
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Model for Quantitative Estimation of
Functionality Influence on the Final
Value of a Software Product
GREGOR MOLAN 1, GREGOR DOLINAR 1, JOVAN BOJKOVSKI (MEMBER, IEEE),1,
RADU PRODAN 2, ANDREA BORGHESI 3, MARTIN MOLAN 4
1Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, Ljubljana, SI-1000, Slovenija
2Department of Information Technology, University of Klagenfurt, Universitätsstr. 65-67, Klagenfurt am Wörthersee, A-9020, Austria
3Computer Science and Engineering - DISI, University of Bologna, Mura Anteo Zamboni 7, Bologna, IT-40126, Bologna, Italy
4Electrical, Electronic, and Information Engineering “Guglielmo Marconi” - DEI, University of Bologna, Viale del Risorgimento 2, Bologna, IT-40126, Italy

Corresponding author: Gregor Molan (e-mail: gregor@comtrade.com).

ABSTRACT Purpose: The gap between software development requirements and the available resources
of software developers continues to widen. This requires changes in the development and organization of
software development.
Objectives: Presented is a model introducing a quantitative software development management methodol-
ogy that estimates the relative importance and risk of functionality retention or abundance, which determines
the final value of the software product.
Method: The final value of the software product is interpreted as a function of the requirements and func-
tionalities, represented as a computational graph (called a software product graph). The software product
graph allows the relative importance of functionalities to be estimated by calculating the corresponding
partial derivatives of the value function. The risk of not implementing the functionality is estimated by
reducing the final value of a product.
Validation: This model has been applied to two EU projects: CareHD and vINCI. In vINCI, the function-
alities with the most significant added value to the application were developed based on the implemented
model and those that brought the least value were abandoned. Optimization was not implemented in the
CareHD project and proceeded as initially designed. Consequently, only 71% of the CareHD’s potential
value has been realized.
Conclusions: Presented model enables rational management and organization of software product develop-
ment with real-time quantitative evaluation of functionalities impacts, assessment of the risks of omitting
them without a significant impact. A quantitative evaluation of the impacts and risks of retention or
abundance is possible based on the proposed algorithm, which is the core of the model. This model is a
tool for rational organization and development of software products.

INDEX TERMS Chain derivation in graph, Computational graph, Cost estimation, Graph theory, Keras,
Quantitative estimation, Software construction, Software development, Software engineering process, Time
estimation.

I. INTRODUCTION

THE growth of the software industry and the increased
demand for software engineers have driven the opti-

mization of the software development process. Software de-
velopment comprises two main parts: business development
and product development [1], [2]. Several approaches to opti-
mize both the business development phase (i.e., requirement
definition) and the product implementation phase have al-
ready been introduced. However, questions about how to plan

the software development process and translate requirements
into functionalities still need to be answered. This paper
presents a quantitative methodology to select the optimized
requirements based on their importance while minimizing the
development cost and delivering a software product with the
highest end value.

The success of the software development planning step de-
pends on the availability of domain and engineering knowl-
edge [3]–[5]. The first crucial aspect to consider is the

VOLUME 4, 2023 1

https://orcid.org/0000-0002-4412-2371
https://orcid.org/0000-0001-9083-5578
https://orcid.org/0000-0001-6406-6998
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-2298-2944
https://orcid.org/0000-0002-6805-2232

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

best way to represent (and encode) existing domain knowl-
edge into a form suitable to be integrated into quantitative
processes [6], [7]. Graphs are a data structure capable of
encoding complex knowledge and relationships into a form
suitable for quantitative approaches [8]–[10]. Consequently,
the quantitative method that is presented in this paper uses
graphs to represent the structure of the software product
by describing the relationship between the requirements,
functionalities, and end value.

The primary assumption of this paper is that we can
extract useful information by representing existing domain
and engineering knowledge as a graph. The success of the
proposed methodology strongly depends on the availability
of this knowledge. This domain knowledge can often be read-
ily available in organizations with well-structured product
development pipelines but might be less readily available in
other contexts [4]. To the best of our knowledge, this work is
the first to demonstrate how well-encoded domain knowledge
can be exploited to improve software development processes.
Although this paper does not present a simple solution that
promises to optimize all software development projects, it
claims that the formalization of existing knowledge as a
graph offers the possibility to (quantitatively) optimize the
planning of the development process.

We distinguish between the contributions of this paper
(which we call method, model, and methodology) and the
cited previous results (which we call the approach).

The model that is presented in this paper is named
the Model for quantitative estimation (MOQE, or MOQE
model).

A. CONTRIBUTIONS OF THIS PAPER
The open question that either business or product develop-
ment has not answered is how to find the optimized set of
functionalities that satisfy planned requirements [11]. The
contribution of this paper is that it introduces a quantitative
methodology for finding the optimized set of functionalities
that meet the requirements and achieve the highest prod-
uct value. Therefore, it sits between business and product
development and bridges requirement analysis and product
development management. Specifically, this paper makes the
following contributions:

• Creation of a quantitative model to find the optimized
set of functionalities that retain the highest product
value while requiring the least development resources.

• Creation of a quantitative model to determine a maxi-
mum realization of potential requirement value.

• Demonstration of the model’s usefulness in two real-life
projects.

• Open source implementation of the computational part
of the model.

To provide a proof of concept of the proposed quantitative
model, the practical application of the model is implemented
for two EU projects. The first is the vINCI: "Clinically-
validated INtegrated Support for Assistive Care and Lifestyle

Improvement: the Human Link" project, which is funded by
the European Union’s Active Assisted Living Programme
under grant agreement AAL2017-63-vINCI [12]. Here, we
are focused on the development of a mobile application. The
second is the CareHD: "Patient-centred Connected Health
Model of Care for Huntingtons Disease" EU-funded project,
which is covered by the EXCELLENT SCIENCE - Marie
Skłodowska-Curie Actions [13].

The proof of concept with implementing the MOQE model
for two EU projects provides a baseline to advance using
the MOQE model in software development management.
Determined functionalities that retain the highest product
value and, simultaneously, require the least development re-
sources, are the measurable arguments to reduce the product
development cost with the lowest reduction of the product
value. Determined maximum realization of potential require-
ment value is a new state-of-the-art measure to validate the
architecture of proposed software development.

The central part of this paper will focus on functionality
analysis, as presented in Figure 1, and it is the intersection of
business development and product development.

II. RELATED WORK
A. BUSINESS DEVELOPMENT
The role of business development is to identify the key chal-
lenges and opportunities for generating added value [14].
These insights are translated into crucial requirements for
software products by requirement analysis [15]. Functional
requirements, which are usually referred to simply as require-
ments, by definition, influence the functionalities of the end
product [16].

The role of product development is to implement planned
functionalities that satisfy crucial requirements [15]. Product
development aims to satisfy the requirements set by business
development with minimum development costs while achiev-
ing maximum product value, similar to a Minimum Viable
Product (MVP) [17].

During the business development phase, the requirements
and functionalities of a software product are determined at
the beginning. These are used inputs for the development
phase.

The development optimization of software is the proposed
optimization of the connection between business and product
development. Therefore, we suggest functionality analysis is
a crucial phase in the software development cycle [1]. Soft-
ware implementation depends on the defined requirements
and desired output, the complexity of the development, the
technologies used, and the available resources.

The model from 2010 is described as the formulation
of an optimization model of software components selection
for component-based software system (CBSS) development.
The model has two objectives: maximizing the functional
performance of the CBSS and maximizing the cohesion, and
minimizing the coupling of software modules [18].

Some other fields besides software product development
use mathematical models to model development processes.

2 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Software product development cycle.

Such a mathematical model for the development process of
leather bags uses mixed-integer nonlinear programming to
select the best components from available alternatives. It is
modelling a make-or-buy decision on the components and
selecting its suppliers [19].

To determine the value of a software product to achieve
maximum product value with the given resources, we quan-
tify collected data about software product development. This
is a quantitative approach to optimizing software develop-
ment. We propose the quantitative model to estimate the
following items:

(a) The values of the functionalities,
(b) The influence of each functionality on the value of a

software product with its gradient value,
(c) The value of a software product in the case of optimized

software development.

While there are many perspectives on the value of a software
product [20], studying the meaning of a term value of a
software product differs from the aim of this paper. We use
the term value of a software product to denote the final state
of software product development. This paper uses the word
risk without connection to security or vulnerability. Instead,
we use risk as a term to denote the effect of not implementing
the functionality and consequently reducing the value of a
software product.

Recently, there have been different approaches to produc-
tion modelling. Such is the stochastic model to schedule the
maintenance tasks and control the inventory simultaneously
in an unreliable deteriorating production system [21].

B. REQUIREMENT ANALYSIS
Requirement analysis explores the definition of the optimized
set of requirements, which is the first step in the software
development process. Formally, each requirement specifies a
capability or a condition that must be provided by a software
product [2], [22], [23].

The optimized set of requirements, as determined by re-
quirement analysis, consists of conditions that distinguish
the extent of achievement for a particular goal, contain no
duplicates, and cover all business goals [24].

In recent years, requirements analysis has focused on
customers. In particular, it has tried to understand their work
and business needs to provide a more tailored solution that
is defined by a more focused set of requirements [25]. The
requirements have also been validated by quick, safe-to-fail
proof of concept solutions that aim to determine the validity
of a potential requirement to the customer [26].

