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Background: The Berg Balance Scale (BBS) is one of the most used tools to 
quantify balance in Persons with Multiple Sclerosis, a population at high risk of 
falling.

Aim: To evaluate the measurement characteristics of the BBS in Multiple Sclerosis 
through Rasch analysis.

Design: Retrospective study.

Setting: Outpatients in three Italian Rehabilitation centers.

Population: Eight hundred and fourteen persons with Multiple Sclerosis able to 
stand independently for more than 3 s.

Methods: The sample (N  = 1,220) was split into one validating (B1) and three 
confirmatory subsamples. Following the Rasch analysis performed on B1, the item 
estimates were exported and anchored to the three confirmatory subsamples. 
After obtaining the same final solution across all samples, we  studied the 
convergent and discriminant validity of the final BBS-MS using the EDSS, the ABC 
scale, and the number of falls.

Results: The base analysis on the B1 subsample failed the monotonicity, local 
independence, and unidimensionality requirements and did not fit the Rasch 
model. After grouping locally dependent items, the BBS-MS fitted the model 
(χ2

8  = 23.8; p  = 0.003) and satisfied all requirements for adequate internal 
construct validity (ICV). However, it was mistargeted to the sample, given the 
striking prevalence of higher scores (targeting index 1.922) with a distribution-
independent Person Separation Index sufficient for individual measurements 
(0.962). The B1 item estimates were anchored to the confirmatory samples with 
confirmation of adequate fit (χ2  = [19.0, 22.8], value of ps = [0.015, 0.004]) and 
satisfaction of all ICV requirements for all subsamples. The final BBS-MS directly 
correlated with the ABC scale (rho = 0.523) and inversely with EDSS (rho = −0.573). 
The BBS-MS estimates significantly differed across groups according to the pre-
specified hypotheses (between the three EDSS groups, between the ABC cut-
offs, distinguishing ‘fallers’ vs. ‘non-fallers’, and between the ‘low’ vs. ‘moderate’ 
vs. ‘high’ levels of physical functioning; and, finally, between ‘no falls’ vs. ‘one or 
more falls’).
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Conclusion: This study supports the internal construct validity and reliability of 
the BBS-MS in an Italian multicentre sample of persons with Multiple Sclerosis. 
However, as the scale is slightly mistargeted to the sample, it represents a candidate 
tool to assess balance, mainly in more disabled people with an advanced walking 
disability.
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1. Introduction

Persons with Multiple Sclerosis (PwMS) are at higher risk of 
falling than the general population and elderly subjects, with a 
reported prevalence of falls ranging between 48 and 63% of the 
assessed population (1). Furthermore, Finlayson et al. found that 63.5 
and 82.6% of PwMS reported fear of falling and, respectively, activity 
curtailment (2). Indeed, studies in the past decades showed that falls 
in PwMS are consistently associated with impairment of balance (3). 
The latter is a crucial impairment, which could result in a higher risk 
of falling and reduced independence in the activities of daily living. To 
overcome this highly disabling issue, new approaches like virtual 
reality and exergaming, alongside conventional physiotherapy and 
rehabilitation interventions, have been widely proposed in several 
rehabilitative programs and clinical studies, showing significant 
efficacy in improving balance outcomes (4).

The Berg Balance Scale (BBS) is one of the most used tools to 
assess balance in PwMS, also within the context of randomized 
controlled trials (RCT) (5–10). The BBS is a 14-item summative 
ordinal scale evaluating static sitting balance, postural changes, 
transfers, and standing balance (both static and dynamic) (11, 12). The 
classical reliability and validity of the BBS in PwMS were evaluated in 
two small studies involving 50 subjects and using traditional 
psychometric procedures. Results showed that BBS had a good 
concurrent validity with the Dynamic Gait Index (r = 0.780) and the 
Timed Up and Go test (r = 0.620) (13). Furthermore, it discriminated 
between fallers and non-fallers but with a low level of sensitivity (5). 
The instrument’s reliability was reported as excellent within inter-rater 
and test–retest reliability analyses (Intraclass Correlation 
Coefficient = 0.960) (13). On the other hand, Gervasoni et al. in 2016 
calculated a minimal clinically important difference cut-off score for 
the BBS of 3 points. It demonstrated only a moderate accuracy (AUC 
0.65) in predicting “responders” (i.e., persons that felt improved after 
treatment according to a 10% change on the Activity-specific Balance 
Confidence (ABC) scale submitted pre and post-rehabilitative 
treatment) versus “non-responders” (persons that felt not improved). 
This result evidence a suboptimal correlation between BBS balance 
assessment and persons’ perception of balance improvement (14).

Unfortunately, these traditional psychometric procedures cannot 
assess and confirm some crucial assumptions and requirements 
underlying rating scales such as the BBS (15). Indeed, since the sixties, 
amongst new psychometric methods that have been developed, Rasch 
analysis has emerged as a powerful tool for assessing the measurement 
quality of a scale. Mainly, it allows operationalizing the formal axioms 
of ‘additive conjoint measurement’ using the mathematical model (i.e., 

the Rasch model) upon which it is based (16). Within the Rasch 
Measurement Theory (RMT) framework, if a scale displays adequate 
internal construct validity, the total score will become a sufficient 
statistic that can be transformed into an interval scale of measurement 
of ability (17) with a proper unit of measure (i.e., the logit). The scale 
calibration based on this unit is characteristically independent of the 
sample distribution employed to calibrate the scale. Interval scales 
constitute a tremendous advantage as they allow, unlike their ordinal 
counterparts, both the correct interpretation of change scores and the 
proper access to parametric statistics, as required in RCT (18). 
Furthermore, the RMT analytical paradigm (i.e., Rasch analysis) 
allows assessing in-depth also reliability and targeting so that it is 
possible to conduct a detailed assessment of the measurement quality 
of a rating scale.

As the measurement characteristics of the BBS have never been 
assessed in PwMS within the Rasch model context, the goal of this 
study is the evaluation of the measurement properties of the BBS in a 
multicenter sample of PwMS through Rasch analysis.

2. Materials and methods

2.1. Study design and participants

Data were collected retrospectively within the outpatient Neuro-
rehabilitation services of three Italian centers:

 - Don Gnocchi Foundation, Milan (DGF);
 - IRCSS Istituto delle Scienze Neurologiche, Bologna (ISNB);
 - Associazione Italiana Sclerosi Multipla, Liguria (AISM).

Each center screened the digital records of all consecutively 
admitted patients from 2004 to 2021, including those meeting the 
following inclusion criteria:

 • clinically or radiologically definite relapsing–remitting (RR) or 
secondary (SP) or primary progressive (PP) Multiple 
Sclerosis (11);

 • ability to stand independently in an upright position for more 
than 3 seconds;

 • at least one complete BBS assessment (i.e., with no missing data) 
per patient.

The study followed the principles outlined in the Helsinki 
declaration (12). The Local Ethical Committees of the participating 
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centers approved the conduction of the study (CE-AVEC 
PG0125189_2022). Written informed consent was sought from the 
participants according to the Italian Data Protection Authority 
regulation for retrospective studies (Aut. Gen. n. 9/2016).

2.2. Data collected

The BBS is a 14-item summative ordinal scale evaluating sitting 
balance, postural changes from sitting to standing and vice versa, 
transfers, and various other standing balance tasks (19, 20). Each item 
is scored from 0 (cannot perform the task) to 4 (best possible 
performance) in the observed activity. Thus, the BBS total score ranges 
from 0 (lowest balance ability) to 56 (highest balance ability). The BBS 
was administered in each center by licensed physiotherapists. All 
raters had been adequately trained based on the written scoring 
guidelines of the BBS to minimize inter-rater variability.

In addition, the rating of the following instruments was 
also collected:

 (1) The Expanded Disability Status Scale (EDSS) score, which 
quantifies disability in PwMS in terms of the impact of 
functional systems impairments in determining limitations in 
activities of daily living, including walking (21);

 (2) The Activity-specific Balance Confidence (ABC) scale, which 
is a structured questionnaire that quantifies the individual’s 
confidence in performing activities (22);

 (3) The number of falls recorded within the 2 months before the 
BBS assessment.

ABC and fall data were available only from two of the three 
centers (DGF and ISNB).

2.3. Preliminary analyses

2.3.1. Descriptive statistics of the sample
Descriptive statistics for persons’ demographic and clinical 

variables were performed. In addition, mean ± standard deviation 
(SD), median with first and third quartile, and absolute frequency 
with percentage were calculated for the interval, ordinal, and nominal 
variables, respectively.

