

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture / Mancuso, Giuseppe; Langone, Michela; Di Maggio, Rosa; Toscano, Attilio; Andreottola, Gianni. - In: BIOREMEDITION JOURNAL. - ISSN 1088-9868. - STAMPA. - 26:1(2021), pp. 41-52. [10.1080/10889868.2021.1900055]

This version is available at: https://hdl.handle.net/11585/827238 since: 2023-06-08

Published:

DOI: http://doi.org/10.1080/10889868.2021.1900055

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version. This is the final peer-reviewed accepted manuscript of:

2021 Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture. In BIOREMEDIATION JOURNAL vol. 26 (1) Pages 41-52. Mancuso, Giuseppe; Langone, Michela; Di Maggio, Rosa; Toscano, Attilio; Andreottola, Gianni

The final published version is available online at:

https://doi.org/10.1080/10889868.2021.1900055

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilisation for efficient and safe reuse in agriculture

Journal:	Bioremediation Journal
Manuscript ID	BBRM-2020-165-OA.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Mancuso, Giuseppe; Universita degli Studi di Bologna, Department of Agriculture and Food Sciences Langone, Michela; Universita degli Studi di Trento, Civil, Environmental and Mechanical Engineering Di Maggio, Rosa; Universita degli Studi di Trento, Civil, Environmental and Mechanical Engineering Toscano, Attilio; Universita degli Studi di Bologna, Department of Agriculture and Food Sciences Andreottola, Gianni; Universita degli Studi di Trento, Civil, Environmental and Mechanical Engineering
Categories:	Molecular Biology Applications in Bioremediation

1 2		
2 3 4 5	1	Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase
6 7 8 9	2	stabilisation for efficient and safe reuse in agriculture
10 11 12	3	Giuseppe Mancuso ^{a,b*} , Michela Langone ^{c,d} , Rosa Di Maggio ^d , Attilio Toscano ^a , Gianni
13 14 15 16	4	Andreottolad
17 18 19	5	^a Department of Agriculture and Food Sciences, Alma Mater Studiorum - University of
20 21 22	6	Bologna, viale Giuseppe Fanin 50, Bologna, 40127, Italy
23 24 25	7	^b CIRI FRAME - Interdepartmental Centre for Industrial Research in Renewable
26 27 28	8	Resources, Environment, Sea and Energy, Alma Mater Studiorum - University of
29 30 31	9	Bologna, Via Selmi 2, Bologna, 40126, Italy
32 33 34 35	10	$^{\circ}$ Laboratory Technologies for the efficient use and management of water and
36 37 38	11	wastewater, Italian National Agency for New Technologies, Energy and Sustainable
39 40 41	12	Economic Development (ENEA), Via Anguillarese, 301 - 00123 Roma
42 43 44	13	^d Department of Civil, Environmental and Mechanical Engineering, University of Trento,
45 46 47	14	Via Mesiano 77, Trento, 38123, Italy
48 49 50	15	* Corresponding author. Tel. +39 051 20 9 6182
51 52 53 54	16	E-mail addresses: <u>g.mancuso@unibo.it</u> (G. Mancuso), <u>michela.langone@unitn.it</u> (M.
55 56 57	17	Langone), rosa.dimaggio@unitn.it (R. Di Maggio), attilio.toscano@unibo.it (A. Toscano),
58 59 60	18	gianni.andreottola@unitn.it (G. Andreottola)

19 Abstract

Sewage sludge is the by-product of wastewater treatment processes. Its reuse is central to a circular economy approach and offers a sustainable alternative to its disposal. Treated sludge contains a wide range of nutrients (mainly nitrogen, phosphorus, and potassium), which favour its 16 23 sustainable employment for agricultural purposes (i.e. land-spreading, compost production) and environmental regualification interventions (i.e. forestry, silviculture, land reclamation and revegetation). However, if not properly treated, sewage sludge can contain various contaminants such as heavy metals, organic pollutants, pathogens, and other emerging contaminants, which pose a threat for crops production and human health. Hydrodynamic cavitation (HC) is an eco-friendly and cost-efficient pre-treatment that can enhance sewage sludge stabilisation in both anaerobic and aerobic digestion units, thereby making safe its management and disposal. In this study, HC was used for the gradual disintegration of activated sludge (reaching a maximum disintegration degree (DD_{PCOD}) of 19.2% after 8 h of treatment), and the solubilisation of the dissolved organic matter (increasing the Soluble Chemical Oxygen Demand (SCOD) from 244 to 4,578 mg L⁻¹ after 8 h of treatment). Then, both dynamic light scattering analysis and stereoscopic microscope observations proved that HC can also lead to a size reduction of sludge suspended particles. In addition to evaluate the HC treatment efficiency, in this work was also provided a brief discussion on the possible procedures to be followed for the safe and efficient sewage sludge disposal on land after it has been HC-treated.

47 Highlights

1. Hydrodynamic cavitation (HC) is an eco-friendly and cost-efficient pre-treatment method to

enhance sewage sludge stabilisation

- 2. HC is an energy-saving method that increases the efficiency of wastewater treatment plants
- 3. HC favours the safe and efficient reuse of sewage sludge in agriculture

1. Introduction

Nowadays, preserving water quality is essential to cope with current water scarcity issues and to

ensure sanitation to all the population. If, on the one hand, the development of many domestic and
industrial wastewater facilities may be able to treat higher volumes of wastewater, on the other
hand, it follows a higher quantity of sewage sludge to be disposed of (Prabu et al., 2020).
According to the latest available data, in Europe (EU) approximatively 10 million tons of dry mass
of sewage sludge are produced on an annual basis (Eurostat, 2020). It is also estimated that one
person can generate almost 20 kg of dry mass of sewage sludge per year (Eurostat, 2020).
In the EU, the most common disposal methods for sewage sludge from wastewater treatment
plants (WWTPs) includes incineration (18%), landfilling (13%), agricultural use (23%), composting
(19%) and others (long-term storage and land reclamation) (Eurostat, 2020). In particular, the
direct reuse of sewage sludge in agriculture (Dichtl et al., 2007) or the production of compost
(Song and Lee, 2010) are sustainable alternatives to the costly incineration process (Lundin et al.,
2004) and the low environmental-friendly landfilling operations (Lewis and Gattie, 2002).
The beneficial effects associated with the land-spreading practice are various: (i) the organic
matter in sewage sludge can promote a significant improvement of the soil structure (i.e. water

arid areas (Graber et al., 2014); (ii) the presence of nutrients (nitrogen, phosphorus, and other

holding capability and cation exchange capability), especially in sandy soils in both arid and semi-

micronutrients) in sewage sludge can enhance soil fertility and thus crops production (Usman et

