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A B S T R A C T 

In this work, we test Wasserstein distance in conjunction with persistent homology as a tool for discriminating large-scale 
structures of simulated universes with different values of σ 8 cosmological parameter (present root-mean-square matter fluctuation 

av eraged o v er a sphere of radius 8 Mpc comoving). The Wasserstein distance (a.k.a. the pair-matching distance) was proposed 

to measure the difference between two networks in terms of persistent homology. The advantage of this approach consists in 

its non-parametric way of probing the topology of the cosmic web, in contrast to graph-theoretical approach depending on 

linking length. By treating the haloes of the cosmic web as points in a point cloud, we calculate persistent homologies, build 

persistence (birth–death) diagrams, and e v aluate Wasserstein distance between them. The latter showed itself as a convenient 
tool to compare simulated cosmic webs. We show that one can discern two cosmic webs (simulated or real) with different σ 8 

parameter. It turns out that Wasserstein distance’s discrimination ability depends on redshift z, as well as on the dimensionality 

of considered homology features. We find that the highest discriminating power this tool obtains is at z = 2 snapshots, among 

the considered z = 2, 1, and 0.1 ones. 

Key words: cosmological parameters – large-scale structure of the Universe. 

1  I N T RO D U C T I O N  

The quantitativ e e xploration of the large-scale distribution of matter 
as a complex web has been consolidated in this century. The notion 
of the cosmic web, traced by matter haloes and the galaxies they 
contain, has emerged and confidently established in the humankind’s 
view on the Universe, dubbing the complex large-scale distribution 
of matter. 

The cosmic web is often observed using galaxies as pinpoint for 
the underlying matter distribution, thanks to large optical surv e ys 
such as Sloan Digital Sky Survey (SDSS; Tegmark et al. 2004 ), 2 
Micron All-Sk y Surv e y ( Huchra et al. 2012 ), and VIMOS Public 
Extragalactic Redshift Surv e y (Guzzo et al. 2014 ). On the other hand, 
only in recent years, signatures from the diffuse gas in filaments have 
been reported with stacking techniques in the X-ray (Tanimura et al. 
2020 ), in the microwaves through the Sunyae v–Zeldovich ef fect (de 
Graaff et al. 2019 ), and at radio frequencies (Vernstrom et al. 2021 ). 

The many potential large-scale correlations between observable 
quantities and the intrinsic topological and morphological properties 
of the cosmic web call for a robust geometrical and topological 
characterization of its global network. Many numerical algorithms 
hav e been dev eloped o v er the years in order to capture and 
describe the complex hierarchy of structures in the matter web of 

� E-mail: maksym.tsizh@lnu.edu.ua 

cosmological simulations (e.g. Cautun et al. 2014 ; Libeskind et al. 
2018 , for re vie ws). 

The complex networks approach has also found its application in 
large-scale analysis. It treats haloes or galaxies as the vertices of 
a complex network (graph) and exploits the network characteristics 
(metrics) to shed light on the nature of the cosmic web. For example, it 
can be used to determine the type of structure to which a halo belongs 
(Tsizh et al. 2020 ), or it can relate network metrics with observable 
quantities of galaxies of the cosmic web (de Regt et al. 2018 ). 
Network analysis also makes it possible to quantitatively compare 
the degree of self-organization and complexity of the architectures of 
entirely dissimilar systems, like the cosmic web and the human brain 
(e.g. Vazza & Feletti 2020 ). The neighbouring method of analysis, 
typical for graph-(netw ork-)lik e data, is topological data analysis that 
started to conquer its place in the discussed field. In particular, its 
subsection called persistent homology will be of interest to this work. 

Persistent homology is characterized by a set of suitable tools 
to process the structures of the cosmic web, which has been 
recently explored by a few works. The first introduction of persistent 
homology into cosmic web science was probably made in 2011 by 
van de Weygaert et al. ( 2011 ). During the next decade, this group did 
systematic work studying persistence (birth–death) diagrams, Betti 
numbers and curv es, persistence curv es, and other instruments for 
the cosmic web. The same group has recently studied the evolution 
of persistence of homologies in Lambda cold dark matter ( � CDM) 
simulations (e.g. Wilding et al. 2021 ). The follow-up work disco v ered 
the multiscale nature of the simulated cosmic web by estimating the 
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persistence of topological features (holes) of different dimensions 
at different scales (Bermejo et al. 2022 ). While the aforementioned 
works explored the results of the cosmological simulations, the real 
data of SDSS catalogue were probed with this approach in Kimura & 

Imai ( 2017 ), where the authors introduced the idea of measuring 
distances between persistent diagrams of large-scale structures. The 
persistent voids and filaments search in SDSS was conducted in Xu 
et al. ( 2019 ), while the analysis of aperture masses obtained from 

cosmic shear as a result of gravitational lensing has been performed 
with persistent homology to constrain cosmological parameters in 
recent works by Heydenreich, Br ̈uck & Harnois-D ́eraps ( 2021 ) and 
Heydenreich et al. ( 2022 ). 

