𝜆min

(
R(𝜃z)

−1R(𝜃x)R(𝜃z)
−1R(𝜃z̃)

) ≥ 𝜌2 , while the condition 
|𝜌| < 1 is sufficient for positive definiteness in DGPs B and C.

In DGP-A, the cross-covariance matrix is parameterized independently on the 
parameters of the marginal covariance matrices of X and Z . This construction is 
intended to show that, as expected from Theorem 2, the bias relies on the structure 
of Z only when the cross-covariance matrix is obtained as a function of �z by con-
struction. This happens in both DGP-B and DGP-C.

In DGP-B, which is a modification of the DGP discussed in Paciorek (2010), 
parameter �z governs both the covariance matrix of Z and the cross-covariance 
matrix, while the covariance matrix of X is a function of both �z and �x.

In DGP-C, which corresponds to the specification adopted in Page et al. (2017), 
the cross-covariance matrix is obtained as the product of the lower Cholesky factors 
of the covariance matrices of X and Z , indexed by spatial correlation parameters �x 
and �z respectively. Note that this is the only DGP that can cover the case of asym-
metric cross-covariances.

In what follows, we study the marginal sampling properties of 𝛽x in the cases 
where the structure matrices R are specified via the exponential and the CAR model. 
Results provided in Theorem 2 allow to compute exact quantities with no need for 
simulation. We focus on the study of the sampling properties of the OLS estimator: 
results obtained using the GLS estimator (not shown) are very similar.

5.1  Results

With regard to the exponential model, a regular grid of n = 64 spatial units located 
on the unit square is considered and the sampling properties of 𝛽x are studied by 
letting all the spatial correlation parameters vary in the interval [0,  1]. Figure  3 
reports, for each considered DGP, the expected sampling covariance ( EVzx , first 
line), the expected sampling variance EVx (second line) and the exact marginal bias 
BiasY ,X

[
𝛽x
]
 (third line). The relative error of approximation (17) is reported in the 

last line. It is worth noting that, with reference to bias, parameter � constitutes a 
mere scaling constant: Fig. 3 displays the behavior of the marginal bias as a function 
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of the spatial correlation parameters, rather than its magnitude; to this aim, � values 
are irrelevant.

It can be noticed that, with reference to DGPs A and B, EVzx does not depend on 
�x and is a decreasing function of �z , while, with reference to DGPs A and C, EVx 
does not depend on �z and is a decreasing function of �x . Moreover, in DGP-B, EVx 
is a decreasing function of both spatial correlation parameters, while, in DGP-C, 
EVzx is a non-monotonic function of both �x and �z . These behaviors are reflected 
by the marginal bias toward the ratio of expected sampling covariance and expected 
sampling variance of the observed covariate X , which delivers the approximation 
provided in Equation (17). Last line of Fig. 3 shows a satisfactory accuracy of the 
approximation for all considered DGPs: the relative error is mostly less than ±5% , 
higher errors are observed for low values of �z and high �x with reference to DGPs A 
and C.

Regarding DGPs A and B, it turns out that the marginal bias is an increasing 
function of �x (maintaining �z constant) and a decreasing function of �z (maintain-
ing �x constant). Note that the spatial correlation parameter indexing the covariance 
matrix of Z in DGP-A, ( 𝜃z̃ in Table 1), has no impact on bias: dependency of bias on 
the spatial correlation parameter of the confounder is actually an artifact generated 

Fig. 3  Expected sampling covariance, expected sampling variance, marginal bias and relative error of the 
Taylor approximation with respect to �

x
 and �

z
 for DGPs A-C. Exponential model
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when the same parameter appears both in the cross-covariance matrix and in the 
marginal covariance matrix of Z , as observed in DGPs B and C. Interpretation of 
the bias trend in Case C is less immediate because of the product involved in the 
construction of the cross-covariance matrix. This gives rise to the non-monotonic 
behavior of the marginal bias with respect to �x and �z , such behavior is inherited 
from EVzx.

In summary, the findings presented in Fig. 3 indicate that the primary contributors 
to bias are the expected sampling variance and covariance. Notably, the similarity in 
behavior between smoothness and expected sampling variance when employing an 
exponential correlation function (as depicted in the left panel of Fig. 2) complicates 
our ability to discern whether the key drivers of bias are predominantly associated 
with the strength of spatial autocorrelation (smoothness) or the marginal variability. 
A more in-depth analysis of the case involving CAR model provides enlightening 
insights into this matter.

With regard to the CAR model, the lattice of the 115 Missouri’s coun-
ties is considered. The spatial correlation parameters vary in the interval 
[�min + 0.01, �max − 0.01] to ensure positive definiteness of variance and covariance 
matrices. Figure 4 is the counterpart of Fig. 3 in the case of CAR model.