2.3.2. Assessment of unidimensionality

2.3.2.1. Classical item analysis
Firstly, we assessed the internal consistency of the pooled sample 

by calculating the following statistics:

 • At the total score level: Cronbach’s alpha (23), where values 
between 0.70 and 0.95 are considered satisfactory (24);

 • At the item level:

 o  The average of inter-item correlations, using Spearman’s 
correlation coefficient (25), that is the mean of the inter-item 
correlations between each pair of items. Values ≥0.2 are 
recommended (26);

 o Cronbach’s Alpha if an item is deleted, where values above the 
total Cronbach’s Alpha are expected to indicate that the item was 
not internally consistent with the other items (27);

 o The item-to-total correlations, based on Spearman’s rho, that are 
the correlations between each item and its rest score (i.e., the 
total score minus the item score). Values≥0.40 are considered 
acceptable (26).

2.3.2.2. Mokken analysis
To obtain initial information on the scalability of BBS items, 

we  performed a Mokken Analysis (MA) on the pooled sample, a 
scaling procedure for ordinal items based on the Monotone 
Homogeneity Model (28). It assumes the unidimensionality of the 
latent trait and the monotonicity and local independence of responses. 
Furthermore, it can partition a set of items into Mokken scales using 
an automated item selection procedure (28). We  used the 
following indicators:

 • Item scalability coefficient Hj [normed covariance between the 
item and the rest scores (28)]: values should be  ≥0.3 
(recommended default value of positive lower bound c);

 • Item-pair scalability coefficients Hij (normed covariance between 
the item scores): values should be positive for items belonging to 
the same Mokken scale (29);

 • Scalability coefficient H: indicates the overall quality of a scale 
[i.e., the degree to which the test data follow a perfect Guttman 
pattern (29)].

At the end of the procedure, the analysis shows the number of 
scales needed for scaling all items. Should the automated algorithm 
estimate the need for more than one scale to accommodate all the 
items, we  would consider this information in the following 
analysis steps.

2.3.2.3. Confirmatory factor analysis
We performed a Confirmatory Factor Analysis (CFA) based on 

polychoric correlations for ordinal data to assess the BBS fit to a 
unidimensional model. We calculated the following fit statistics:

 • Model chi-square (χ2): an overall indicator of model fit that 
measures the discrepancy between the covariance matrices of the 
model and the sample. For a good fit to the model, the χ2 
probability values should not be significant (30);

 • Root Mean Square Error of Approximation (RMSEA): values 
≤0.06 indicate a ‘good fit’ for a preliminary assessment of 
dimensionality (31);

 • Standardized Root Mean square Residual (SRMR): values ≤0.08 
indicate an ‘adequate fit’ (32);

 • Comparative Fit Index (CFI) and non-normed Fit Index (Tucker-
Lewis Index – TLI): values >0.95 [0, 1] are considered 
acceptable (30).

We first tested a one-factor model within the CFA. In case of lack 
of fit for the base analysis, we would allow the correlation of error 
terms between pairs of items displaying high modification indices 
(MIs) (30, 33), which are indicators of local dependence (34–36). 
Should this modified model fail to fit, we  would consider this 
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information as evidence of insufficient preliminary unidimensionality 
in the subsequent analysis steps.

2.4. Rasch measurement theory analyses

2.4.1. Sampling strategy
Considering that the available data included a different number 

of observations per subject (ranging from one to three), we applied the 
procedure proposed by Mallinson to avoid time dependency (37). In 
particular, we created several subsamples from the multicenter data 
pool by randomly selecting only one observation per individual per 
subsample. We aimed to maintain the size of each subsample between 
250 (minimum) and 300 cases (maximum) to avoid type II and 
I errors, respectively (38). Then, we compared the obtained subsamples 
according to the main clinical and demographic characteristics and 
the distribution of the BBS assessments to confirm the randomization 
effect in getting comparable balanced subsamples.

We performed the Rasch analysis on the validation subsample, 
chosen as the one with the largest score range of the scale.

2.4.2. Base Rasch analysis
The BBS data of the validation subsample were fitted to the Rasch 

model (39). The process of testing statistically whether the data fits the 
Rasch model’s assumptions and requirements is widely known as 
Rasch analysis, which has been reported in detail elsewhere (15, 39–
43). Within this study, the Rasch analysis was based on the partial 
credit parameterization of the model, which does not place constraints 
on the item threshold parameters (44).

A full description of the methods used to interpret the Rasch 
analysis output is summarized in Supplementary Material 1. Briefly, 
within this study, the following summary statistics were reported:

 • Fitness to the Rasch model, which relates to the stochastic 
invariant ordering of the items and persons. An adequate fit to 
the model was considered achieved if the Standard Deviation 
(SD) of the item and the person fit residuals (FitRes) were ≤ 1.4 
(45), and the summary item-trait interaction chi-square was not 
significant (i.e., values were above the Bonferroni correction), 
thus indicating no deviation from the model’s expectations (31, 
46). We also assessed the item characteristic curves (ICC), which 
showed the difference between the observed and the expected 
responses predicted by the model for each item, based on the 
probabilistic relationship between person’s ability and item 
difficulty (15, 39).

 • Internal Construct Validity (ICV) requirements:

 1. Unidimensionality, which requires that all items measure a 
single underlying construct (47, 48). This requirement was 
tested with a t-test on each person’s estimates derived from the 
residuals of each item that loaded, respectively, positively (>0.3) 
and negatively (<−0.3) on the first component of the residual 
principal component (37). We  considered strict 
unidimensionality achieved when both the Proportion of 
Significant Tests (PST) and the lower bound of the Binomial 
Confidence Interval for proportions (BCI) were below 5%. In 
contrast, unidimensionality was considered acceptable when 

only the BCI was <5%. In the case of a subscale structure 
obtained after the creation of testlets, further indicators (c, r, A) 
were evaluated (49).

 2. Monotonicity, which prescribes that the probability of 
endorsing a response option indicative of higher ability should 
increase with the increase of the underlying latent trait 
(balance).

 3. Local independence, which prescribes that all the variation 
among responses to an item is accounted for by the person’s 
ability only and, therefore, for the same value of ability, there is 
no further systematic relationship among responses. 
We considered pairs of items to be locally independent if their 
residual correlation was above a Local Dependency Relative 
Cut-off (LDRC), calculated by adding 0.2 to the average of 
residual correlations after removing each item’s association to 
itself, equal to 1 (50).

 4. Absence of DIF, which prescribes that an item must also 
be invariant across relevant subgroups (or person factors), such 
as gender or age. In this case, different groups of persons with 
equal levels of the underlying characteristics within a person 
factor respond in the same manner regardless of their group 
membership. We tested the presence of DIF with a two-way 
ANOVA for each item, where scores are compared across each 
level of the person factor and different ability levels, as 
summarized by the class intervals. DIF is present when the 
value of p-values of ANOVA are significantly below the 
Bonferroni correction (51). We tested the following person 
factors within the DIF analysis: gender, age, disease duration in 
years, and disease course.

 • Targeting and reliability:

 1. Targeting, which indicates how well the measurement range of 
the scale matches the distribution of the calibrating sample (15, 
43, 52), here expressed as floor and ceiling effects (52) and 
targeting index (TI) (52). Targeting was considered good and 
fair for ranges of TI [−1, +1] and [−2, +2], respectively (52).

 2. Separation reliability, which is the capacity of the scale to 
separate persons effectively based on their ability level. It was 
represented by the Person Separation Index (PSI), Cronbach’s 
Alpha (α) (15, 17, 43, 52, 53), the Distribution-Independent 
Person Separation Index (DI-PSI) (54), and the number of 
Distinct Levels of Performance Ability (DLPA) (54). PSI or 
DI-PSI values ≥0.85 and ≥ 0.70 were considered sufficient for 
individual-level and group-level measurements, respectively 
(34, 55, 56).

2.4.3. Post-hoc scale modifications
Should the ICV requirements not be  met, the scale would 

be  progressively modified to adjust for the violations of the ICV 
requirements. In particular, we could employ two different analytical 
approaches to achieve this goal:

 1. A conservative approach, where the structure of the scale is 
unmodified (the total score range is unchanged), but the 
statistical adjustment performed affects mainly the conversion 
of the total score into interval-level estimates of ability. Within 
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this approach, the available techniques include item grouping 
or ‘testlets’ creation (42, 57, 58) and item splitting (40, 43) to 
account for violations of local independence and the presence 
of uniform-DIF, respectively.