The quality of requirement analysis also depends on the
available data and approaches to take advantage of this data.
Consequently, most quantitative approaches in requirement
analysis are data-driven [27]. These data-driven approaches,
including ML approaches, take advantage of data structure,
more precisely, data ontologies [28]. Another trend in quan-
titative requirement analysis has combined data-driven or ML
approaches with human domain experts, such as in an active
learning setting [29].

The result of all requirement analysis activities is an
optimized set of requirements. These requirements are ful-
filled by functionalities that are implemented in the end
product. Our proposed model (functionality analysis) aims
to (analogous to requirement analysis) provide an optimized
set of functionalities that are based on the optimized set of
requirements provided by requirement analysis.

C. FUNCTIONALITY ANALYSIS
Functionality analysis is the process of evaluating the func-
tional requirements of a system or component. It identifies
the specific functions that the system or component is ex-
pected to perform and then determines how these functions
will be implemented and integrated into the overall system
[30], [31].

The functionality analysis aims to ensure that the system
or component will meet the user’s or customer’s needs and
requirements, which involves considering factors such as
usability, reliability, performance, and maintainability [32].

Functionality analysis is typically carried out as part of
the systems engineering process. It is often used to inform
the design and development of new systems or to evaluate
an existing system’s capabilities and limitations. This is
essential in developing any system because it helps identify
potential problems and ensure that it meets the user’s needs
[33].

In software development, the main focus of functionality
analysis is the translation of requirements into a set of inter-
connected functionalities that retain the highest product value
[32].

VOLUME 4, 2023 3

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The study of the state-of-the-art in software functionality
analysis is a crucial step in our model, where we formalize
the quantitative modelling of the relationship between a
software product’s requirements, functionalities, and value.
In our model, we are extending the identification and the
process of integration of determined functions into the target
system.

D. PRODUCT DEVELOPMENT
Product development defines a business idea, determined by
requirements, into a product ready for the end customer.
According to [34], product development can be generalized
to the following steps:

(D1) Define functionalities that address the requirements
defined by requirement analysis.

(D2) Optimize the set of functionalities. This can be
achieved by functionality analysis, the methodology
proposed in this paper.

(D3) Implement the functionalities.
(D4) Deploy the final product.

Product development management aims to optimize the
implementation of functionalities (in the case of software
development, programming, unit testing, QA, and product
documentation) to ensure that the final product will achieve
the highest possible product value with the lowest cost and
the lowest risk [35]. The different management approaches
aim to achieve this single goal, such as Agile [36], Incre-
mental [37], Prototyping [38], Spiral [39], V model [40],
and Waterfall [41]. However, an optimized end product can
only be achieved if product management approaches receive
an optimized set of functionalities as input. Therefore, func-
tionality analysis (as presented in this paper) is an essential
prerequisite for any product development approach. In par-
ticular, it serves as a bridge between business development
(requirement analysis) and product development.

There are many participants in the development of soft-
ware products, such as business developers, project owners,
project managers, systems analysts, and software developers.
In 2003, the software reliability analysis model (SRAM) was
developed to assist systems analysts and developers in feeling
confident in predicting, measuring, ensuring, and managing
the reliability of software-based systems [42].

III. THE ARCHITECTURE OF THE MOQE MODEL
A. FUNDATIONS OF THE MOQE MODEL
A formal definition of monitoring in the context of software
engineering from the perspective of a quantitative approach
started in 1989 [43]. Recently, the management process in
software development organisations is also proposed as a
quantitative approach [44]. There is not a single reference
that requires a quantitative model for the development pro-
cess, but a collection of theoretical foundations for the pro-
posed quantitative model resumed from various perspectives
described in the previous section, from business development
[1], [14]–[21] , from requirement analysis [2], [22]–[29],

[45], [46] , from functionality analysis [30]–[33] , and prod-
uct development perspective [34]–[42] . These approaches
are the theoretical foundation of the proposed quantitative
approach presented in this paper as the MOQE model.

B. THE CORE CONCEPTS OF THE MOQE MODEL
The goal of the architecture of the proposed MOQE model
is to formalize the quantitative modelling of the relationship
between the requirements, functionalities, and value of a
software product. The MOQE consists of the following key
fundamentals (basics):
b1b1b1 : Software product graph.

The software product graph is the core of the MOQE
model. It is a computational graph formally structured
into the requirements partition, a subgraph of function-
alities and a single value node as a particular part of
functionalities. We use the term partition from graph
theory as there are no connections between the nodes
in the same partition. The main descriptions of the
software product graph are in subsections III-D and
III-E.

b2b2b2 : Value/complexity trade-off function.
A differentiable function fp(x) with the property that
∀x ≥ 0 : fp(x) ≤ id(x); further described in subsec-
tion IV-A.

b3b3b3 : Partial derivates.
Partial derivates δ∗∗ of a value/complexity trade-off func-
tion for modelling the functionality importance (see
subsection III-I).

b4b4b4 : Algorithms.
Algorithms for two passes: (1) creation activation values
- forward pass, and (2) value re-estimation - backward
pass. A detailed explanation of algorithms is in subsec-
tions III-K and III-K.

C. ASSUMPTIONS OF THE MOQE MODEL
The quantitative MOQE model that is presented in this work
is based on the following assumptions:
a1a1a1 : The potential value of the product is defined as the sum

of the value of individual requirements.
An optimized implementation, which is impossible in
real life, would maintain all of the potential values of
the requirements. The requirement value is maintained
or lost with the specific implementation of the software
product, according to the satisfaction of the require-
ment (or lack thereof). The percentage of potential
requirement value lost depends on the implementation
specifics (see the topology of the software product graph
described in subsection III-E).

a2a2a2 : The value lost due to the complexity of specific func-
tionality is modelled by a value/complexity trade-off
function.
The value/complexity trade-off function encodes the
basic assumption of various software development man-
agement approaches: complex functionalities retain less
value than simpler functionalities [47].

4 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Functionalities
(R) Requi-
rements

(B)
Backend (F)

Core

(E)
Edge

(V)
Value

Inputs

l = 0 l = 1 l = 2 l = 3 l = 4

FIGURE 2. vINCI software product graph topology with 2 input partitions:
“Requirements” on partition 0 and “Backend” on partition 1. The functionality
subgraph consists of three functionality partitions: “Backend”, “Core” and
“Edge” on partitions 1, 2, and 3. The final “Value” partition is on partition 4.

a3a3a3 : No software implementation can add to the value of the
requirements.
Each requirement has a value that the software imple-
mentation aims to achieve by satisfying the requirement.
In the case of the best possible implementation, the
optimal value for the requirement is reached, and it is
impossible to increase its value any further [47].

In relation to a2, the value/complexity trade-off function is
further defined and described in subsection IV-A.

D. THE GOAL OF THE MOQE MODEL
The primary assumption of this model, as in assumption a1
from subsection III-C, is that we can model the software
development process as a function of its requirements and
functionalities. This function is modelled as a computational
graph. In our model, we name this a software product graph.
The topology of this graph (i.e., the number of nodes and
connections/edges) is determined by the specific software
product. Modelling a software product as a function of func-
tionalities and requirements is the foundation that underpins
the quantitative analysis of each functionality’s importance
(influence) on the product value. In addition, this model
allows us to estimate the impact of not-implementing specific
functionality on the end value of the product. The result of
the quantitative methodology is an estimation of the influence
of the implemented or not implemented functionality on the
value of the final product.

E. THE ARCHITECTURE OF THE MOQE MODEL
Our MOQE model aims to capture the structure of software
products. The software product graph is formally structured
into the Requirements partition, a subgraph of functionalities
and a single value node as a particular part of functionalities.
All partitions correspond to the graph partitions of graph
theory because there are no connections between the nodes in
the same partition. Highlights of the MOQE model architec-
ture are given in Figures 2 and 3 for the vINCI and CareHD
EU projects, respectively.

F. INPUT DATA FOR THE MOQE MODEL
The input variables are initial node values for the requirement
partition (R), while it is possible to check the importance of

Functionalities

(R) Requi-
rements

(B)
Backend

(D)
d. coll.

(A)
Action

(I)
Interv.

(E)
Edge

(V)
Value

Inputs

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

FIGURE 3. CareHD software product graph topology with 2 input partitions:
“Requirements” on partition 0 and “Backend” on partition 1. The functionality
subgraph consists of five functionality partitions: “Backend”, “Data collection” ,
“Action” , “Interventions” and “Edge” on partitions 1, 2, 3, 4 and 5. The final
“Value” partition is on partition 6.

nodes in the backend functionality partition (B). The default
input value for backend functionality partition nodes is 0.
This means that the node is not (0 means not) removed from
the model. The node is removed from the model with 1 as the
input value for this node. The forward pass of the MOQE
algorithm calculates the activation values and theoretical
(maximum) realization of the model for given input values.
Removing a specific backend node by setting 1 for its input
value gives the theoretical realization of the development
model without this backend node.

The input values for nodes in the requirement partition
(i.e., the vectors rR) represent the relative importance of the
requirements. The sum of all input values should be 1.

The architecture of the MOQE model in subsection III-E
defines a software product graph as a k-partite graph1. Weight
matrices W (i,j) are input values for connections between
neighbouring partitions i and j.

G. VINCI SOFTWARE PRODUCT GRAPH
The function modelling of the relationship between function-
alities, requirements, and value is represented as a compu-
tational graph (software product graph in our model). The
computational graph for the vINCI EU projects with nodes
in a software product graph is organized in partitions, as it is
presented in Figures 2. The vINCI project software product
graph has the following partitions, where each partition can
consist of any number of nodes:

1. The requirement partition (R) represents the software
product’s key objectives. The values of the requirement
nodes represent the value that the requirements would
contribute to the end software product if it were imple-
mented ideally. In our model, the value of the required
node is maintained or reduced throughout the software
product graph.