Bioremediation Journal

al., 2012), also limiting pollution issues related to the supplemental application of mineral fertilizers to soils (Kumar et al., 2017); (iii) the costs associated with the implementation of the land-spreading practice are moderate if compared with those required by the other methods mentioned above (Lundin et al., 2004). With similar benefits, treated sewage sludge is also used in forestry, silviculture, land reclamation and revegetation. However, the unsustainable production of sewage sludge, in addition to more stringent regulations due to the presence of pathogenic bacteria/viruses (Pourcher et al., 2007), heavy metals (Wang et al., 2008), hydrocarbons (Cai et al., 2008), microplastics (Van den Berg et al., 2020), and other toxic materials from industry in the sludge, have forbidden the use of sewage sludge, if not properly treated, for land applications in many regions in the EU (Hudcová et al., 2019). The importance of suitable treatment methods and the definition of safe practices for sewage sludge reuse is also remarked by United Nations within the definition of the Sustainable Development Goal 6 (SDG 6) "Clean Water and Sanitation", which aims to ensure availability and sustainable management of water and sanitation for all the population by 2030 (United-Nations, 2018). Hence, the need to remove these contaminants from sewage sludge through stabilisation processes and specific treatment methods in WWTPs, before it can be reused again in agriculture. The most traditional and widely employed biological wastewater treatment processes to stabilise sewage sludge in WWTPs are aerobic and anaerobic digestion. Aerobic digestion is characterized

3 4 5	90	by higher operating costs due to the administration of air to the system; in contrast, anaerobic
6 7 8	91	digestion shows as main advantages the recovery of energy in the form of biogas, the mass
9 10 11	92	reduction of sewage sludge, and the improved dewatering properties of the digested sludge (Cao
12 13 14	93	and Pawłowski, 2012).
15 16 17 18	94	There is a rising motivation to explore and develop novel technologies to apply as pre-treatments
19 20 21	95	before the aerobic or anaerobic digestion units, aiming to enhance their efficiency in terms of
22 23 24	96	sludge stabilisation along with reduction of emerging contaminants, excess sludge production, and
25 26 27	97	energy consumption during the sludge treatment and disposal phases.
28 29 30	98	With this purpose, different pre-treatments such as thermal (Pilli et al., 2014), chemical (Hai et al.,
31 32 33 34	99	2014), mechanical (Houtmeyers et al., 2014; Mancuso et al., 2017), and a combination thereof
35 36 37	100	(Tyagi et al., 2014) are proposed in the literature. The limits associated with the implementation of
38 39 40	101	thermal and chemical pre-treatments mainly concern their high energy (Ruffino et al., 2015) and
41 42 43	102	reagents (Tanaka et al., 1997) consumption. In contrast, mechanical pre-treatments are getting an
44 45 46	103	increasingly attention, and among them HC is gradually taking a prominent role in the field of
47 48 49 50	104	wastewater treatment, mainly due to the ease of operation, moderate energy consumption,
51 52 53	105	flexibility and capability to vary the required intensities of cavitational conditions (Gogate and
54 55 56	106	Kabadi, 2009; Mancuso et al., 2020, 2019). The HC process exploits the pressure difference within
57 58 59	107	a fluid, due to the presence of a constriction in the flow, for the generation of free radicals, namely
60	108	'H and 'OH, which are very strong and non-specific oxidizing species. If the HC process is applied

1

109 to sludge, the free radicals can be responsible of cell or microbial flocs disintegration (Mancuso et al., 2017). 110 Although the effectiveness of HC as pre-treatment is evident, in the literature there is a lack of 10 111 13 112 studies showing its effect on sludge structural composition and rheology. A deeper knowledge of

15 ¹⁶ 113 those aspects might not only improve the operating conditions for the treatment of wastewater, but 17 18 19 114 also reduce the costs associated with the operations of sludge pumping, transport and storage in 20 21 22 23 ¹¹⁵ WWTPs (Eftekharzadeh et al., 2007). Also in agricultural practises, sludge characteristics could 24 25 26 116 influence the selection of the most suitable equipment for the sludge application on land (Prasad et 27 28 29 117 al., 2019). Therefore, the main aim of this work was to investigate the effect of HC on sewage 30 31 32 118 sludge flocs structure. For this purpose, a modified swirling jet-induced reactor, named Ecowirl 33 34 ³⁵ 119 reactor (Mancuso, 2018; Puiseau et al., 2013), was used to generate HC. Sludge characteristics 36 37 38 ₃₉ 120 were analysed by investigating the granulometric distribution of sewage sludge suspended 40 41 42 121 particles of HC-treated samples and observing visual changes in sewage sludge by means of a 43 44 45 122 stereoscopic microscope. During the HC test, the investigation aimed also to find a correlation 46 47 ⁴⁸ 123 between sludge characteristics and sludge disintegration/solubilisation, to evaluate the energy 49 50 ⁵¹ 124 consumption, and to analyse the influence of flocs structure variation during sewage sludge 52 53 54 55 125 treatment and disposal. 56 57 58 126

