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BrightNet: A Deep CNN for OLED based point of
care immunofluorescent diagnostic systems

Andrea Samorè, Manuele Rusci, Damiana Lazzaro, Patrizia Melpignano, Luca Benini and Serena Morigi

Abstract—An automatic tool targeting low-cost, low-power
point-of-care embedded systems is proposed for fluorescence
diagnostic imaging. This allows for a quick and accurate diagnosis
even when used by non-expert operators. To achieve this goal,
an embedded system has been equipped with an end-to-end
deep learning algorithm that does not require manual parameter
tuning to perform a diagnosis. The proposed deep convolutional
model, named BrightNet, is based on a single-shot detector
neural network, modified to estimate the brightness of the
detected fluorescent spots in a low-density protein or DNA micro-
array and finalize the diagnosis. Several optimization steps are
presented to compress the inference model size, required for
deployment into a portable resource-constrained device. The
resulting inference time is about 66 [ms] on an i7 3770K desktop
CPU and is estimated to be lower than 5 [s] on an ARM-
Cortex M7 considering 1.1 · 109 multiply-accumulate operations.
BrightNet has been successfully validated for the detection and
discrimination of four different serotypes of the Dengue virus in
a set of human samples, as well as for the diagnosis of West
Nile virus in horse sera. When evaluated on the considered
diagnostic tasks, BrightNet provides better average accuracy than
a state of the art variational approach which requires operator
intervention, with significant additional advantages of complete
automation and quicker diagnosis.

Index Terms—biomedical imaging, CNN, deep learning, bright-
ness estimation, viral diagnosis

I. INTRODUCTION

POint-of-care (POC) diagnostics offers several advantages
with respect to tests currently performed by expert oper-

ators in hospitals or laboratories using benchtop equipment.
POC systems are portable, inexpensive, and easy to use.
Moreover, they are part of a clear trend towards automation in
molecular diagnostics, that is expected to reduce costs while
increasing efficiency and access to early diagnosis in regions
where healthcare infrastructure is sparse [1].

In this work, an application-specific and advanced CNN is
implemented in an OLED-based diagnostic portable device
allowing for an efficient and reliable automatic diagnostic
system. Applications in the field of epidemiological research
could benefit from the use of the proposed Point-of-care
Portable Diagnostic System (POC-PDS).
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The proposed POC-PDS is based on immunofluorescence
techniques which are currently applied in human medical diag-
nostics, where the detection of fluorescent spots in experiments
of indirect immunofluorescence allows to determine the pres-
ence of antibodies against a certain pathogen in the biological
fluid under analysis. In particular, biological probes can be
labeled with fluorophores, and their weak optical signal can
be detected using a charge-coupled device (CCD) camera after
a suitable optical excitation. Several works demonstrated the
utilization of an organic light-emitting device (OLED) source
as an effective technology for the excitation of fluorophores,
[2]–[4]. In our case, a specifically optimized and patented
OLED has been used for this task [5], [6].

In [7], the authors proposed to replace the highly expen-
sive and bulky CCD camera with a cheap and thin CMOS
camera for fluorescence signal detection and quantification
in an OLED-based device using low-density protein microar-
ray biochips. This solution enables miniaturization and cost-
reduction of the integrated fluorescence reader system paving
the way to fast, cheap, and accurate measurement of low-
density multiparametric protein or DNA microarray data, ideal
to be used in hand-held portable point-of-care diagnostic
systems. However, critical issues of the CMOS sensor, which
presents a matrix of 24x24 pixels, 100 µm wide each, are its
low spatial resolution and its relatively high signal noise. The
use of large pixels, to improve the optical sensitivity, does
not allow to achieve a high spatial resolution and, for this
reason, the CMOS chip can be conveniently used only with
low-density bio-probe matrices.

In this paper, the characteristics of a prototype architecture
of a POC-PDS are outlined, focusing in particular on the
design of the end-to-end diagnosis model. The POC-PDS
consists of a heterogeneous system partitioned on two units:
the acquisition unit (AU) and the diagnostic unit (DU). In the
AU, the fluorophore in a suitable cartridge is excited by the
OLED and then detected using a new CMOS sensor coupled
to a miniaturized microscope camera lens. The AU is a low
power embedded unit, which integrates all image acquisition
components, and communicates with the DU, receiving com-
mands or submitting images acquired for diagnostics. The
DU processes the fluorescent images with a tailored deep
CNN, named BrightNet, that allows for the identification of
the kind of pathogen present in the biological sample and
the quantification of its concentration, thus enabling automatic
diagnosis.