2. The backend functionality partition (B) represents func-
tionalities supporting other functionalities but not di-

1Mathematically correct: It is an (n+3)-partite graph for n additional
functionalities after backed functionality. We have the 5-partite graph for
the vINCI and the 7-partite graph for the CareHD project example.

VOLUME 4, 2023 5

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Partitions and nodes in vINCI software product graph

Partition Nodes

(R) Requirements

R1 Quality of life
R2 Cardiovascular
R3 Postures
R4 Activities

(B) Backend
functionalities

B1 Smart shoes
B2 Smartwatch
B3 Smartphone
B4 O2 detector
B5 Cloud infrastructure

(F) Core
functionalities

F1 Fall detection
F2 Activity detection
F3 GPS monitoring
F4 Well-being detection

(E) Edge
functionalities

E1 Mobile app
E2 Smartwatch app
E3 Caregiver service

(V) Value partition V1 Product value

rectly addressing the requirements. Backend nodes are
not connected to the requirement partition.

3. The core functionality partition (F) represents the func-
tionalities that directly address the requirements.

4. The edge functionality partition (E) represents the func-
tionalities that communicate the outputs of the software
product to the end customer. Edge functionality nodes
are directly connected to nodes from the value partition.

5. The value partition (V) represents the estimated value
of the software product. The software product’s value
equals the (arithmetic) sum of the requirement values in
an exemplary implementation that is never achievable
in industry software production. In our model, which
describes a real-life software product, the value partition
represents the percentage of the potential requirement
value that is maintained by a specific software product
structure.

Short descriptions of all of the nodes in the input node,
functionality nodes and the value node defined for vINCI EU
project are in Table 1.

The relationships between the nodes are modeled as di-
rected weighted graph edges (arcs). There are two kinds of
arcs:

1) Weighted arcs between requirement (R) and backend
functionality (B) as a source and core functionality (F)
as a destination represent the percentage of a require-
ment value, which is realized by specific functionality.

2) Weighted arcs between core (F) and edge functionality
(E) represent the dependency between the two function-
alities.

Activation values a(0) and a(1) for the input partition are
input variables (a(0) = rR and a(1) = rB). In contrast,
activation variables for (B) Backend functionality partition
are computed by following the operations in the software
product graph, as defined by the graph partitions. Input values
for connections between neighbouring partitions i and j are
matrices W (i,j). To simplify the notation, partitions (F) Core,

(E) Edge, and (V) Value are defined by the following graph
computations:

• Core functionality partition
– Combination part is defined by the equation

W (0,2) ·a(0)−
(
W (1,2) · a(1)

)
⊙
(
W (0,2) · a(0)

)
(1)

– Non-negative part is defined by the following equa-
tion

id(x) =

{
0, for x < 0
x, for x ≥ 0

(2)

for each x, where x is an element of the output vector
of the combination part.

– Value/complexity part is defined by the equation

p∈ [0, 1] : fp(x)=

{
0, for x < 0

x− (1− p)x
1

1−p , for x ≥ 0
(3)

for each x, where x is an element of the output vector
of the non-negative graph part, and p is the percentage
of potential requirement value. Function modelling
value/complexity trade-off is further described in sec-
tion IV-A. Labeling the result from equation (1) as xc

gives a(2) = fp(xc).
• Edge functionality partition is defined by the equation

a(3) = W (2,3) · a(2)

where a(2) is the output vector of the core functionality
partition.

• The value partition is defined by the equation

a(4) = W (3,4) · a(3)

where a(3) is the output of edge partition. The result of
the value partition is a scalar.

Binary operation ⊙ in the equation (1) for Combination
part denotes the Hadamard product [48] (also known as the
element-wise).

H. CAREHD SOFTWARE PRODUCT GRAPH
The graph in Figure 3 gives the background for the design
(architecture) of the CareHD software product graph (com-
putational graph). The following partitions are used for the
MOQE model for the CareHD EU project:
1. The requirement partition (R) is the same as in subsec-

tion III-G.
2. The backend functionality partition (B) is the same as

in subsection III-G.
3. The data collection partition (D) represents the func-

tionality that collects the requirements and backend
functionality partition data.

4. The action partition (A) represents the functionality
that provides actions for data collection.

5. The intervention partition (A) represents the function-
ality that generates interventions.

6 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Partitions and nodes in CareHD software product graph

Partition Nodes

(R) Requirements
R1 Acquisition
R2 Validation
R3 Intervention

(B) Backend
functionalities

B1 Server infrastructure
B2 Smartwatch
B3 Smartphone
B4 3rd party API

(D) Data collection D1 Data collection

(A) Action

A1 Storage
A2 Processing
A3 Management

(I) Interventions I1 Generating interventions

(E) Edge
functionalities

E1 Website
E2 Mobile app
E3 3rd party API
E4 Call support
E5 New knowledge

(V) Value partition V1 Product value

6. The edge functionality partition (E) represents the func-
tionalities that communicate the outputs of the software
product to the end customer. As in the vINCI model,
edge functionality nodes are directly connected to nodes
from the value partition.

7. The value partition (V) is the same as in subsec-
tion III-G.

Similarly, as for the vINCI EU project, short descriptions of
all of the nodes in the input node, functionality nodes and the
value node defined for the CareHD EU project are in Table 2.

The relationships between the nodes are modelled as di-
rected weighted graph edges (arcs). There are two kinds of
arcs, as in the MOQE model for vINCI EU project.

I. ESTIMATING THE INFLUENCE OF THE
FUNCTIONALITY
In the software product graph, the final value of the software
product is modelled as a function of the functionalities and
requirements. We define the influence of functionality f

(l)
p in

graph partition l as a partial derivative of value function V .
Partial derivatives of specific functionalities are calculated by
following the chain rule for derivation

(
(g◦h)′ = (g′◦h)·h′)

through the software product graph.

J. ESTIMATING THE RISK OF THE FUNCTIONALITY
To estimate the risk of the functionality, the impact of not-
implemented functionality quantification to the final value of
a product in a more quantitative way has been investigated
because it was investigated and proposed as penalty rewards
related to not-implemented requirements [49].

We can estimate the decrease in the final value for backend
functionalities if the functionalities were not implemented.
The product’s reduction to the final value comes from the
dependency between the backend and core functionalities.
The influence of the backend functionality on the core func-
tionality is defined as the proportional decrease of the value
that the core functionality can realize. If the dependency

between the backend and core functionality is weighted as 1,
then core functionality cannot realize a value if the backend
functionality is not implemented.

As an input to the model, value 1 represents that the
backend functionality is not implemented, and 0 indicates
that it is implemented. In the graph equation, the relationship
between the backend and core functionalities is modelled
as a term −W (1,2) · rB in the combination part. Weighted
arcs between the backend and core partitions are used in
risk estimation (calculation of graph output for value 1) and
importance estimation (evaluation of derivatives for value 0).

K. THEORETICAL BASIS OF ALGORITHMS
Algorithms have a central role in the presented MOQE model
for quantitative estimation of the influence of functionality
on the product’s final value. The idea of the proposed MOQE
model is to apply the chain rule in a generalized graph. This
can be seen as a particular case of the back-propagation
algorithm for neural networks [50].

The software product graph that is constructed for the
product is used as the input of the MOQE model and the
algorithm. The MOQE model needs to support the diverse
topologies of software product graphs. Each graph partition
can be connected to any partition except for the input parti-
tion, which cannot have inbound connections.

The algorithm for the MOQE model has two passes: (1)
forward pass for activation value creation and (2) backward
pass for value re-estimation. The result from the forward
pass is a list of activation value vectors [a(l)]Ll=2. This output
(result) from the forward pass is used as the input for the
backward pass. The results from the backward pass are the
functionality influences presented as a list of vectors contain-
ing relevant gradients, shown in red rectangles at the bottom
of the vertices.

Let’s assume W (i,j) as the weighted matrix for arcs be-
tween partitions i and j. Additionally, let’s assume vector
function Fp(x) = (fp(x1), fp(x2),).

1) Forward pass algorithm
The forward pass algorithm generates the list of activation
value vectors [a(l)]Ll=2. The high-level design of the algorithm
for the forward pass is the following (the step for the parti-
tion):
s0s0s0 Activation value vector for requirements.

a(0) = rR

s1s1s1 Activation value vector for backend functionalities.
a(1) = rB

s2s2s2 Activation value vector for functionalities.
a(2) = W (0,2) · a(0) − (W (1,2) · a(1))⊙ (W (0,2) · a(0))

s3s3s3 Activation value vector for functionalities.
a(3) = Fp(W

(2,3) · a(2))
...

sL−1sL−1sL−1 Activation value vector for the edge functionalities.
a(L−1) = Fp(W

(L−2,L−1) · a(L−2))

VOLUME 4, 2023 7

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

sLsLsL The value of the model.
a(L) = W (L−1,L) · a(L−1)

Result: Activation value vectors: [a(l)]Ll=0

2) Backward pass algorithm
The backward pass algorithm generates values for function-
ality influences. Input for this algorithm are the weighted
matrix W (i,j) for arcs between partitions i and j, activa-
tion values [a(l)]Ll=0 from the forward pass algorithm, and
value/complexity trade-off function fp. Here is the high-level
design of the backward pass algorithm presented with the
following steps:
s0s0s0 Activation values.