 2. A structure-modifying approach, where the structure of the 
scale is actively modified, thus affecting the total score range. 
Within this strategy, the available techniques include item 
rescoring (15, 43, 59, 60) and item deleting (58). The former is 
based on collapsing adjacent response categories of the same 
item to resolve the monotonicity violation. Furthermore, 
should rescoring be  necessary, we  would follow published 
guidelines (59) to maximize statistical indexes and clinical 
meaning (42, 60) of the rescoring pattern. Finally, item deletion 
would be performed in case of persisting misfit to the model 
despite all the above modifications.

Given that the BBS is a widely used scale, we would first aim at 
using the conservative approach, resorting to applying the structure-
modifying strategies only in case of failure of the former to achieve 
adequate ICV. Thus, fitness to the Rasch model, ICV requirements, 
reliability, and targeting were all assessed for the original scale (base 
analysis) and then, after each scale modification, to ascertain whether 
adequate model fit was achieved. This process was repeated cyclically 
until no further changes were needed and/or possible.

Should DIF be detected, the influence of the item/testlet splitting 
on the person estimates would be tested using the procedure presented 
by Maritz and colleagues (45). After item/testlet splitting, we would 
anchor the ‘splitted’ solution on the ‘un-splitted’ one, using an item/
testlet free from the DIF, and compare the person estimates of the two 
solutions, calculating an effect size (Cohen’s d) of the paired t-test of 
the difference. A Cohen’s d < 0.2 would be considered negligible; thus, 
the DIF would not be  adjusted for (45). Otherwise, the ‘splitted’ 
solution would be chosen as the final (45).

In the case of a final two-testlet solution, conditional total item-
trait interaction chi-squares would be  calculated because the 
unconditional ones are known to be unreliable for sample sizes of 200 
or more. Compared to this, the conditional fit statistics remain reliable 
for sample sizes ≤2,000 (61).

2.4.4. Generalization of the results from the 
validation subsample to the confirmation 
subsamples

Should a final fitting solution following the above modifications 
be found on the validation sample, the replication of this solution 
would be applied to the other confirmation samples. Operationally, 
we would proceed:

 • To export the item difficulty estimates for the final solution of the 
validation sample;

 • To replicate for each confirmatory subsample the final solution 
obtained for the validation sample and anchor to it the exported 
item difficulty estimates;

 • To verify the fitting of the sample validation final solution on 
each confirmatory subsample.

A stable BBS-MS validation could be achieved if an adequate fit 
was confirmed for all subsamples. In this case, its total score could 
be transformed into interval-level measurements, whose unit is the 

logit (21, 25, 42). Otherwise, a new iterative phase of analysis on the 
validation sample could be performed to find a new fitting solution 
that would be replicated again on the confirmation samples. In case of 
failure of further attempts, the available validation would 
be  considered not sufficiently stable and worthy of further 
confirmation in subsequent studies.

2.5. External construct validity analyses

Should a final fitting solution of BBS fitting the Rasch model 
(BBS-MS) be  achieved, we  would perform the following external 
construct validity analyses on a single randomly chosen observation 
for each subject. These analyses would allow us to understand better 
the clinical implications of the scale’s measurement properties. In 
particular, we assessed:

 • The convergent validity, that was tested by examining the 
correlation of the BBS-MS measurements with the EDSS, which 
specifically quantifies disability in PwMS, and with the ABC scale 
total scores (Spearman’s rho). These correlations were expected 
to be from ‘strong’ to ‘moderate’.

 • The group differences or discriminant validity, aiming to 
demonstrate that the BBS-MS could detect differences in groups 
known to differ in balance quantity. In particular, we hypothesized 
that if BBS-MS were a measure of balance, its measures should 
be significantly different across the following groups:

 o  EDSS 0–3.5 (no walking disability), EDSS 4-5.5 (some walking 
disability but able to walk without aids), EDSS ≥6 (walking 
disability requiring aids or unable to walk);

 o  ‘Fallers’ vs. ‘non-fallers’ according to the ABC scale score 
cut-off of 40, proposed by Cattaneo et al. (62) in PwMS;

 o  Low, moderate, and high physical functioning, according to the 
ABC scale scores of 50 and 80, proposed by Myers et al. (63) in 
older adults;

 o No falls vs. ≥1 fall in the previous 2 months;
 o One fall or less vs. ≥2 falls in the previous 2 months.

Finally, we assessed the distribution of the EDSS scores of the 
whole sample for each DLPA by the mean of a box-plot chart.

Given the continuous nature of the BBS-MS estimates, we would 
employ a one-way Analysis of Variance (ANOVA) to compare groups 
upon confirmation of the normality of the BBS-MS distribution. The 
size of the differences would be estimated using Cohen’s d effect size. 
In case of a non-normal distribution, we would employ the Mann–
Whitney U test to compare two groups. Instead, we would use the 
Kruskal Wallis test followed by the post-hoc pairwise comparison with 
the Mann–Whitney U test for three or more groups. In both cases, the 
corresponding r statistic calculated as a non-parametric effect size 
would be converted into Cohen’s d (64).

2.6. Statistical notes, software, and sample 
size issues

Descriptive statistics, internal consistency, and external validity 
analyses were performed with SPSS software (version 21 for Windows; 
SPSS Inc., Chicago, IL; 2004). Mokken analysis was run with the R 
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package Mokken (version 2.8.4). The CFA was performed using the 
Mplus software (version 6.0. Muthen & Muthen, Los Angeles, CA; 
1998–2010).1 Given 54 score points for the BBS-MS, it was estimated 
that 540 observations would guarantee a subject-parameter ratio of 
10:1, which is the recommended one for factorial analysis (65). Finally, 
the Rasch analysis was conducted using the RUMM2030 software 
(version 5.4 for Windows. RUMM Laboratory Pty Ltd., Perth, 
Australia: 1997–2010),2 employing a pairwise maximum likelihood 
estimation algorithm. A significance value of 0.05 was used throughout 
and adjusted for the number of tests by Bonferroni correction (66). A 
sample size of 250 observations would be sufficient to estimate item 
difficulty, with α of 0.01 to<± 0.5 logits, irrespective of the targeting of 
persons to the items (38).

To facilitate the interpretation of the Rasch analyses, we employed 
the RUMM logbook™, an ad hoc Excel 2007™ application built with 
Microsoft Visual Basic™ (67). Besides, to facilitate the interpretation 
of the absolute values of correlation coefficients, a modified version 
(68) of the cut-off criteria provided by Pallant (64) was adopted: 
negligible: 0–0.09; weak: 0.10–0.29; moderate: 0.30–0.49; strong: 0.50–
0.79; very strong: ≥ 0.80. Finally, we adopted the following criteria for 
the interpretation of the effect size coefficients (Cohen’s d) (69): small: 
≥0.2; medium: ≥0.5; large: ≥0.8. We  applied the formulas for 
converting the r and eta-squared effect size generated by 
non-parametric statistics into Cohen’s d, provided by Rosenthal (70) 
and Cohen (69).

3. Results

3.1. Descriptive statistics of the sample

All data were collected from a convenience sample of 814 PwMS, 
collating three samples from Don Gnocchi Foundation (Milano), 
IRCSS Istituto Scienze Neurologiche Bologna, and Associazione 
Italiana Sclerosi Multipla (Genova), providing data from 307, 304, and 
203 PwMS, respectively. Given that there were multiple observations 
per patient for the first two centers, we obtained 1,220 BBS assessments 
in total (568 observations from Milano, 449 from Bologna, and 203 
from Genova). The demographic and clinical characteristics of the 
whole study sample and each center subsample (subjects) are 
summarized in Table 1. The BBS and ABC scale median distribution 
of the entire study sample and the center subsamples (observations) 
are in Table 2.

Females represented 66.1% of the sample, and the average age was 
51 (SD 11.8). In addition, 45.1% of the PwMS suffered from the 
Secondary Progressive (SP) course of PwMS, and the average disease 
duration was 12.5 years (SD 9.1). For the EDSS, the median of the 
available observations (N  =  778) was 5.5 [0, 8], and the average 
number of falls (N = 316) was 1.1 (SD 2.5). No statistically significant 
difference was found between the center subsamples regarding gender 
and the number of falls in the previous 2 months. Concerning the 
other demographic and clinical characteristics, Milano patients were 
significantly younger than those from Bologna and Genova. MS 

1 www.statmodel.com

2 www.rummlab.com

disease courses differed significantly between all three centers, as the 
prevalence of the RR course was higher for Milano. In contrast, the SP 
course was higher for Bologna and Genova. In addition, patients from 
Bologna had a disease duration significantly shorter than Milano and 
Genova, and the latter showed a significantly lower median EDSS 
score than others (Table 1).