The persistent homology approach can be also applied to contin- 
uous reconstructions of the large-scale structure data, as was shown 
in Cisewski et al. ( 2014 ), where the authors analysed persistent 
homology of the H I density field in the intergalactic medium, 
using the Lyman-alpha forest data. Similarly, the continuous field 
of reionization bubbles has also become the object of persistent 
homologies studies in Elbers & van de Weygaert ( 2019 , 2022 ). 
Finally, the simulation of the interstellar medium together with 
its magnetic field was subjected to topological data analysis in 
Makarenko et al. ( 2018 ). 

Another well-known way of exploring the large-scale structure 
of the Universe is by comparing the distribution of perturbations to 
the Gaussian random field. Topology data analysis and persistent 
homology in particular, manifest themselves as suitable instruments 
for this problem, as can be seen from Feldbrugge et al. ( 2019 ), 
Biagetti, Cole & Shiu ( 2021 ), Pranav ( 2021 ), and Biagetti et al. 
( 2022 ). Gaussianity of cosmic microwave background radiation was 
studied with persistence diagrams in Cole & Shiu ( 2018 ). 

One of the most prominent applications of persistent homology 
in recent years is, in our opinion, the work by Cise wski-K ehe 
et al. ( 2022 ), in which the authors directly develop the idea of 
discriminating power of persistence diagrams for cosmological 
models. They analysed several metrics for computing the distance 
between persistence diagrams to check whether it is possible to tell 
apart the statistical difference between the persistence homologies 
of cold and warm dark matter universes. This, in principle, coincides 
with the idea of this work, which is to utilize the Wasserstein distance 
for the analysis of the cosmic web and to monitor its sensitivity to 
variations of the σ 8 cosmological parameter, i.e. the present rms 
matter fluctuation averaged over a sphere of radius 8 Mpc comoving 
(see also Biagetti et al. 2021 , where the possibility of persistence 
homology methods to resolve between the impact of different σ 8 

and non-Gaussianity parameter on cosmic web was shown). 
The graph-theoretical approach, known also as the complex 

network approach, disco v ers man y aspects of the cosmic web (see 
e.g. an o v erview in Tsizh et al. 2020 ), but it still poses a significant 
disadvantage when applied to graph-like data. It consists in the 
critical dependence of the constructed graph on linking length 
distance, a distance under which the two haloes or galaxies are 
considered connected. The persistent homology is one of the possible 
non-parametric ways to explore the data, it liberates the explorer from 

disadvantage of casting pre-defined scale onto the analysis. 
We present our work as follows. In Section 2 , we present the 

core idea of persistence homology and conv e y the definition of 
Wasserstein distance two between persistence diagrams. In Section 
3 , we describe the simulation we used for analysis and we formulate 
the hypothesis to test. In Section 4 , we present our main results. In 
Section 5 , we discuss limitations of our findings and the possibility 
of applying the new tool to the observational catalogues of galaxies. 
In the last section, Section 6 , we summarize the paper. 

2  PERSISTENT  H O M O L O G Y  

A number of computational problems in theoretical physics can be 
reduced to comparing points or clouds of points, be these points 
measured or calculated positions of real physical objects (e.g. stars, 
g alaxies, g as molecules) or even states of a certain system in its 
configuration space. It turns out, there is no straightforward notion 
of the distance between two point clouds: considering each individual 
point leads to ‘informational o v erflow’, ambiguity, and in most 
cases will be too sensitive to small changes in the positions of 
points. To solve the problem, one can a v oid considering individual 
points, but extract instead certain generalized information about their 
distribution that will comprise a manageable amount of numbers and 
then look for some notion of distance for these sets of numbers. 

