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ANALYTIC REGULARITY FOR SOLUTIONS TO SUMS

OF SQUARES: AN ASSESSMENT

ANTONIO BOVE AND MARCO MUGHETTI

In memory of Nick Hanges

Abstract. We present a brief survey on the state of the theory
of the real analytic regularity (real analytic hypoellipticity) for the
solutions to sums of squares of vector fields satisfying the Hörman-
der condition.
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1. Introduction: the C∞ hypoellipticity

The purpose of the present paper is to give an account of the actual
status of the theory of the real analytic regularity for the solutions to
sums of squares type equations.

While the problem of the C∞ hypoellipticity of sums of squares has
been settled from the very beginning by the famous paper of L. Hör-
mander, [34], the problem of the analytic hypoellipticity is still open
and seems much more involved than the latter.

In this section we give a brief presentation of the results in the C∞

category, since they have been the starting point of any further study.
We tried to give all the references we are aware of, but by no means
we claim completeness.

Consider an equation of the form
n
∑

i,j=1

ai,j(x)∂i∂ju(x) +
n
∑

j=1

bj(x)u(x) + c(x)u(x) = f(x).

We say that it is a degenerate elliptic equation if the quadratic form
corresponding to the principal symbol is non negative (or non positive,
depending on the sign conventions):

n
∑

i,j=1

ai,j(x)ξiξj ≥ 0.

Let us start by assuming that the coefficients of the above equation are
smooth, i.e. C∞ functions defined in an open subset Ω ⊂ Rn. Even
then the problem of the regularity of the distribution solutions when
the data are smooth seems too general. But if we assume that the
matrix

A(x) = [ai,j(x)]i=1,...,n
j=1,...,n

has constant rank near a point where its determinant vanishes, then,
at least locally, we may find a finite number of vector fields

(1.1) Xj(x,Dx) =
n
∑

k=1

αj,k(x)Dk, j = 0, 1, . . . , r,

such that the above operator is written as
r
∑

j=1

Xj(x,D)2 +X0(x,D) + α(x),

(see also the fundamental paper [34].)
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In what follows we focus on operators of the form

(1.2) P (x,D) =
r
∑

j=1

Xj(x,D)2,

where Xj denotes a vector field with smooth (or real analytic) coeffi-
cients, aj,k(x), with aj,k ∈ C∞(Ω) or aj,k ∈ Cω(Ω), the latter denoting
the class of all real analytic functions on Ω.

In the paper [34] Hörmander proved for a slightly more general class
of operators than the one in (1.2) the following

Proposition 1.1 ([34]). If P is a second order differential operator and
P is C∞ hypoelliptic in the open subset Ω, then the principal symbol of
P is semidefinite.

Here is the famous result on the C∞ hypoellipticity for operators of
the form (1.2)

Theorem 1.1 ([34]). Let P be given by (1.2), where the vector fields
have C∞ coefficients in the open set Ω ⊂ Rn. Assume that among
the operators Xj1, [Xj1 , Xj2 ], . . . , [Xj1 , [Xj2 , [Xj3 , . . . Xjk ]]], . . . , where
jℓ = 1, 2, . . . , r, there exist n which are linearly independent at any
given point in Ω. Then P is C∞ hypoelliptic.

The condition on the vector fields appearing in Theorem 1.1 has been
stated literally as Hörmander stated it, but it has a deep geometric
meaning. In fact by [X, Y ] we denote the commutator of the vector
fields: [X, Y ]u = XY u − Y Xu. We easily see that [X, Y ] is a vector
field and that

[X, Y ] =
n
∑

j,k=1

(aj(x)∂jbk(x)− bj(x)∂jak(x)) ∂k,

where aj, bk denote the (smooth) coefficients of X and Y , respectively.
The condition in Theorem 1.1 can then be rephrased as

Hörmander’s Condition:

The Lie algebra over the open set Ω generated by the vector fields Xj

and their brackets has dimension n, i.e. the dimension of the ambient
space.

Derridj, in [22], proved that if the coefficients of the vector fields
have real analytic regularity, then the Hörmander Condition (HC for
short) is also necessary.

Theorem 1.1 has received a lot of attention over the years and we
would like to mention the extensions that are particularly meaningful
in the discussion of the real analytic hypoellipticity.
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We first remark that the proof of the hypoellipticity of the operator
P is done by establishing an a priori inequality showing the loss of
derivatives of the operator P . The inequality with the optimal loss of
derivatives is due to Rothschild and Stein, [51].

Theorem 1.2. Let x0 ∈ Ω and denote by U a neighborhood of x0,
U ⊂ Ω. Assume that in U the Hörmander Condition is satisfied by
taking iterated brackets involving at most m vector fields. Then for
every u ∈ C∞

0 (U) there is a positive constant C such that

(1.3) ‖u‖21
m
+

r
∑

j=1

‖Xj(x,D)u‖2 ≤ C
(

〈Pu, u〉+ ‖u‖2
)

.

Here ‖u‖s denotes the norm of u in the Sobolev space Hs and the no-
tation 〈u, v〉 denotes the L2 scalar product.

A very important point of view when it comes to the problem of
the real analytic hypoellipticity is the microlocal theory for sums of
squares.

First of all we note that the symbol of the commutator of two
vector fields is the Poisson bracket of the symbols. Let X(x,D) =
∑n

j=1 aj(x)Dj, where Dj = i−1∂xj
, then the symbol of X is

X(x, ξ) =
n
∑

j=1

aj(x)ξj.

Defining the Poisson bracket of two functions f(x, ξ) and g(x, ξ) as

{f, g} =
n
∑

j=1

(

∂ξjf∂xj
g − ∂xj

f∂ξjg
)

,

we have that

σ ([X, Y ]) =
1

i
{X(x, ξ), Y (x, ξ)}.

The Hörmander Condition can then be stated microlocally. In order
to do this we define first the characteristic variety of the operator P in
(1.2).

Definition 1.1. Let P be as in (1.2). We define the set

Char(P ) = {(x, ξ) | (x, ξ) ∈ T ∗Ω\{0}, Xj(x, ξ) = 0, for j = 1, . . . , r}.
Here T ∗Ω \ {0} denotes the cotangent bundle over Ω minus the zero
section. We point out that, unless ad hoc assumptions are made this
set in general is not a manifold.
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The following is the microlocal statement of Hörmander’s Condition;
we refer to Bolley, Camus and Nourrigat, [7], and to Fefferman and
Phong, [24], for a microlocal version of the results by Hörmander and
Rothschild and Stein.

Microlocal Hörmander’s Condition:

We may suppose that, instead of having vector fields we are dealing
with (real valued) pseudodifferential operators of order 1. Let (x0, ξ0) ∈
T ∗Ω \ {0}. Then there exists an iterated commutator of length m ≥ 2,
i.e. an operator of the form

ad(Xi1)(ad(Xi2(· · · ad(Xim−1)(Xim) · · · )),
where ad(X)Y = XY − Y X, whose symbol is elliptic—i.e. non zero—
at (x0, ξ0).

As an example we state Hörmander theorem in a microlocal context.

Theorem 1.3 ([7]). Let aj(x,D), j = 1, . . . , r, be real pseudodifferen-
tial operators of order 1 defined in Ω. Let (x0, ξ0) ∈ T ∗Ω\{0}∩Char(P ),
where P (x,D) =

∑r
j=1 aj(x,D)2. Assume further that the Microlocal

Hörmander Condition holds at (x0, ξ0).
Let U be a neighborhood of x0 in Ω and u, f ∈ D ′(U) such that

Pu = f in the distribution sense in U . Then if (x0, ξ0) 6∈ WF (f),
there is a neighborhood U ′ ⊂ U of x0 and a conic neighborhood Γ′ of
ξ0, such that WF (u) ∩ U ′ × Γ′ = ∅.

2. The real analytic case: a short history, examples and

counterexamples

A natural question about the regularity of solutions to sums of
squares is whether there is real analytic regularity provided the vector
fields have real analytic coefficients and satisfy Hörmander Condition.

It is well known that in the non degenerate case, i.e. the elliptic case,
the answer is in the affirmative.

The first example showing that the situation might be more involved
is due to Baouendi and Goulaouic, [4], but before stating and discussing
it let us introduce the definition of Gevrey class of functions.