Data quality was excellent, as only one rating amongst the 1,220 
available BBS observations had some item missing data. Considering 
all ratings, the median BBS score was 45 [3, 56]. However, the 
comparison between the three centers highlighted that BBS data were 
significantly different between them (BBS median Milano: 48 [12, 56]; 
Bologna: 42 [3, 56]; Genova: 44 [7, 47]). The median ABC scale value 
on the available observations (N = 502) was 54 [0, 100]. The inter-
center comparison of the ABC scale resulted in a 
non-significant difference.

3.2. Assessment of unidimensionality

3.2.1. Classical item analysis
The internal consistency analysis of the BBS showed a satisfactory 

Cronbach’s Alpha (α = 0.918). Similar findings were found for the 
average inter-item correlations (=0.468 > 0.200). At the item level, 
Cronbach’s Alphas if an item deleted were below the α, ranging from 
0.917 to 0.906, except for BBS03 (sitting unsupported), which showed 
a higher value of 0.923. Item-to-total correlations were high (mean 
value: 0.666) for all items, ranging from 0.534 to 0.807, except for 
BBS03, whose value was 0.223.

3.2.2. Mokken analysis
The automated item selection procedure within the MA showed 

the scalability of all the items on one single scale, except for BBS03. 
Besides, all item-pair scalability coefficients Hijs were positive, except 
for the pairs BBS03-BBS12 (−0.118) and BBS03-BBS14 (−0.258). 
Furthermore, all the item scale coefficient Hjs were higher than 0.3, as 
recommended, with the exclusion of BBS03 (0.194). Finally, the 
scalability coefficient for the entire scale H was equal to 0.593, which 
qualifies the BBS as a ‘strong scale’.

3.2.3. Confirmatory factor analysis
The baseline CFA on the whole sample failed to support the scale’s 

unidimensionality (χ2
77 = 2366.4; p = 0.000; RMSEA = 0.156; 

SRMR = 0.146; CFI = 0.923; TLI = 0.909). However, forty pairs of items 
showed large modification indices. After allowing correlation of the 
errors within the dependent pairs, it was possible to fit a final model 
indicating sufficient unidimensionality for a Rasch analysis (χ2

37 = 91.1; 
p = 0.000; RMSEA = 0.035; SRMR = 0.020; CFI = 0.998; TLI = 0.996).

3.3. Rasch measurement theory analyses

3.3.1. Sampling strategy
Within the 1,220 BBS assessments, 477 patients had only one 

observation, 268 had two observations, and 69 had up to three 
observations. As described before, we generated several subsamples 
across the three centers, each containing only one evaluation per 
patient (Figure 1), according to the following procedure:
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 • First, we  randomly divided the single observations into two 
groups (A and B), each containing 238 and 239 observations;

 • Then, for each of the 268 patients with two observations, 
we randomly selected only one of them for sample A, while the 
left-over observation was segregated into sample B;

 • The same procedure was followed for the 69 patients who 
had three observations. After randomly selecting the first 
and the second observations for samples A and B, the left-
over observation was segregated into a third sample (C; 
N = 69). In this way, we obtained three samples (A–C) of 575, 
576, and 69 observations, each containing a single 
observation per patient;

 • Furthermore, to obtain four numerically balanced samples, 
we randomly divided each A and B sample into two subsamples, 
thus totaling four subsamples (A1, A2, B1, and B2). All these 
subsamples included 238 observations, except A2, whose size was 
237. The subsample C was then excluded from subsequent 
analyses because of its insufficient size for performing a 
Rasch analysis;

 • The following subsample comparison to verify the randomization 
effect showed no statistically significant difference between them 
(Table 3);

 • Since sample B1 had the most extensive score range of the scale 
(3, 56), it was defined as the validation sample and used for the 
principal Rasch analysis. On the contrary, samples A1, A2, and 

B2 were used as confirmation samples to replicate the final fitting 
solution of B1.

3.3.2. Rasch analysis

3.3.2.1. Rasch analysis on the validation subsample (B1)
The base analysis performed on the 14 BBS items of 

subsample B1 (Table 4, subsample B1, Analysis: Base) showed 
that the scale did not fit the Rasch model (χ2

56 = 215.1; p = 0.000). 
The scale failed the unidimensionality requirement, as the 
percentage of significant t-tests (PST) and the lower bound of the 
binomial confidence interval for proportions (LBCI) were both 
>5% (PST = 14.5%; LBCI = 12.6%). Furthermore, one item 
(BBS13) did not fit the model for under-discrimination (item 
FitRes: 2.884 > 2.5). Also, the monotonicity requirement was 
violated because most items had disordered thresholds (12 out of 
14, T-DT = 85.7%). Indeed, the BBS scale also failed the 
requirement of local independence, as there were 19 pairs of 
items with residual correlations above the local dependency 
relative cut-off. The only satisfied ICV requirement was the 
absence of DIF. Finally, the scale was off-target (Targeting 
Index = 3.288), although its Person Separation reliability Index 
(PSI = 0.879) was within the cut-off for individual person 
measurement (≥0.850).

TABLE 1 Demographic and clinical characteristics of the whole study sample and the center subsamples (subjects).

Whole sample 
(N = 814)

Milano (N = 307) Bologna (N = 304) AISM (N = 203) Subsample 
comparison

N % Mean 
(SD) 

Median 
[Range]

N % Mean 
(SD) 

Median 
[Range]

N % Mean 
(SD) 

Median 
[Range]

N % Mean 
(SD) 

Median 
[Range]

Statistics p-
value

Gender 814 307 304 203

x2
2 = 0.117 n.sMales 276 33.9 – 106 34.5 – 101 33.2 – 69 34 –

Females 538 66.1 – 201 65.5 – 203 66.8 – 134 66 –

Age (years) 799 – 51.5 (11.8) 293 – 48.2, (11.4) 304 – 52.4 (11.8) 202 – 54.6 (11.2) x2
2 = 39.5

0.000*
51.0 [17.5, 85] 47.0 [17.5, 75] 53.0 [20, 85] 54.5 [24, 78]

MS disease course 763 262 304 – 197

Relapsing-Remitting 317 41.5 – 137 52.3 – 101 33.2 – 79 40.1 –

x2
6 = 88.9 0.000*Secondary Progressive 344 45.1 – 99 37.8 – 146 48.0 – 99 50.2 –

Primary Progressive 102 13.4 – 26 9.9 – 57 18.8 – 19 9.7 –

Disease duration (years)
712 – 12.5 (9.1) 223 – 14.0 (8.4) 304 – 10,4 (9.3) 185 – 14.2 (8.9) x2

2 = 41.4 0.000*

11.0 [0, 43] 13.1 [0, 37.1] 8 [0, 43] 13 [1, 43]

EDSS score
778 – – 280 – – 304 – – 194 – – x2

2 = 10.8 0.005*

5.5 [0, 8] 5.5 [2, 8] 6 [0, 7.5] 5.5 [0, 7]

Falls
316 – 1.1 (2.5) 264 – 1 (2.3) 52 – 1.6 (3.4) – – – x2

1 = 0.312 n.s.

0 [0, 20] 0 [0, 20] 0 [0, 15] –

AISM, Associazione Italiana Sclerosi Multipla; N, sample number; SD, standard deviation; IQR, interquartile range; MS, Multiple Sclerosis; EDSS, Expanded Disability Status Scale; n.s., non-
significant.
Nominal variables (gender, MS disease course) were compared between samples using a chi-square test for independence. Ordinal and interval variables (age, disease duration, EDSS score, 
and falls) were compared across samples with a Kruskal-Wallis test (Mann–Whitney U Test for Falls, given only two subsamples).
*Post-hoc comparisons: MS disease course: Cramer’s V 0.234. Age: Milano vs. Bologna x2 = 85.6, value of p = 0.000; Milano vs. AISM x2 = 125.4, value of p = 0.000. Disease duration: Bologna vs. 
AISM x2 = 97.8, value of p = 0.000; Bologna vs. Milano x2 = −102.2, value of p = 0.000. EDSS score: AISM vs. Milano x2 = −54.2, value of p = 0.009; AISM vs. Bologna x2 = −64.6, value of p = 0.002.
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Considering these findings, we  performed the following 
modifications sequentially, reassessing the internal construct validity 
assumptions and requirements after each change:

 • We did not proceed to rescore items with disordered thresholds 
to preserve the original structure of the scale, avoiding 
modification of the original scoring structure of the items and/or 
deletion of items;

 • We accounted for local dependency by creating one testlet 
for each cluster of items whose residual correlation was 
above the LDRC. However, as the LDRC decreased by 
analysis, we created one testlet at a time, proceeding from 
the item cluster with the highest dependency to that with the 
lowest. Specifically, in the end, we  realized the 
following testlets:

 o  BBS01-02-03-04-05-06-08-09-10-11 (postural changes and 
transfers, sitting position, static and dynamic standing balance);

 o  BBS07-12-13-14 (standing with a restricted support base, 
alternate stepping, tandem standing position, and standing on 
one leg).