One of the possible approaches is to endow each point with a 
sphere of radius r centred at the point and consider the union of all 
these balls as a manifold. This manifold will have certain topological 
properties that can be numerically represented and used further. As 
such, one uses Betti numbers – ranks of appropriate homology groups 
of the given manifold. For simplicity, one can think of 0-Betti number 
as a number of connected components, 1-Betti number as a number 
of one-dimensional or ‘circular’ holes, 2-Betti number as a number of 
two-dimensional ‘voids’ or ‘cavities’, and so on. This notion is quite 
convenient for the problem under consideration as we can associate 
(unfortunately, a bit indirectly) Betti numbers with cosmological 
structures: 0th with clusters, 1th with cycles and tunnels formed by 
cosmological filaments, and 2th with cosmological voids formed by 
cosmic sheets. Moreo v er, representation through Betti numbers is 
quite stable with respect to translation, rotation, and small variation 
of points’ positions which is a desired property. 1 

Ho we ver, the choice of the radius r to use is debatable. As a 
solution, one can consider all possible values of r and track topo- 
logical features that generate Betti numbers as the manifold changes 
with the change of r . Hence, the name ‘persistent homology’: each 
topological feature persists within a certain range of the parameter 
r and Betti numbers change when features are ‘born’ or ‘die’. The 
result can be represented as a plot r versus Betti numbers, or we 
can map ‘birth’ and ‘death’ of each individual topological feature in 
the form of a barcode diagram or persistence diagram. Interestingly, 
there is a notion of distance between persistence diagrams in a strict 
mathematical sense called ‘Wasserstein distance’ and its partial case 
‘bottleneck distance’. 

2.1 Wasserstein and bottleneck distances 

In probability theory and computational topology there is a widely 
used notion of p -Wasserstain distance (Edelsbrunner & Harer 2010 ) 

W p ( X; Y ) = 

( 

inf 
ϕ: X→ Y 

∑ 

x∈ X 
‖ x − ϕ( x) ‖ p ∞ 

) 1 /p 

, (1) 

that provides distance between two multisets, X and Y (sets that allow 

multiple instances of any element). The idea of this distance is the 

1 In the code, we extract topological features with so-called α-complex without 
any restriction on the parameter α. One may be concerned that it is defined 
in terms of simplices and Delaunay triangulation but not intersecting balls. 
Though, without any restriction on α it is equi v alent to the C̆ech complex 
(but much smaller that is beneficial for calculation) and C̆ech complex in its 
turn is homotopy equi v alent to the ‘intersecting spheres’ point of view by the 
classic ‘Nerve theorem’ (Alexandroff 1928 ). Thus both views are equivalent, 
but ‘intersecting spheres’ are easier to grasp. 
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Figure 1. Maps ϕ between persistence intervals as in ( 1 ). Blue and red 
dots represent persistence intervals calculated from two different point 
clouds, their XY coordinates represent the endpoints (‘births’ and ‘deaths’) of 
corresponding persistence intervals. 

following: first, we match elements of X and Y one-to-one (bijection 
ϕ) in a certain way (suppose it can be performed for now). For each 
pair of elements, x ∈ X and ϕ( x ) = y ∈ Y , we can calculate how 

much do they differ (the cost function) ‖ x − ϕ( x ) ‖ ∞ 

that is basically 
L ∞ 

norm. Adding up the p th degrees ‖ · ‖ p ∞ 

, we get a notion of the 
difference between the whole multisets X and Y under the matching 
ϕ: X → Y . Taking the infimum o v er all possible bijections ϕ, we get 
the difference between multisets X and Y under the best matching 
possible, ef fecti v ely remo ving ϕ from further consideration. Now, 
taking the root of p -th order transforms the whole expressions into 
a well-defined distance that satisfies all axioms of metric (Figalli & 

Glaudo 2021 ). 
Let us consider this distance with respect to our problem. As 

we tracked how Betti numbers change with respect to radius r , 
the topological features were ‘born’ and ‘died’. Thus, we got a 
persistence interval [ r b ; r d ] for each feature (can be represented as a 
point on a plane). X and Y will now represent sets of such intervals 
calculated on different point clouds. The L ∞ 

norm for two such 
intervals is defined as ∥∥[

r A b ; r 
A 
d 

] − [
r B b ; r 

B 
d 

]∥∥
∞ 

= max 
(∣∣r A b − r B b 

∣∣ , 
∣∣r A d − r B d 

∣∣) , 

where r A b , r 
A 
d , r 

B 
b , r 

B 
d are ‘birth’ and ‘death’ radii. Plugging it into 

( 1 ), we get the desired expression. 
One more adjustment in the procedure is necessary since the 

persistence diagrams consist of finitely many points abo v e the 
diagonal that can vary in number depending on the initial point 
cloud they were generated from. To this finite multiset, we add the 
infinitely many points on the diagonal, each with infinite multiplicity 
(Edelsbrunner & Harer 2010 ) (‘virtual points’) and allow matching 
with them. These extra points are not essential to the diagram, but 
their presence allows us to find bijection ϕ even in cases there are 
different numbers of persistence intervals in X and Y as shown in 
Fig. 1 . One may note that taking infimum o v er all possible ϕ, we will 
al w ays end up in a situation when most of the diagonal points are 
mapped to the diagonal points with the same coordinates, thus adding 
0 (i.e. smallest possible || x − ϕ( x) || p ∞ 

) to the total cost function. Only 
the ones matched with the off-diagonal points will add to the total 
cost. 