4 ¹²⁷ 5	2. Materials and methods
6 7 128	Source and characteristic of WAS
8 9 129 10	For investigations, excess activated sludge of a nitrification/denitrification process was obtained
12 <u>1</u> 30 13 14	from the municipal WWTP of Trento, Italy. It was collected downstream the dynamic thickening
¹⁵ 131 16 17	unit, in order to get a sludge with a high total solids (TS) content (in the order of 30 g L^{-1}).
18 19 132 20	Thickened sludge was further concentrated by sedimentation in order to obtain the desired TS
21 22 133 23	content in the experiment (in the order of 50 g L^{-1}). Physical and chemical characteristics of the
24 25 134 26 27	used thickened sludge were as following: pH 6.8 \pm 0.2; TS = 33.4 \pm 0.5 g L ⁻¹ ; volatile solids (VS) =
28 135 29 30	27.9 \pm 0.4 g L ⁻¹ ; total chemical oxygen demand (TCOD) = 38,015 \pm 321 mg L ⁻¹ ; SCOD = 319 \pm 5
31 136 32 33 34	mg L ⁻¹ ; total Kjeldahl nitrogen (TKN) = 2,856 \pm 3 mg L ⁻¹ ; ammonia nitrogen (NH ₄ ⁺ -N) = 33.7 \pm 1 mg
127	
35 ¹³⁷ 36 37	L^{-1} ; total phosphate (P_{TOT}) = 1,062 ± 56 mg L^{-1} .
35 ¹³⁷ 36 37 38 138 39	L ⁻¹ ; total phosphate (P_{TOT}) = 1,062 ± 56 mg L ⁻¹ . HC system and HC pre-treatment test
35 ¹³⁷ 36 37 38138 39 40 41139 42 43	L ⁻¹ ; total phosphate (P _{TOT}) = 1,062 ± 56 mg L ⁻¹ . <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al.,
35 ¹³⁷ 36 37 38138 39 40 41139 42 43 44140 45 46	 L⁻¹; total phosphate (P_{TOT}) = 1,062 ± 56 mg L⁻¹. <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al., 2017). It consisted of a swirling jet device (Ecowirl reactor), a 50.0 L thermo-regulated feed tank, a
35 137 36 37 38 138 39 40 41 139 42 43 44 140 45 46 47 141 48 49	 L⁻¹; total phosphate (P_{TOT}) = 1,062 ± 56 mg L⁻¹. <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al., 2017). It consisted of a swirling jet device (Ecowirl reactor), a 50.0 L thermo-regulated feed tank, a Mohno pump (3.0 kW, nominal power, Netzsch Pumps & Systems GmbH, Germany), an inverter
35 ¹³⁷ 36 37 38138 39 40 41139 42 43 44140 45 46 47141 48 49 50142 51 52	L-1; total phosphate (P _{TOT}) = 1,062 ± 56 mg L ⁻¹ . <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al., 2017). It consisted of a swirling jet device (Ecowirl reactor), a 50.0 L thermo-regulated feed tank, a Mohno pump (3.0 kW, nominal power, Netzsch Pumps & Systems GmbH, Germany), an inverter (Bonfiglioli Vectron - Active) used to control the pump flow rate, a sampling port, a system of
35 ¹³⁷ 36 37 38138 39 40 41139 42 43 44140 45 46 47141 48 49 50142 51 52 53143 55	L-1; total phosphate (P _{TOT}) = 1,062 ± 56 mg L-1. <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al., 2017). It consisted of a swirling jet device (Ecowirl reactor), a 50.0 L thermo-regulated feed tank, a Mohno pump (3.0 kW, nominal power, Netzsch Pumps & Systems GmbH, Germany), an inverter (Bonfiglioli Vectron - Active) used to control the pump flow rate, a sampling port, a system of control valves at appropriate places, pressure and vacuum gauges. The feed tank was filled with
35 ¹³⁷ 36 37 38138 39 40 41139 42 43 44140 45 46 47141 48 49 50142 51 52 53143 55 56 57144 58	L ⁻¹ ; total phosphate (P _{TOT}) = 1,062 ± 56 mg L ⁻¹ . <i>HC system and HC pre-treatment test</i> Fig. 1 shows the experimental setup that has been used to perform the HC test (Mancuso et al., 2017). It consisted of a swirling jet device (Ecowirl reactor), a 50.0 L thermo-regulated feed tank, a Mohno pump (3.0 kW, nominal power, Netzsch Pumps & Systems GmbH, Germany), an inverter (Bonfiglioli Vectron - Active) used to control the pump flow rate, a sampling port, a system of control valves at appropriate places, pressure and vacuum gauges. The feed tank was filled with 50.0 L of excess activated sludge (50 gTS L ⁻¹) collected from the dynamic thickening unit. The

2		
3 4 1 5	46	closed) for about 15 min to homogenise its TS content (50.0 gTS L ⁻¹). Since the Ecowirl reactor
6 7 1 8	.47	was by-passed, HC did not occur. In the meantime, the temperature of the sludge was adjusted to
9 10 1 11	.48	35.0°C by means of the heating/cooling system (immersion resistances / external cold-water bath)
12 13 <u>1</u> 14	.49	and kept constant throughout the HC test (with a variation of \pm 3.0°C). Then, the by-pass line was
15 16 <u>1</u> 17 18	.50	closed (V ₆ , V ₇ closed), and the flow was conveyed to the Ecowirl reactor (V ₄ , V ₅ opened).
19 20 21	.51	Thereafter HC was detected. The inlet pressure upstream to the Ecowirl reactor was set to 4.0 bar
22 23 1 24	.52	by adjusting the frequency of the pump inverter. These operating conditions and the duration of the
25 26 1 27	.53	HC test (8 h) were selected on the basis of the optimal values observed in previous experimental
28 29 <u>1</u> 30	.54	campaigns (Mancuso et al., 2017), in which the HC efficiency was evaluated as function of the
31 32 1 33	.55	specific supplied energy. Table 1 summarizes the parameters and the operating conditions for the
35 36 37	.56	8h-HC test.
38 39 40	.57	Analytical methods and calculations
41 1 42 43	.58	Sludge samples were collected by means of the sampling port located at the bottom of the feed
44 45 46	.59	tank (Fig. 1) at 0h, 1h, 2h, 4h and 8h of the HC test, respectively, and stored at 4.0 °C for
47 48 1 49	.60	subsequent analysis. VS, TCOD, SCOD, TKN, NH_4 +N and P_{TOT} were calculated according to
50 51 1 52	61	standard methods (APHA, 2005). Prior to SCOD and NH_4 ⁺ -N determinations, sludge samples were
53 54 1 55	.62	centrifugated at 5000 x g. The obtained supernatant was filtered by means of cellulose nitrate
56 57 ₁ 58	.63	membrane with pore size of 0.45 μm by compression. pH was monitored by means of a Crison 25
59 ⁶⁰ 1	.64	portable pH-meter. All the analyses were performed in duplicates and the results were expressed

39

42

45 46

48

2		
3 4 165 5	as average of the obtained values. A reference sample was identified as the	SCOD obtained by
6 7 166 8	chemical sludge disintegration in a 1.0 mol L ⁻¹ sodium hydroxide solution f	or 24 h at 20.0°C
9 10 167 11	(Salsabil et al., 2009).	
12 13 168 14	The improvement of sludge solubilisation was evaluated in terms of SCOD incre	ease (Eq. 1) (Zhang
15 16 169 17	et al., 2008), and taking into account the ratio of change in SCOD after cavit	ation to particulate
19 20 21	chemical oxygen demand (PCOD $_0$ = TCOD - SCOD $_0$) (Eq. 2) (Bougrier et al., 20	006).
22 23 24 25 26	$\Delta SCOD (mg L^{-1}) = SCOD_t - SCOD_0$	Eq. 1
27 28	$(\text{SCOD}_t - \text{SCOD}_0) \times 100 = (\text{SCOD}_t - \text{SCOD}_0) \times 100$	
29 30 31 32	$DD_{PCOD} (\%) = \frac{1}{PCOD_0} (TCOD - SCOD_0)$	Eq. 2
33 171 34 35	where:	
36 37 172 38	 SCOD_t = soluble COD of the treated sludge by using HC [mg L⁻¹] at the t 	ime t.