Traditionally, this task is addressed by computing the bright-
ness on each of the segmented and labeled spots through
a postprocessing procedure. However, this approach requires
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the manual intervention of expert operators to set various
regularization and thresholding parameters for each image
[7], and for this reason is not suitable for the considered
application. Recently, computing pipelines based on deep
learning methods have proved to be effective to learn nontrivial
tasks and to provide completely automated solutions in a
wide range of applications, from 3D object recognition [8]
and material defect detection [9] to the solution of inverse
problems [10]. Moreover, several deep learning approaches
have been proposed to solve the segmentation problem, such
as the U-Net [11] and Mask R-CNN [12], while other networks
can efficiently solve the detection and localization problems
in a single-shot like YOLO [13] and SSD [14]. In [15]–[17],
the authors adapted single-shot object detector networks by
adding an output to estimate the pose of the detected objects.
Differently from previous works, BrightNet pursues three main
tasks performed in a single shot: detection of the fluorescent
spots in the image, localization of each spot in the cartridge,
and finally estimation of the brightness level of each spot to
classify it as pathologic or not. To the best of our knowledge,
a computationally efficient end-to-end network that performs
detection, localization and brightness estimation in a single
step is not present in literature.

This work covers the design of the DU in the context
of the development of a prototype of POC-PDS, and its
validation on two different datasets, related to two different
viruses: Dengue and West Nile. For the first time, the use of
a CMOS image sensor, in combination with a suitable deep
CNN-based analysis, has led to comparable results to a high
sensitivity CCD camera and sophisticated operator-dependent
variational diagnostic methods. The resultant POC-PDS is a
very compact, low-cost, light i.e. portable, multi-parametric
and quantitative Point-of-care device at a low price but with
sensitivity better than standard ELISA [18]. Considering that
the time required for sample preparation and image acquisition
is about 30 minutes and the amount of sera required is only 3
µl, the OLED-based POC-PDS can be considered as a simple
and reliable hand-held test for early pathology detection.
In the specific case of Dengue diagnostics, a very accurate
serotype recognition in the convalescent stage of the disease
(complementary to PCR) has also been demonstrated.

Summarizing, the three main contributions of this work are
the following:

• Specification of the architecture of a completely au-
tomatic low-cost point-of-care diagnostic system able
to diagnose viral diseases in situations where trained
medical personnel is not available;

• Development of an end-to-end neural network capable
of detecting and estimating the brightness of spots in
fluorescence low-resolution imaging;

• Optimization of the network model for deployment on a
resource-constrained embedded system.

II. POINT OF CARE PORTABLE DIAGNOSTIC SYSTEM

In the following, the design specifications of the proposed
POC-PDS are provided, which feature both i) the hardware
capabilities for data acquisition (AU) and ii) the computational

power for the diagnostic task (DU). The input of the POC-
PDS adopts an inexpensive disposable cartridge (DC) where
a matrix of different antigens has been deposited (in drops of
1 µl each).

Figure 1 details the system architecture of the POC-PDS.
The device is composed by the following main subsystems:

• Acquisition Unit (AU). A low-power and low-cost im-
ager provides the imagining capabilities for digitizing the
samples under test. Moreover, an OLED source is used to
illuminate the target during the image acquisition process.
The AU is developed by OR-EL using a commercial 12
bit CMOS sensor. It is composed of the following units: a
portable Sample Preparation Unit (SPU), a CMOS sensor
board, CMOS sensor driver and finally optical cube, used
to interface the disposable slide to the CMOS sensor. The
SPU combines the reaction with the biological fluid under
analysis and a second reaction with a fluid containing
secondary antibodies tagged with a fluorophore. The AU
is connected to the DU where the images are analyzed.

• Diagnostic Unit (DU). Besides the coordination of the
whole system, a Micro Controller Unit runs locally the
diagnostic tasks on the acquired images. Only the diag-
nosis outcome is transmitted out of the device through
an External Interface. Moreover, an additional Memory
component is needed for permanent and temporary stor-
age. Given the wireless nature of the point of care device,
energy is drawn from a on-board Battery Pack. To power
each system component, a Power Management circuit
handles DC-DC voltage conversions.