Definition 2.1. Let Ω be an open subset of Rn. We say that the func-
tion u ∈ C∞(Ω) is in the Gevrey class Gs(Ω), with s ≥ 1, real number,
if for every compact set K ⊂ Ω there is a positive constant CK such
that

|∂αu(x)| ≤ C
|α|+1
K α!s, for every x ∈ K,

and for every multiindex α.
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It is straighforward that the class G1(Ω) = Cω(Ω) i.e. it coincides
with the class of all real analytic functions in Ω.

Theorem 2.1 ([4]). Consider the operator in R3

(2.1) PBG(x,Dx) = D2
1 +D2

2 + x2
1D

2
3.

It obviously satisfies Hörmander Condition, but there exist solutions
of PBGu = f , with f ∈ Cω(R3), belonging to G2 and not to Gs with
1 ≤ s < 2.

Proof. The proof is the construction of a suitable solution of the equa-
tion PBGu = 0. Define

u(x) =

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρdρ,

where z ∈ C is suitable. The integral converges provided we keep x2 in
a small neighborhood of the origin. Now

D2
1u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρ

(

−ρ2 + x2
1ρ

4
)

dρ.

Moreover

x2
1D

2
3u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρ(−x2

1ρ
4)dρ

and finally

D2
2u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρz2ρ2dρ.

If we choose z = ±1 we see that PBGu = 0 in a slab where x2 is in a
sufficiently small neighborhood of 0. Setting z = 1 then

u(x) =

∫ +∞

0

eix3ρ2−
x21
2
ρ2+x2ρ−ρdρ.

Compute now ∂k
3u(0):

∂k
3u(0) =

∫ +∞

0

ρ2ke−ρdρ = (2k)! =
(2k)!

k!2
k!2 ≥ 2kk!2.

It is also easy to see that

∂k
2u(0) = k!

Furthermore, taking k derivatives with respect to x1 of u at zero we
obtain a bunch of terms, among which the terms involving more factors
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ρ—responsible for a higher Gevrey regularity—are those where the x1

derivative lands on the exponential:
∫ +∞

0

eix3ρ2−
x21
2
ρ2+x2ρ−ρ(x2

1ρ
2)

k
2 ρkdρ.

The above quantity is bounded from above, when x1 is near 0, by
Ck+1k!3/2. This shows that u ∈ G2 and that its Gevrey regularity is
not better than 2. �

Another example was singled out by Olĕınik, Olĕınik and Radkevič in
[49], [50]. Let p, q be positive integers and consider in R3 the following
sum of squares

(2.2) POR(x, ξ) = D2
1 + x

2(p−1)
1 D2

2 + x
2(q−1)
1 D2

3,

where p < q. Then

Theorem 2.2 ([49], [50], [13], [31], [20]). The operator in (2.2) is
Gevrey hypoelliptic of order q/p and this number is optimal. Moreover
if we define the “partial Gevrey regularity” of a solution in the variable
xj as sj, where |∂α

xj
u(x)| ≤ Cα+1α!sj for x in a compact set, we have

that if PORu = f ∈ Gq/p then u has partial Gevrey regularity
(

1 +
1

p
− 1

q
, 1,

q

p

)

.

The above results require some discussion. The characteristic variety
of the operator in (2.1) is actually a real analytic submanifold of T ∗R3\
{0} given by

(2.3) Char(PBG) = {(x, ξ) ∈ T ∗R3 \ {0} | ξ1 = ξ2 = x1 = 0, ξ3 6= 0}.

For the operator in (2.2) we have
(2.4)

Char(POR) = {(x, ξ) ∈ T ∗R3 \ {0} | ξ1 = x1 = 0, (ξ2, ξ3) 6= (0, 0)}.

In the first case Char(PBG) has codimension 3 while in the second case
codimChar(POR) = 2.

We remark that in the first case Char(PBG) is a non symplectic
submanifold of T ∗R3 \{0}, while in the second case Char(POR) is sym-
plectic. This means that the symplectic form σ = dξ∧dx is of maximal
rank in the second case, while it has a kernel in the first case.

At the end of the seventies Tartakoff, [54], and Treves, [56], proved
with different methods the following important result:
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Theorem 2.3 ([54], [56]). Consider a sum of squares operator

P (x,D) =
r
∑

j=1

Xj(x,D)2,

where the vector fields Xj have real analytic coefficients defined in an
open subset Ω ⊂ Rn and satisfy Hörmander condition.

Assume further that

(a) - Char(P ) is a symplectic submanifold of T ∗Rn \ {0}.
(b) - The principal symbol of P , p(x, ξ) =

∑r
j=1Xj(x, ξ)

2 vanishes

exactly to the second order on Char(P ).

Then P is analytic hypoelliptic.

We clarify briefly what the expression “vanishes exactly to the second
order” means.

Denote by p(x, ξ) the (principal) symbol of P as defined above. Let
(x0, ξ0) ∈ Char(P ) and denote by Q the 2n × 2n matrix d2p(x0, ξ0).
The Hamilton matrix of p at (x0, ξ0) is then defined as

〈QX, Y 〉 = σ(X,FpY ),

σ being the symplectic form. Here X, Y are vectors in T(x0,ξ0)T
∗Ω\{0}.

We say that p(x, ξ) vanishes exactly to the second order at the point
(x0, ξ0) if

kerFp(x0, ξ0) = T(x0,ξ0) Char(P ).

Let us list a few examples of operators satisfying the assumptions of
the theorem.

(a) The quadratic Grušin operator (also called the harmonic oscil-
lator)

n−1
∑

j=1

(D2
j + x2

jD
2
n).

(b) The Heisenberg Laplacian

(D1 − x2D3)
2 + (D2 + x1D3)

2.

(c) The ✷b operator as well as the ∂b operator in the context of
CR-manifolds.

We remark that the operator PBG does not satisfy the assumptions
of the theorem because its characteristic manifold is not symplectic
since its codimension is 3. On the other hand the operator POR does
not vanish exactly at the second order, even though its characteristic
manifold is symplectic.
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Actually the result in Theorem 2.3 can be microlocalized. The state-
ment in [56] was already microlocal, while the statement of [54] was
formulated in a microlocal way in [55].

Theorem 2.4 ([56], [55]). Let the same hypotheses of Theorem 2.3 be
satisfied. Let u, f denote distributions for which the equation Pu = f
is satisfied. Then WFa(u) ⊂ WFa(f).

In [56] the author, regarding the Baouendi–Goulaouic model, writes
the following words:

if Char(P ), assumed to be an analytic manifold, contains a
smooth curve which is orthogonal for the fundamental sym-
plectic form to the whole tangent plane to Char(P ) at every
point (of the curve), the operator P might not be analytic
hypo-elliptic. Actually it is my belief that, in this case, P is
necessarily not so.

This is what has been later called Treves curve conjecture, even
though it has not been stated like a conjecture. It should also be said
that no counter examples are known and no proof has been given so
far. The above statement can be rephrased by saying that if Char(P )
is not symplectic, denote by (x0, ξ0) a point in Char(P ) and assume
that

T(x0,ξ0) Char(P ) ∩
(

T(x0,ξ0)Char(P )
)σ 6= {0}

then there is no analytic hypoellipticity. Here the notation Eσ, where
E is a vector space, denotes the symplectic orthogonal to E.

In 1981 Métivier, in [44], proved that there is a lack of analytic
hypoellipticity for the operator in R2

(2.5) PM(x,D) = D2
1 + (x2

1 + x2
2)D

2
2.

Let us briefly see what are the Treves’ curves in this case.
We have Char(PM) = {(0, 0; 0, ξ2), ξ2 6= 0}. Since everything is flat

we are allowed to confuse the manifold with its tangent space. Then

Char(PM)σ = {(y1, 0; η1, η2)},
so that when we take the intersection we have

Char(PM) ∩ Char(PM)σ = {0, 0; 0, ξ2)},
which does not project injectively onto the base space. Hence the
Treves curves are the ξ2-lines along the fibers of the cotangent bundle.

This fact may let us surmise that the situation is very involved. We
note in passing that Métivier proof of the non analytic hypoellipticity
of PM is much more difficult than that for the Baouendi–Goulaouic
operator.
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As a final remark of this section let us add that the case of the
Olĕınik and Radkevič operator is not explained, even though, clearly,
it does not vanish of exact order 2, it still has a symplectic characteristic
manifold.