V (a) = [a(l)]Ll=0

s1s1s1 Functionality influence for edge functionalities.
δE = δL−1 = W (L−1,L) · ∇EV (a)

s2s2s2 Functionality influence for core functionalities.
δL−2 = ∇Fp

(
id(W (L−1,L−2))

)
· δL−1

...
sL−2sL−2sL−2 Functionality influence for core functionalities.

δ2 = ∇Fp

(
id(W (3,2))

)
· δ3

sL−1sL−1sL−1 Functionality influence for requirements.
δR = +W (0,2) · δ2

sLsLsL Functionality influence for backend functionalities.
δB =

(
−W (1,2) · δ2

)
⊙
(
W (0,2) · rR

)
Result: Functionality influences: δE , δL−2, ..., δ2, δB , δR

L. IMPLEMENTATION OF ALGORITHMS
Some examples of a software product graph topology are
presented in Figures 2 and 3. These examples illustrate the
general structure of the software product graph topology,
which is the (R) Requirement partition for inputs, partitions
for functionalities, and the (V) Value graph partition.

The software product graph on Figure 2 for the vINCI
project has three functionality graph partitions, as follows:
(B) Backend, (F) Core functionalities, and (E) Edge. The
second software product graph for the CareHD project is
given in Figure 3. This has five functionality graph partitions,
as follows: (B) Backend, (D) Data collection, (A) Actions, (I)
Interventions, and (E) Edge. The (V) Value graph partition
is always placed at the end of any software product graph
topology.

Forward and backward passes for the vINCI project are
presented in Figures 4 and 5. All of the details about steps of
algorithms for our EU projects are available in source code
presented as Jupyter notebooks in Git [51].
IV. IMPLEMENTATION OF THE MOQE MODEL
A. MODELING VALUE/COMPLEXITY TRADE-OFF
The model’s assumption a2 from subsection III-C states that
the functionalities that fulfil more requirements or have more
dependencies retain a lower value than simpler functional-
ities [47]. This characteristic of decreasing value retention
is modelled as a function fp from equation (3) because the

Input:

Process:

Output:

Activation values
for requirements

: a(0) = rR

Activation values for
backend functionality

: a(1) = rB

Weight matrix for arcs
between partitions i and j

: W (i,j)

a(2) = W (0,2) · a(0)
−

(
W (1,2) · a(1)

)
⊙

(
W (0,2) · a(0)

)

a(3) = Fp
(
W (2,3) · a(2)

)

a(4) = W (3,4) · a(3)

Activation value vectors: [a(l)]Ll=2

FIGURE 4. Algorithm for creation activation values - forward pass. Arrows in
Figures 2, 3, 7, and 8 present the direction of the forward pass.

identity function represents the ideal value retention, small
values are closer to identity (limx→0

fp(x)
x = 1), and values

approaching 1 are lower than the identity function. The
parameter p describes the percentage of value that the trade-
off function retains at input 1: fp(1) = p. The trade-off
function for both of our EU projects [12], [13] is f80%, which
means that p = 80% = 0.8.

f80%(x) =

{
0, for x < 0

x− x5

5 , for x ≥ 0
(4)

The function is required to be consistently lower or equal
to the identity function for non-negative values. This models
our assumption a3 that no software implementation can add
to the estimated value of the requirements [47]. Figure 6
presents the plots of the function f80%() and the identity
function.

The mathematical property that ∀x ≥ 0 : fp(x) ≤ id(x)
formalizes the discovery of quantitative software approaches
that increasingly complex functionalities reduce the potential
value of the final software [52].

B. IMPLEMENTATION OF THE MODEL ARCHITECTURE
In this work, the estimation of the importance of the func-
tionality is defined as a partial derivative of a value function
regarding the specific functionality. These functionalities are
calculated by applying the chain rule to the graph repre-
senting the topology of the software product. Specialized

8 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Input:

Process:

Output:

Activation value vectors
from Algorithm 1

: [a(l)]Ll=2

Weight matrix for arcs
between partitions i and j

: W (i,j)

Functions modeling
(trade-off function)

: f80%()

δE = W (3,4) · ∇EV (a)

δF = W (2,3) · δE

δA =

{
0 , for δF < 0
δF , for δF ≥ 0

δT = ∇Fp(δA)

δR = +W (0,2) · δT
δB =

(
−W (1,2) · δT

)
⊙

(
W (0,2) · rR

)

Functionality influences: δE , δF , δB , δR

FIGURE 5. Algorithm for value re-estimation - backward pass: the creation of
functionality influence. Opposite to forward pass, arrows in Figures 2, 3, 7, and
8 present the opposite direction of the forward pass.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

∀x> = 0 : f80%(x)< = id(x)

id(x) = x

f80%(x) = x− x5

5

FIGURE 6. Modeling value/complexity trade-off function f80%(x) for
p = 80% used for both implementations of the MOQE model in for vINCI and
CareHD projects.

programming frameworks can be employed to calculate the
derivatives within a software product graph. For the exper-
imental section of this work, the software product graph is
implemented with Keras [53] and TensorFlow [54]. In our

specific implementation, which is presented in section V, the
value function V is modelled as

V (a) = W (3,4) · a(3)

This value function can be implemented in the Keras
(TensorFlow) framework as the mean squared error (MSE)
loss function with true label 0. Because all values are non-
negative, the squared sum function is (for calculating the
derivatives) equivalent to the sum function.

A software product graph must represent a neural net-
work to use high-level programming frameworks such as
Keras. The topology of a specific network used for the
experimental part is presented in Appendix A. The fulfilment
of functionalities and dependencies between functionalities
are represented as weights in a neural network. The mean
squared errors loss function corresponds to our desired value
function if we supply 0 as a training label. Information about
the ideal values of the functionalities is represented as inputs
to the neural network. The input values are normalized to
ensure more straightforward calculations of the gradients.
Derivatives that are the end product of our model are obtained
from a single back-propagation pass on a described neural
network. In contrast, activation values are obtained from a
single forward pass.

This implementation provides a solution that quantitatively
models the relationship between requirements, functionali-
ties, and the value of a software product. The implementation
in the form of the software code that implements the model
presented is available in Jupyter notebooks in Git [51]. This
publicly available implementation of all algorithms from this
paper also contains the input data for both EU projects,
vINCI [12] and CareHD [13]. Implementations and data
published in the Git [51] enable the following complements
to this paper:
c1c1c1 : Reproduction of the presented results.

Reproduction of results from the paper is not only
the additional proof of the correctness of the proposed
MOQE model but also an additional view of the MOQE
model that helps to understand this solution.

c2c2c2 : Validation of algorithms.
The presented paper is not a formal mathematical paper
with formal mathematical proofs. Insight into the practi-
cal implementation of the MOQE model in Git [51] en-
ables the validation of presented algorithms and proves
their correctness.

c3c3c3 : Validation of findings from the paper.
The MOQE model implementation is, besides the val-
idation of presented algorithms, the validation of all
findings presented in the paper. The implementation
shows the practical validity of the MOQE model.

c4c4c4 : Highlights and understanding of algorithms.
Text about the presented algorithms cannot be sufficient
for a complete and fast understanding of the solution
based on the presented algorithms. The presented imple-
mentation allows another possibility for understanding
algorithms with changing parts of the implementation,

VOLUME 4, 2023 9

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

changing part of input data, and investigating the results
after such modifications.

c5c5c5 : Comparison of two implementations.
The paper presents the MOQE model that must be
implemented for a given problem. Implementing the
MOQE model for two different EU projects provides an-
other insight into various possible implementations and,
as such, provides a real comparison between different
implementations. In this case, additional comparison of
implementations for two EU projects.

c6c6c6 : Templates to use for other cases.
The MOQE model is the model for rational management
and organization of product development, not limited
to software product development. The implementations
for software development for two EU projects are the
template for implementing the MOQE model for other
industries.

c7c7c7 : Teaching by example.
A practical example of MOQE model usage helps us
understand the idea of the presented model in the way
of teaching by example. This is another complimentary
explanation of the presented MOQE model.

V. RESULTS
A. THE APPLICATION OF THE MOQE MODEL: VINCI
The first application of the model, which allows the devel-
opment of applications with additional requirements related
to the end customers and user-friendly output, was achieved
for a reasonable cost. This means that the end-users can
afford and use the application. The model also helps to solve
additional unique challenges, such as developing applications
for the growing population of older adults [12].

The development of software applications for the elderly
population is adapted to this population’s unique character-
istics and needs. Accessible IoT devices and cloud infras-
tructure integration are the basis for developing accessible
applications. This improves the quality of life of the el-
derly population with additional integrated caregiver support.
Older adults are more active and independent of direct help
from relatives for a reasonable cost that most end users can
afford.

The development of software products is optimally or-
ganized according to the requirements and the expected
outcome. The desired outcome is to integrate already de-
veloped tools and IoT devices with additional solutions in
a user-friendly form for a reasonable cost. The application
development process for integrating IoT information with
caregiver services identifies the critical challenges in de-
veloping end-user applications. The process is optimized to
cross the bridge between research ideas and the development
of applications for broader use. The optimization meets the
following criteria:

• Use of previously developed and available devices for
data collection.

• Integration in cloud infrastructure to achieve practical
and time-adequate caregiver support.

• The developed application must be user-friendly for the
target population.

• Developed applications must be available for a reason-
able cost and available for all devices.

• The reasonable cost of the solution based on the appli-
cation is the basis for massive use and consequent cost-
effectiveness for the software development company.