POC-PDS

AU DU

S 
P 
U

OLED

CMOS 
Sensor

Memory

Micro 
Controller 

Unit 
(MCU)

External 
Interface

Power  
Management

Battery 
Pack

data

ctrl

Fig. 1: Block diagram of the POC-PDS architecture.

III. DIAGNOSTIC TASKS

Two viral diseases are considered, as case studies, through-
out this work: Dengue and West Nile. For both diseases,
the diagnostic task is similar and involves both detection
and brightness estimation of the fluorescence signal coming
from four different spots reacting on a slide. Despite some
similarities, there are also key differences in the diagnostic
process, that are reflected in the dataset construction.
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A. Dengue case study

For the Dengue diagnostic test, each of the four spots
contains a different antigen, capable of reacting with one of
the four different serotypes of the Dengue virus that can be
found in human samples. Biological fluid is added to the slides,
reacting with antigens and with a second fluid containing
fluorophore-tagged secondary antibodies. The fluorophore is
excited using an OLED and the resulting fluorescent signal is
recorded by the CMOS camera [19].

Even if a single serotype is present in the blood sample, the
diagnostic test is likely to suffer from cross-reactivity, thus
more than one spot may emit a fluorescent signal. For this
reason, in the Dengue diagnostic test, in addition to accurately
estimating the fluorescence of each spot, it is very important
to rank the fluorescence of the 4 fluorescent spots to discern
actual infections from cross-reactivity.

The Dengue dataset is composed of 43 (24 × 24 pixels)
images, acquired with the CMOS camera of the POC-PDS.
To construct the dataset, each image is upscaled with bicubic
interpolation to the input dimension for BrightNet: 300× 300
pixels (see section IV for more details about the network
architecture). Then, to assemble the ground truth labels used
for training the DNN model, each ground truth box (GTbox)
is manually selected by a trained operator through a graphical
user interface by clicking the upper left corner of the ith box
(xi1, yi1) and the lower right one (xi2, yi2). The brightness
label bi is then automatically computed by averaging the pixel
values inside the box and normalizing it with respect to the
dynamic range of the image thus to obtain bi ∈ [0, 1]. Figure
2 illustrates the dataset labeling phase.

The resulting images are finally divided into three sets:
training (25 images), validation (3 images) and testing (15
images). The testing set is the same as in [7] to allow for a
direct comparison of results.

B. West Nile case study

For the West Nile diagnostic test, the four spots on the slide
are replicates of the same antigen, as a single serotype of the
West Nile virus exists. The objective is thus to estimate the
brightness of each spot and average them to reduce noise and
limit the contribution of possible artifacts in order to obtain
a more accurate estimate. If the average fluorescent signal
exceeds a threshold, the sample can be considered pathologic.

A set of images have been acquired with two different image
sensors. The first detector, considered as the reference one,
was the CCD Hamamatsu (ORCA C8484-03G02) while the
second detector was a CMOS with 24 × 24 pixels of 100 ×
100 µm2 area. Each image contains four fluorescent spots
of 1 mm diameter deposited on a transparent substrate and
illuminated with an OLED source as described in [7]. The
fluorescent spots have been obtained by depositing four equal
drops of 1 µl of the same dilution of an antibody tagged with
a fluorophore. Then, several samples obtained by depositing
different antibody concentrations have been prepared for the
image acquisition and analysis. The antibody is a goat anti-
horse IgG conjugated with the fluorophore AlexaFluor 430,
using the conjugation procedure described in [19]. This kind

of antibody has been selected for the detection of the West
Nile Virus in the horse sera. In this experiment, the intensity
of the fluorescence signal depends on the concentration of the
conjugated antibodies in the deposited drops.

The West Nile dataset is composed of 35 (24 × 24 pixels)
CMOS images and 35 (336 × 256 pixels) CCD images. The
bounding box construction procedure is similar to the one
previously described for the Dengue dataset and illustrated in
Figure 2 but, in this case, the availability of CCD acquisitions
is leveraged to generate ground truth intensity labels. The high-
resolution CCD image corresponding to each CMOS acqui-
sition is segmented using the variational approach described
in [7] and then labeled to discern the four different spots.
Ground truth brightness bi of the ith spot is then computed
by averaging the pixel values over the corresponding labeled
mask and then by normalizing the result over the dynamic
range of the image to obtain bi ∈ [0, 1].