One can also generalize the Métivier operator as

(2.6) Mp,q,a(x,D) = D2
1 + x

2(q−1)
1 D2

2 + x
2(p−1)
1 x2a

2 D2
2,

where a, p, q are integers, p, q > 1, p < q, a > 0. Its characteristic
variety is the real analytic submanifold

Char(Mp,q,a) = {(0, x2; 0, ξ2), ξ2 6= 0},
which is symplectic. In [12] it is proved that Mp,q,a is Gevrey hypoel-
liptic of order s for any

s ≥ aq

aq − q + p
.

When a = 1, q = 2, p = 1 the above index gives 2, which is the value
that Métivier proved to be optimal. It is worth to note that Métivier’s
proof is along the same lines of the proof of Theorem 2.1, but it is much
more difficult. Moreover it uses the properties of the eigenfunctions of
the harmonic oscillator operator in one variable. These properties are
no longer true for the anharmonic oscillator: D2

t + t2(q−1) (see [28] for
a proof of this fact.)

As a consequence there is no proof of the optimality of the above
index for Mp,q,a, except for particular values of p, q, that is when q−1 =
2k+1 and p−1 = k. See Chinni, [18], for such a proof using the result
[5], by Bender and Wang.

3. Geometry of the characteristic variety:

stratifications and the Treves conjecture

In 1996, see the paper [58], F. Treves came up with a new idea for the
study of the analytic hypoellipticity of sums of squares. In this section
we are going to give a fairly precise description of his idea, because it
is important for what follows.

Stimulated by the papers [30], [31] by N. Hanges and A. A. Himonas,
who proved that the Olĕınik and Radkevič operator for special values of
p and q, is not analytic hypoelliptic, even though its characteristic man-
ifold is a real analytic symplectic submanifold, F. Treves introduced the
idea that in order to establish if there is analytic hypoellipticity or not
one has to look at the strata of a stratification of the characteristic
variety.
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Hence he proposed a certain stratification that will be henceforth
called the Poisson stratification and formulated the conjecture that an
operator is analytic hypoelliptic if and only if all the strata in the
stratification of its characteristic variety are symplectic real analytic
submanifolds.

We now give a detailed description of the Poisson stratification as
well as some examples. We shall follow the presentation in the paper
[15].

Denote Σ the variety Char(P ), where the symbols of all the vector
fields are zero.

First of all let us define what we mean by the term stratification.

Definition 3.1 (see e.g. [60]). By an analytic stratification of Σ in
T ∗Rn \ {0} we mean a partition of Σ

Σ =
⋃

i∈I

Si,

where the Si are connected analytic submanifolds of T ∗Rn \ {0} satis-
fying the conditions

(i) Every compact subset of T ∗Rn \ {0} intersects at most finitely
many submanifolds Si.

(ii) For any i, i′ belonging to the index family I, Si′∩Si 6= ∅ implies
Si′ ⊂ ∂Si and dimSi′ < dimSi.

The next is the definition of a (micro)local stratification. The def-
inition is given in general terms, the adaptation to the homogeneous-
on-the-fibers situation is straghtforward.

Definition 3.2 ([60]). By a local analytic stratification of Σ we mean a
system (U, {Si}i∈I), where U is an open set in T ∗Rn \ {0}, I is a finite
index family, Si is a connected analytic submanifold of U satisfying
condition (ii) above and such that

Σ ∩ U =
⋃

i∈I

Si.

Next we are going to describe how to construct a local analytic strat-
ification. This can be accomplished in several ways, however we stick
to the description of [15] to keep the content the least abstract and the
most readable.

3.1. The analytic stratification. Let us denote by

X(x, ξ) = (X1(x, ξ), . . . , Xr(x, ξ))

the map whose components are the symbols of the vector fields. More-
over let Σ = X−1(0) ∩ T ∗Ω \ {0} the characteristic variety. Note
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that, since our maps are real valued, we might have used the func-
tion p(x, ξ) =

∑r
j=1Xj(x, ξ)

2 to define Σ, but since in the following
steps the minors of the Jacobian matrix of X are going to play a role,
keeping the consistency of the notation would have been much more
complicated. Thus we stick to the vector notation.

Define R0(Σ) as the subset of Σ whose points z0 = (x0, ξ0) have a
neighborhood Uz0 ⊂ V , V open subset of T ∗Ω \ {0}, such that there
are indices jα, α = 1, . . . ,m, 1 ≤ j1 < · · · < jm ≤ r, for which

Uz0 ∩ Σ = {z ∈ Uz0 | Xjα(x, ξ) = 0, α = 1, . . . ,m},
and the differentials dXjα(z0) are all linearly independent. The latter
is equivalent to saying that the minor

∂(Xj1 , . . . , Xjm)

∂(zi1 , . . . , zim)
(z0),

where 1 ≤ i1 < · · · < im ≤ 2n, is non zero. It is evident that R0(Σ) is
a Cω manifold of codimension m.

Next we define two subsets of Σ, Σ1 and Σ2. Let Σ1 denote the
subset of Σ in which all the m × m minors of the matrix ∂X

∂z
vanish

identically.
Define Σ2 as the zero set in V \(Σ1∪R0(Σ)) of all the (m+1)×(m+1)

minors
∂(Xj1 , . . . , Xjm+1)

∂(zi1 , . . . , zim+1)
,

1 ≤ i1 < · · · < im+1 ≤ 2n.
We may now iterate for Σ1, Σ2 what has been done for Σ. For Σ1

define the map

X(1)(x, ξ) =
(

X(x, ξ), Xj1,...,jm
i1,...,im

)

: V → Rr1,1

with Xj1,...,jm
i1,...,im

denoting the m × m minors and r1,1 = r + r1, r1 being
the number of the m×m minors.

Analogously define

X(2)(x, ξ) =
(

X(x, ξ), X
j1,...,jm+1

i1,...,im+1

)

: V → Rr1,2

with X
j1,...,jm+1

i1,...,im+1
denoting the (m+1)×(m+1) minors and r1,2 = r+r2,

r2 being the number of the (m+ 1)× (m+ 1) minors.
This leads to a local stratification of Σ: if V is a neighborhood of z0

with a compact closure then

(3.1) V ∩ Σ =

NΩ
⋂

α=0

Λα,
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where the Λα are Cω manifolds. The Λα shall be called the analytic
strata of Σ.

Example 1 (The Whitney umbrella). This example is not on a cotan-
gent bundle. Let Σ = {x ∈ R3 | x2

1 − x3x
2
2 = 0}. R0(Σ) = {x ∈

R3 | x2
1 − x3x

2
2 = 0, x2

1 + x2
2 > 0}.

Then X(1)(x) = (x2
1 − x3x

2
2, x1, x2x3, x

2
2). Its differential is











2x1 −2x2x3 −x2
2

1 0 0

0 x3 x2

0 2x2 0











.

Its restriction to Σ1 has rank 2 if x3 6= 0 and rank 1 at the origin. The
analytic stratification of Σ is composed of 5 strata.

3.2. The symplectic stratification. Assuming we already have a
stratified variety of the form (3.1), we denote by Σ one of the strata
Λα in (3.1), i.e. a connected Cω submanifold defined near a point
z0 ∈ Char(P ), and let σ be the symplectic form in R2n.

Then there are functions Gj(x, ξ), j = 1, . . . , s, and an open set
Ω′ ⊂ Ω such that Σ∩Ω′ = {z ∈ Ω′ | Gj(z) = 0, j = 1, . . . , s}. Moreover
we may assume that the rank of the map G = (G1, . . . , Gs) is equal to
codimΣ at each point of Σ∩Ω′. Thus if d = codimΣ, each z0 ∈ Σ has a
neighborhood Uz0 ⊂ Ω′ in which there are indices 1 ≤ i1 < · · · < id ≤ s
such that

(i) The differentials dGik(z0) are linearly independent.
(ii) Σ ∩ Uz0 = {z ∈ Uz0 | Gi1(z) = · · · = Gid(z) = 0}.

Consider the pull back of σ to Σ and denote it by σ|Σ. Let σz|Σ, z ∈ Σ,
denote the restriction of the symplectic form to TzΣ. The rank of the
linear map corresponding to the skew symmetric bilinear form σz|Σ

is called the rank of the symplectic form on Σ at the point z or the
symplectic rank of Σ at the point z.