B. THE APPLICATION OF THE MOQE MODEL: CAREHD
The second application of the MOQE model, which is the
application for the CareHD project, is also calculated with
the Keras (TensorFlow) framework. All of the details are
available via Git [51].

C. ALGORITHMS IMPLEMENTED WITH KERAS
The algorithms presented in subsection III-K are imple-
mented with Keras. The code that implements the model
shown in section IV is available via Git [51].

The project software product graph for the vINCI project
has four functionality partitions and the value node described
in subsection III-G. Input variables are written in vectors rR
and rB with values

r⊺R =
[
0.40 0.13 0.20 0.27

]
and r⊺B =

[
0 0 0 0 0

]
. (5)

The proposed topology for this software product graph
only has connections between neighbouring partitions. These
input parameters are presented with weight matrices W (i,j)

for graph arcs between partitions i and j:

W (0,2)=


0.1 0.2 0.2 0.5
0 0.4 0 0.6
0.7 0.3 0 0
0 0.3 0.3 0.4

W (1,2)=


0.6 0.4 0 0
0.6 0.6 0.8 0.8
0.1 0.1 0.9 0
0 0 0 0.8
1 1 1 1


W (2,3)=


0.05 0 0.95
0.3 0.3 0.4
0.4 0 0.6
0.3 0 0.7

 W (3,4)=

0.80.5
1


The trade-off function f80% from (4) is used to model
the complexity value. As the methodology is described in
section III-A, the proposed model aims to determine the
influence of various functionalities on the final value of the
software product. The functionalities, their requirements, and
their relationship to the case of the project [12] are depicted
in Figure 7. The influence of the functionality defined as a
partial derivative, it is δ∗∗ in Figure 7, is a partial derivative
evaluated by vectors rR and rB . The derivates (chain deriva-
tion rule) on our directed graph in this example are calculated
with Keras (TensorFlow) framework [51].

The functionalities of the project are organized in the input
node, functionality nodes and the value node partitions and
the value node (see subsection III-G). Core functionalities
F1 to F4 directly address the project requirements R1 to
R4. The core functionalities are also supported by backend
functionalities B1 to B5. The information generated by core
functionalities is communicated to the customer by edge

10 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Functionalities

0.10.20.5

0.2

0.4

0.7

0.3

0.6

0.3

0.3
0.4

0.6

0.4

0.1

0.6

0.6

0.8

0.1

0.9

0.8

0.8

1
1

1

1

0.05

0.95

0.3

0.3

0.4

0.4

0.6

0.3

0.7

0.8

0.5

1

0.40

0.13

0.20

0.27

R1
QoL

R2
card.

R3
post.

R4
act.

0

0

0

0

0

B1
smart shoes

B2
sm.watch

B3
sm.phone

B4
O2

B5
cloud

F1
fall det.

F2
act.det.

F3
GPS mon.

F4
well-being

δ1F1 =1.79

δ1F2 =1.43

δ1F3 =1.66

δ1F4 =1.7

E1
mobile

E2
smartwatch

E3
caregiver

δ2E1 =1.44

δ2E2 =0.9

δ2E3 =1.81

V
value

l = 0

l = 1 l = 2 l = 3 l = 4

FIGURE 7. Software product graph for the vINCI project with five partitions.
Vertices in the requirement partition are R, and in functionality partitions are
B, F , and E. Arrows in this graph are directed in the forward pass of the
algorithm for the MOQE model (it is the algorithm for creation activation
values) while the backward pass (it is the algorithm for value re-estimation)
proceeds in the opposite direction (for the algorithm see subsection III-K.

functionalities E1 to E3. Weighted directed connections be-
tween functionalities (graph arcs) represent the dependency
strength between the functionalities. In contrast, the arcs
between requirements and core functionalities represent the
percentage of requirement value realized by specific func-
tionality.

As presented in Figure 9, backend functionalities are influ-
enced by functionality importance and functionality risk. The
details of the Functionality importance and Functionality
risk are as follows.

To estimate the importance of the functionality, partial
derivatives of the value function are evaluated in vectors rR
and rB , as given in equation (5). Importance is calculated
as an absolute value of the partial derivatives. According
to the results presented in Figure 7, a cloud infrastructure
B5 is the most vital backend functionality (δ0B5

= −4.41).
Cloud infrastructure supports all of the core functionalities
necessary for the system to function. The second most vital
backend functionality is a smartwatch B2. A smartwatch is
a data source that can support all other core functionalities.
Compared to more specialized functionalities, such as smart
shoes B1 or oxygen sensor B4, it is less efficient in helping
each specific functionality but is universal. Based on the
presented results, it would be wise when optimizing backend

functionalities development to focus more resources on the
development of the essential functionalities, which are cloud
infrastructure and smartwatch integration.

All of the core functionalities are roughly equally impor-
tant. Based on the value of our requirements, fall detection F1

and well-being detection F4 have a slightly more substantial
influence on the product’s final value.

The most crucial edge functionality is the caregiver service
E3. This is given by the EU vINCI project’s assumptions,
which prioritize the development of an application that can
automatically alert caregivers if their ward is in danger (e.g.,
fall or heart problems). Mobile application E1 is the second
most crucial edge application because it is intended to keep
the relatives of the elderly informed. The least essential edge
functionality is the smartwatch app E2 because it is only
used to display some information (which is not critical) to
the elderly user.

D. FUNCTIONALITY RISK
Functionality risk can be estimated for backend function-
alities. Functionality risk is an estimated decrease in soft-
ware product value if a certain backend functionality is not
implemented. We have two importance measures for back-
end functionalities: their relative importance if implemented
(partial derivative evaluated in value 0) and product value
decrease (decrease of the value function for value 1). The risk
assessment for backend functionalities is presented in Table 3
presents the risk assessment for backend functionalities.

As expected, the absence of cloud functionality reduces
the product’s final value to 0. Given that all of the core
functionalities critically depend on the cloud infrastructure,
no requirement value can be realized without cloud function-
ality. The most crucial backend functionality is the smart-
watch because it is the most important data source for all
core functionalities. Cloud infrastructure and smartwatches
are also estimated to be the most influential functionalities
when implemented.

The least impact on the final value is the absence of the
smartphone, which reduces the value of the end product to
73%. Interestingly, the smartphone is not the least influential
functionality when implemented. The least influential func-
tionality when implemented is O2 with δ0B4

= −0.77, as
presented in Figure 7. However, it has a greater impact on
the final value, reducing it to 61%. From the development
management position, the O2 sensor must be implemented at
last. Despite not being very important (when implemented),
it can significantly impact the product’s final value if it
is omitted. Similar risks from functionalities are present
even with different parameters for value/complexity trade-off
function on the abscissa in Figure 10. The trade-off function
is explained in subsection IV-A.

Functionality risk assessment is another tool that can be
used to assess the value and importance of backend func-
tionalities. By examining both the importance and risk, we
can get a clearer insight into how to channel and prioritize
functionalities in the development process.

VOLUME 4, 2023 11

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Functionalities

1

1

1

1

0.7

0.2

0.3

0.3

0.6

0.1

1

1

1

0.1

0.1

0.3

0.1

0.4

1

1

1

1

1

0.40

0.35

0.25

R1
Acquisition

R2
Validation

R3
Intervention

δ0R1 =4.40

δ0R2 =3.95

δ0R3 =4.85

0

0

0

0

B1
Server infra.

B2
sm.watch

B3
sm.phone

B4
3rd party API

δ0B1= -1.07

δ0B2= -3.13

δ0B3= -1.52

δ0B4= -0.77

D1
data collection

δ1D1 =2.87

A1
storage

A2
processing

A3
management

δ1A1 =2.87

δ1A2 =2.87

δ1A3 =2.87

I1
generating interv.

δ1I1 =2.87

E1
website

E2
mobile app

E3
3rd party API

E4
call support

E5
new knowledge

δ2E1 =0.90

δ2E2 =0.90

δ2E3 =0.90

δ2E4 =0.90

δ2E5 =0.90

V
value

l = 0

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

FIGURE 8. Software product graph for the CareHD project with seven partitions. Vertices in the requirement partition (partition 0) are R and in functionality
partitions (partitions 2-5) are B, D, A, I and E. The final value is on partition 6. The same as in Figure 7, arrows in this graph are directed in the forward pass while
the backward pass proceeds in the opposite direction (for the algorithm, see subsection III-K.

Functionality
importance

Backend
functionality

Functionality
risk

partial
derive δ∗∗

decrease if not
implemented

FIGURE 9. Influence on backend functionality.

TABLE 3. The impact of not-implementing backend functionalities (vINCI
project)

Retained Status of backend functionalities
90% Implemented all
73% Without smartphone
71% Without smart shoes
61% Without O2

26% Without smartwatch
00% Without cloud infrastructure

According to the given input data for requirements and
all arcs weights in the development graph, we get a 90%
realization of potential requirement value.

E. IMPLEMENTATION OF THE MOQE MODEL IN THE
DEVELOPMENT OF AN APPLICATION FOR THE
ELDERLY POPULATION

TABLE 4. Resource distribution among the vINCI partners

Participant Total EM Participant Total EM

1. ICI 29.5 6. AUT 26.0
2. MPU 29.5 7. SAL 27.0
3. UNRF 22.5 8. NIGG 12.5
4. NIT 21.5 9. OPL 31.0
5. CMD 8.5 10. CTR 36.0

1) Determination of resources according to defined
requirements
The resource distribution among the partners at the beginning
of the project is presented in Table 4.