C. Data Augmentation

In biomedical imaging, the collection of new data is often
limited by cost and time constraints and data augmentation
techniques are essential to train effectively the network. In
this specific case, five additional images are generated from
each image in the training and validation sub-datasets through
rotations (90, 180 and 270 degrees), a horizontal and a vertical
mirroring operation.

During training, additional stochastic augmentations are
performed to improve learning. In particular, uniform bright-
ness offsets, which follow a uniform distribution spanning
[−600, 600], are applied to each training image. It is important
to note that uniform brightness offsets should not change the
brightness value of the estimate as the labels are intensity
values normalized over the dynamic range.

IV. BRIGHTNET ARCHITECTURE

BrightNet is an application-specific network capable of
detecting and estimating the brightness of different fluorescent
spots deposited on a slide. Since spots can appear everywhere
on the slide, object detection is needed and the network is
built starting from the Single-Shot multibox Detector (SSD)
based on Mobilenet (SSD-MB) [14] [20] and is fine-tuned to
optimize performance and reduce computational requirements
for deployment in a point of care embedded diagnostic system.

Exploiting a pre-trained Mobilenet network is an essential
design choice given the small size of the Dengue and West
Nile datasets. Fine-tuning a network pre-trained on a very large
and general dataset such as Imagenet [21] proved to increase
performance even when the source and target applications
(datasets) are significantly different, as is the case for general
object classification and medical imaging [22].

A deep fine-tuning strategy is considered [22], where the
pre-trained Mobilenet weights are loaded while the additional
convolutional layers that perform object detection and bright-
ness estimation are initialized according to the Xavier scheme
[23]. All weights are then updated during training on the
application-specific Dengue and West Nile datasets.
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x11 x12 y11 y12 b1
x21 x22 y21 y22 b2
x31 x32 y31 y32 b3
x41 x42 y41 y42 b4

Fig. 2: Dataset construction (from left to right): 24× 24 original CMOS image, 300× 300 bicubic upsampled image, GTbox
selection, extracted labels.

With respect to a standard implementation of SSD-MB,
BrightNet has a different architecture and a customized loss
function that allows for combined single-shot detection and
brightness estimation. For a comparison with SSD-MB see
section V-C.

As in SSD, a number K of fixed default boxes are generated,
each represented by a coordinate vector that uniquely localizes
a box inside a feature map. Unlike SSD, only a single class
is meaningful - fluorescent spot - thus the class information is
not made explicit.

During the training phase illustrated in Figure 3, a batch of
images with the associated labels from the training set is fed
to the network, that processes them through Mobilenet and
a set of convolutional layers that produce the location (L),
confidence (C) and brightness (B) feature maps. In particular,
B is the tensor of elements b̄i ∈ R representing the brightness
associated with the ith predicted box (Pbox), C is the tensor
of elements c̄i ∈ R representing the confidence of the ith
Pbox, while L is the tensor of elements l̄i ∈ R4 representing
the location x̄i1, x̄i2, ȳi1, ȳi2 of the ith Pbox. These, together
with the labels and the generated default boxes, are then
passed to a multibox loss function which is used in the weight
optimization. In the Multibox Loss block, a matching phase
assigns the coefficients xij ∈ {0, 1}, where xij = 1 only if
the ith Pbox is assigned to the jth GTbox by means of the best
Jaccard overlap [14].

BrightNet Multibox
Loss

Default
Boxes

Optimizer

Label 1
Label 2

Label n
...

L

C

B

Fig. 3: Training Flow

To prevent overfitting, the loss on the validation dataset
is monitored at each epoch during training. We employ the
early stopping criterion described in [24], algorithm 7.1, where
the maximum number of iterations is set to 120000, and the
training is stopped if the validation loss does not improve for
more than 5000 consecutive epochs (patience). The trained

model for the inference phase is finally selected corresponding
to the minimum validation loss.

At inference time the model is frozen (see Figure 4) and a
test image is processed yielding the L, C and B feature maps
that feed, together with the set of default boxes, a detector
layer that performs the following two steps:

• I = threshold(softmax(C))
• Inms = nms(L(I),softmax(C(I)),B(I))
where the first operator thresholds the confidence probabil-

ities yielding a set of indices I, the second operator performs
non-maximum suppression (nms) by selecting the Pboxes with
maximum overlap greater than a given threshold in the subsets
B(I) and L(I), and finally selects the first four with maximum
confidence.