The bottleneck distance is the Wasserstein distance, with param- 
eter p → ∞ . Finding the appropriate limit, it can be shown that 
(Edelsbrunner & Harer 2010 ) 

W ∞ 

( X; Y ) = inf 
ϕ: X→ Y 

sup 
x∈ X 

‖ x − ϕ( x) ‖ ∞ 

. (2) 

The precursor of the modern notion of bottleneck distance was 
probably first introduced by Patrizio Frosini in 1990 (Frosini 1990 ). 

3  C O S M O L O G I C A L  SI MULATI ONS  

For this work, we analysed a set of recent cosmological simulations 
produced with the magnetohydrodynamical code ENZO , 2 applied 
to a suite of concordance � CDM simulations of eight different 
cosmic volumes, for six different values of the σ 8 parameter. 
We used here a simple uniform resolution grid approach, sam- 
pling a comoving volume of 42 . 5 3 Mpc 3 with 512 3 cells (yield- 
ing a constant spacial resolution of 83 . 3 kpc per cell) and with 
512 3 dark matter particles (yielding a fixed mass resolution 
m dm 

= 6.19 × 10 7 M �). 
These runs are part of a larger project, aiming at investigating 

the origin of cosmic magnetism through multiple resimulations 
of magnetic field seeding scenarios (e.g. Vazza et al. 2021 , and 
references therein). Ho we ver, unlike what we did in most of the 
other projects along this line of research, here we fixed the initial 
magnetic field (assumed to have a primordial origin) and studied how 

the properties of simulated magnetic fields change with increasing 
initial amplitude of density perturbation ( σ 8 parameter) and are also 
affected by cosmic variance. 

Each simulation starts at z = 40 from a ‘primordial’ uniform 

volume-filling comoving magnetic field B 0 = 0.1 nG for each 
magnetic field component. 

The simulation also includes the effect of radiative (equilibrium) 
cooling on baryon gas, assuming for simplicity a primordial chemical 
composition, and no additional sources of feedback. While these 
effects are not of primary importance for the study of homology 
presented here (which could have been done just using N -body 
simulations of dark matter, as usually done in the literature, the 
adoption of non-gravitational physics adds realism to the properties 
of the simulated gas network of the cosmic web, and it allows 
us to produce mock observables for these runs (subject of future 
works). 

The cosmological parameters in this suite of simulations are kept 
constant to the reference values of a flat � CDM cosmological model, 
with H 0 = 67.8 km s −1 Mpc −1 , �M 

= 0.308, �� 

= 0 . 692, �b = 

0.0468, and σ 8 = 0.815 (Planck Collaboration XIII 2016 ). 
With this set-up, we generated a small suite of 48 simulations, 

evolved from z = 40 to z = 0.0, for eight random variations of the 
initial phases of the matter and velocity distributions in the initial 
conditions (to produce eight independent random realizations of the 
same cosmology and gauge the effect of cosmic variance) as well as 
six different simulations with uniformly increasing σ 8 , from 0.5 to 
1.0. 

We notice that compared to the recent work by Bermejo et al. 
( 2022 ), who first analysed the simulated cosmic web using persistent 
homology, our suite of simulations investigates a much smaller (by 
a factor ∼800) cosmic volume, while on the other hand, it provides 
a ∼10 better mass resolution for haloes, and it also allows us to 
monitor the effect of σ 8 and cosmic variance through the comparison 
of different resimulations. 

2 enzo-project.org 
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Figure 2. Projected maps of the average dark matter density along the full 42 . 5 Mpc line of sight, for all variations of σ 8 for 1 of our 10 randomly extracted 
initial conditions, for the epoch of z = 2.0. 

Figs 2 and 3 give the visual example of the increased level of 
clustering of the dark matter component in one of our random seed 
extractions of the initial conditions, for the different σ 8 and at the 
early epoch of z = 2.0, and towards the end of the simulation ( z = 

0.1). 
The masses and positions of self-gravitating haloes in all sim- 

ulations are computed using the parallel friends-of-friends (FOF) 
algorithm in ENZO , imposing for all runs a linking length of 0.05 
cells and a minimum number of 50 dark matter particles for each 
halo, and computing their M 200 masses. 