After the last modification, the final 14-item scale (BBS-MS) 
fitted the Rasch model (χ2

565 = 485.7, p = 0.993; unconditional 
χ2

8 = 23.8, p = 0.002; item FitRes SD = 0.828). The scale also 
satisfied all the ICV requirements regarding monotonicity, local 
independence, strict unidimensionality (PST = 3.3%; 
LBCI = 1.5%), and invariance at the subgroup level (no DIF for 
all person factors assessed: gender, age, disease duration, and 
disease course).

Although there was no floor effect and a low ceiling effect (7%), 
the targeting index was 1.922, thus indicating that, on average, the 
subsample’s ability was above the average difficulty of the BBS-MS 
items. Indeed, the targeting graph (Figure 2) showed that the persons’ 
spread, which was about six logits wide ([−2.922, +2.744]), matched 
fairly the measurement continuum spread, which was about 5.5 logits 
wide ([−3.437, +2.149]).

The person reliability of the BBS-MS for the validation 
sample, expressed as Person Separation Index (PSI) and 
Cronbach’s α, were 0.768 and 0.726. These values were both 
below the recommended cut-off (≥0.850) for the precision of 
measurement at the individual level (34, 43, 55). However, as the 
sample was not normally distributed, we  also calculated the 
number of DLPA using a distribution-free method (54), which 
considers the measure and the standard error corresponding to 
each raw score. After controlling for the non-normality of the 
distribution, the scale could distinguish up to five DLPA. Based 
on the number of DLPA, we  calculated a Distribution-
Independent PSI (DI-PSI) of 0.962 (54), which was well above the 
cut-off for individual person measurement (≥0.850).

3.3.2.2. Rasch analysis on the confirmation samples A1, 
A2, and B2

To confirm the validity of the BBS-MS, we performed the’ base 
analysis’ for the confirmation samples A1, A2, and B2 (Table 4). For 
all three samples, the scale did not fit the Rasch model. It also 
violated the requirement of unidimensionality, as the percentage of 
significant t-tests (PST) and the lower bound of the binomial 
confidence interval for proportions (LBCI) were both >5% for all T
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three samples. At the item level, all but the absence of DIF 
requirements were violated for all three samples, thus replicating 
the findings observed for the validating sample. Furthermore, the 
scale appeared off-target, and the PSI seemed to be slightly below 
the cut-off for individual person measurement (≥0.850) for all three 
confirmatory samples (Table 4).

The B1 final solution on each confirmatory sample confirmed the 
findings observed for the validation sample. After anchoring the 

exported item difficulty estimates generated from the validating 
sample to these solutions, the Rasch analyses confirmed the validity 
of the solution also for the A1, A2, and B2 samples. In particular, the 
B1 final 14-item scale solution (BBS-MS) fitted the Rasch model as a 
whole when anchored on each’ base analysis’. It also satisfied all the 
ICV requirements regarding monotonicity, local independence, 
acceptable unidimensionality, and invariance at the subgroup level. 
Although there were no floor effect and a low ceiling effect, the 

FIGURE 1

Sampling strategy. The sampling strategy adopted to obtain the validation sample (B1) and the other three confirmation samples (A1, A2, and B2) has 
allowed a stable validation of the BBS-MS.

TABLE 3 Comparison of the main clinical and demographic characteristics and the BBS median distribution in the whole study sample and in the 
randomly generated subsamples.

Whole sample 
(N = 1,220)

A1 sample 
(N = 288)

A2 sample 
(N = 287)

B1 sample 
(N = 288)

B2 sample 
(N = 288)

Subsample comparisons

Statistics p-value

Gender frequencies (%)

Males 33.5 38.5 32.8 32.6 30.6

x2
3 = 0.207 n.s.Females 66.5 61.5 67.2 67.4 69.4

Sample size 1,220 288 287 288 288

Age (years)

Mean (SD) 51.5 (11.8) 52.1 (11.9) 50.5 (11.9) 52.0 (11.8) 51.6 (11.7)

x2
3=3.4 n.s.Median [range] 51.4 [18, 85] 53 [20, 78] 49.2 [17.5, 85] 52 [26, 85] 51.4 [20, 79]

Sample size 1,195 283 281 281 284

MS disease course frequencies (%)

Relapsing-

Remitting

39.1 40.8 38.9 39.5 37.3

x2
9=0.459 n.s.

Secondary 

Progressive

46.5 43.4 48.8 47.4 46.4

Primary 

Progressive

14.4 15.8 12.3 13.1 16.3

Sample size 970 240 244 253 233

Disease duration (years)

Mean (SD) 12.6 (9.0) 12.8 (8.9) 12.3 (8.7) 12.2 (9.1) 12.9 (9.4)

x2
3=0.8 n.s.Median [range] 11 [0, 43] 11 [0, 39] 11.5 [0, 38] 11 [0, 43] 11 [0, 43]

Sample size 1,068 257 245 251 258

BBS total score

Median [range] 45 [3, 56] 44 [4, 56] 45 [6, 56] 45 [3, 56] 46 [7, 56]
x2

3=0.7 n.s.
Sample size 1,219 288 287 288 288

BBS, Berg Balance Scale; n.s., non-significant.
Nominal variables (Gender, MS disease course) across subsamples were compared with a chi-square test for independence. Ordinal and interval variables (Berg Balance Scale, Age, Disease 
duration) between subsamples were compared using a Kruskal-Wallis test.
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TABLE 4 Summary of Rasch analysis for BBS-MS on sample B1 and replication of the final solution on samples A1, A2, and B2.

Analysis description

Fitness to the Rasch model

Unidimensionality

Targeting and reliability

Item fit 
residual

Person fit 
residual

Item-trait interaction Targeting Separation reliability

Sample
Analysis 
name

N/CI K Mean SD Mean SD χ2
df p

Cut-
off a

p
Ind-

Cond χ2

PST 
(%)b

Lower BCI 
(%)b SEMc Targeting 

indexd PSIe αe DLPA
DI-
PSIe cf rf Af

B1 (V) Base 288/5 14 −0.573 1.628 −0.266 0.893 215.156 0.0000 0.0036 – 14.5 12.6 0.522 3.288 0.879 0.915 7 0.980 – – –

B1 (V) Final 288/5 2 0.312 0.828 −0.244 0.631 23.88 0.0024 0.0250 0.993 3.3 1.5 0.389 1.919 0.768 0.726 5 0.962 0.225 0.951 0.794

A1 (C) Base 288/5 14 −0.578 1.678 −0.256 0.921 282.856 0.0000 0.0035 – 16.6 14.7 0.524 3.113 0.875 N/A 7 0.980 – – –

A1 (C)
Final 

nAnc
288/5 2 0.489 1.008 −0.276 0.776 18.08 0.0214 0.0250 0.036 2.7 0.8 0.428 1.812 0.762 N/A 5 0.962 N/A N/A N/A

A1 (C) Final Anc 288/5 2 0.173 0.977 −0.312 0.759 19.08 0.0147 0.0250 0.363 1.9 0.0 0.408 1.869 0.751 N/A 5 0.962 N/A N/A N/A

A2 (C) Base 287/5 14 −0.386 1.836 −0.248 0.874 195.156 0.0000 0.0036 – 16.2 14.3 0.500 3.159 0.887 0.919 7 0.980 – – –

A2 (C)
Final 

nAnc
287/5 2 0.243 0.985 −0.236 0.601 18.38 0.0188 0.0250 1.00 2.2 0.4 0.334 1.927 0.730 0.744 5 0.962 0.122 0.985 0.809

A2 (C) Final Anc 287/5 2 0.620 1.415 −0.260 0.648 22.88 0.0036 0.0250 0.020 4.0 2.2 0.369 1.888 0.769 0.744 5 0.962 N/A N/A N/A