BrightNet Detector

Default
Boxes

L

C

B

Fig. 4: Testing Flow

The Brightnet network architecture is illustrated in Figure
5.

The input image is initially processed by Mobilenet V1
depthwise separable convolutions. Two feature maps are ex-
tracted, the first one after layer 23 and the second one after
layer 27. The extracted feature maps are then processed by
convolutional layers that generate the predictions feature maps
relative to the location of bounding boxes (L), their confidence
(C) and their brightness estimate (B).

A. Loss function

Each PBox has a binary state, matched (xij = 1) or not
matched (xij = 0) - with respect to the GTboxes - which is
used in the loss function computation to finalize the cost to the
more likely boxes. Given this information, the loss function
generalizes the one proposed in [14] and is composed of a
weighted sum of three terms: confidence loss, localization loss,
and brightness loss:

Loss(x, c, l, l̄, b, b̄) = α ·Lcf (x, c)+β ·Lloc(x, l, l̄)+γ ·Lbr(x, b, b̄),
(1)
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Mobilenet V1

512x19x19

1024x10x10

Conv2D
k3,s1,p1

Conv2D
k3,s1,p1

Conv2D
k3,s1,p1

Conv2D
k3,s1,p1

Conv2D
k3,s1,p1

Conv2D
k3,s1,p1

loc

loc

conf

conf

bright

bright

24x19x19

12x19x19

6x19x19

24x10x10

12x10x10

6x10x10

300x300

Conv2D
BatchNorm2D

ReLU
up to layer 23

Conv2D
BatchNorm2D

ReLU
up to layer 27

Feature Maps

Feature Maps

L

C

B

BrightNet

Fig. 5: BrightNet architecture: loc, conf and bright convolu-
tions are performed with a 3x3 convolution kernel (k=3), stride
1 (s=1) and padding 1 (p=1).

where α, β and γ are parameters that balance the contribution
of the confidence, location and brightness components of the
loss function, respectively. The factors α = 1, β = 1 and
γ = 7 are empirically set.

Confidence loss is computed according to the formula:

Lcf (x, c) = −

(
K∑
i=1

xij · log(ĉi) +

K∑
i=1

(1 −
∑
j

xij) · log(1 − ĉi)

)
,

(2)
where ĉi := softmax(ci) and

∑
j xij = 1 if and only

if Pbox i has been matched to a GTbox j. Lcf maximizes
the confidences of the matched Pbox and minimizes the
confidences of the remaining predictions.

Location loss measures the discrepancy between the pre-
dicted (l̄) and the ground truth (l) box locations, and is
described by the formula:

Lloc(x, l, l̄) =

K∑
i=1

xij

4∑
k=1

φ(l
(k)
i − l̄(k)j ), (3)

where φ(·) is the robust, differentiable Huber loss function,
which is less sensitive to outliers in data than the squared error
loss [25]. Considering the end-to-end nature of BrightNet,
the detected bounding boxes do not need to be perfectly
localized, as they are only used to distinguish spots in the
input image and are not used for subsequent processing of the
box contents. In this context, Huber loss facilitates the training
by dampening the contribution of outliers.

Finally, brightness loss is determined by:

Lbr(x, b, b̄) =

K∑
i=1

xij · (bi − b̄i)2. (4)

For the brightness component of the loss function, the mean
squared error loss is preferred over the Huber function. This
weighs more the outliers and pushes the learning process to

avoid them. It was experimentally verified that it allows for
more reliable brightness estimation and ranking of the detected
spots.

The role of the whole loss function is thus to measure how
accurately our model is able to predict with high confidence
the brightness of the matched Pboxes.

B. Performance Metrics

Two different metrics, M1 and M2, are computed to evaluate
the performance of the network for the specific application of
spot detection and brightness estimation for the diagnosis of
Dengue and West Nile diseases.

Considering Dengue diagnosis, it is important to identify
and correctly rank the four spots in order to pinpoint the
brightest ones that are over a certain threshold and accurately
diagnose the serotype(s), despite possible cross-reactivity of
the antibodies present in the serum with the different antigens
deposited in the four spots, representing the four Dengue
serotypes. To compute M1, both the intensity estimates gener-
ated by the network and the ground truth intensities, provided
by a trained operator starting from the upsampled CMOS
images, are ranked in decreasing order and then compared
to yield a matching number between zero (no matching) and
four (perfect matching).