Denote by µ the maximum rank of Σ. Then the set Σ0 of all the
points z where the symplectic rank is equal to µ is a dense subset of
Σ. Each connected component of Σ0 is a Cω submanifold of Uz0 whose
symplectic rank at every point is equal to µ.

The subset Σ \ Σ0 is an analytic variety that can be defined by the
vanishing of the functions G1, . . . , Gs, as well as of all the ν× ν minors
of the matrix [{Gi, Gj}]1≤i,j≤s, where ν = µ+codimΣ− dimΣ. Hence
we can find an analytic stratification of this subset and the dimension
of each analytic stratum of Σ \Σ0 is strictly less than the dimension of
Σ0 = dimΣ.
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This implies that we can decompose Σ so that

Σ ∩ U =

NU
⋃

α=1

Σα,

where each Σα is a connected Cω submanifold with a constant sym-
plectic rank.

3.3. The Poisson stratification. Again we start with the analytic
set Σ = Char(P ). For each multiindex I = (i1, . . . , iν), ν ∈ N, we
define

XI(x, ξ) = {Xi1 , {Xi2 , {· · · {Xiν−1 , Xiν} · · · }}}(x, ξ),
if ν ≥ 2 and XI = Xi1 , if I = (i1). We also set |I| = ν. Here {f, g}
denotes the Poisson bracket of the functions f and g:

{f, g}(x, ξ) =
n
∑

j=1

(

∂f

∂ξj

∂g

∂xj

− ∂f

∂xj

∂g

∂ξj

)

(x, ξ).

Of course we are assuming that the vector fields Xi satisfy the mi-
crolocal Hörmander condition, i.e. that for every (x, ξ) ∈ Char(P )
there exists a multiindex I such that XI(x, ξ) 6= 0.

Let now U be a neighborhood of a point z0 = (x0, ξ0) and write
as before Σ = Char(P ). Then we may define a sequence of analytic
subsets of U as

Σ(ν) = {z ∈ U | for every multiindex I, |I| ≤ ν,XI(z) = 0}.
We point out that the sequence Σ(ν) is non increasing in ν and that
in particular Σ(1) = Σ. Furthermore, by the Hörmander condition, we
have that

∞
⋂

ν=1

Σ(ν) = ∅.

Now there is an increasing sequence of integers 1 = ν1 < ν2 < · · · such
that

(i) Σ(νp+1) $ Σ(νp).
(ii) If νp < νp+1, then Σ(ν′) = Σ(νp), for every ν ′, νp ≤ ν ′ < νp+1.

Consider now for any integer p the symplectic stratification (in the
open set U) of the analytic set Σ(νp):

Σ(νp) =

NU
⋃

α=1

Σ(νp)
α .
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In each stratum Σ
(νp)
α the set of points z ∈ Σ(νp)\Σ(νp+1) is either empty

or else an open and dense subset of Σ
(νp)
α . If it is not empty, denote by

Σ
(νp)
α,β its connected components. Thus we get the decomposition

Σ(νp) = Σ(νp+1) ∪
NU
⋃

α=1

MU
⋃

β=1

Σ
(νp)
α,β .

Finally, letting p run over the integers we obtain a decomposition of
the form

(3.2) Σ =
⋃

p

⋃

j

Σ
(νp)
j ,

where p, j have a finite range (in the open set U) and

(i) The Cω manifolds Σ
(νp)
j are connected and pairwise disjoint.

(ii) The symplectic rank of Σ
(νp)
j is constant.

(iii) At every point of Σ
(νp)
j the Poisson brackets XI , with |I| < νp+1

vanish, but there is at least one bracket XI with |I| = νp+1

which does not vanish.

We may then give the following

Definition 3.3. The partition (3.2) of Char(P ) = Σ is called the (lo-
cal) Poisson stratification corresponding to the vector fields X1, . . . , Xr.

Each submanifold Σ
(νp)
j is a Poisson stratum, or simply just a stratum,

for Σ. We refer to the integer νp as the depth of the stratum Σ
(νp)
j .

Remark 3.1. It follows immediately from the definition above that
the stratification of Σ defined by the vector fields Xj, j = 1, . . . , r, is
invariant under nonsingular Cω linear substitutions, that means if we
define

X̃j(x, ξ) =
r
∑

k=1

ajk(x, ξ)Xk(x, ξ),

for j = 1, . . . , r, we obtain the same stratification.

Assume that a stratum, say Σ′, of the stratification (3.2) is not
symplectic. Since the symplectic rank is constant we have that Σ′

is foliated by Cω submanifolds whose tangent space is isomorphic to
TzΣ

′ ∩ (TzΣ
′)σ. We call these submanifolds the Hamilton leaves of the

stratification. If Char(P ) is a real analytic manifold and the symplec-
tic form has constant rank on each connected component of Char(P ),
then there are curves (contained in the Hamilton leaves) satisfying the
assumptions of the Treves curve conjecture.
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It is also clear that the latter situation may occur at a deeper stra-
tum.

We may then state the

Conjecture 3.1 (Treves conjecture, [58], [59], [15]). The operator P
is analytic hypoelliptic if and only if each stratum in its Poisson strat-
ification is (microlocally) a symplectic Cω submanifold.

There are also other notions of analytic hypoellipticity, like global
analytic hypoellipticity and germ analytic hypoellipticity. Moreover
one might be interested in the analytic singular support of the solution,
i.e. just the local theory. In this paper we stick to the microlocal
point of view, since we think that it is the most basic and refer to the
paper [59] for further details about the formulation of the conjecture
in different, albeit related, situations.

4. Examples and counterexamples

In this section we discuss some model operators and examine their
Poisson stratification as well as—when known—their hypoellipticity
properties.

4.1. Examples. Consider the operator in (2.2), with 1 < p < q. Then

Char(POR) = {(0, x2, x3; 0, ξ2, ξ3) | ξ22 + ξ23 > 0}.
This is obviously a symplectic submanifold, so that the rank of the
symplectic form restricted to Char(POR) is constant and equal to 4.

As we said in Section 2, Theorem 2.2 holds, showing that it is not
analytic hypoelliptic.

First of all this shows that the mere analytic and symplectic strati-
fications are not enough to imply analytic hypoellipticity.

The first Poisson strata are then

Σ1,± = {(x, ξ) | ξ1 = x1 = 0, ξ2 ≷ 0}.
Points in Σ1,± are characteristic points and all Poisson brackets of
length k + 1 of the form ad(X1)

kXj are zero for k < p − 1. It is
evident that X1 is the only field contributing to this computation since
both X2 and X3 carry vanishing coefficients.

When we take brackets of length p we have that

ad(X1)
p−1X2 = (p− 1)!ξ2.

This is zero if ξ2 = 0, which is possible, provided ξ3 6= 0. Hence the
strata of depth p are

Σp,± = {(x, ξ) | ξ1 = x1 = 0 = ξ2, ξ3 ≷ 0}.
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The latter is not symplectic since it has codimension 3. Note that the
Baouendi–Goulaouic model is obtained for p = 1.

As a second example let us consider the operator

(4.1) D2
1 +

N
∑

j=1

(pj(x)D2)
2, x ∈ R2,

where the polynomials pj satisfy

(4.2) pj(λx1, λ
θx2) = λmjpj(x1, x2), λ > 0,

θ, mj being positive rational numbers. We may always assume that
the labeling of the polynomials is such that

m1 ≤ m2 ≤ · · · ≤ mN .

Then

Theorem 4.1 ([14]). Consider the operator in (4.1). Suppose that for
a number r, 1 ≤ r ≤ N , we have

pr(1, 0) 6= 0, pj(1, 0) = 0, for j < r.

Write

pj(x) =

mj
∑

k=0

αjkx
k
1x

qjk
2 ,

where the qjk are non–negative integers, qjmj
= 0, and otherwise qjk ≥

1.
Then the operator in (4.1) is Gs hypoelliptic for

s ≥ 1

1− λ
,

where

λ =
θ

mr + 1
max
1≤j≤r

max
0≤k<mj

αjk 6=0

mr − k

mj − k
.

Let us examine the stratification of (4.1). We consider only the case
when N = 1; the more general case is quite similar. Thus let

P (x,D) = D2
1 + (p(x)D2)

2.