B2 (C) Base 288/5 14 −0.255 1.898 −0.164 0.897 196.656 0.0000 0.0036 – 16.8 14.9 0.524 3.107 0.887 0.926 7 0.980 – – –

B2 (C) Final 

nAnc

288/5 2 0.207 1.006 −0.243 0.686 18.38 0.0189 0.0250 1.00 1.9 0.0 0.369 1.849 0.748 0.771 5 0.962 0.189 0.809 0.895

B2 (C) Final Anc 288/5 2 0.381 1.328 −0.282 0.651 22.28 0.0044 0.0250 0.120 3.0 1.1 0.392 1.831 0.774 0.771 5 0.962 N/A N/A N/A

Recommended values → ≤1.4 ≤1.4 n.s. n.s. <5.0b Lower

BCI<

5.0 b

[−2, +2] ≥0.85e ≥0.85e ≥3 ≥0.85e ≥0.0.70f ≥0.70f

V, validation sample; C, confirmation sample; N/CI, the ratio between sample size and class intervals; K: number of items; SD, standard deviation; χ2, unconditional chi-square for model fit; df, degrees of freedom; p, Bonferroni-corrected probability value for chi-
square; p Ind-Cond χ2, individual conditional chi-square for model fit; PST, the proportion of significant t-test carried out on the estimates that, within a principal component analysis of residuals, loaded positively and negatively (factor loading > 0.30) on the first 
component; BCI, binomial (95%) confidence interval for proportions of significant t-test; SEM, standard error of measurement; PSI, Person Separation Index; α, Cronbach’s alpha; DLPA, distinct levels of performance ability; DI-PSI, distribution-independent person 
separation index (based on DLPA), N/A, Not Available; c, unique variance of the subscales; r, latent correlation between the subscales; A, non-error variance common to the subscales; nAnc, final solution as B1 final, not anchored; Anc, final solution as B1 final, 
anchored to B1.
In grey summary of Rasch analysis for BBS-MS on the validation sample B1.
Testlet 1, BBS06-BBS07 (standing with eyes closed and with a restricted base of support); Testlet 2, BBS01-BBS04 (postural changes); Testlet 3, BBS12-BBS13 (standing with a restricted base of support and one leg support).
aBonferroni-corrected value of p, which varies by analysis, is used to interpret the corresponding chi-square value of p.
bUnidimensionality is achieved when PST is < 5% or when the lower bound of its BCI is < 5%. Unidimensionality is strict when both values are < 5%, whereas it is considered acceptable when only lower BCI < 5%.
cSEM is calculated with the formula: SD reliability× −1 , where SD is the person’s location standard deviation, and reliability is the PSI with extremes.
dThe targeting index is calculated as the ratio between the average person measures and the SEM. Targeting is good, and, respectively, fair, when the average person measure is beyond [−1, +1] and, respectively, [−2, +2] SEM the average item measure (set by default at 0 
logits).
ePSI, α, and DI-PSI values of ≥0.85 suggest a measurement precision at the individual level. In contrast, a value between 0.70 and 0.849 indicates precision only at the group level (α value is not available in case of missing data).
fValues c, r, and A were evaluated to assess the unidimensionality of the subscale structure in the case of the creation of testlets. For c (‘unique variance’ for each subscale) low values indicate unidimensionality, whereas for r (’ latent correlation’ between the subscales), 
and A (non-error variance common to all subscales) values ≥0.70 indicate unidimensionality.
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targeting index indicated that, on average, the sample’s ability was 
above the average difficulty of the BBS-MS items for all three 
subsamples (Table 4).

The person reliability of the BBS-MS on the three samples 
expressed both as Person Separation Index (PSI) and Cronbach’s 
α were all below the recommended cut-off (≥0.850) for the 
precision of measurement at the individual level (34, 43, 55). 
However, as also these subsamples were not normally distributed, 
we  calculated the number of DLPA using a distribution-free 
method (54), which yielded five DLPA as for the validation 
sample B1. Based on the number of DLPA, the DI-PSI was 0.962, 
which was well above the cut-off individual person measurement 
(≥0.850) (Table 4).

Finally, we confirmed a stable validation of the BBS in PwMS 
(BBS-MS) from the above results. The total raw score of the 
BBS-MS preserved the original BBS range of 0–56. Based on the 
item calibrations, it was possible to construct a conversion table 
to transform the BBS-MS raw scores into interval measures of 
ability (unit of measure ‘logit’) and a 0-to-100 scale, with the 
associated 95%CI (available in Supplementary Material 2).

3.4. External construct validity

3.4.1. Assessment of normality
The assessment of normality conducted on the whole 

observation sample (N = 1,220) confirmed the violation of the 
normality requirement suggested by the Rasch analysis 
(Skewness: 0.220; Kurtosis: 2.928; Kolgomorov-Smirnov: 
0.1751220, p < 0.000; Shapiro–Wilk: 0.8771220, p < 0.000). Thus, the 
subsequent analyses were performed employing 
non-parametric statistics.

3.4.2. Convergent validity
The analysis of the convergent validity showed that BBS-MS 

‘strongly’ correlated directly with the ABC scale (rho = 0.523, p < 0.000, 
n = 393) and inversely with the EDSS (rho = −0.573, p < 0.000, n = 734).

3.4.3. Discriminant validity
A Mann–Whitney U test revealed a statistically significant 

difference in the BBS-MS estimates (0-to-100 scale) across the two 
groups ‘fallers’ vs. ‘non-fallers’ according to the ABC score cut-off of 
40 (U = 25125.0, z = 7.859, p < 0.000), with a large effect size (Cohen’s 
d = 0.873) (Table 5).

A Kruskal-Wallis test revealed a statistically significant difference in 
the BBS-MS estimates (0-to-100 scale) across the three levels of physical 
functioning according to the ABC score cut-off of 50 and 80 (χ2

2 = 93.0, 
p < 0.000, Cohen’s d = 1.111). In addition, the post-hoc pairwise 
comparisons of the BBS-MS estimates amongst the three ABC groups 
were significant, with medium and large effect sizes (Table 5).

A Mann–Whitney U test revealed a statistically significant 
difference in the BBS-MS estimates (0-to-100 scale) across the two 
groups’ no falls’ vs.’ ≥ one falls’ in the previous 2 months (U = 6809.0, 
z = −4.917, p < 0.000), with a medium effect size (Cohen’s d = 0.583). A 
further Mann–Whitney U test revealed a statistically significant 
difference in the BBS-MS estimates (0-to-100 scale) across the two 
groups’ 0–1 falls’ vs.’ ≥ two falls’ in the previous 2 months (U = 4235.5, 
z = −4.557, p < 0.000), with a medium effect size (Cohen’s d = 0.539) 
(Table 5).

A Kruskal-Wallis test revealed a statistically significant difference 
also in the BBS-MS estimates across the three main EDSS groups 
(χ2

2 = 204.2, p < 0.000, Cohen’s d = 1.238). The post-hoc pairwise 
comparisons of the BBS-MS estimates amongst the three EDSS groups 
were significant, with small and large effect sizes (Table 5). We also 
observed that when the BBS-MS DLPA was set as the independent 

FIGURE 2

Targeting (person-item threshold distribution) graph of the final solution of BBS-MS on sample B1. Persons (n = 288) and item thresholds are displayed, 
respectively, in the upper and the lower part of the figure, separated by the logit scale.
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variable, there was a statistically significant difference in the EDSS 
score across the five DLPA, as shown with the Kruskal-Wallis test 
(χ2

4 = 286.8, p < 0.000, Cohen’s d = 1.229). However, the post-hoc 
pairwise comparisons of the BBS-MS estimates amongst the five 
DLPA groups were only partially significant, with medium and large 
effect sizes (Table 5).

In particular, the lower part of Figure  3 shows the actual 
relationship between the distribution of the EDSS levels across the 
BBS-MS DLPA for the whole sample (N = 1,219). Notably, the EDSS 
median decreased progressively from the 1st to the 5th as expected, 
although the EDSS ranges of the 4th and 5th DLPA covered all the 
scale range with the attribution of high EDSS scores to people with a 
high level of balance. For example, in the 5th DLPA, 12 persons 
showed an EDSS score ≥ 7 (walking disability requiring aids or unable 
to walk) with a BBS-MS TS ≥46. The presence of subjects with 
extreme scores also caused this unexpected distribution. Besides, in 
the 4th LDPA area of the measurement continuum, the average test 
information (i.e., the precision of measurement) was the highest 
(mean = 29.290; range: [19.237, 32.653]), accommodating about 41% 
of the sample, whereas the 5th LDPA area included another 50% of the 
sample with lower mean information (12.664). Despite the good 

match between the highest information with the peak of the sample 
distribution, the targeting index was only fair (1.908), as the average 
ability of the sample was above the average difficulty of the BBS-MS 
items. Consequently, the graph showed four groups of more than 100 
subjects in the LDPAs mentioned above (Figure 3), which the scale 
could not separate precisely based on their level of balance.