It can be noticed that, with reference to DGPs A and B, EVzx does not depend on 
�x and is a convex function of �z , while, with reference to DGPs A and C, EVx does 
not depend on �z and is a convex function of �x , coherently with what was observed 
in Fig. 2, right panel. Moreover, EVx in DGP-B and EVzx in DGP-C are convex func-
tions of both spatial correlation parameters. In this instance, the Taylor approxima-
tion given by Equation (17) exhibits a high degree of accuracy, as evidenced by the 
relative error falling within the range of 1% to −4% across all scenarios.

The key insight gleaned from Fig. 4 is the lack of significance of DGP smooth-
ness in influencing bias. Despite the fact that smoothness rises as a function of 
spatial autocorrelation parameters (as shown in Fig.  2, middle panel), the bias 
trends exhibit a convex pattern, primarily shaped by the characteristics of EVx and 
EVzx . In conclusion, marginal variance and covariance are the main determinants 
of bias. This is strictly tied with the decomposition of the response marginal vari-
ance reported in Equation (16): when EVx increases, keeping other factors fixed, 
the explanatory power of X increases and bias decreases.

Figure 5 shows, in the case of the exponential model, the contribution of each 
component constituting the estimator mean square error in (12) to the total as a 
function of the parameter �x and �z fixing � = 0.5.

It is evident how the mean squared error is primarily determined by bias. It 
can be seen that the bias share is a decreasing function of �z , while the variance 
component not dependent on confounding shows an opposite behavior which is 
related to the role of �z in the distribution of the confounder. Actually, the most 
relevant role of smoothness and marginal variability of the confounder is related 
to the marginal variance, rather than to the bias of the estimator. The confound-
ing-dependent share of the variance predominantly assumes negative values, 
showing that confounding tends to generate a reduction in variance. Similar 
results (not shown) are obtained in the case of the CAR model.
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6  Conclusions

In this work the problem of confounding in linear regression models is addressed. 
In particular, we study, through the evaluation of the estimator sampling properties, 
how confounding affects the estimate of the inferential target.

The spatial literature has extensively dealt with this issue. To assess the impact 
of confounding on the sampling properties of the regression coefficient estimators, 
the research focused on the strength of the auto-correlation characterizing covari-
ate and confounder, both spatially varying. To date, what is clear from the previous 
studies is that the parameters influencing the spatial auto-correlation of the covariate 
and confounder processes are undoubtedly of great importance. We provide more 
awareness regarding the effect of confounding on coefficient estimates by generaliz-
ing the theory discussed by Paciorek (2010) and Page et al. (2017), who introduced 
the widely accepted idea that the smoothness of covariate and confounder processes 
is an important factor that impacts the estimator sampling properties. In particular, 

Fig. 4  Expected sampling covariance, expected sampling variance, marginal bias and relative error of the 
Taylor approximation with respect to �

x
 and �

z
 for DGPs A-C. CAR model
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Paciorek (2010) affirms that a confounder smoother than the covariate leads to a 
lower bias, and subsequently to less confounding. Actually, one may agree with this 
belief only in specific situations, such as when the parameters governing the con-
founder covariance matrix contribute to the cross-covariance matrix, e.g. assuming 
an exponential correlation function and DGPs B-C. In other cases, as demonstrated 
by the application involving the CAR model, the connection to smoothness would 
not hold. In this regard, we introduce the expected sampling variance and covari-
ance, expressing the variability of a process and the variability of the interaction 
between two processes, respectively. When considering the estimator bias as the 
principal marker of confounding, we point out that the confounder smoothness is 
not the most relevant measure determining bias. Indeed, the cross-covariance matrix 
characterizing the covariate-confounder interaction plays the most prominent  role, 
as the bias mainly hinges on the covariate variability and on the expected sampling 
covariance between covariate and confounder. Moreover, we note that the con-
founder structure does not affect the estimator bias; rather, it influences the variance 
of the estimator.

While the primary focus of the paper is theoretical and doesn’t offer immediate 
implications for practical applications, certain aspects of the presented theory could 
potentially guide advancements in environmental contexts. For instance, one could 
attempt to estimate bias resulting from confounding by devising an estimator for the 
approximate bias (17). Given the unobservable nature of the confounder, such esti-
mations would necessitate relying on assumptions about the DGP, which may be 
challenging to verify.

Fig. 5  The influence of the three components of the estimator mean square error on it as function of the 
range parameters �

x
 , �

z
 with � = 0.5 (exponential function)
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Appendix

Proof of Proposition 1 Using the main properties of the normal distribution, the con-
ditional sampling properties of the estimator 𝛽x defined in (5) are obtained as follows

  ◻

Proof of Proposition 2 We can rewrite the matrix J as follows:

Defining 𝛿 = 1
⊤

n
S
−1
1n =

∑n

i=1
𝛿ij , where �ij is one element of the matrix S−1 , we get

�Y

[
�̂|X] = �Y

[
JY||X

]

= J�Z,𝜀

[
By⋅0(xz)1n + By⋅x(z)X + By⋅z(x)Z + �y|x,z||X

]

= J
[
By⋅0(xz)1n + By⋅x(z)X + By⋅z(x)�Z

[
Z||X

]]

= J
[
By⋅0(xz)1n + By⋅x(z)X + By⋅z(x)Az⋅xX

]

= J
[
By⋅0(xz)1n + (By⋅x(z) + By⋅z(x)Az⋅x)X

]

= J[By⋅0(xz)1n + Ay⋅xX]
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 Hence, 

Consequently, we get

and we come by to the result in (6). In addition, from (A.1) and since � = �
⊤ , the 

proof of (7) follows accordingly.