The dark matter mass distribution of haloes in all our boxes and 
for all eight random variations of initial seeds is shown in Fig. 4 . 
As for the projected masses of dark matter distribution, the effect of 
a decreasing σ 8 is seen, as expected, in a progressively decreased 
normalization of the measured mass function, which also leads to 
slo wer gro wth time of the most massi v e haloes in the box es. 

On purpose, we do not present a detailed comparison with the 
theoretical expectations for the mass functions under the same 
cosmological models, because there are small, but not entirely 
negligible effects related to non-gravitational physics, which can 
affect the timing of halo formation as a function of σ 8 , especially for 
the lowest values of it. 

Indeed, while all adopted non-gravitational effects are known to 
lead to negligible differences in the abundance of haloes at low 

redshift (at least, for the range of baryonic physics and magnetic 
effects considered here), it is non-obvious to assess their impact at 

high redshift, and in the regime of initially low-density perturbations. 
On one hand, a uniform magnetic field level can slow down the 
collapse of haloes, by providing extra pressure to the gas (e.g. Dolag, 
Bartelmann & Lesch 1999 ; Kahniashvili et al. 2013 ), while on the 
other the impact or radiative gas cooling is that of accelerating the 
collapse of haloes, leading to an increase up to a factor two with 
respect to non-radiative simulations at high redshift (e.g. Cui et al. 
2012 ). 

Our suite of simulations has not been designed uniquely for this 
project, but also to compare with real radio observations of cosmic 
magnetism (Carretti et al. 2023 ), hence taking into account the 
presence of non-gravitational physics and its possible (secondary) 
effect on clustering. In any case, it is interesting to study how the 
global effect of gravity and baryonic physics can alter the measured 
distribution of haloes as a function of redshift and σ 8 , which is the 
case that real observations have to face. 

More ad hoc tests, in which single dependencies related to the 
input σ 8 can be tested and isolated through persistent homology will 
be considered in future work. 

4  RESULTS  

First, we can make a qualitative comparison of our studies to others. 
Persistent homology was already applied to large-scale data. We 
can compare our (Fig. 5 ) persistence (birth-persistence in this case) 
diagrams at different z to those, for example in Biagetti et al. ( 2021 ; 
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Figure 3. Projected maps of average dark matter density along the full 42 . 5 Mpc line of sight, for the same model used in Fig. 2 , for the final epoch of z = 0.1. 

Figure 4. Halo mass functions (normalized to a comoving volume of 1 Mpc 3 ) for all haloes in our suite of simulations, for three different redshifts and for the 
six different simulated values of σ 8 (solid lines). 

fig. 6 in there). One can notice that these images, in principle, have 
common tendencies. These are 

(i) persistence of the features on smaller scales at lower z. The 
points that correspond to z = 0.1 are (on average) on the left to 
those which correspond to z = 1, which are on the left of those that 
correspond to z = 2. 

(ii) 2-homologies have wider and less steep distribution and on 
av erage, the y are born at a slightly larger radius. 

These common tendencies show qualitative agreement between 
our study to those done before. 

Now, we will graphically present and elaborate on the numerical 
results. We have computed three types of defined abo v e Wasser- 

stein distances between each pair of simulated universes: the 1- 
W asserstein, 2-W asserstein, and ∞ -W asserstein (or the bottleneck) 
distance. The distances are measured between the ‘birth–death’ 
diagrams of each pair. We compute distances for zero-dimensional, 
one-dimensional, and two-dimensional homology features (0-, 1-, 
and 2-homologies). While 1- and 2-homologies can be treated as 
cycles of filaments and voids of the cosmic web, respectively, 0- 
homologies are nothing else but connected components that start as 
separate points at r = 0. 

The distances, unless mentioned otherwise, are given in a range 
between 0 and 1, this is scaled values, where 1 corresponds to the 
length of the edge of a simulation cube, 42 . 5 Mpc. We are interested 
in the dependence of these distances on the difference in σ 8 parameter 
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Figure 5. Persistence-birth diagrams for 1- (left) and 2- (right) homologies for universes with σ 8 = 8 at different redshifts. 