2) Implementation of the MOQE model
Due to limited resources, the remaining production partner
had to prioritize the development of certain functionalities
with the Implementation of the presented model. According
to this Implementation, cloud infrastructure is the most cru-
cial backend functionality, and the second most important is
the smartwatch.
(a) The cloud is more than five times more important than

the least essential functionality,
(b) The smartwatch is more than four times more important

than the least necessary functionality,
(c) The cloud is about 40% more critical than the smart-

watch functionality.
Due to limited resources, the remaining production partner
focused primarily on the mobile application, including smart-

12 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 30 40 50 60 70 80 90
% for trade off function

0.0

0.2

0.4

0.6

0.8

%
 o

f r
ea

lis
ed

 v
al

ue
 o

f t
he

 p
ro

du
ct

Implemented ALL
Without smart phone
Without smart shoes
Without O2 detector
Without smart watch
Without cloud infrastructure

10 20 30 40 50 60 70 80 90
% for trade off function

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 o

f r
ea

lis
ed

 v
al

ue
 o

f t
he

 p
ro

du
ct

Implemented all functionalities
Without smart phone
Without 3rd party API
Without smart watch
Without cloud infrastructure

FIGURE 10. Impact of not-implementing backend functionalities given
different value/complexity trade-offs [51] for vINCI (upper) and CareHD (lower)

watch handling and the cloud. It was estimated that another
smartwatch, which would provide all of the required infor-
mation, had to be introduced. According to the model, the
remaining production partner prioritized the implementation
of smartwatch functionalities and decided it would be better
to introduce the other type of watch.

As described in the section III-E The architecture of the
MOQE model, backend functionalities depend on Function-
ality Importance and Functionality Risk, as described in sub-
section V-D. The resignation of one of the partners is covered
with additional resources that are appropriately distributed
to backend functionalities according to their importance and
risks. Cloud functionality B5 has the highest sum of impor-
tance and risk. The total score of importance and risk for
cloud functionality B5 is 2. Additional development needs
are estimated from the sum of importance and risks, as
presented in Figure 11.

Overall, the estimated new resources for additional devel-
opment to cover the resignation of one of the partners has
been an additional (5 + 4 + 2 + 2 + 2) EM = 15 EM .

B5

cloud
infrastructure

B2

smart-
watch

B3

smart-
phone

B4

O2
detector

B1

smart
shoes

0.5

1

1.5

2

Importance
Risk

B5

cloud
infrastructure

B2

smart-
watch

B3

smart-
phone

B4

O2
detector

B1

smart
shoes

1 EM

2 EM

3 EM

4 EM

5 EMAdditional EM

FIGURE 11. Total score values for vINCI are presented on the left-hand
ordinate. Additional resources, which are presented on the right-hand ordinate,
for backend functionalities are 5 EM for B1, 4 EM for B2, and 2 EM for
each of B3, B4 and B1.

Business development steps

Requirement analysis

Software development steps

Functionality analysis

Product development

Project management

1.Definition of
requirements

2.Definition of the
product goal

3. Creation of soft-
ware product graph

4. Implementation of
Algorithm 1 and 2

5.Identified functio-
nality importance

6. Identified fun-
ctionality risk

7. The final software product

FIGURE 12. The model for software product development evaluation.

3) Estimated investment for the remaining production partner
Development of the adopted mobile application demands an
additional investment of 15 EM . The management agreed
with this solution if the production partner got exclusive
productization rights.

F. A GENERALIZATION OF THE MOQE MODEL
The proposed and developed model is generalizable for im-
plementation in the planning of the software development
process.

The model, visually presented in Figure 12 as an extension
and accomplishment of software product development high-
lights shown in Figure 1, comprises seven steps organized
into three groups. Group (a) includes the first two steps
for business development, group (b) includes four steps for
software development, and in the final group (c) product
development is the final step for creating the final software

VOLUME 4, 2023 13

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Resource distribution among the CareHD partners. Partner UU is
participating in the project without financing from the EU.

Participant Total EM Participant Total EM

1. UCD 29.3 6. UR 11.4
2. DAI 8.2 7. CT 6.5
3. SHAI 4.9 8. BHI 6.5
4. ICI 4.9 9. ICF 8.7
5. UA 14.7 10. ORH 4.9

product:
(a) Business development steps

1. Definition of requirements
2. Definition of the product goal

(b) Software development steps
3. Creation of software product graph
4. Implementation of

• Algorithm 1. Activation value creation
• Algorithm 2. Value re-estimation

5. Identified functionality importance
6. Identified functionality risk

(c) Product development step
7. The final decision on the software product

The final goal of the model is to optimize the software
process with particular concern for backend functionalities
and to identify their importance to the final software product.
The presented model integrates graph theory to formalize and
identify the relationships between functionalities, their power
of influence, and the developed model’s relative importance
of each functionality. The relative importance of the func-
tionality is estimated by applying chain rule derivation to a
software product graph.

G. THE SECOND APPLICATION OF THE MOQE MODEL:
CAREHD
The second application is based on the available require-
ments [13] and created by the software product graph pre-
sented in Figure 8. This graph determined two critical bot-
tlenecks in project management: data collection (F1) and
gathering interventions (I1). According to the given input
data for the requirements and other input data for the graph
construction in Figure 8, we achieved a 71% of maximum
realization of potential requirement value.

Similar to the beginning of the vINCI EU project, the
resource distribution among the partners at the beginning of
the CareHD project is presented in Table 5.

Some problems and conflicts among partners occurred
during the project. Consequently, one of the two production
partners withdrew from the project after spending the allo-
cated budget. As a result, the remaining partner was asked to
take over production.

Detailed interpretation of the results for this project is
possible using the results presented on the publicly available
Jupyter notebook [51], the data in figures in Appendix A and
in Figures 8 and 10 related to the CareHD project, and the

TABLE 6. Maximum realization of potential requirement value

Maximum realization Project
71% CareHD
90% vINCI

interpretation for the vINCI project presented in the previous
subsection.

H. RESULTS FOR DECISION-MAKERS
The most important advantage of the quantitative results from
the MOQE model are values that help decision-makers to
validate different solution approaches for their projects. The
significance of the findings from vINCI and CareHD projects
are highlighted in all previous subsections, especially in V-A,
V-B, V-E, and V-G. Quantitative insight into the significance
of the findings from EU project’s implementations are pre-
sented in Figures 9 and Table 6. Available insight into the
source code available via Git [51] provides another detailed
insight into these implementations’ findings.

Besides results about the risk assessment for backend func-
tionalities presented with values in Table 3 and Table 6, some
values represent influences’ quantitative values (gradients)
presented in Figure 7 and Figure 8 in red rectangles at the
bottom of the vertices. All these values present rigorous
results that help decision-makers to quantify their decisions.

I. PRACTICAL IMPLEMENTATION CHALLENGES
The main challenge of the practical implementation of the
model was the formal definition of input data, practical im-
plementation of the algorithms presented in Figures 4 and 5,
and presentation of final results. Based on the findings of the
MOQE, the steering committee of the vINCI project decided
to modify the project. Jupyter notebook, available as an open-
source solution on Git [51], is our attempt to solve all these
issues.

J. IMPLICATIONS FOR INDUSTRY
The presented MOQE model is developed as a quantitative
model to provide the highest value of the product while
requiring the least development resources. It is an ethical
approach to software development and provides a solution
for existing industries and start-ups. It is extremely useful
to provide the highest value of the product for available
resources, not to force the existing resources to provide
unrealistic results. Especially for start-ups, using the MOQE
model as the tool for managing product development will
drastically increase the possibility of the company’s success.

K. ETHICAL CONSIDERATIONS
The classical goal of software product development is profit.
The proposed MOQE model provides the ethical solution to
get a profit with the assumption of fixed development re-
sources and requirements retaining to maximise the product
value. The highest product value means the highest profit of

14 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a product, and fixed development resources mean avoiding
extra pressure on developers.

The proposed MOQE model provides a new ethical solu-
tion as a tool to avoid extra pressure on developers as we
assume the fixed development resources.

VI. CONCLUSIONS
This paper presents a proof of concept for the proposed
MOQE model, demonstrating two EU projects: vINCI [12]
and CareHD [13]. The presented model is based on quantita-
tive approaches because the model’s inputs were the software
product requirements; proposed backend, core, and edge
functionalities; and the connections between the collected
functionalities.

A. IMPLEMENTATIONS OF THE MOQE MODEL
Implementing the MOQE model suggests the final decision
of tailoring the vINCI project activities. The consortium had
to modify the final productization, and they had to focus
on achievable possible outcomes. The MOQE model was
helpful as a tool for decision-making on the management
level and modifying development activities.

The second application of the MOQE model in the
CareHD EU project identified two project management bot-
tlenecks: (1) data collection and (2) gathering interventions.
Based on the input data, the model determined a 71% max-
imum realization of potential requirement value. The results
identified the need for the project consortium to consider
relocating resources. However, the optimization step of the
MOQE model was not executed.

B. HELP FOR DECISION MAKERS
The presented model for functionality analysis offers pos-

sibilities for analyzing and optimizing the software devel-
opment process and supporting management decisions. The
foundations of the model are in-the-project-determined rela-
tions and the importance of all functionalities. These relations
were also the foundation for the division of resources within
the project. This model also serves to support adaptation
during the development process.

Methodologies without quantitative measures provide de-
scriptive and literal quantifications of their improvements.
Such results of non-quantifier methods are useful for presen-
tations for managers and marketing, where just descriptive
comparisons between different methods are enough.