Since we are assuming that P satisfies Hörmander condition, we may
assume, after application of Weierstraß preparation theorem, dropping
for simplicity the non zero factor, that p has the form

p(x) = xm
1 +

m−1
∑

k=0

αkx
k
1x

qk
2 ,
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where the qk are non negative integers such that the homogeneity hy-
pothesis is satisfied.

The characteristic variety is then given by

ξ1 = 0, p(x) = 0.

The zero set of p will be considered in more detail in Section 5. We
mention here only the basic things necessary to understand the prob-
lem. One can show that p−1(0) has at most a finite number of branch
points and in the complement of those points it is a Cω submanifold of
R2. Because of Hörmander condition we obtain that the characteristic
variety is a symplectic submanifold of T ∗R2 \ {0} in the complement
of the branch points.

Hence the stratification is essentially a stratification in the x-space
of the form

Char(P ) =
L
⋃

i=1

Mi ∪
L1
⋃

j=1

{ρj},

where

Mi = {(x, ξ) | ξ1 = 0, ξ2 6= 0, x ∈ M̃i},
M̃i denoting the Cω connected components of p−1(0), while

ρj = (ρ̃j; 0, ξ2 6= 0),

where the ρ̃j are the branch points in p−1(0).
In this case the only non symplectic strata are lines parallel to the

fibers of the cotangent bundle and projecting onto a single point on the
base space.

We point out that Theorem 4.1 gives Gevrey regularity that are
known to be optimal only in particular cases, e.g. the Métivier opera-
tor, see (2.5). The optimality for a generic operator of that form is not
proved.

Likewise the analog of Theorem 4.1 in a non homogenous case is not
known. Proving optimality in a non homogenous case would amount
to prove that Conjecture 3.1 holds true in two variables.

4.2. Counterexamples. Let r, p, q ∈ N, 1 < r < p < q, and x ∈ R4.
Consider the operator

(4.3) P1(x,D) = D2
1+D2

2+x
2(r−1)
1

(

D2
3 +D2

4

)

+x
2(p−1)
2 D2

3+x
2(q−1)
2 D2

4.

Evidently P1 is a sum of squares operator verifying Hörmander condi-
tion, since ad(D1)

r−1xr−1
1 Di yields Di, i = 3, 4.

The characteristic variety of P1 is

Char(P1) =
{

(x, ξ) | ξ1 = ξ2 = 0, x1 = x2 = 0, ξ23 + ξ24 > 0
}

.
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The stratification associated with P1 is made up of a symplectic single
stratum

Σ1 =
{

(0, 0, x3, x4; 0, 0, ξ3, ξ4) | ξ23 + ξ24 > 0
}

= Char(P1).

Then we have

Theorem 4.2 ([3]). Let

1

s0
=

1

r
+

r − 1

r

p− 1

q − 1
.

Then P1 in a neighborhood of the origin is locally Gevrey s0 hypoelliptic
and not better.

It is not difficult to show that Theorem 4.2 implies the following

Corollary 4.1. The sufficient part of the Conjecture 3.1 does not hold
in dimension n for n ≥ 4.

Next we give a sketchy idea of the proof of Theorem 4.2, since, in
our opinion, it may help getting an idea about where and why analytic
regularity fails in this model.

Idea of the proof of Theorem 4.2. First of all we note that the
Hörmander hypothesis is satisfied at order r, meaning that the whole
4-dimensional Lie algebra is generated by taking iterated commutators
of length at most r.

Using the subelliptic inequality it is not difficult to show that a
distribution solution of P1u = f , with f real analytic is in Gs0 near a
characteristic point.

Hence we focus on the converse statement: There is a real analytic
function f and a Gs0 function, u, such that P1u = f and moreover u
is not better than Gs0 . To this end we must construct such a function
u, basically doing the same as in Theorem 2.1, i.e. constructing some
sort of inverse Fourier transform whose exponential decay at infinity
prevents analyticity. Of course both the (complex) phase and the am-
plitude are more involved in this case. In particular the amplitude is
obtained by studying the semiclassical eigenfunctions and eigenvalues
of a certain Schrödinger operator with a double well potential with non
degenerate minima blowing up at infinity.

We follow the proof in [3]. We look for a function u such that

P1(x,D)A(u) = 0,

where

(4.4) A(u)(x) =

∫ +∞

Mu

e−iρx4+x3z(ρ)ρθ−ρθu(ρ
1
rx1, ρ

µx2, ρ)dρ.
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Here θ = s−1
0 , µ > 0, z(ρ) and Mu > 0 are to be determined. We

assume that x is in a suitable neighborhood of the origin whose size
will ultimately depend on the upper estimate for z(ρ).

Applying P1 to A(u) we obtain

P1(x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρθ−ρθ
[

− ρ
2
r ∂2

x1
u− x

2(r−1)
1 (z(ρ))2ρ2θu

+ x
2(r−1)
1 ρ2u− ρ2µ∂2

x2
u− x

2(p−1)
2 (z(ρ))2ρ2θu+ x

2(q−1)
2 ρ2u

]

dρ,

which, in terms of the variables y1 = ρ
1
rx1, y2 = ρµx2, becomes

P1(x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρθ−ρθ
[

− ρ
2
r ∂2

1u− y
2(r−1)
1 (z(ρ))2ρ2θ−2 r−1

r u

+ y
2(r−1)
1 ρ2−2 r−1

r u− ρ2µ∂2
2u− y

2(p−1)
2 (z(ρ))2ρ2θ−2(p−1)µu

+ y
2(q−1)
2 ρ2−2(q−1)µu

]

y1=ρ1/rx1
y2=ρµx2

dρ.

Choose µ = 1
q
. Then

P1(x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρθ−ρθ
[

− ρ
2
r

(

∂2
1 − y

2(r−1)
1

(

1− (z(ρ))2ρ2(θ−1)
)

)

u

+ ρ
2
q

(

−∂2
2 − y

2(p−1)
2 (z(ρ))2ρ2θ−2 p

q + y
2(q−1)
2

)

u
]

y1=ρ1/rx1

y2=ρ
1
q x2

dρ.

We point out that θ − 1 < 0. Make the Ansatz |z(ρ)| < M1−θ
u and set

τ(ρ) =
(

1− (z(ρ))2ρ2(θ−1)
)

1
2r .

Choosing u(y1, y2, ρ) = u1(τ(ρ)y1)u2(y2, ρ), where

(4.5)
(

−∂2
1 + y

2(r−1)
1 τ(ρ)2r

)

u1(τ(ρ)y1) = τ(ρ)2λu1(τ(ρ)y1),

and λ > 0 is such that, for fixed ρ > 0, the factor in front of u1 in the
r.h.s. of the above equation is in the spectrum of the quantum anhar-

monic oscillator
(

−∂2
1 + y

2(r−1)
1

(

1− (z(ρ))2ρ2(θ−1)
)

)

, whose frequency
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depends on both ρ and z(ρ). Then

P1(x,D)A(u)(x)

=

∫ +∞

Mu

e−iρx4+x3z(ρ)ρθ−ρθu1(τ(ρ)ρ
1
rx1)

[{

ρ
2
r

(

1− (z(ρ))2ρ2(θ−1)
)

1
r λ

+ ρ
2
q

(

−∂2
2 − y

2(p−1)
2 (z(ρ))2ρ2θ−2 p

q + y
2(q−1)
2

)}

u2(y2, ρ)
]

y2=ρ
1
q x2

dρ.

Next we want to find u2 as a solution to the differential equation

(4.6)
(

1− (z(ρ))2ρ2(θ−1)
)

1
r λu2

+ ρ
2
q
− 2

r

(

−∂2
2 − y

2(p−1)
2 (z(ρ))2ρ2θ−2 p

q + y
2(q−1)
2

))

u2 = 0.

(4.6) above then may be written

(

1− (z(ρ))2ρ2(θ−1)
)

1
r λu2

+ ρ
2
q
− 2

r

(

−∂2
2 + y

2(q−1)
2

)

u2 − (z(ρ))2ρ2(θ−
p−1
q

− 1
r )y

2(p−1)
2 u2 = 0.