4. Discussion

To our knowledge, this is the first study reporting on the Rasch 
analysis of the BBS for PwMS, as the only previously published 
assessment was performed by Tesio et al. on some items of the BBS. In 
particular, they used some BBS items to construct a new tool for 
measuring balance in PwMS (71). Indeed, in this study, we thoroughly 
evaluated the internal construct validity, reliability, and targeting of 
the BBS in a sample of PwMS composed of observations from three 
Italian centers. Using a validation subsample and three further 
confirmation subsamples, we  demonstrated that, maintaining the 
original scale item content and scoring structure and after accounting 
for local dependency, the BBS-MS fitted the Rasch model satisfying 

TABLE 5 BBS-MS discriminant validity.

Subgroup comparison

Independent variable 
groups* N BBS-MS median Statistics p-value Cohen’s d

EDSS 0-3.5 125 71.9

χ2
2=204.2 0.000** 1.238EDSS 4-5.5 221 69.7

EDSS ≥6 388 65.7

ABC <40 (fallers) 130 65.7
U = 25125; z = 7.859 0.000 0.873

ABC ≥40 (non-fallers) 260 69.7

ABC <50 (low physical 

functioning)
171 66.1

χ2
2=93.0 0.000** 1.111

ABC 50-80 (moderate physical 

functioning)
149 69.1

ABC >80 (high physical 

functioning)
68 72.0

No falls 208 73
U = 6809; z = −4.917 0.000 0.583

Falls ≥1 100 67.9

Falls ≤1 253 71.9
U = 4236; z = −4.557 0.000 0.539

Falls ≥2 55 67.3

DLPA 1 8 7.0

χ2
4=286.8 0.000** 1.229

DLPA 2 27 6.5

DLPA 3 84 6.5

DLPA 4 445 6.0

DLPA 5 472 4.5

BBS, Berg Balance Scale; EDSS, Expanded Disability Status Scale; ABC scale, Activities-Specific Balance Confidence scale, DLPA, Distinct Levels of Performance Ability.
Subgroups were compared through a Kruskal-Wallis test (Mann–Whitney U Test for Falls, given only two subsamples). The number of falls is related to the previous 2 months (not available for 
the AISM center).
*Dependent variable: BBS-MS estimates, except for DLPA, where the dependent variable was EDSS scores.
**Post-hoc comparisons: EDSS 0–3.5 vs. 4–5.5: value of p = 0, Cohen’s d = 0.408; EDSS 4–5.5 vs. ≥6: value of p = 0, Cohen’s d = 0.926; EDSS 0–3.5 vs. ≥6: value of p = 0, Cohen’s d = 1.317.Low vs. 
moderate physical functioning: value of p = 0.000, Cohen’s d = 0.652; moderate vs. high physical functioning: value of p = 0.000, Cohen’s d = 0.723; low vs. high physical functioning: value of 
p = 0.000, Cohen’s d = 1.540.
LDPA 1 vs. 4: value of p = 0.004, Cohen’s d = 0.35; LDPA 1 vs. 5: value of p = 0.000, Cohen’s d = 0.301; LDPA 2 vs. 4: value of p = 0.000, Cohen’s d = 0.832, LDPA 2 vs. 5: value of p = 0.000, Cohen’s 
d = 0.772; LDPA 3 vs. 4: value of p = 0.000, Cohen’s d = 1.609; LDPA 3 vs. 5: value of p = 0.000, Cohen’s d = 1.528; LDPA 4 vs. 5: value of p = 0.000, Cohen’s d = 3.419.
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FIGURE 3

Targeting graph of the BBS-MS integrated with the EDSS score distribution for each DLPA on the whole sample. Persons (n = 1,219) and item thresholds 
are displayed, respectively, in the upper part of the figure, separated by the logit scale. In addition, the distinct levels of performance ability (DLPA) are 
also indicated. In the lower part of the figure, the EDSS score distribution for each DLPA on the whole sample is represented through a box-plot chart.
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all requirements for adequate ICV. On the other hand, the scale was 
slightly mistargeted to our convenience sample as its items were, on 
average, less difficult than the mean ability of the PwMS sample. For 
this reason, it appeared to be  reliable for individual person 
measurement only if we consider the Distribution-Independent PSI, 
leaving aside the right-skewed distribution of the sample was ignored.

The 814-person sample employed in our analysis was enrolled across 
the Neuro-rehabilitation services of three Italian centers. It was primarily 
composed of middle-aged female PwMS, with a higher prevalence of 
chronic cases with a secondary-progressive course. These epidemiological 
characteristics are similar to other samples described in the literature (72). 
Thus, considering the study’s multicenter nature, our sample could 
be regarded as representative of the PwMS population.

All preliminary analyses (item classical descriptive statistics, 
Mokken analysis, and CFA) suggested that BBS03 (sitting 
unsupported) was the item that contributed less to the operational 
definition of the construct ‘balance in MS’. Indeed, BBS03 had the 
lowest correlation value with the BBS total score and determined the 
highest increase in Cronbach Alpha in the case of its deletion. 
According to Mokken Analysis, BBS03 was the only item not scalable 
on the same scale as the other thirteen items. It showed negative item-
pair scalability coefficients Hijs with BBS12 and BBS14 and an 
unsatisfactory value of item scale coefficient Hjs (<0.3). Within the 
CFA, achieving a fitting unidimensional solution for BBS was possible 
only after allowing the correlation of errors between forty locally 
dependent item pairs, a quarter of which included BBS03. Local 
dependence can be induced by multidimensionality between items 
(43, 73, 74). Indeed, from a clinical point of view, BBS03 is likely to 
be influenced by construct ‘trunk control in sitting position’, which 
seems to represent a fundamental prerequisite for ‘balance’ but a 
separate construct from the latter (31, 42). By the way, this misfit of 
BBS03 in the internal construct validation of the BBS in neurological 
patients [three mixed samples in rehabilitation inpatients (31, 42, 75) 
and Parkinson’s Disease (47)] had already been demonstrated in 
previous studies.

The sample available for analysis included 1,220 observations for 
the presence of multiple observations for most patients. We avoided 
the subsequent time dependency due to repeated assessments from 
the same patient by randomly generating four subsamples, each 
including only one observation per patient. This sampling strategy 
(37) resolved the time dependency issue and allowed us to address 
several methodological and statistical issues. In particular, it allowed 
us to obtain a stable calibration of the BBS for PwMS, thanks to the 
possibility of confirming the final solution of the validation subsample 
on three further confirmation subsamples. Furthermore, it canceled 
out inter-center differences in age, disease courses and duration, and 
BBS total scores.

Regarding the Rasch analysis, the base analysis showed a violation 
of the monotonicity requirement for most items of the BBS on all four 
subsamples (B1, A1, A2, B2). However, to preserve the BBS original 
structure, by avoiding modifying the original scoring structure and/
or deleting items, we decided not to rescore items with disordered 
thresholds and directly address local dependency. This approach was 
previously followed by Maritz et  al., who employed the so-called 
‘testlet approach’ in 2019 to revise the internal construct validity of the 
FIM™ (45). Indeed, such a strategy is particularly advantageous in the 
case of already published and widespread clinical scales, like the 
FIM™ or the BBS. In these cases, the preservation of the original 

structure of the scale is fundamental to guarantee the scale usability 
by clinicians who are used to the original total score range, the item 
scoring structure, and the administration of the scale.

We assessed in detail the presence of local dependency in the 
data, which, despite being a common finding (31), is often not 
reported and/or not appropriately addressed in Rasch analyses on 
health outcome scales (58, 73). Recently, the use of an LDRC has 
been recommended, especially for scales with less than 20 items (as 
the BBS), since the local dependency may go undetected using the 
usually recommended absolute cut-offs of >0.3 or even >0.2 (73). 
Indeed, in most of the previously published reports on the Rasch 
analyses of the BBS, violations of the local independence requirement 
were either not reported (76–78) or not found using the frequently 
recommended absolute cut-off of 0.3 for flagging significant item 
residual correlations (31). However, in another Rasch analysis of the 
BBS in Parkinson’s Disease (PD) (47), several pairs of items had 
residual correlations indicative of local dependency only according 
to a relative cut-off, like the one employed in this study. It is 
important to check (and adjust) for local dependence in the data, 
regardless of the fitness to the Rasch model. This correction is 
mandatory because it is well known that unadjusted local 
dependency may bias person estimates, inflate reliability, and 
negatively affect change scores (73).