In an actual situation, the developed generalized method-
ology is a valuable tool in the design and development phase.
It is also a helpful tool for management decisions.

In practice, however, decision-makers and marketing re-
quire clear and measurable comparisons between different
solutions or different proposals for solutions. Such require-
ments are solved only by quantitative methods. In addition
to deciding whether a certain solution is better or worse
than another, quantitative methods offer an answer about the
amount of difference between the methods, e.g. the solution

obtained by method A is 3.4 times better than the solution by
method B.

The impacts of a project often influence the optimization of
the software development process. This requires realistically
estimating the necessary resources for developing the product
or application. This can lead to the development of a product
without all of the promised functionalities that are missing
requirements, has inadequate quality, and ultimately leads
to misspent development resources. As illustrated in a real-
life product as part of two EU projects, the model presented
in this work offers a quantitative framework to help better
distribute development funds, resulting in a software product
with a higher-end value.

The MOQE model is an upgrade of the existing approaches
integrated with graph theory application. It offers a tool for
optimizing the missing and less optimized software produc-
tion process. It also provides the possibility to optimize the
functionality of the production process.

Although our modelling is inductive, the final result is a
general model. Therefore, the results of this work are applica-
ble in the business development process and the organization
of resources for software development.
C. PROPOSED FUTURE IMPROVEMENTS
This paper, with the publicly available solutions of the
MOQE model implemented for 2 EU projects [51], allows
other researchers of the management and organization of
software product development to implement the MOQE
model solution for their use cases.

Moreover, the presented publicly available solution allows
the implementation of the MOQE model for product devel-
opment in other areas not limited to software products. Wide
use of the MOQE model will provide new open questions,
the background for future research work and new research
questions. Finally, many new implementations of the current
MOQE model will provide extensions and improvements to
the current MOQE model version presented in this paper.

VOLUME 4, 2023 15

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

.

A
P

P
E

N
D

IX
A

TO
P

O
LO

G
Y

O
F

TH
E

E
X

P
E

R
IM

E
N

TS

To
po

lo
gy

in
th

e
vI

N
C

Ip
ro

je
ct

:

re
qu
ir
em
en
t_
su
bg
ra
ph
_0

In
pu
tL
ay
er

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 4
)]

[(
N
on
e,

 4
)]

re
q_
de
ns
e

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 4
)
(N
on
e,

 4
)

ba
ck
en
d_
su
bg
ra
ph
_0

In
pu
tL
ay
er

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 5
)]

[(
N
on
e,

 5
)]

ba
ck
_d
en
se

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 5
)
(N
on
e,

 4
)

m
ul
tip
ly

M
ul
tip
ly

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 4
),

 (
N
on
e,

 4
)]

(N
on
e,

 4
)

su
bt
ra
ct

Su
bt
ra
ct

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 4
),

 (
N
on
e,

 4
)]

(N
on
e,

 4
)

tr
ad
eo
ff
_a
ct
iv

A
ct
iv
at
io
n

in
pu
t:

ou
tp
ut
:

(N
on
e,

 4
)

(N
on
e,

 4
)

ed
ge
_s
ub
gr
ap
h

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 4
)

(N
on
e,

 3
)

ou
tp
ut
_s
ub
gr
ap
h

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 3
)

(N
on
e,

 1
)

To
po

lo
gy

in
th

e
C

ar
eH

D
pr

oj
ec

t:

re
qu
ir
em
en
t_
su
bg
ra
ph
_0

In
pu
tL
ay
er

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 3
)]

[(
N
on
e,

 3
)]

re
q_
de
ns
e

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 3
)
(N
on
e,

 1
)

ba
ck
en
d_
su
bg
ra
ph
_0

In
pu
tL
ay
er

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 4
)]

[(
N
on
e,

 4
)]

ba
ck
_d
en
se

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 4
)
(N
on
e,

 1
)

m
ul
tip
ly

M
ul
tip
ly

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 1
),

 (
N
on
e,

 1
)]

(N
on
e,

 1
)

su
bt
ra
ct

Su
bt
ra
ct

in
pu
t:

ou
tp
ut
:

[(
N
on
e,

 1
),

 (
N
on
e,

 1
)]

(N
on
e,

 1
)

re
lu
_a
ct
iv

A
ct
iv
at
io
n

in
pu
t:

ou
tp
ut
:

(N
on
e,

 1
)

(N
on
e,

 1
)

tr
ad
eo
ff
_a
ct
iv

A
ct
iv
at
io
n

in
pu
t:

ou
tp
ut
:

(N
on
e,

 1
)

(N
on
e,

 1
)

la
ye
r3
_s
ub
gr
ap
h

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 1
)

(N
on
e,

 3
)

la
ye
r4
_n
am
e

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 3
)
(N
on
e,

 1
)

la
ye
r5
_n
am
e

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 1
)
(N
on
e,

 5
)

ou
tp
ut
_s
ub
gr
ap
h

D
en
se

in
pu
t:

ou
tp
ut
:

(N
on
e,

 5
)

(N
on
e,

 1
)

16 VOLUME 4, 2023

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

REFERENCES
[1] IEEE. Ieee/iso/iec 29148-2018 - iso/iec/ieee international standard -

systems and software engineering – life cycle processes – requirements
engineering. IEEE Std 830-1984, 11 2018.

[2] S. Shatz. Towards complexity metrics for ada tasking. IEEE Transactions
on Software Engineering, 26(08):1122–1127, aug 1988.

[3] L Baum, M Becker, L Geyer, A Gilbert, G Molter, and V Tamara. Sup-
porting component-based software development using domain knowledge.
In Proc. of 4th IIIS World Multiconference on Systemics, Cybernetics and
Informatics (SCI2000), Orlando, USA. Citeseer, 2000.

[4] Ali Niknafs and Daniel M Berry. The impact of domain knowledge
on the effectiveness of requirements idea generation during requirements
elicitation. In 2012 20th IEEE International Requirements Engineering
Conference (RE), pages 181–190. IEEE, 2012.

[5] Carine Khalil and Sabine Khalil. Exploring knowledge management in
agile software development organizations. International Entrepreneurship
and Management Journal, 16(2):555–569, 2020.

[6] Eran Rubin. Domain knowledge representation in information systems.
PhD thesis, University of British Columbia, 2009.

[7] Senthil K Chandrasegaran, Karthik Ramani, Ram D Sriram, Imré Horváth,
Alain Bernard, Ramy F Harik, and Wei Gao. The evolution, chal-
lenges, and future of knowledge representation in product design systems.
Computer-aided design, 45(2):204–228, 2013.

[8] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman De-
mentiev. Graph Representation, pages 259–269. Springer International
Publishing, Cham, 2019.

[9] Jinjiao Lin, Yanze Zhao, Weiyuan Huang, Chunfang Liu, and Haitao
Pu. Domain knowledge graph-based research progress of knowledge
representation. Neural Computing and Applications, 33(2):681–690, 2021.

[10] Peng Cui, Lingfei Wu, Jian Pei, Liang Zhao, and Xiao Wang. Graph rep-
resentation learning. In Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao,
editors, Graph Neural Networks: Foundations, Frontiers, and Applications,
pages 17–26. Springer Nature Singapore, Singapore, 2022.

[11] George Kousiouris. and Dimosthenis Kyriazis. Functionalities, challenges
and enablers for a generalized faas based architecture as the realizer of
cloud/edge continuum interplay. In Proceedings of the 11th International
Conference on Cloud Computing and Services Science - CLOSER,, pages
199–206. INSTICC, SciTePress, 2021.

[12] vINCI Project Consortium. Clinically-validated integrated support for
assistive care and lifestyle improvement: the human link, 2018. [Online;
accessed 29-April-2021].

[13] CareHD Project Consortium. Carehd - patient centered connected health
model of care for huntingtons disease, 2023. [Online; accessed 08-
January-2023].

[14] Antoine Burret. The added value of co-working spaces in the area of
business development support: Encouraging peer networks. Revue de
lEntrepreneuriat, 13(1):51–73, 2014.

[15] Senay Tuna Demirel and Resul Das. Software requirement analysis:
Research challenges and technical approaches. In 2018 6th International
Symposium on Digital Forensic and Security (ISDFS), pages 1–6. IEEE,
2018.

[16] Space Science Library and D.D. Defense. Systems Engineering Funda-
mentals. Supplementary Text Prepared By The Defense Acquisition Uni-
versity Press Fort Belvoir, Virginia. CreateSpace Independent Publishing
Platform, 2016.

[17] Valentina Lenarduzzi and Davide Taibi. MVP explained: A systematic
mapping study on the definitions of minimal viable product. In 2016 42th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pages 112–119, 2016.

[18] C.K. Kwong, L.F. Mu, J.F. Tang, and X.G. Luo. Optimization of software
components selection for component-based software system development.
Computers & Industrial Engineering, 58(4):618–624, 2010.

[19] Muhammad Adha Ilhami, Subagyo, and Nur Aini Masruroh. A math-
ematical model at the detailed design phase in the 3dce new product
development. Computers & Industrial Engineering, 146:106617, 2020.

[20] Jelle de Groot, Ariadi Nugroho, Thomas Bäck, and Joost Visser. What
is the value of your software? In 2012 Third International Workshop on
Managing Technical Debt (MTD), pages 37–44, 2012.

[21] Seyed Mohammad Hadian, Hiwa Farughi, and Hasan Rasay. Development
of a simulation-based optimization approach to integrate the decisions of
maintenance planning and safety stock determination in deteriorating man-
ufacturing systems. Computers & Industrial Engineering, 178:109132,
2023.