- 40 173 SCOD₀ = soluble COD of the untreated sludge [mg L^{-1}].
- $^{43}_{44}$ 174 TCOD = total COD of the untreated sludge [mg L⁻¹].
- 47 175 Dynamic light scattering analyses and microscopic observations

⁴⁹ 176 The sludge particles diameters, considered as spherical, were monitored at 1h, 2h, 4h and 8h ⁵¹ during the HC test by using a dynamic light scattering analyser (Beckman Coulter, Delsa Nano C ⁵⁴ big 178 Particle Analyser, measuring range of 0.6 nm - 7 μ m). For each analysed sample, a plastic ⁵⁷ 58 ⁵⁹ 179 disposable cuvette was filled with 0.2 ml of sludge diluted with distilled water within a 1:10 ratio (the 60

2 3 4 18	30	total volume of samples was 2.0 ml). During the dynamic light scattering analyses, a beam of laser
5 6 7 18	31	light incident on cuvette was scattered by the sludge particles and diffused within the sample cell
8 9 10 18 11	32	due to Brownian motion, producing fluctuations in the scattering intensity as a function of time.
12 13 18 14	33	Since the diffusion rate of particles was due to their size, it was possible to correlate it to the
15 16 18 17	34	fluctuation rate of the scattered light, thereby allowing the determination of the particle size
18 19 20 21	35	distribution within the sludge sample. The scattered light was measured by a highly sensitive
22 23 18 24	36	detector.
25 26 18 27	37	Dynamic light scattering measurements were then coupled with visual changes (by using a
28 29 18 30	38	stereoscopic microscope Micro-Combi-Tester, NIKON, Japan) on sludge flocs before (raw sludge
31 32 18 33	39	sample) and after the HC pre-treatment (8h-HC treaded sludge sample). For the microscopic
34 35 36 37	€0	analysis, samples were prepared by dropping a 3times-diluted water on a glass plate.
38 39 19 40	91	
41 42 43		
44 45 46		
47 48 49		
50 51 52		
53 54 55		
57 58 59		
60		

3. Results 192

1 2 3

4 5 6

7 8 9

10 11 12

14 15

17

60

193 In this section, the outcomes of the investigation of HC effects on sludge solubilisation and sludge flocs structure were analysed, and considerations on sludge treatment and land disposal were 194 13 195 reported.

¹⁶ 196 SCOD measurements

18 19 197 Chemical analysis on sludge samples showed that higher HC pre-treatment times were associated 20 21 ²² 198 with an increase of the dissolved organic matter. The SCOD increased from the initial value of 244 23 24 ²⁵ 199 mg L⁻¹ to 4,798 mg L⁻¹, after 8h of HC pre-treatment; the other values of SCOD for the intermediate 26 27 28 29 200 pre-treatment times (1h, 2h and 4h) are reported in Table 2. Therefore, the sludge DD_{PCOD} 30 31 32 201 increased during the HC test, varying from 1.7% to 6.5%, 10.8% and 19.2% after 1h, 2h, 4h and 8h 33 34 35 202 of HC pre-treatment, respectively (Table 2). 36 37 38 203 Comparing these results with those of other studies reported in the literature where HC was used

39 40 41 204 as pre-treatment, it has emerged that different sludge DD_{PCOD} have been reported. This 42 43 44 45 205 discrepancy was mainly related to the different applied energies, the dissimilar operating conditions 46 47 48 206 (sludge temperature and pH, flow inlet pressure), and the cavitating devise typology (Venturi 49 50 (Hirooka et al., 2009), orifice plates (Lee and Han, 2013), high-pressure jets (Suenaga et al., 51 207 52 53 54 208 2015), swirling jet-induced cavitation (Mancuso et al., 2017), high-pressure homogenizers (Nabi et 55 56 57 209 al., 2019), and rotor-stator type (Kim et al., 2020). 58 59

2	
3	210
4	
5	211
0 7	211
8	
9	212
10	
11	
12	213
14	
15	21/
16	214
17	
18	215
20	
21	
22	216
23	
24 25	217
26	217
27	
28	218
29	
30 31	
32	219
33	
34	220
35	220
37	
38	221
39	
40	
41	222
42	
44	222
45	225
46	
47	224
48 49	
50	
51	225
52	
53	226
54 55	220
56	
57	227
58	
59	
00	

Dynamic light scattering measurements and optical microscope observations

In order to confirm the capability of HC to disintegrate sludge flocs into smaller particles, it was used the dynamic light scattering analysis on sludge samples collected at 1h, 2h, 4h and 8h of the HC test. The measurement range for the particles size was set from 0.6 nm to 7 µm. In Fig. 2 are reported the recorded maximum diameters of suspended sludge particles, considered as spherical, in function of the treatment times: the longer the HC pre-treatment the smaller the particles size. Similar results have been reported in other studies on ultrasonic cavitation (Le et al., 2013). The highest particle diameters have, in fact, more than halved after 8h as consequence of the HC pretreatment if compared with the HC pre-treated sample at 1h (6,25 µm and 3,6 µm, respectively). Although both cavitation and shear stress can lead to a sludge particles reduction, however, it is has been reported that, for higher cavitation intensities, cavitation contributes more than shear stress (Kim et al., 2020). HC pre-treatment has influenced not only the highest dimensions of suspended particles, but also those intermediate, with a decrease in suspended particles size for increasing HC treatment times (Fig. 3). This suggests that the sludge could be initially constituted of aggregates of very small particles, which can separate due to cavitation, acting on the interfacial surfaces. In particular, for all the HC treatment times (1h, 2h, 4h, and 8h), the granulometric distributions showed a Gaussian trend, with the maximum of each curve in the range of (0.3 - 0.4 μm) (Fig. 4). Furthermore, higher HC treatment times involved a progressive narrowing of the

2 3 4	228	
5 6 7	229	
8 9 10	230	
11 12 13	221	
14 15 16	231	
17 18	232	
19 20 21	233	
22 23 24	234	
25 26 27	235	
28 29 30	236	
31 32 33	237	
34 35 36	238	
37 38 39	239	
40 41 42	240	
43 44 45	241	
46 47 48	242	
49 50 51	243	
52 53 54	244	
55 56 57	2 4 ⊑	
58 59	243	
50	246	

curves with a remarkable increase in percentage of the smallest particles corresponding to the maximum (Fig. 4).

A strong breakdown and dispersion of the flocs aspect in the sludge samples were observed by stereoscopic microscope in untreated (Fig. 5a) and 8h-HC treated sludge (Fig 5b), confirming that HC has a direct effect on sludge disintegration. The untreated sludge was characterized by dark coloured flocs with different sizes, most with size higher than 100 μ m. Due to the HC pretreatment, sludge flocs were disintegrated, turning their colour in pale yellow, and reduced to an average value of about 10 μ m. These outcomes are in agreement with those of previous studies in which acoustic cavitation has been used as disintegration method (Feng et al., 2009; Tytła and Zielewicz, 2018; Zielewicz, 2016).