Figure 6. Boxplots of W 1 distances at different z. Each figure contains three sets of data for homologies of different dimensions (colour-coded). Solid lines 
represent the general trend for median values. Additionally, mean values are shown as triangles. Please note, data for 0- and 2-homologies were shifted a bit to 
the left and right to a v oid boxplots o v erlapping. 

between simulated universes, �σ 8 . To take into account the impact 
of cosmic variance on our results, we have eight simulations for 
each value of σ 8 , yielding 8 × 6 × (8 × 6 − 1)/2 = 1128 pairs of 
point clouds, and, respectively distances calculated. We then average 
values of distances for each �σ 8 value. The obvious disadvantage of 
such a way of averaging is, that we have a different number of points 
to the average for each value of �σ 8 , as the smaller �σ 8 is, the larger 
number of pairs exist with such difference. Indeed, we have 6 × 8 
× (8 − 1) = 336 points at �σ 8 = 0 and only 8 × 8 = 64 at �σ 8 = 

0.5. Ho we v er, we hav e to reconcile with such a feature and rely on a 
large number of points even for �σ 8 = 0.5. 

Results for dif ferent v alues of z are represented in Fig. 6 . 
The X -axis shows the difference �σ 8 between two simula- 

tions. The computed Wasserstein distances between persistent 
diagrams for different simulations can be treated in this con- 
text as a realization of a random variable (e.g. different seeds 
contribute to the randomness of halo distribution). Thus, we 
represent results in form of ‘boxplots’ – a well-known type of 
diagram in statistics. Its ‘anatomy’ can be represented as fol- 
lows: 
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Figure 7. Comparison of normalized distances changes with change of �σ 8 at z = 2 (left-hand panel) and z = 1 (right-hand panel). Note, that y -axis scale in 
panels is different. 

Figure 8. Comparison of normalized distances changes with change of �σ 8 at z = 0.1 (left-hand panel). Comparison of normalized W 1 distances at different 
z (right-hand panel). 

Data points are sorted in ascending order and split into four 
quartiles (Q1, ..., Q4), each containing 25 per cent of the data points. 
The median shows where Q2 ends and Q3 starts. Calculations were 
performed on persistence diagrams of different order homologies 
separately (blue, green, and red colours for 0-, 1-, and 2-homologies, 
respectively), thus three curves in each plot. 

Among all analysed distances, 1-Wasserstein distances have the 
higher contrast between �σ 8 = 0 and �σ 8 = 0.5 for z = 2 and z = 

1, this is why we select to show it on this figure. For z = 0.1, ∞ - 
Wasserstein distance has negligibly better contrast. Note, that each 
of the dimensions of homologies occupies its own niche of distances 
with the largest ones for 1-homologies. 

In Figs 7 and 8 , one can find the comparison of different variants 
of Wasserstein distances in distinguishing power between universes 
with varying σ 8 in normalized values. In these plots, each point of 
the line (which shows the averaged distance) is divided by its value 
at �σ 8 = 0. In Fig. 7 and the left-hand panel of Fig. 8 , the red lines 
represent the 0-homologies, the blue lines represent 1-homologies, 
and the green lines correspond to 2-homologies. Different styles 
of lines correspond to different types of distances (solid line to 1- 
Wasserstein, line-dotted to 2-Wasserstein, and dotted lines to ∞ - 
Wasserstein distance). On the right-hand panel of Fig. 8 , one will 
find a comparison of distinguishing power of averages and medians 
of W 1 distance at different z. Medians might work slightly better in 
some cases. 

Let us deeper analyse these two sets of graphs. The first and obvi- 
ous conclusion is that on average, Wasserstein distances reflect the 

size of the difference in σ 8 parameter between simulated universes. 
Ho we ver, the distinguishing po wer of persistent homology decreases 
as redshift approaches zero. It appears that the networks of haloes 
are better at breaking the de generac y of �σ 8 in the earlier universes. 
The second conclusion is, that zero-dimensional homologies work 
better than 1-dimensional homologies, which, in turn, work better 
than two-dimensional ones. Persistent loops of filaments do a better 
job than persistent voids and sheets of matter, and comparing the 
persistence of separated components is the best of all. The averages 
and medians of distances for 0-homologies at z = 2 increase their 
value by more than 3.4, compared to 1.7 for 1-homologies and 1.2 
for 2-homologies. Meantime, at z = 0.1 distances between universes 
with contrasting σ 8 become almost negligible. We can also note, that 
dissimilarities between different types of Wasserstein distances are 
minor, although they are still present. 

At the same time, the large width of the distribution of distances 
does not allow us to build a rigid statistical test, which would be able 
to set apart simulated universes with close values of σ 8 . Indeed, as can 
be read from Fig. 9 , even for the best case of 1-Wasserstein distance 
of 0- and 1-homologies at z = 2, the probability density functions of 
data points moderately o v erlap each other, and the situation worsens 
for low redshift data ( z = 0.1). In these graphs, we estimate the 
particle’s distribution function with the kernel density estimation 
method. As a kernel, we used a Gaussian kernel with the width 
chosen by Silverman’s rule. 