[22] Philippe Desfray and Gilbert Raymond. Chapter 7 - models for phase
a: Vision. In Philippe Desfray and Gilbert Raymond, editors, Modeling
Enterprise Architecture with TOGAF, The MK/OMG Press, pages 103–
133. Morgan Kaufmann, Boston, 2014.

[23] R. Radhakrishnan, H. Carter, P. Alexander, P. Wilsey, and P. Frey. A formal
specification and verification framework for time warp-based parallel
simulation. IEEE Transactions on Software Engineering, 27(01):58–78,
jan 2002.

[24] Lorenzo Fiorineschi, Niccolò Becattini, Yuri Borgianni, and Federico
Rotini. Testing a new structured tool for supporting requirements’ for-
mulation and decomposition. Applied Sciences, 10(9):3259, 2020.

[25] Rachida Hassani and Y. Idrissi. Normalization of requirements specifica-
tion document on software project management. J. Softw., 13:232–241,
2018.

[26] A. Bennaceur, A. Zisman, C. McCormick, D. Barthaud, and B. Nuseibeh.
Won’t take no for an answer: Resource-driven requirements adaptation.
2019 IEEE/ACM 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pages 77–88, 2019.

[27] Z. Zhang, Lin Gong, Y. Jin, J. Xie, and J. Hao. A quantitative approach to
design alternative evaluation based on data-driven performance prediction.
Adv. Eng. Informatics, 32:52–65, 2017.

[28] Antonio A. Lopez-Lorca, Ghassan Beydoun, Rafael Valencia-Garcia, and
Rodrigo Martinez-Bejar. Supporting agent oriented requirement analy-
sis with ontologies. International Journal of Human-Computer Studies,
87:20–37, 2016.

[29] Myron Hecht, Jaron Chen, and Phanitta Chomsinsap. Claim: An enhanced
machine learning technique for discrepancy report analysis. In 2020
Annual Reliability and Maintainability Symposium (RAMS), pages 1–7,
2020.

[30] ISO/IEC/IEEE. Iso/iec/ieee international standard - systems and software
engineering–vocabulary. ISO/IEC/IEEE 24765:2017(E), pages 1–541,
2017.

[31] IEEE. Ieee guide for developing system requirements specifications. IEEE
Std 1233, 1998 Edition, pages 1–36, 1998.

[32] Charles Wasson. Textbook - System Analysis, Design, and Development:
Concepts, Principles, and Practices - 1st Edition. Wiley-Interscience, 12
2005.

[33] Jean-Luc Voirin. Model-based system and architecture engineering with
the arcadia method. In Jean-Luc Voirin, editor, Model-Based System
and Architecture Engineering with the Arcadia Method, pages 353–355.
Elsevier, 2018.

[34] James Marquis and Ruba S. Deeb. Roadmap to a successful product
development. IEEE Engineering Management Review, 46(4):51–58, 2018.

[35] C. K. Riemenschneider, B. C. Hardgrave, and F. D. Davis. Explain-
ing software developer acceptance of methodologies: A comparison of
five theoretical models. IEEE Transactions on Software Engineering,
28(12):1135–1145, dec 2002.

[36] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for
agile software development, 2001. [Online; accessed 17-July-2022].

[37] C. Larman and V.R. Basili. Iterative and incremental developments. a brief
history. Computer, 36(6):47–56, 2003.

[38] A.M. Davis. Operational prototyping: a new development approach. IEEE
Software, 9(5):70–78, 1992.

[39] Barry Boehm. A spiral model of software development and enhancement.
SIGSOFT Softw. Eng. Notes, 11(4):14–24, 1986. 12948.

[40] Kevin Forsberg and Harold Mooz. The relationship of system engineering
to the project cycle. INCOSE International Symposium, 1(1):57–65, 1991.

[41] W. W. Royce. Managing the development of large software systems:
Concepts and techniques. In Proceedings of the 9th International Con-
ference on Software Engineering, ICSE ’87, page 328–338, Washington,
DC, USA, 1987. IEEE Computer Society Press.

[42] Bahador Ghahramani. Software reliability analysis: a systems develop-
ment model. Computers & Industrial Engineering, 45(2):295–305, 2003.
25th International Conference on Computers and Industrial Engineering.

[43] Barbara A. Kitchenham and John G. Walker. A quantitative approach to
monitoring software development. Softw. Eng. J., 4(1), jan 1989.

[44] Carlos Ardila, Francisco Pino, and CÃ©sar Calvache. Fqmap: Towards
a framework quantitative management of processes in small software de-
velopment organizations. Periodicals of Engineering and Natural Sciences
(PEN), 11:69–93, 07 2023.

VOLUME 4, 2023 17

Molan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[45] Khin Oo, Azlin Nordin, Amelia Ritahani Ismail, and Suriani Sulaiman.
An analysis of ambiguity detection techniques for software requirements
specification (srs). International Journal of Engineering & Technology,
7:501, 05 2018.

[46] Kareshna Zamani. A prediction model for software requirements change
impact. In Proceedings of the 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’21, page 1028–1032. IEEE
Press, 2021.

[47] J. Karlsson and K. Ryan. Supporting the selection of software require-
ments. In Proceedings of the 8th International Workshop on Software
Specification and Design, pages 146–149, 1996.

[48] Jacques Hadamard. Leçons sur la propagation des ondes et les équations
de l’hydrodynamique. A. Hermann, 1903.

[49] Adarsh Kumar Kakar. Investigating the penalty reward calculus of soft-
ware users and its impact on requirements prioritization. Information and
Software Technology, 65:56–68, 2015.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[51] Martin Molan. Quantitative estimation of functionality influence,
https://github.com/molan/quantitativeestimation, 2023.

[52] Thomas J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308–320, 1976.

[53] François Chollet et al. Keras, 2015.
[54] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

GREGOR MOLAN is Comtrade’s academic rep-
resentative, responsible for collaborations with re-
searchers and research institutes, and an active par-
ticipant in global basic scientific research projects.
He is responsible for initiating and overseeing all
research efforts within Comtrade, as required by
the company. Gregor holds a Bachelor’s degree in
Mathematics and a Master of Science in Computer
Science from the University of Ljubljana.

GREGOR DOLINAR is a Professor of Mathe-
matics and Statistics at the University of Ljubl-
jana, Faculty of Electrical Engineering. He is a
head of the Laboratory of Applied Mathematics
and Statistics at his Faculty.

He is also involved in International Mathemati-
cal Competitions, which promote mathematics: he
is the President of the International Mathematical
Olympiad Board.

JOVAN BOJKOVSKI received the B.Sc. and
Ph.D. degrees in electrical engineering from the
University of Ljubljana, Ljubljana, Slovenia, in
1994 and 2002, respectively. He has been a
Research Staff Member with the Laboratory of
Metrology and Quality, Faculty of Electrical En-
gineering, University of Ljubljana, since 1992,
where he is currently a Full Professor of Electrical
Engineering. His research interests are related to
the software engineering and quality of software.

RADU PRODAN is a professor in distributed
systems at the Institute of Information Technology,
University of Klagenfurt, Austria. His research in-
terests include middleware system tools for Cloud,
Fog and Edge computing. Prodan received his
Habilitation degree in computer science from the
University of Innsbruck, Austria. He is a member
of ACM.

ANDREA BORGHESI is an Assistant Profes-
sor (tenure-track) at the Department of Computer
Science and Engineering (DISI) of the University
of Bologna. His research focuses on optimization
techniques and ML approaches for complex sys-
tems, especially in the area of HPC systems. He is
also the executive scientific representative for the
HPC at the Inter-departments Center for AI at the
University of Bologna (ALMA-AI)

MARTIN MOLAN is a PhD student of data sci-
ence and computation at University of Bologna.
He has received BA in mathematics at the Univer-
sity of Ljubljana and MA in ICT at JSI institute.
As a student, he has collaborated with CERN
openlab, UCL center for AI, UNESCO Interna-
tional Research Center On Artificial Intelligence,
and CINECA.

18 VOLUME 4, 2023

	Introduction
	Contributions of this paper

	Related work
	Business development
	Requirement analysis
	Functionality analysis
	Product development

	The architecture of the MOQE model
	Fundations of the MOQE model
	The Core Concepts of the MOQE Model
	Assumptions of the MOQE model
	The goal of the MOQE model
	The architecture of the MOQE model
	Input data for the MOQE model
	vINCI software product graph
	CareHD software product graph
	Estimating the influence of the functionality
	Estimating the risk of the functionality
	Theoretical basis of algorithms
	Forward pass algorithm
	Backward pass algorithm

	Implementation of algorithms

	Implementation of the MOQE model
	Modeling value/complexity trade-off
	Implementation of the model architecture

	Results
	The application of the MOQE model: vINCI
	The application of the MOQE model: CareHD
	Algorithms implemented with Keras
	Functionality risk
	Implementation of the MOQE model in the development of an application for the elderly population
	Determination of resources according to defined requirements
	Implementation of the MOQE model
	Estimated investment for the remaining production partner

	A generalization of the MOQE model
	The second application of the MOQE model: CareHD
	Results for decision-makers
	Practical implementation challenges
	Implications for industry
	Ethical considerations

	Conclusions
	Implementations of the MOQE model
	Help for decision makers
	Proposed future improvements

	Topology of the experiments
	REFERENCES
	Gregor Molan
	Gregor Dolinar
	Jovan Bojkovski
	Radu Prodan
	Andrea Borghesi
	Martin Molan