In contrast, a single serotype of West Nile exists and in this
case the four spots are replicates used to reduce uncertainty
in the measurement. M1 is thus not informative in this case.

The metric M2 measures the difference between the inten-
sity estimates by the network and the ground truth intensities.
Let s̄ = 1

4

∑4
i=1 si, be the average intensity value of the

four spots in the sample image. Defining, for each spot, the
variation in percentage from the mean value s̄, as

pi =
(si − s̄) · 100

s̄
, i = 1, 2, 3, 4, (5)

then the displacement between the estimated (e) and the
ground truth (GT ) corresponding concentrations in a reference
sample, is measured by

M2 =
1

4

4∑
i=1

|pi,GT − pi,e|, (6)

where pi,e and pi,GT are computed by (5), with si carried out
by an automatic estimation method and by a human operator,
respectively. In particular, the reference sample is, in case of
the Dengue dataset, a CMOS sample, while for the West Nile
dataset, a CCD sample.

Smaller values for M2 are associated with a smaller differ-
ence and thus a better similarity between the two measure-
ments. Thus M1 must be maximised, while M2 has to be
minimised.

V. RESULTS AND DISCUSSION

Numerical experiments to evaluate the object detection and
brightness estimation performance of the proposed BrightNet
CNN are illustrated in this section. The proposed network has
been implemented using the Pytorch framework [26] and run
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on an Intel i7-3770K with 24 GB of RAM and two NVIDIA
Titan X GPUs.

To highlight the versatility of BrightNet, our evaluation has
been conducted on the two datasets Dengue and West Nile,
described in section III-A and III-B, respectively. Mobilenet
parameters pre-trained on Imagenet are loaded while location,
confidence and brightness layers are initialized using the
Xavier scheme [23]. Training of the whole network is per-
formed with the stochastic gradient-based optimizer ADAM,
with the following default parameters: exponential decay rates
β1 = 0.9, β2 = 0.99, gradient regularizer ε = 10−8 [27]. The
learning rate has been suitably optimized (see Table II).

In this section, the results obtained by the BrightNet CNN
are compared with those generated by the variational approach
proposed in [7] on the Dengue dataset based on the suitable
metrics introduced in section IV-B. Then, the versatility of the
proposed network is illustrated by evaluating its performance
on the detection of a different viral disease: West Nile. Finally,
several steps of optimization needed for deployment on a
resource-constrained embedded system are evaluated.

A. Evaluation on Dengue dataset

In this first experiment, the performance of the proposed
deep learning diagnostic approach is compared with the vari-
ational solution presented in [7] on the Dengue dataset.

In Figure 6 the results are illustrated on a representative
subset of test images. In particular, in the first row the
original low-resolution images acquired by the CMOS camera
are shown; in the second row the upscaled images input
to the network are illustrated; while in the third and fourth
rows the network outputs are reported in terms of bounding
boxes superimposed on the input images together with the
estimated brightness in the upper left corner (third row), and
corresponding synthesized diagnostic results highlighting the
estimated ranking of the four spots (fourth row). The chromatic
scale represents with false colors the concentrations detected
on each spot, for an easy and intuitive visual inspection of the
results.

For what concerns the accuracy, the diagnosis results ob-
tained by the variational method in [7], composed of a
multistep computational pipeline involving variational super-
resolution, manual cropping, image restoration, segmentation
and quadrature, are compared with those of the proposed
BrightNet approach, on the testing dataset.

Metrics M1 and M2 described in IV-B reveal a good
performance of the proposed CNN (see Table I).

Method M1 M2
BrightNet 78.3% 5.688
Variational 81.7% 7.941

TABLE I: Performance comparison with the variational ap-
proach [7]

These results highlight a significantly more accurate average
brightness estimation (lower M2) provided by BrightNet when
compared to the variational approach. In contrast, the lower
M1 indicates a slightly worse ranking performance. In this
regard, it was experimentally verified that the network presents

a significant probability of misranking the spots only if the
ground truth intensity difference between spots is smaller than
4% of the dynamic range of the image. This small difference
in intensity is not significant from a diagnostic point of view,
because it can be ascribed to some statistical variation rather
normal in diagnostic assays.