The reliability of the BBS-MS for all four subsamples (PSI < 0.80) 
appeared lower in comparison to those reported for other neurological 
samples, like a PD sample (PSI = 0.894; strata = 4.6) (47) and a mixed 
neuro-rehabilitation sample (PSI = 0.952; strata = 7.1) (31). It is 
essential to highlight that these reliability indices are not an absolute 
property of the scale but are heavily influenced by the distribution of 
the calibrating sample (15, 17). Indeed, as the PSI assumes that 
samples are normally distributed (54), separation reliability will 
be  reduced when items are mistargeted, as for BBS-MS (15). 
We  circumvented this problem by employing a distribution-free 
method (54), which allowed us to demonstrate that the scale could 
distinguish up to five statistically DLPA, with a Distribution-
Independent PSI of 0.962, which was well above the cut-off individual 
person measurement (≥0.850).

The BBS-MS was not well-targeted to the sample, given the 
prevalence of higher-ability PwMS. The tendency towards a ceiling 
effect for the BBS was already pointed out in several papers reporting 
on the Rasch analysis of BBS across multiple conditions (47, 62). In 
particular, it was suggested that this might be caused by the lack of 
items targeting external postural responses to tripping and slips and 
dynamic walking balance (47). Indeed, this paper confirms that most 
PwMS in all four subsamples lie in the right part of the measuring 
continuum, where a limited number of thresholds is available 
(Figures  2, 3). In practice, the BBS is not precise enough in the 
measurement continuum area where high measurement precision 
would be most needed. In turn, this may also provide an explanatory 
framework for the reported BBS’ low responsiveness to change in the 
balance of ambulatory PwMS and with relatively little walking 
disability (79), as clinical changes within the higher DLPAs may 
be  statistically undetectable. Besides, this paper adds to previous 
findings the definition of statistical DLPAs for the BBS-MS and their 
linkage to the disability levels provided by the EDSS. Notably, our 
results demonstrated quite clearly that the precision of measurement 
of the BBS-MS within the 4th and 5th DLPA was not optimal in 
separating persons with a high level of balance.
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The lack of items measuring external postural responses and 
dynamic balance, which are crucial at this high level of balance, is one 
of the main shortcomings of the BBS. For instance, scales such as the 
Fullerton Advanced Balance Scale (FABS) (80) and the Unified Balance 
Scale (UBS) (42) were created to overcome these shortcomings. In 
particular, the FABS was developed to test both static and dynamic 
balance under varying sensory conditions in outpatient older adults 
(80) or affected by other neurological disorders (42, 81). On the other 
hand, the UBS was devised by pooling items from the BBS, Performance 
Oriented Mobility Assessment, and FABS, thus creating an activity-
based bed-to-community balance scale. The knowledge that the 
content coverage of the BBS is inadequate for measuring the higher 
levels of balance required, for instance, during walking and/or in 
different sensory conditions, has both clinical and research 
implications. From a clinical point of view, clinicians should consider 
the administration of additional scales to obtain a proper balance 
assessment for higher-ability PwMS. Regarding research, it should 
be assumed that the efficacy of balance rehabilitation for preventing 
falls in RTCs for PwMS may have been biased unpredictably both by 
these targeting and responsiveness issues (5–10) and the misuse of 
parametric statistics applied to BBS ordinal scores (82, 83).

The external analyses confirmed the expected strong correlations of 
BBS-MS estimates with the EDSS and the ABC total scores. Indeed, 
EDSS quantifies disability in PwMS considering the alteration of the 
functional systems, which determine limitations in activities of daily 
living, including walking. This is not surprising considering that balance 
is a prerequisite to performing effectively basic activities of daily living, 
and it is fundamental for adequate stability during gait (72, 84). Indeed, 
balance requires the integration of several functions controlled by the 
central nervous system, which can all be affected by MS. In particular, 
the latter can determine impairments of vestibular function, 
proprioception, vision, eye movement control, coordination, cognition, 
and strength. These impairments and/or the disruption of the integration 
of the underlying functions can frequently lead to balance dysfunction 
in PwMS (72). The interrelated problems determining this balance 
dysfunction include a decreased ability to maintain a posture, narrow 
limits of stability, delayed responses to postural perturbations, and 
impaired dual-task motor and cognitive integration.

Furthermore, reduced gait speed, impaired dynamic balance, and 
reduced walking-related physical activity are described as 
determinants of gait changes (72). These considerations align with the 
inverse correlation between balance (BBS-MS) and the individual’s 
confidence in performing activities without losing balance (ABC 
score), which we found. Indeed, the greater the balance, the greater 
the individual’s confidence, the lower the fear and the risk of falling, 
and the better the activity performance (85, 86). At the same time, the 
lower the balance, the lower the individual’s confidence in performing 
activities, and the highest the fear and the risk of falling (62, 84, 87–89).

The discriminant validity analysis supports our interpretation of 
the inter-relationships between impairments, balance, and balance 
confidence. In particular, BBS-MS estimates are statistically different, 
with a large effect between EDSS values below 5.5 (absent or partial 
walking disability) and EDSS values above 6 (severe or complete 
walking disability) and between the lowest levels of physical 
functioning (ABC total score < 50), and the highest levels (ABC total 
score > 70). This result is expected as a balance impairment affects all 
the gait characteristics (initiation, stability, speed, fluidity, etc.) and, 
consequently, walking independence in most cases (5, 87).

Regarding the capacity of BBS-MS to discriminate between 
groups of ‘fallers’ versus ‘non-fallers’, the effect size was only from 
medium to small. This evidence aligns with previous works, like that 
by Cattaneo et al. in 2006 (62) in PwMS or by Bogle Thorbahn and 
Newton in 1996 (90) in older adults. Indeed, they found a poor ability 
of the scale to categorize subjects into these two groups, showing low 
sensitivity (0.4 and, respectively, 0.53). The smaller effect size can 
be explained by considering the risk factor model for falls proposed 
by the World Health Organization (89), which describes the risk of 
falling as a multidimensional variable. The model includes 
interactions between four types of risk factors: biological, behavioral, 
environmental, and socioeconomic. Balance impairment, measured 
by the BBS-MS, is a part of the biological domain, which only 
partially contributes to the fall event’s determination. In summary, a 
limited effect size of the BBS-MS in the discrimination between 
‘fallers’ and ‘non-fallers’ is expected because balance is not the unique 
determinant of the risk of falling but one of the multiple risk factors 
interacting with each other.

4.1. Study limitation

Although the sample was large and drawn from different 
populations of PwMS of three Italian Neuro-rehabilitation centers, it 
should be  emphasized that it is a convenience sample. Thus, the 
possibility of generalizing these findings to other samples may 
be limited. Another limitation is that the confirmation subsamples 
were based on different assessments of the same individuals included 
in the validation sample. Finally, in the external validity analyses, 
we only used the EDSS score and not the individual functional system 
subscores, which might highlight different correlations with balance 
according to the affected functional system.

5. Conclusion

This study supports the internal construct validity and 
reliability of the BBS-MS as a measurement tool in an Italian 
multicentre sample of PwMS. Using a validation subsample and 
three further confirmation subsamples, we  demonstrated the 
BBS-MS fitting to the Rasch model and the satisfaction of all 
requirements for adequate internal construct validity. On the 
other hand, the scale was slightly mistargeted to our convenience 
sample as its items were, on average, less difficult than the mean 
ability of the PwMS sample. In this sense, it also uncovered 
significant targeting issues that hamper the measurement 
precision of the scale for PwMS who are still ambulatory and with 
relatively little walking disability. Indeed, our study suggested 
that the BBS, even in its Rasch-modified version, may not be a 
precise and responsive tool for detecting early balance 
abnormalities in this subgroup of PwMS. However, it is likely to 
be a precise and responsive tool for PwMS who are more disabled. 
This information makes the BBS-MS a candidate measurement 
tool to assess balance in RCTs targeted to more disabled  
PwMS with an advanced walking disability, together with the 
availability of interval-level measures of balance ability provided 
by the Rasch analysis (which allows the use of 
parametric statistics).
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