238 Energetic measurements

Sludge temperature, flow inlet pressure and flow rate were kept constant throughout the 8h-HC
test (Table 1). Under these conditions, it was observed a gradual reduction in the frequency of the
pump inverter over time (from the initial value of 61 Hz to 53 Hz after 8h of HC pre-treatment) (Fig.
6). Further, he absorbed power by the pump decreased (Fig. 6), indicating that the same flow inlet
pressure to the cavitating system was ensured with a gradual reduction of the resistance of the
treated sludge to the flow. These outcomes confirmed the progressive alteration of sludge
structure, which then changed its characteristics. This is in accordance with results of the dynamic
light scattering analysis and microscopic observations (see previous section).

2	
2 3	
4	247
5	
6 7	248
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22 23	
23 24	
25	
26 27	
28	
29	
30 31	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
51	
53	
54 55	
55 56	
57	
58 59	

12 ₂₅₂ ¹⁵ 253 ₂₂ 255 25 2 56 28 257 ³¹ 258 ₃₈ 260 41 261 44 262 ⁴⁷ 263 ₅₄ 265 57 266

49	4.	D	iscι	JSSI	0	ns
					_	

Sewage sludge flocs disintegration

Sludge disintegration caused by HC is certainly a reason why this technique, if applied as a pretreatment to the anaerobic or aerobic digestion, can enhance their treatment efficiency. In sludge digestion, hydrolysis is considered as the rate limiting step because of the presence in the sludge flocs of numerous constituents such as bacteria, particulate organic matter (polymeric substrates such as proteins, lipids and carbohydrates) and complex macromolecules, such as EPS (extracellular polymeric substances), which are excreted by microorganisms during biological treatment of wastewater (Gianico et al., 2013). Hydrolysis step can be enhanced by sludge pretreatment methods, which imply the disintegration of macro-molecular organic compounds into low molecular-weight compounds that can be further used by the following either methanogens phase in the anaerobic digestion process or oxidation process in the aerobic process. Indeed, these low molecular-weight compounds are in turn assimilated by the bacteria and used as a source of energy and carbon or nutrients, improving sludge stabilisation and, eventually, biogas production. The results obtained in this study showed that the HC pre-treatment has led to a gradual disintegration of sludge flocs, resulting in both a progressive reduction of the particles size and a gradual increase in the dissolved organic matter. In accordance with the chemical analyses and laser diffraction measurements, visual observations by optical microscope have confirmed the flocs 60 267 disintegration mechanism. Variation in EPS may also contribute to the rheology evolution of sludge

(Liu et al., 2016). Outcomes of this study are in accordance with the literature data; HC acts by destroying bacterial cell walls and membranes, resulting in a modification of the particles size distribution and rheological properties (i.e. viscosity) of the sludge (Garuti et al., 2018; Langone et al., 2017). Furthermore, a linear correlation between the maximum diameter measured in the investigated range and the sludge DD_{PCOD} has been observed (R² = 0,9332), suggesting that the variation of sludge particle sizes may provide a valuable monitoring method for the evaluation of the HC effectiveness, in terms of sludge disintegration and solubilisation (Fig. 7). Considerations on sludge treatment and land disposal The design and management of sludge treatment processes in WWTPs and further operations, such as sludge transport and disposal, require an accurate prediction of the hydrodynamic sludge behaviour, and thus a deep knowledge of its rheology (Prasad et al., 2019). Sludge rheology might indeed influence different sludge operations, namely pumping, mixing, mass transfer rates, and sludge-water separation (settling and filtration) (Ratkovich et al., 2013; Verma et al., 2007). A rheological characterization of sludge is useful for the selection of the best equipment to be used for its treatment, transport and final disposal, particularly when sludge is reused for agricultural purposes (i.e. land-spreading) (Prasad et al., 2019). Rheological properties of sewage sludge are mainly described by viscosity, which depends on solid concentration, temperature, particle size (distribution), shape and surface charge. In general, sludge with a solid concentration higher than 2% shows a non-Newtonian behaviour (Ratkovich et **Bioremediation Journal**

1

2 3 287 al., 2013; Sanin, 2002), and the sludge apparent viscosity generally changes with the shear rate 4 5 6 288 (flow velocity). Viscosity tends to increase as the solid concentration becomes higher, while a 7 8 9 10 289 decrease in sludge viscosity can be detected as the temperature increases (Prasad et al., 2019). 11 12 13 290 Furthermore, the variation of particle size distribution, which occurs after disintegration pre-14 15 ¹⁶ 291 treatments, also impacts on rheological behaviour of sewage sludge (Ruiz-Hernando et al., 2013). 17 18 19 292 As consequence, sludge with different rheological characteristics can require different amount of 20 21 22 23 ²⁹³ energy for its treatment in WWTPs and for its transport and disposal. 24 25 26 2 94 The results obtained in this study prove that HC is an effective and energy-saving treatment. It can 27 28 29 295 be potentially used at different stages of the sludge treatment in WWTPs (Fig. 8a): as pre-30 31 32 296 treatment to anaerobic digestion (Elalami et al., 2019), to aerobic digestion (Mancuso et al., 2017), 33 34 ³⁵ 297 or as treatment of the activated sludge in the sludge recycle line. This involves an increase of the 36 37 38 39 298 efficiency of sludge treatment processes, due to both an increase in sludge solubilisation and 40 41 42 299 biodegradability that allow the reduction of volumes to treat as well as of retention times in sludge 43 44 45 300 treatment units, thereby optimizing the energy balance in WWTPs. Indeed, HC implies low levels of 46 47 ⁴⁸ 301 supplied energy, part of which can also be recovered through the production of biogas in anaerobic 49 50 ⁵¹ 302 digestion, resulting in a reduction of the sludge treatment costs. 52 53 54 55 303 Furthermore, sludge disintegration treatments can also have a positive effect in the optimization of 56 57 58 304 sludge management, transporting, storing, dewatering, landfilling, composting and land-spreading 59 60

2	
3 4 5	operations (Fig. 8b). (Landry et al., 2006) showed that sludge viscosity influenced the
6 7 306 8	performances of handling and land application equipment, and following costs.
9 10 307 11	In addition to those considerations, disintegration sludge treatments can contribute to maximize
12 13 308 14	pathogens and micropollutants removal prior to land application. As reviewed by (Tyagy et al.,
16 16 17 18	2014), acoustic cavitation has been applied to remove hazardous pollutants from sludge. HC
19 20 21	treatment has been successfully applied for the removal of toxic carcinogens dyes (Mancuso et al.,
22 23 ³¹¹ 24	2016), pharmaceutical products, toxic cyanobacteria, bacteria and viruses (Dular et al., 2016) from
25 26 312 27	polluted aqueous solutions. Further research, however, is needed to establish the efficiency of HC
28 29 313 30	on pathogens and micropollutants in sludge treatment, which currently are limiting factors for the
31 32 314 33 34	reuse of sewage sludge for land applications. In the present context of COVID-19 emergency, the
35 36 37	role of HC for SARS-CoV-2 inactivation and removal from sludge could be of interest and needs to
38 39 316 40	be examined in depth.
41 42 317 43	
44 45 318 46 47	
48 49 319 50	
51 52 53	
54 55 56	
57 58	
59 60	