Pursuing the goal of designing an automatic diagnostic
system, a key aspect analyzed in this comparison procedure is
the number of model parameters which involve a tuning, and
the degree of human interaction which makes the successful
application of the system inevitably operator-dependent. The
performance of the variational method in [7] strongly relies
on the selection of the space-variant regularization parameters
involved in the model, while the end-to-end neural network
is intrinsically tuned. Moreover, in [7] the pipeline procedure
proposed requires human interaction to correctly localize the
bounding boxes of the salient regions of interest in the
fluorescence image to proceed with segmentation, and this
makes the diagnostic result time consuming and significantly
dependent on the skill level of the operator.

Finally, the diagnostic time, without considering sample
preparation, has been significantly reduced from about 30
seconds (variational approach [7]) to less than a second
(BrightNet).

B. Evaluation on West Nile dataset

A significant advantage of the presented network is its flexi-
bility: it can be easily adapted to several serological diagnostic
tests for the detection and discrimination of different viruses
in a set of fluorescent images given a suitable dataset and a
new training procedure.

To this purpose, the performance of BrightNet is analyzed
on the West Nile dataset, demonstrating that the use of the
proposed CNN-based low-cost point of care diagnostic system
equipped with a CMOS camera is a reliable alternative to
expensive state-of-the-art CCD-based systems.

In Figure 7 the results on a representative subset of the
test images are illustrated. As in Figure 6, in the first row the
original low-resolution images acquired by the CMOS camera
are shown; in the second row the upscaled images input to the
network are illustrated; while in the third and fourth rows the
network outputs in terms of bounding boxes superimposed on
the input image together with the estimated brightness in the
upper left corner (third row), and corresponding synthesized
diagnostic result highlighting the average spot (fourth row).

With 35 images available, 6-fold cross-validation is em-
ployed to be able to test all images. The average M2 metric for
the whole dataset is 8.371. This result highlights the capability
of the network to accurately map the brightness estimated from
low-resolution CMOS images (inputs) to that of CCD images
(ground truth). In comparison, the reference variational method
was applied to the same task, yielding an M2 = 11.976, which
is significantly worse than the one produced by BrightNet.

The West Nile dataset is composed of several different sam-
ples where spots have been obtained by depositing different
dilutions of antibody tagged with a fluorophore. Moreover,
different samples are acquired at different exposure times. In
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Fig. 6: Results over the Dengue dataset for five different testing images. First row: original low-resolution images. Second
row: upscaled images input to the network. Third row: spot localization. Fourth row: estimated ranking of the spots.

Fig. 7: Results over the West Nile dataset for five different testing images. First row: original low-resolution images. Second
row: upscaled images input to the network. Third row: spot localization. Fourth row: estimated brightness of the average spot.
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Fig. 8: Ground truth intensity surface (left) and estimated intensity surface (right) for various dilutions and exposure times.

order to adequately configure the sample acquisition proce-
dure, it is possible to estimate a ”safe region” defined by
values of exposure times and dilutions which, according to
the sensitivity of our system, allow to correctly detect the
positivity to the West Nile virus. In fact, when the fluorescent
signal exceeds a given threshold (2000 in Figure 8), the sample
can be considered pathologic. Let this threshold be represented
by the plane in Figure 8, and the intensities estimated by
the proposed CNN be represented by the interpolated surface
z = f(x, y) among the points of coordinates (dilution, expo-
sure time) in the plane x,y. The contour line on the plane x,y
represents the boundary of the safe region. In Figure 8 (left)
the surface is obtained by interpolating the intensities directly
on the CCD images, while in Figure 8 (right) the intensities are
estimated by BrightNet using CMOS input images. The safe
region obtained with the CCD images is slightly smaller with
respect to the one generated with BrightNet. The plots identify
similar safe regions and highlight that our proposal allows
for correct detection even using considerably lower exposure
times.

C. CNN Optimization

The performance of the proposed network is analyzed as a
function of the various steps performed to reduce the network
size and computational requirements with the aim to deploy it
on a low power embedded system. Dengue is considered as a
case study as, for this dataset, both the M1 and M2 metrics are
meaningful. The performance of the network in the various
stages of optimization is summarized in Table II, both in
terms of accuracy (M1, M2) and computational cost (Multiply-
Accumulate operations - MACs, number of convolutional
weights and CPU inference time on an i7 3770K processor).
Only CPU times are listed, as GPU processing overheads
obfuscate the difference in inference time for Mobilenet-based
networks. These results have been obtained with the optimal
learning rates reported in the second column of Table II.