We have additionally checked, whether information about the 
differences is hidden in the ‘noise’ of the large population of haloes. 
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Figure 9. Approximation of probability density functions for Wasserstein distances between simulated universes at z = 2 for 0-homologies (on the left) and 
1-homologies (on the right). 

We have calculated the same distances for ‘bootstrapped’ data, where 
part of the haloes was randomly deleted, averaging the overall result. 
As can be seen for Fig. 10 , bootstrapping did not impro v e the results. 
Like wise, the selecti ve filtering out of the least or of the most massive 
haloes did not produce a significant impro v ement of our results, and 
in Fig. 11 , one can find and compare the averages of distances in 
populations, where only 10 per cent of heaviest and 10 per cent of 
lightest haloes are left. The case of 0-homologies mass filtering at 
z = 1, where there is a considerable difference is rather an exception. 
This o v erall is a promising result: when applying this instrument to 
an even incomplete catalogue of real galaxies, it is still possible to 
reconstruct the underlying topology of the network connecting them, 
in a robust enough way to constrain the value of σ 8 . 

We have also tested whether the large span in a number of haloes 
might cause large Wasserstein distances between universes instead of 
a difference in σ 8 . To do this, we conduct all the same calculations on 
the data set, where the number of haloes in all universes was equalized 
by truncation to a certain limit. We tested truncation (randomly 
thro wing out excessi ve haloes) at 800, 2000, and 4000 haloes. 3 

If the number of haloes in a universe was lower than this limit, 
we use bootstrapping (randomly repeatedly selecting the haloes) 
to sample up this universe to the limit. In neither case, the result 
(sensitivity of W 1 to σ 8 ) was not considerably impro v ed. In most 
cases, it w as w orsened and just in some, it was the same or slightly 
better. From this, we can abstemiously conclude that sampling only a 
small part of the population of the cosmic web would not allow one to 
discern the nature of its homology features. All of the computations 
were performed with GUDHI PYTHON library (Maria et al. 2014 ), a 
specialized package for dealing with persistent homology. The plots 
were built with MATPLOTLIB library of PYTHON . All of our scripts 
and data can be found in open access. 4 It took a moderate amount 
of computational time to complete all of the calculations: a day on a 
modern desktop PC would be enough, which is an advantage of the 
considered method. 

3 Originally, for z = 2 universes the span in the number of haloes is (849, 
5264), for z = 1 it is (2373,7121), and for z = 0.1 it is (6353,10195). 
4 https:// github.com/mtsizh/ bottleneck- distance- for- sigma8 

5  DI SCUSSI ON  

First of all, it shall be noted that, although persistent homology 
analysis requires no arbitrary choice of spacial scales, our results 
are still restricted by the limited spacial and mass scales sampled 
with our suite simulations (i.e. from 83 kpc to 42 . 5 Mpc comoving 
and from 6.1 × 10 7 to ∼10 14 M � for the dark matter component). 
Ho we ver, theoretical works suggest that the self-organization of the 
cosmic web evolves only slowly (i.e. logarithmically) with scale (e.g. 
Sylos Labini, Vasilyev & Baryshev 2007 ; Sylos Labini 2011 ). The 
findings of Bermejo et al. ( 2022 ) confirm the logarithmic nature of 
this evolution also in terms of persistent homology and confirms 
the multiscale nature of the cosmic web. This is why we expect our 
results to be possibly rele v ant to a wide range of spacial scales of the 
cosmic web. 

We w ould lik e to stress on the potential that persistent homology 
analysis has if applied to real data (either for future or even existing, 
surv e ys of galaxies). Unlike the more standard measurement of the 
mass function of galaxy haloes as a cosmological probe, the persistent 
homology requires no knowledge of the halo masses (which can be 
increasingly more difficult to estimate for high redshift and/or small 
mass haloes). Since only the three-dimensional position of galaxies, 
assumed to mark the location of dark matter haloes, is needed to 
analyse the topology of the underlying matter distribution of the 
cosmic web in this approach, the only requirements are related to 
the accuracy of galaxy positions, in real surveys. Our additional tests 
also showed that this procedure is also robust against the removal of 
the least massive (or most massive) haloes in catalogues. 