5. Conclusions

6 321 7 8	Excess sludge treatment and disposal currently represent a very important challenge for WWTPs
9 10 ³²² 11	due to economic, environmental and regulation factors. Operations such as land-spreading,
12 13 ³²³ 14	production of compost, land reclamation and revegetation would seem to provide a sustainable
15 16 324 17 18	and environmental-friendly solution to the problem. However, sewage sludge from WWTPs needs
19 325 20 21	to be properly treated before its employment for the mentioned applications. In WWTPs, aerobic
22 ₃₂₆ 23 24	and anaerobic digestion are used for the sludge stabilisation process. However, this process can
25 26 27 20	be optimized through the application of novel pre- and post-treatment methods, which further
28 29 328 30 31	contribute to increase remove conventional contaminants, pathogens and other emerging
32 329 33 34	micropollutants from sludge in order to ensure sludge safe disposal. Not by chance, the 2030
35 330 36 37	Agenda for Sustainable Development Goals has proposed target calls for reducing water pollution,
³⁸ 331 39 40	minimizing release of hazardous chemical and increasing treatment and reuse.
41 42 43	In this context, it has been already proved that HC is an effective and energy saving technique,
44 45 333 46 47	which favours an increase of sludge solubilisation. Further, in this study, it was observed that the
48 334 49 50	HC pre-treatment has led to a gradual disintegration of sludge suspended particles, which were
51 335 52 53	characterized by ever smaller dimensions as the HC pre-treatment time increased, contributing to
54 ₃₃₆ 55 56	reduce the volume and the time in the following treatment units as well as the energy required by
57 58 59 60 338	operations such as sludge mixing, pumping, and disposal.

2		
3	220	
4	339	
5		
6	340	
7	340	
0 9		
10		
11	341	
12		
13		
14	342	
15		
16		
17	242	
18	343	
20		
21		
22		
23		
24		
25		
26		
28		
29		
30		
31		
32		
33		
34		
35		
37		
38		
39		
40		
41		
42		
43 11		
44 45		
46		
47		
48		
49		
50		
51		
ວ∠ 52		
53 54		
55		
56		
57		
58		
59		

344 Acknowledgements

This study was financially supported by the Provincia Autonoma di Trento (PAT), Italy (Program for the development of Small Medium Enterprise, L6/99, Project n.S155/2013/693264/12.1), and 13 347 Officine Parisi s.r.l.. The second author was funded by a grant from the Fondazione Caritro, Trento 16 348 (Young Researcher, Grant 2015). The authors gratefully acknowledge the technical support of 19 349 Officine Parisi s.r.l. (A. Parisi and F. Parisi) and D. C. W. de Puiseau (Econovation, Germany) ²² 350 during the experimental activity. 26 351

2	
3 4 5	References
6 7 353	APHA, 2005. American Public Health Association (APHA). Standard Methods for the Examination
8 354 9	of Water and Wastewater, twentyfirst ed., Washington DC, USA.
10 11 355	Bougrier, C., Albasi, C., Delgenès, J.P., Carrère, H., 2006. Effect of ultrasonic, thermal and ozone
12 13 ³⁵⁶	pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability.
¹⁴ 357 15	Chem. Eng. Process. Process Intensif. 45, 711–718.
17 358	Cai, Q.Y., Mo, C.H., Wu, Q.T., Zeng, Q.Y., 2008. Polycyclic aromatic hydrocarbons and phthalic
18 19 359	acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost
20 21 ³⁶⁰ 22	application. Bioresour. Technol. 99, 1830–1836.
23 361	Cao, Y., Pawłowski, A., 2012. Sewage sludge-to-energy approaches based on anaerobic digestion
25 362	and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy
26 27 363 28	Rev. 16, 1657–1665.
29 364 30	Dichtl, N., Rogge, S., Bauerfeld, K., 2007. Novel strategies in sewage sludge treatment. Clean Soil
31 365 32	Air Water 35, 473–479.
³³ 34 366	Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemenčič, A.,
³⁵ 367	Oder, M., Petkovšek, M., Rački, N., Ravnikar, M., Šarc, A., Širok, B., Zupanc, M., Žitnik, M.,
37 368	Kompare, B., 2016. Use of hydrodynamic cavitation in (waste) water treatment. Ultrason.
39 369 40	Sonochem. 29, 577–588.
41 42 370	Eftekharzadeh, S., Harrison, D., Marx, J.J., Wilson, T.E., Tech, E., Parkway, B., Forest, L., 2007.
⁴³ 371 44	Applying rheological techniques to upgrade anaerobic digesters and handle high solids
45 372 46	concentrations. Water Pract. 1, 1–9.
47 48 373	Elalami, D., Carrere, H., Monlau, F., Abdelouahdi, K., Oukarroum, A., Barakat, A., 2019.
49 50 374	Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research
51 375 52 ³⁷⁵	advances and trends. Renew. Sustain. Energy Rev. 114, 109287.
53 54 376 55	Eurostat, 2020. Eurostat database [website accessed on May 16th, 2020].
56 57 377	Feng, X., Lei, H., Deng, J., Yu, Q., Li, H., 2009. Physical and chemical characteristics of waste
58 378 59	activated sludge treated ultrasonically. Chem. Eng. Process. Process Intensif. 48, 187–194.
379	Garuti, M., Langone, M., Fabbri, C., Piccinini, S., 2018. Monitoring of full-scale hydrodynamic