Proof of Theorem 1 From

we can observe that both QFs’ ratios on the right-side are positive val-
ued random variables since �y|x,z,�z and �x are positive definite. Hence, 
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]
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] ≥ 0 .   ◻

Proof of Theorem 2 Concerning the expected bias of 𝛽x , note that Equation (6) can be 
cast in the form of (9) by posing A = �Az⋅x and B = �:

J =
1

𝛿

�
X
⊤
S
−1
X

𝛿
−

X
⊤
S
−1
1n1

⊤

n
S
−1
X

𝛿2

�−1
⎡
⎢⎢⎢⎢⎣

X
⊤
S
−1
X

1
⊤

n
S
−1
1n

−
1
⊤

n
S
−1
X

1
⊤

n
S
−1
1n

−
X
⊤
S
−1
1n

1
⊤

n
S
−1
1n

1

⎤
⎥⎥⎥⎥⎦

�
1
⊤

n
S
−1

X
⊤
S
−1

�

=
1

X
⊤
S
−1
X −

X
⊤
S
−1
1n1

⊤

n
S
−1
X

𝛿

⎡
⎢⎢⎢⎣

X
⊤
S
−1
X1

⊤

n
S
−1 − 1

⊤

n
S
−1
XX

⊤
S
−1

𝛿

X
⊤
S
−1 −

X
⊤
S
−1
1n1

⊤

n
S
−1

𝛿

⎤
⎥⎥⎥⎦

=
1

X
⊤
�
S
−1 −

S
−1
1n1

⊤

n
S
−1

𝛿

�
X

⎡⎢⎢⎢⎢⎣

X
⊤
S
−1
X1

⊤

n
S
−1 − 1

⊤

n
S
−1
XX

⊤
S
−1

𝛿

X
⊤

�
S
−1 −

S
−1
1n1

⊤

n
S
−1

𝛿

�
⎤⎥⎥⎥⎥⎦
.

(A.1)
J2∙ =

X
⊤

(
S
−1 −

S
−1
1n1

⊤

n
S
−1

𝛿

)

X
⊤
(
S
−1 −

S
−1
1n1

⊤

n
S
−1

𝛿

)
X

=
X
⊤
�

X
⊤
�X

.

BiasY
[
𝛽x|X

]
= By⋅z(x)

X
⊤
�

X
⊤
�X

�zx�
−1
x
X,

�Y

[
𝛽x|X

]
= �Y

[
𝛽x|X,Az⋅x = 0

]
+

− B
2
y⋅z(x)

X
⊤
�
(
Az⋅x�xA

⊤

z⋅x

)
�X

(X⊤
�X)2

,



456 Environmental and Ecological Statistics (2024) 31:433–461

1 3

where Ã = �
1∕2
x

��zx�
−1∕2
x

 and B̃ = �
1∕2
x

��
1∕2
x

 . The joint moment generating func-
tion of the numerator �⊤Ã� and the denominator �⊤B̃� in (A.2) is given by

Let consider the following spectral decomposition

where � = diag� = diag(�1,… , �n) contains the eigenvalues of B̃ , and P is the 
orthogonal eigenvectors matrix such that PP⊤ = P

⊤
P = In . As a result, the joint 

moment generating function takes the following form:

in which

with (i, j)-th element c1,ij . The expected value of (A.2) is now obtainable using Equa-
tion (10) with p = q = 1:
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Using the law of total expectation, the marginal expectation of the estimator 𝛽x is

in which the estimator for marginal bias is highlighted.
Concerning the sampling variance, the law of total variance allows to get:

in which, using  (10) with p = 1 and q = 2,  it is possible to determine
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and

Thus,

Next, using (10) with p = q = 2 , we obtain

Finally, from Equation (A.4) we get the expression for the marginal variance of the 
estimator 𝛽x as:
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Based on the Carlson’s properties introduced in Sect. 3.2, we can use the Carlson’s R 
function for the evaluation of integrals in (A.3), (A.5), (A.6) in order to use efficient 
available algorithms to compute the marginal sampling properties of estimator 𝛽x.

Considering Equation (A.3) with p = q = 1 and exploiting the symmetric prop-
erty of R, for all j = 1,… , n we define

and observe that
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where
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