Starting from a standard SSD implementation based on
VGG, the network has been expanded to process also a
brightness estimate of the detected objects. The resulting
network (SSD-VGG-Bright) is fully functional and able to
achieve satisfactory performance on most of the images in

the tested datasets, but with a significant drawback: the high
computational cost of VGG16. For this reason, a standard
implementation of SSD based on Mobilenet V1 (SSD-MB) has
been expanded to include a brightness branch, thus obtaining
the SSD-MB-Bright model illustrated in Figure 9.

According to the M1 and M2 metrics computed on the
Dengue dataset, a significant increase in performance with
respect to SSD-VGG-Bright is obtained. It is possible to
attribute this increase to the smaller size of Mobilenet V1
when compared to VGG16 and thus to less overfitting during
the training procedure.

In addition, as the fluorescent spots size is fairly large
and constant, multiscale detection is not critical for the con-
sidered application, so it is possible to trim all the extra
layers that scale the feature maps (in blue in Figure 9), and
the corresponding location, confidence and brightness layers
that process their output, from SSD-MB-Bright. The shrunk
network without the layers in the dashed box in Figure 9 is the
proposed BrightNet, whose architecture is illustrated in Figure
5. Somewhat surprisingly, in this last step of optimization, the
performance does not decrease but instead slightly improves.
The reason is that, by removing feature map scaling, relevant
prior information is included by suggesting to the network the
correct size of spots that need to be detected (quite large in
this case). This reduced network is significantly lighter than a
full SSD-MB-Bright implementation, reducing the number of
weights by 44% and the floating-point operations by 11%.

To further reduce the memory footprint and computational
cost of the proposed network, experiments were performed by
either reducing the width multiplier (BrightNet WM 0.25) or
the resolution multiplier (BrightNet 120x120), as defined in
the mobilenet paper [20]. Both multipliers trim the size of the
feature maps and thus would reduce both the memory footprint
and the computational cost of the network. Unfortunately, a
significant decrease in performance with either optimization
has been observed.

Recently, Mobilenet V2 has been released, featuring im-
provements over V1 in both computational cost and accuracy
[28]. In this work, Mobilenet V1 was targeted as an example
representative of a class of neural networks optimized for
mobile applications. The modularity of BrightNet allows for
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Fig. 9: SSD-MB-Bright network architecture with the bright-
ness branches higlighted in green and the extra layers required
for multiscale detection higlighted in blue. ’o’ indicates the
number of output channels for each convolution, ’k’ is the
kernel size, ’s’ is the stride and ’p’ is the padding.

the substitution of the base feature extraction network, and the
integration of new developments is likely to further improve
performance and reduce computational cost. Future plans
involve the evaluation of the performance of BrightNet based
on Mobilenet V2.

BrightNet features 3.7 ·106 parameters and a computational
cost of 1.1·109 MACs. Several embedded processing platforms
for mobile applications fit these computational requirements
and only necessitate of a few hundreds of milliseconds to run
similar inference tasks [29]. However, given the requirements
of our diagnostic application, even a microcontroller-class
processor could be targeted for deployment, as an inference
time of a few seconds is acceptable. Considering a high-end
microcontroller platform, featuring a high-performance core
ARM-Cortex M7 with a running frequency of 400MHz and
an external RAM memory of a few megabytes, the estimated
inference time is lower than 5 seconds with a computation ef-
ficiency of 0.6 MAC/cycle [30]. Nevertheless, the authors plan
to investigate further network shrinking and model exploration
in future works, to allow for fast inference on lower-end low-
power devices.

VI. CONCLUSIONS

We presented an operator-independent diagnostic tool for
the completely automated diagnosis of viral diseases with
fluorescence imaging techniques on a POC-PDS. The ad-
hoc, end-to-end deep learning model proved to be capable
of quickly estimating the brightness of fluorescent spots on
a microarray in a single step, with diagnostic performance
comparable to state of the art variational methods that require
parameter tuning by expert operators on an image by image
basis. As such our automated approach is ideal for on-
site diagnoses where the access to hospitals and laboratories
is limited. BrightNet proved to be significantly faster than
previous methods and versatile enough to diagnose different
viral diseases, Dengue and West Nile, requiring only a fine-
tuning with a short retraining procedure. This makes BrightNet
potentially applicable to other problems that require brightness
estimation in fluorescence imaging, such as the detection of
contaminants in the food industry.
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