Since

θ − p− 1

q
− 1

r
=

(

1

q
− 1

r

)

p− 1

q − 1
,

we set

(4.7) t = ρ
1
q
− 1

r ,

so that the above equation becomes

(

1− (z1(t))
2t2(r−1) q

q−1
q−p
q−r

)
1
r
λu2

+ t2
(

−∂2
2 + y

2(q−1)
2

)

u2 − (z1(t))
2t2

p−1
q−1 y

2(p−1)
2 u2 = 0,

where z1(t) = z(ρ). The latter equation can be turned into a stationary
semiclassical Schrödinger equation if we perform the canonical dilation

y2 = yt−
1

q−1 :

(

1− (z1(t))
2t2(r−1) q

q−1
q−p
q−r

)
1
r
λu2

− t2
q

q−1∂2
yu2 + y2(q−1)u2 − (z1(t))

2y2(p−1)u2 = 0.

Set

(4.8) h = t
q

q−1 .
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Note that t, h are small and positive for large ρ. Thus we may rewrite
the above equation as
(4.9)
[ (

1− (z2(h))
2h2(r−1) q−p

q−r

)
1
r
λ− h2∂2

y + y2(q−1) − (z2(h))
2y2(p−1)

]

u2 = 0,

where z2(h) = z1(t). One can show that there are countably many
choices for the function z2(h) in such a way that equation (4.9) has
a non zero solution in L2(R), which is a smooth rapidly decreasing
function.

First observe that the operator

−h2∂2
y + y2(q−1) − (z2(h))

2y2(p−1),

is a Schrödinger operator with a symmetric double well potential which
is not positive. We obtain a positive potential just adding its minimum

γ̂z
2 q−1
q−p

2 ,

where

γ̂ = −q − p

q − 1

(

p− 1

q − 1

)
p−1
q−p

< 0.

Equation (4.9) becomes

(4.10)
[ (

1− (z2(h))
2h2(r−1) q−p

q−r

)
1
r
λ+ γ̂z2(h)

2 q−1
q−p

− h2∂2
y + y2(q−1) − (z2(h))

2y2(p−1) − γ̂z2(h)
2 q−1
q−p

]

u = 0.

Performing the canonical dilation x → xz
1

q−p

2 —we make here the Ansatz
that z2 is positive—(4.9) becomes

(4.11)
[ (

1− (z2(h))
2h2(r−1) q−p

q−r

)
1
r
z2(h)

−2 q−1
q−pλ+ γ̂

− h2z2(h)
− 2q

q−p∂2
x + x2(q−1) − x2(p−1) − γ̂

]

u = 0.

By [6] the operator in the second line above has a discrete simple spec-

trum depending in a real analytic way on the parameter hz2(h)
− q

q−p ,
for h > 0. Let

E

(

h

z2(h)
q

q−p

)
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be one of its eigenvalues and u = u(x, h) the corresponding eigenfunc-
tion. Equation (4.11) then becomes a scalar equation

(4.12)
(

1− (z2(h))
2h2(r−1) q−p

q−r

)
1
r
z2(h)

−2 q−1
q−pλ+γ̂+E

(

h

z2(h)
q

q−p

)

= 0.

To solve the above equation, one proves that the function z2 exists and
is defined on a certain domain near the origin:

Proposition 4.1 ([3]). There is h0 > 0 such that equation (4.12)
implicitly defines a function z2 ∈ C([0, h0[) ∩ Cω(]0, h0[). In particular

z2(h) → z̃ =

(

−λ

γ̂

)
q−p

2(q−1)

> 0

when h → 0+. Therefore we may always assume that

(4.13) z2(h) ∈
[

1

2
z̃,

3

2
z̃

]

,

for h ∈ [0, h0[.

Let h0 be the quantity define in Proposition 4.1. Set h0 = ρ
( 1
q
− 1

r )
q

q−1

0 .

Choosing Mu ≥ max{ρ0, (32 z̃)
1

1−θ } we have that the function z2 is

defined for ρ ≥ Mu and that |z(ρ)| < M1−θ
u is satisfied, so that

1− z(ρ)2ρ2(θ−1) > 0.
Using some a priori estimate for Schrödinger operators with a posi-

tive double well potential as well as an upper bound for the derivatives
of the eigenfunctions (see [3]) one shows that the integral A(u) is con-
vergent and moreover

P1(x,D)A(u) = 0.

Before concluding the proof of the sharpness of the Gevrey s0 regularity
for A(u), we need to make sure that the function u = u1u2 does not
have any effect on the convergence of the integral at infinity as well as
on the Gevrey behavior of A(u).

As far as u1 is concerned, this is fairly obvious, since u1 is a rapidly
decreasing function of τ(ρ)ρ

1
rx1, where τ(ρ) is defined before equation

(4.5), and, computing this function at the origin—as we need to do—
will not affect the exponential in A(u). We are thus left with u2 =

u2(ρ
1
qx2, ρ). Even though u2 is rapidly decreasing w.r.t. ρ

1
qx2, we

still need some estimate on u2 allowing us to conclude that u2 can be
polynomially bounded in ρ, uniformly for x2 in a neighborhood of the
origin and moreover that u2(0, ρ) does not vanish for large ρ with so
high a speed to compromise the Gevrey s0 regularity.
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To this end we need an estimate of u in a classically forbidden region,
i.e. when ℏ = h

z2(h)
q

q−p
is small (ρ is large) and x is in a neighborhood

of the origin. This can be done by resorting to the following theorem
providing a lower bound for the tunneling of the solution:

Theorem 4.3 (See [61], Theorem 7.7). Let U be a neighborhood of the
origin in R. There exist positive constants C, ℏ0 such that

(4.14) ‖u‖L2(U) ≥ e−
C
ℏ ‖u‖L2(R),

for 0 < ℏ ≤ ℏ0.

To finish the proof we argue for an even eigenfunction. A similar
argument can be done for the odd eigenfunctions.

We may assume that

‖u‖L2(R) = 1, u(0, ℏ) > 0,

since u′(0, ℏ) = 0 because of its parity and if u(0, ℏ) = 0 would im-
ply that u, being a solution of a homogeneous differential equation, is
identically zero.

Moreover, since u solves

(4.15) Qℏ(x, ∂x)u = E(ℏ)u,

we have ∂2
xu(0, ℏ) > 0.

Denote by x0 = x0(ℏ) the first positive zero of V (x) − E(ℏ) =
x2(q−1) − x2(p−1) − γ̂ − E(ℏ). Note that u is strictly positive in the
interval 0 ≤ x ≤ x0. In fact, by contradiction, denoting by x̄ the first
zero of u in [0, x0], by (4.15), we may conclude that u′′ > 0 in [0, x̄[
so that the same is true for u′. Hence u(x̄, ℏ) > u(0, ℏ) > 0, which is
absurd.

By (4.15), u is strictly convex for 0 ≤ x ≤ x0 and has its minimum
at the origin and its maximum at x0.

Define y = ∂xu
u

. We have y > 0 if 0 < x ≤ x0. Then, writing y′ for
∂xy,

y′ =
V − E

ℏ2
− y2.

The function y has a maximum in the interval ]0, x0[. In fact y′(0) >
0 and y′(x0) = −y2(x0) < 0. Denote by x̄ the point where where
the maximum is attained: it lies in the interior of the interval [0, x0].
Moreover we get

y(x̄) =
(V (x̄)− E(ℏ))1/2

ℏ
.
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From the definition of y we obtain

u(0) = e−
∫ x0
0 y(s)dsu(x0) ≥ e−x0y(x̄)

1√
2x0

‖u‖L2([−x0,x0])

≥ 1√
2x0

e−
(−γ̂)1/2

ℏ e−
C
ℏ .

Here we used Theorem 4.3, x0 < 1, E(ℏ) > 0 and u is normalized. We
remark that x0(ℏ) → x̂0 > 0 when ℏ → 0+.

We are now in a position to conclude the proof of Theorem 4.2 for
an even function u2. We recall that

ℏ = O

(

ρ(
1
q
− 1

r )
q

q−1

)

= O
(

ρ−κ
)

.

Compute

(−Dx4)
k∂ε

x1
A(u)(0) =

∫ +∞

Mu

e−ρθρk+
ε
r τ(ρ)ε∂εu1(0)u2(0, ρ)dρ

≥ ∂εu1(0)C

∫ +∞

Mu

e−ρθ−C1ρκτ(ρ)ερk+
ε
r dρ ≥ Ck+1

2 k!s0 ,

where ε = 0 or 1 if u1 is even or odd respectively and

κ =

(

1

r
− 1

q

)

q

q − 1
< θ.