As a comparison with real sky observations, we note that our anal- 
ysis concerns eight independent realizations of the same cosmology 
(with variations of σ 8 ), which effectiv ely co v er a comoving volume 
of 85 3 Mpc 3 . This corresponds to a projected field of view with size 
≈2.7 ◦ at z = 2, ≈2.9 ◦ at z = 1, or ≈13.1 ◦ at z = 0.1, meaning that 
the area of sky which needs to be surveyed to test this technique 
is affordably small. Moreo v er, the e xpected spectroscopic redshift 
uncertainty in future Euclid surv e ys is �z ≈ 0.001(1 + z) in the 
0.7–1.8 redshift range (e.g. Euclid Collaboration 2021 ). Although 
for a smaller field of view, similar redshift uncertainties also apply to 
e xisting surv e ys (e.g. 224 arcmin 2 for the VIMOS surv e y; Scode ggio 
et al. 2018 , and 1 . 7 deg 2 for z-COSMOS; Lilly et al. 2007 , to cite 
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Figure 10. W 1 distances at z = 2 (left) and z = 1 (right) with bootstrapped data. 

Figure 11. W 1 distances at z = 2 (left) and z = 1 (right) with mass-filtered population of haloes. 

a few). Significantly larger uncertainties, and restricted to a z ≤ 1, 
are instead typically available in the SDSS surv e y (e.g. P asquet et al. 
2019 ). This corresponds to about 8 kpc at z = 2 and to about 5.5 kpc at 
z = 1, and it means that at both epochs the typical redshift uncertainty 
of future surv e ys is ev en smaller than the spacial resolution of the 
simulation we used to perform our homology analysis, and for this 
reason, we expect this technique to be, at least in principle, suitable 
to analyse the cosmic web even when realistic uncertainties in the 
redshift of galaxies are taken into account. Moreo v er, it shall be 
stressed that even if in this work we have mainly focused on the 
effect of σ 8 on the growth of factor, which in our case also carries 
secondary effects related to the somewhat delayed growth of haloes 
due to the non-linear interplay of other non-gravitational processes 
(such as primordial magnetic fields and reionization temperature 
background), in principle the same technique can be used to assess 
the impact of other physical parameters on the growth of structures, 
such as neutrino masses (e.g. Castorina et al. 2015 ) warm dark matter 
and modified gravity models (e.g. Baldi & Villaescusa-Navarro 
2018 ), as well as other effects related to baryon physics (e.g. Shao, 
Anbajagane & Chang 2022 ). 

6  C O N C L U S I O N S  

In this work, we presented new results from the application of 
persistent homology to study the multiscale structure of the simulated 
cosmic web. Persistent homology is a powerful tool that allows us to 
decode the topological embedding of self-gravitating mass haloes, 
and instead of focusing on the topology at a single (and arbitrary) 

length scale, it detects persistent topological features (measured 
through their Betti number) within the range of spacial scales in 
which they ‘born’ and ‘die’, as a result of increasing filtration. The 
Wasserstein distance resulting from this analysis (Section 2.1 ) is thus 
a helpful and non-arbitrary measurement of the difference of typical 
scale characterizing the most persistent topological features of the 
cosmic web. Such difference, if induced by cosmological parameters 
(for example, σ 8 ), can be traced out and utilized to distinguish 
between different cosmologies. 

In summary, our main conclusions are as follows: 

(i) The Wasserstein distance shows the best discrimination power 
of σ 8 at the largest investigated redshift, z = 2. The discrimination 
becomes increasingly worse moving to wards lo w redshift (i.e. a little 
worse at z = 1, and very low at z = 0.1). 

(ii) The persistence features of dimension 0 are much more 
sensitive to σ 8 than the features of dimension 1, which, in turn, 
are more sensitive than those of dimension 2. The distinguishing 
power decreases with the increasing dimensionality of features. 

(iii) The 1-Wasserstain distance shows the best results in compar- 
ing to 2-Wasserstein, or to the Wasserstein distance ( ∞ -Wasserstein), 
in terms of discrimination of σ 8 , but differences are really small. 

(iv) These findings are robust against bootstrapping, or the mass- 
filtering of the haloes used for the network reconstruction. We also 
find that the median value of the abo v e distance estimates, in general, 
is a little more informative than the mean of distances. 

(v) The distributions of Wasserstein distances for different values 
of �σ 8 somewhat o v erlap one with another. Thus, the cosmic 
v ariance pre vents us from the possibility to build a rigid statistical 
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test of restricting the value of σ 8 by just comparing the persistence 
of homologies of cosmic webs. 

(vi) The selected spacial and mass ranges of our study allow us to 
carefully suggest possible similar exploration of persistent homology 
of the real cosmic web, as modern galaxy catalogues possess the 
required size and resolution. 

With all of this, we can predict, that the next steps in studies 
towards a deeper understanding of the topology nature of large- 
scale matter distribution would be exploring how other cosmological 
parameters shape the persistent homology of the cosmic web, as well 
as comparing the homologies of the observable cosmic web. 
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