1 2	
3 4 380	cavitation pretreatment in agricultural biogas plant. Bioresour. Technol. 247, 599–609.
6 381	Gianico, A., Braguglia, C.M., Cesarini, R., Mininni, G., 2013. Reduced temperature hydrolysis at
7 8 382	134°C before thermophilic anaerobic digestion of waste activated sludge at increasing organic
9 10 383 11	load. Bioresour. Technol. 143, 96–103.
12 <u>384</u>	Gogate, P.R., Kabadi, A.M., 2009. A review of applications of cavitation in biochemical
14 385 15	engineering/biotechnology. Biochem. Eng. J. 44, 60–72.
16 17 ³⁸⁶	Graber, E.R., Fine, P., Levy, G.J., 2014. Soil Stabilization in Semiarid and Arid Land Agriculture. J.
18 387 19 20	Mater. Civ. Eng. 1561, 190–205.
21 388	Hai, N.M., Sakamoto, S., Le, V.C., Kim, H.S., Goel, R., Terashima, M., Yasui, H., 2014. A modified
22 23 389	anaerobic digestion process with chemical sludge pre-treatment and its modelling. Water Sci.
24 25 ³⁹⁰ 26	Technol. A J. Int. Assoc. Water Pollut. Res. 69, 2350–2356.
27 391 28	Hirooka, K., Asano, R., Yokoyama, A., Okazaki, M., Sakamoto, A., Nakai, Y., 2009. Reduction in
29 392	excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation
30 31 393	treatment: case study of an on-farm wastewater treatment plant. Bioresour. Technol. 100,
32 33 394	3161–3166.
34 35 395 36	Houtmeyers, S., Degrève, J., Willems, K., Dewil, R., Appels, L., 2014. Comparing the influence of
37 396	low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous
38 39 397 40	anaerobic digestion of waste activated sludge. Bioresour. Technol. 171, 44–49.
41 398 42	Hudcová, H., Vymazal, J., Rozkošný, M., 2019. Present restrictions of sewage sludge application
43 399 44	in agriculture within the European Union. Soil Water Res. 14, 104–120.
45 46 400	Kim, H., Koo, B., Sun, X., Yong, J., 2020. Investigation of sludge disintegration using rotor-stator
47 48 49	type hydrodynamic cavitation reactor. Sep. Purif. Technol. 240, 116636.
50 402	Kumar, V., Chopra, A.K., Kumar, A., 2017. A review on sewage sludge (Biosolids) a resource for
51 52 403 53	sustainable agriculture 2, 340–347.
54 404 55	Landry, H., Thirion, F., Laguë, C., Roberge, M., 2006. Numerical modeling of the flow of organic
56 405 57	fertilizers in land application equipment. Comput. Electron. Agric. 51, 35–53.
59 406	Langone, M., Soldano, M., Fabbri, C., Pirozzi, F., Andreottola, G., 2017. Anaerobic digestion of
⁶⁰ 407	cattle manure influenced by swirling jet induced hydrodynamic cavitation. Appl. Biochem.

Page 27 of 39

408

Biotechnol. 184, 1200-1218.

1

2 3 4

5

6 409 Le, N.T., Julcour-lebigue, C., Delmas, H., 2013. Ultrasonic sludge pretreatment under pressure.

7	
8 410	Ultrason Sonochemistry 20, 1203–1210.
9	
10 11 11	Lee, I., Han, J., 2013. The effects of waste-activated sludge pretreatment using hydrodynamic
12 412	cavitation for methane production. Ultrason Sonochemistry 20, 1450–1455.
13	
14 ₁₅ 413	Lewis, D.L., Gattie, D.K., 2002, Peer reviewed: pathogen risks from applying sewage sludge to
16	
17 ⁴¹⁴	land. Environ. Sci. Technol. 36, 286A-293A.
18	Live L. M. D. Zhang, L. Mang, M. Mang, M. Mai, M. Tang, L. 2040. Dhash-sizel generation of
19 415 20	Liu, J., Yu, D., Zhang, J., Yang, M., Wang, Y., Wei, Y., Tong, J., 2016. Rheological properties of
21 416	sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.
22	Water Res. 08, 08, 108
23 417	Water Nes. 30, 30–100.
24 25 <u>418</u>	Lundin M. Olofsson M. Pettersson G. J. Zetterlund H. 2004 Environmental and economic
26	
27 419	assessment of sewage sludge handling options. Resour. Conserv. Recycl. 41, 255–278.
20 29	
30 420	Mancuso, G., 2018. Experimental and numerical investigation on performance of a swirling jet
³¹ 421	reactor. Ultrason. Sonochem. 49, 241–248.
32 33	
34 422	Mancuso, G., Langone, M., Andreottola, G., 2020. A critical review of the current technologies in
35 20 423	wastewater treatment plants by using bydrodynamic cavitation process: principles and
36 -	wastewater treatment plante by doing hydrodynamic odvitation proceed. philoiples and
38 ⁴²⁴	applications. J. Environ. Heal. Sci. Eng. 18, 311–333.
39	
40 425 41	Mancuso, G., Langone, M., Andreottola, G., 2017. A swirling jet-induced cavitation to increase
42 426	activated sludge solubilisation and aerobic sludge biodegradability. Ultrason. Sonochem. 35,
43	489_501
44 ~ 27 45	405 001.
46 428	Mancuso, G., Langone, M., Andreottola, G., Bruni, L., 2019, Effects of hydrodynamic cavitation.
47	
48 429 49	low-level thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrason.
50 430	Sonochem. 59, 104750.
51	
⁵² 431	Mancuso, G., Langone, M., Laezza, M., Andreottola, G., 2016. Decolourization of Rhodamine B: A
53 54 422	swirling int-induced cavitation combined with NaOCL Ultrason, Senechem, 32, 18, 30
55	swining jet-induced cavitation combined with NaOOI. Okrason. Schoenem. 52, 10–50.
56 57 433	Nabi, M., Zhang, G., Zhang, P., Tao, X., Wang, S., Ye, J., Zhang, O., Zubair, M., Bao, S., Wu, Y
57 155	
59 ⁴³⁴	2019. Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure
⁶⁰ 435	homogenization to biogas production. Bioresour. Technol. 286, 121378.
	UPL: http://mc.manuscriptcontral.com/bhrm.Email: BBPM-pearreview@journals.tandf.co.uk