The last inequality above holds since

∫ +∞

Mu

e−ρθ−C1ρκτ(ρ)ερk+
ε
r dρ ≥ Cτ

∫ +∞

Mu

e−cρθρkdρ

= −Cτ

∫ Mu

0

e−cρθρkdρ+ Ck+1
2 k!s0

≥ Ck+1
2 k!s0

(

1− CτC
−(k+1)
2 Mue

−cMθ
u
Mk

u

k!s0

)

≥ Ck+1
3 k!s0 ,

if k is suitably large and C3 is suitable.

We emphasize that in a global (or semiglobal) setting the operator P1

may be analytic hypoelliptic, suggesting that analytic hypoellipticity
might be a consequence of the spectral behavior of some operator.
Concerning this we cite the following theorem by Chinni [17]:

Theorem 4.4 ([17]). Let

P1(x,D) = D2
1 +D2

2 + a2(x1)
(

D2
3 +D2

4

)

+ b21(x2)D
2
3 + b22(x2)D

2
4,
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defined on T4, where a, b1, b2 are real valued real analytic functions not
identically zero. Then, given any subinterval I ⊂ T2

x′, x′ = (x1, x2),
and given any u ∈ D ′(I × T2

x′′), x′′ = (x3, x4), the condition P1u ∈
Cω(I × T2

x′′) implies u ∈ Cω(I × T2
x′′).

We note that the same phenomenon of Theorem 4.2 occurs when the
Treves conjecture gives a more complicated stratification. Consider for
example the following operator

(4.16) P (x,D) = D2
1 + x

2(ℓ+r−1)
1

(

D2
3 +D2

4

)

+ x2ℓ
1

[

D2
2 + x

2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4

]

,

where ℓ, r, p, q ∈ N, 1 < r < p < q, and x = (x1, . . . , x4) ∈ R4.
Hörmander’s condition is satisfied by P and thus P is C∞ hypoel-

liptic.
The characteristic manifold of P is the real analytic manifold

(4.17) Char(P ) =
{

(x, ξ) ∈ T ∗R4 \ {0} |
ξ1 = 0, x1 = 0, ξ22 + ξ23 + ξ24 > 0

}

.

According to Treves conjecture one has to look at the strata associated
with P .

The stratification associated with P is made up of two symplectic
strata:

a -

Σ1 =

{

(0, x2, x3, x4; 0, ξ2, ξ3, ξ4) |ξ22 + x2
2 > 0,

4
∑

j=2

ξ2j > 0

}

.

This is a symplectic stratum and the restriction of the symplec-
tic form to it has rank 6.

b -
Σ2 =

{

(0, 0, x3, x4; 0, 0, ξ3, ξ4) | ξ23 + ξ24 > 0
}

.

This is also a symplectic stratum and the restriction of the
symplectic form to it has rank 4.

According to the conjecture we would expect local real analyticity near
the origin for the distribution solutions, u, of Pu = f , with a real
analytic right hand side.

The following theorem holds

Theorem 4.5 ([10]). Let

1

sℓ
=

ℓ+ 1

ℓ+ r
+

r − 1

ℓ+ r

p− 1

q − 1
.
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Then P is locally Gevrey sℓ hypoelliptic and not better near the origin.

Note that for ℓ = 0 sℓ coincides with s0 of Theorem 4.2.
We also would like to mention the following result: let r, p, q and k

be positive integers such that r < p < q. Consider the sum of squares
operator in R4, obtained adding the square of the vector field xp−1

2 xk
3D4

to the operator in (4.3),

P (x,D) = D2
1 +D2

2 + x
2(r−1)
1 D2

3 + x
2(r−1)
1 D2

4 + x
2(p−1)
2 D2

3

+ x
2(p−1)
2 x2k

3 D2
4 + x

2(q−1)
2 D2

4

(4.18)

The characteristic variety of P is actually the real analytic manifold

Char(P ) = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ23 + ξ24 > 0},
which is a symplectic manifold. Actually Char(P ) = Char(P1).

We have

Theorem 4.6 ([11]). The operator P in (4.18) is analytic hypoelliptic.

The theorem above as well as the choice of the operator P are worth
some explanation.

The operator P1 in (4.3) is a counterexample to Treves conjecture.
Actually the stratification associated to P1 in the statement of the
conjecture is made of the sole stratum

Char(P1) = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ23 + ξ24 > 0} = Char(P ).

An inspection of the proof though, shows that the real analytic sub-
manifold

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 6= 0}
is important for the Gevrey regularity of P1 because of the presence
of the vector field xp−1

2 D3. This remark would lead us to consider the
characteristic set Char(P1) as the disjoint union of the following two
analytic strata

Σ0 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 6= 0},

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 6= 0}.
Actually Σ1 is non symplectic and has Hamilton leaves which are the
x3 lines where the propagation of the Gevrey–s0 wave front set oc-
curs. Hence we might think of Σ1 as a “non Treves stratum” where the
existence of Hamilton leaves implies non analytic regularity.

We must make it clear though that, to our knowledge, there is neither
a replacement conjecture nor an alternative definition of stratification.
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The model operator P is such that, even though almost all the prop-
erties of P1, as far as the Treves stratification is concerned, are retained,
the manifold Σ1 is replaced by

(4.19) Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, 3, ξ4 6= 0},
due to the presence in P of both vector fields xp−1

2 D3 and xp−1
2 xk

3D3.
We point out that in this case Σ1 is a symplectic submanifold and hence
has no Hamilton leaves.

In other words it seems that the analytic regularity of a sum of
squares should depend on a suitable stratification of the characteristic
variety of the operator and on the fact that its strata are analytic
symplectic manifolds.

Unfortunately we cannot be more precise on this at the moment.

5. Open problems

5.1. The 2 dimensional case. Let us consider a sum of squares op-
erator in R2. Denote by (x, y) the variables in R2:

(5.1) P (x, y,Dx, Dy) =
N
∑

j=1

X2
j (x, y,Dx, Dy).

Without loss of generality we may suppose we are working in a neigh-
borhood of the origin, Ω, and that X1 = Dx.

Thus one of the equations of the characteristic variety is ξ = 0. For
j ≥ 2 we may then write Xj(x, y, ξ, η) = aj(x, y)ξ + bj(x, y)η. Since
η 6= 0 we find that the other relations describing the characteristic
variety are bj(x, y) = 0, where the bj are real analytic functions defined
in Ω.

Since we are assuming that Hörmander condition is satisfied, we
may suppose that (0, 0) is a point of the characteristic variety and
that, possibly shrinking Ω, there is an index j, 2 ≤ j ≤ N , such that
∂m
x bj(0, 0) 6= 0; here m is minimal, i.e. ∂k

xbj(0, 0) = 0 when 2 ≤ j ≤ N
and k < m. It is also evident that X1 = Dx is the only field that we
can meaningfully use to form brackets of vector fields, i.e. we have to
consider only brackets of the form ad(X1)

kXj, since any other vector
field has a vanishing coefficient in front (see also [14].)

Set

f(x, y) =
N
∑

j=2

(bj(x, y))
2.

The characteristic variety of P is then given by

Char(P ) = {(x, y; 0, η) | η 6= 0, f(x, y) = 0}.
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We apply Weierstraß preparation theorem to f and write

f(x, y) = e(x, y)

(

x2m +
2m
∑

ℓ=1

aℓ(y)x
2m−ℓ

)

,

where e(0, 0) 6= 0 is a Cω function, aℓ(0) = 0 for every ℓ = 1, . . . , 2m.
Since e is different from zero, we may replace f by the Weierstraß
polynomial above, because they define the same variety. Let us denote
it by q(x, y).

Definition 5.1 ([41], [60]). We say that a polynomial of the form

q(z′, zn) = zmn +
m
∑

k=1

ak(z
′)zm−k

n ,

z = (z′, zn) ∈ U open subset of Cn, 0 ∈ U , ak ∈ O(U), holomorphic
functions on U such that ak(0) = 0 for every k is a Weierstraß type
polynomial of degree m.

We have the following theorem

Theorem 5.1 ([41], [60]). Let f be a holomorphic function defined in
a neighborhood of the origin, U ⊂ Cn. Suppose that f(0, . . . , 0, zn) 6≡
0 in U . Then there exists a Weierstraß type polynomial, q#, whose
discriminant is not identically zero in U and such that f = 0 iff q# = 0.