$\frac{3}{4}$ 436	Pilli, S., Yan, S., Tyagi, R.D., Surampalli, R.Y., 2014. Thermal pretreatment of sewage sludge to
5 6 437	enhance anaerobic digestion: a review. Crit. Rev. Environ. Sci. Technol. 45, 669–702.
7 8 438	Pourcher, A.M., Françoise, P.B., Virginie, F., Agnieszka, G., Vasilica, S., Gérard, M., 2007.
9 10 439	Survival of faecal indicators and enteroviruses in soil after land-spreading of municipal
11 12 ⁴⁴⁰ 13	sewage sludge. Appl. Soil Ecol. 35, 473–479.
14 441	Prabu, S.L., Suriyaprakash, T.K.N., Kandasamy, R., Rathinasabapathy, T., 2020. Effective waste
15 16 442 17	water treatment and its management 0–24.
¹⁸ 443 19	Prasad, M.N.V., Favas, P.J. de C., Vithanage, M., Venkata Mohan, S., 2019. Industrial and
20 444	Municipal Sludge: Emerging Concerns and Scope for Resource Recovery. Butterworth-
22 445	Heinemann.
23 24 116	Puiseau W/D E Andreottola G Rada E C Radazzi M 2013 Application of a Novel
25 ⁴⁴⁰ 26 ₄₄₇	Hudrodynamia Covitation System in Westewater Treatment Diante
27 ⁴⁴⁷ 28	Hydrodynamic Cavitation System in Wastewater Treatment Plants.
29 448	Ratkovich, N., Horn, W., Helmus, F.P., Rosenberger, S., Naessens, W., Nopens, I., Bentzen, T.R.,
30 31 449	2013. Activated sludge rheology: A critical review on data collection and modelling. Water
32 33 450	Res. 47, 463–482.
35 451	Ruffino, B., Campo, G., Genon, G., Eugenio, L., Novarino, D., Scibilia, G., Zanetti, M., 2015.
36 37 452	Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by
38 39 453	means of mechanical and thermal pre-treatments: Performance, energy and economical
40 41 454 42	assessment. Bioresour. Technol. 175, 298–308.
43 455	Ruiz-Hernando, M., Martinez-Elorza, G., Labanda, J., Llorens, J., 2013. Dewaterability of sewage
44 45 456 46	sludge by ultrasonic, thermal and chemical treatments. Chem. Eng. J. 230, 102–110.
47 48	Salsabil, M.R., Prorot, A., Casellas, M., Dagot, C., 2009. Pre-treatment of activated sludge: Effect
49 458 50	of sonication on aerobic and anaerobic digestibility. Chem. Eng. J. 148, 327–335.
51 52 459	Sanin, F.D., 2002. Effect of solution physical chemistry on the rheological properties of activated
⁵³ 460 55	sludge. Water SA 28, 207–211.
56 461	Song, U., Lee, E.U., 2010. Environmental and economical assessment of sewage sludge compost
57 58 462 59	application on soil and plants in a landfill. Resour. Conserv. Recycl. 54, 1109–1116.
⁶⁰ 463	Suenaga, T., Nishimura, M., Yoshino, H., Kato, H., Nonokuchi, M., Fujii, T., Satoh, H., Terada, A.,

7

13

19

34

40

46

55

- ³ 464 Hosomi, M., 2015. High-pressure jet device for activated sludge reduction: Feasibility of
 ⁵ 465 sludge solubilization. Biochem. Eng. J. 100, 1–8.
- 8 466 Tanaka, S., Kobayashi, T., Kamiyama, K.I., Bildan, M., 1997. Effects of thermochemical
 9 pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 35,
 11 12 468 209–215.
- 14 469Tyagi, V.K., Lo, S.L., Rajpal, A., 2014. Chemically coupled microwave and ultrasonic pre-15hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and17anaerobic digestion. Environ. Sci. Pollut. Res. Int. 21, 6205–6217.
- Tyagy, V.K., Lo, S.L., Appels, L., Dewil, R., 2014. Ultrasonic treatment of waste sludge: a Review
 on mechanisms and applications. Crit. Rev. Environ. Sci. Technol. 44, 1220–1288.
- 24
25474Tytła, M., Zielewicz, E., 2018. The impact of temporal variability of excess sludge characteristics on26
27
28
475the effects obtained in the process of its ultrasonic disintegration. Environ. Technol. 39, 3020–28
293032.
- United-Nations, 2018. Sustainable Development Goals (SDGs) in Agenda 2030: Clean Water and
 Sanitation (SDG 6).
- Usman, K., Khan, S., Ghulam, S., Khan, M.U., Khan, N., Khan, M.A., Khalil, S.K., 2012. Sewage
 Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental
 Implications. Am. J. Plant Sci. 3, 1708–1721.
- 41 482 Van den Berg, P., Huerta-Lwanga, E., Corradini, F., Geissen, V., 2020. Sewage sludge application
 43 483 as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 261,
 44 114198.
- Verma, M., Brar, S.K., Riopel, A.R., Tayagi, R.D., Surampalli, R.Y., 2007. Pre-Treatment of
 Wastewater Sludge Biodegradability and Rheology Study. Environ. Technol. 28, 273–284.
- Wang, X., Chen, T., Ge, Y., Jia, Y., 2008. Studies on land application of sewage sludge and its
 limiting factors. J. Hazard. Mater. 160, 554–558.
- ⁵⁶ 489 Zhang, G., Zhang, P., Yang, J., Liu, H., 2008. Energy-efficient sludge sonication: Power and
 ⁵⁷
 ⁵⁸ 490 sludge characteristics. Bioresour. Technol. 99, 9029–9031.
- ⁶⁰ 491 Zielewicz, E., 2016. Effects of ultrasonic disintegration of excess sewage sludge. Appl. Acoust.

2	
3 400	102 102 100
4 92	103, 102-109.
5	
c 403	
6 493	
7	
° 494	
5 10	
10 495	
12	
13 496	
14	
15 497	
16	
17 498	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

HC time	Т	P inlet	Q	TS
(h)	(°C)	(bar)	(m ³ h ⁻¹)	(g L ⁻¹)
0, 1, 2, 4, 8	35.0	4.0	4.1	50.0

Table 1 - Parameters and operating conditions for the 8h-HC pre-treatment test.

	TCOD	SCOD	Δ	DD
time		SCOD	PCOD	
ume	(mg L	(ing L	(mg L ⁻	(%)
(n)	')	')	1)	
0	46,423	244	0	0.0
1	45,392	992	748	1.7
2	44,371	1,719	1,475	6.5
4	43,200	2,693	2,449	10.8
8	41,327	4,578	4,334	19.2

Table 2 – Results of chemical analysis and HC efficiencies.

Fig. 1 – Schematic representation of the HC experimental setup: (1) Feed Tank; (2) Screw pump; (3) Inverter; (4) Sampling port; (5) Immersion resistances; (6) External cold-water bath; (7) Ecowirl reactor; P_n pressure and vacuum gauges; V_n Control valves.

Fig. 2 – Maximum diameter of suspended particles, considered as spherical and recorded by dynamic light scattering analyzer, of HC pre-treated samples at 1h, 2h, 4h and 8h.

Fig. 3 – Overall size of suspended particles of HC pre-treated samples at 1h, 2h, 4h and 8h vs. number of measurements.

Fig. 4 – Granulometric distribution of suspended particles of HC pre-treated samples at 1h, 2h, 4h and 8h.

Fig. 5 – Observation by stereoscopic microscope of sludge flocs in a) raw sludge and b) 8h HC pre-treated sludge.

Fig. 6 – Pump inverter frequency and absorbed power at 1h, 2h, 4h and 8h.

Fig. 7 – Correlation between the maximum diameter measured in the investigated range and the sludge disintegration degree. The width of the spheres depends on the applied HC pre-treatment time.

Fig. 8 – a) Application of HC for the improvement of rheological features in WWTPs; b) environmental-friendly solutions for the safe disposal of stabilised sludge.