Same statement for a real analytic case.

Denote by D#(y) = discr q#. We have that D# ∈ Cω(π2(U)), where
π2 is the projection onto the y–axis.

As a consequence D−1
# (0) = {y1, . . . , yν}, for a certain ν ∈ N. Let

m# = deg q# and denote by ρ1, . . . , ρm# the roots (real or complex) of
q#. For every j ∈ {1, . . . , ν}, there are at least two indices, i1, i2 in the
range {1, . . . ,m#} such that ρi1(yj) = ρi2(yj). We set

(5.2) ρ̃j = (xi1 , yj), xi1 = ρi1(yj), j = 1, . . . , ν.

Definition 5.2. We call ρ̃j a branching point of f−1(0). Denote by
B(U) the set of branching points in U .

The above described facts determine the stratification. There are
two cases:

(a) The set B(U) is empty. This means that the roots of q# are
simple and have the form x = ρk(y), k = 1, . . . ,m#. Since,
according to our assumption, (0, 0) ∈ f−1(0), we deduce that
there is only one k ∈ {1, . . . ,m#} such that ρk(0) = 0. Possibly
shrinking U we obtain that f has the form

f(x, y) = ẽ(x, y)(x− ρ(y))2m
′

, ẽ(0, 0) 6= 0, m′ ≤ m.
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ρ̃1

ρ̃2

Figure 1. An example of f−1(0) near (0, 0) = ρ̃1

The characteristic variety of P is then symplectic and P is an-
alytic hypoelliptic. This has been proved by Ōkaji, [48], and
Cordaro and Hanges, [21], for operators where f has the above
form.

(b) The set B(U) is not empty. Then we may always shrink the
neighborhood U so that the origin—or ρ̃1 is the only branching
point in U . Then f has the form

f(x, y) = ẽ(x, y)
m′

∏

j=1

(x− ρj(y))
mj ,

and ρj(y) 6= ρk(y) if y 6= 0, but ρj(0) = 0 for every j, m′ ≤ m#,
ẽ(0, 0) 6= 0.

The deeper stratum is

Σ1 = {(0, 0; 0, η) | η 6= 0},

as we can see by taking derivatives of f with respect to x.
Char(P )\Σ1 is a union of disjoint arcs of Cω curves of the form

{(x, y, 0, η) | η 6= 0, (x, y) 6= (0, 0), x = ρj(y)},

which gives simplectic strata at each point of which we get real
analyticity.

Thus it seems that the Treves stratification completely describes all
possible situations in two dimensions. The problem of the non analytic
hypoellipticity of P in case (b) as well as the problem of its (optimal)
Gevrey regularity are open (see [14] for a particular case.)
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We explicitly note that proving that in case (b) there is no analytic
hypoellipticity amounts to proving that the Treves conjecture holds in
dimension two.

5.2. The 3 dimensional case. There are no known counterexamples
to the Treves conjecture in dimension 3. However in [12] some examples
have been proposed that should violate the conjecture. We briefly
describe those models in this section.

Let x ∈ R2, y ∈ R, a, p, q, r be positive integers. We shall specify
later the relation between these integers. Define

(5.3) Q(x, y,Dx, Dy) = D2
1+D2

2+x
2(r−1)
2 D2

y+x
2(q−1)
1 D2

y+x
2(p−1)
1 y2aD2

y.

If we assume that 1 < p < q < r, the Lie algebra is generated
with brackets of length m = q − 1. The characteristic manifold is
{(0, 0, y; 0, 0, η) | η 6= 0}.

Looking at the powers of the monomials in x, we can draw a (convex)
Newton polygon in the x-plane; the precise definition of Newton poly-
gon is given in [12], but, in three variables, it is just a segment—the
red line in the figures below. When the powers of x having a possibly
degenerate coefficient are added to the picture we obtain
where the dashed line has slope −1 and starts from the vertex closest
to the origin, the triangle underneath the dashed line has points corre-
sponding to monomials where the Treves stratification identifies a non
symplectic stratum.

In [12] it is proved that

Theorem 5.2. The operator Q in (5.3) is Gevrey s hypoelliptic for

s ≥
(

1− 1

a

p− 1

q

)−1

.

There is no proof of the optimality of the above index; we believe
that it is optimal, due to the fact that Theorem 5.2 is a particular case
of a result proved in [12], which, in the known cases, gives optimal
values.

Let us now consider the operator Q in (5.3) when 1 < r < p <
q. If, as we did before, we draw the Newton polygon for Q and add
to the picture the dots corresponding to degenerate monomials (i.e.
monomials having coefficients containing powers of y) we obtain

In [12] it is proved that, in the latter case, Q is Gevrey s hypoelliptic
for

(5.4) s ≥
(

1− 1

a
· q − p

q − 1
· r − 1

r

)−1

.
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T region

non T region

p− 1 q − 1

r − 1

Figure 2. The Newton polygon for Q in (5.3) when
1 < p < q < r

On the other hand Q has a symplectic characteristic manifold: Char(Q)
= {x = ξ = 0, η 6= 0} and no strata are found using the Poisson brack-
ets of the fields, so that according to the conjecture it should be analytic
hypoelliptic. We believe that the Gevrey regularity in (5.4) is optimal,
based on the striking similarity of Q with the operator discussed in [3]
which violates the conjecture. Actually the main difference between Q
and the operator in [3] consists in the fact that the putative stratum
is a non symplectic “stratum” whose Hamilton leaf lies on the fiber of
the cotangent bundle.

At the moment we have no optimality proof for the Gevrey regularity
(5.4) of Q both in the case of Figure 2 and of Figure 3. We also remark
that the optimality of (5.4) would imply that the Treves conjecture
does not hold in dimension 3.

Even though for the case considered in [12] the Newton polygon helps
in identifying a (non symplectic) stratum in the three variables case,
we would like to point out that this is not the case when the vector
fields are not monomials. Here are two examples:

(5.5) Q1 = D2
1 +D2

2 + (x1 − x2
2)

2D2
y + (y2x3

1 + x4
2)

2D2
y
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T region

non T region

p− 1 q − 1

r − 1

Figure 3. The Newton polygon for Q when 1 < r < p < q

and

(5.6) Q2 = D2
1 +D2

2 + (x1 − x2
2)

2D2
y + (x3

1 + y2x4
2)

2D2
y.

It is easy to show that

Char(Qj) = {(0, 0, y; 0, 0, η) | η 6= 0},
i.e. a symplectic manifold.

One can prove, using the L2 estimate , that Q1 is analytic hypoel-
liptic. Unfortunately the same proof does not work for Q2. We believe
that Q2 has a non symplectic non Treves stratum, and hence is not
analytic hypoelliptic. No proof is known.

A similar model is

(5.7) Q3 = D2
1 +D2

2 + (yxℓ
1 + xm

2 )
2D2

y + x2k
1 D2

y.

We can show that

Q3 is analytic hypoelliptic if

{

m = 1,

ℓ ≥ k.

On the other hand we believe that Q3 is not analytic hypoelliptic when
m > 1 and ℓ < k even though there is no proof of this fact. Note that,
depending on the relations between m and k we may or may not have
a Treves non symplectic stratum.
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5.3. The case of dimension n ≥ 3. Finally let us consider the “gen-
eral” case, i.e. the case of dimension n. Even though we have seen a
number of examples where the Treves stratification does not identify a
non symplectic stratum, while the operator is not analytic hypoelliptic,
like those of Theorem 4.2 and 4.5, we think that the important idea in
the formulation of the conjecture is the quest for a stratification.

Actually the stratification associated to P1 in (4.3), is made of the
sole stratum

Char(P1) = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ23 + ξ24 > 0}.

An inspection of the proof though, shows that the real analytic sub-
manifold

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 6= 0}

is important for the Gevrey regularity of P1 because of the presence of
the vector field X5 = xp−1

2 D3. This remark would lead us to consider
the characteristic set Char(P1) as the disjoint union of the following
two analytic strata

Σ0 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 6= 0},

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 6= 0}.

Σ1 is non symplectic and has Hamilton leaves which are the x3 lines
where the propagation of the Gevrey–s0 wave front set occurs. Hence
we might think of Σ1 as a “non Treves stratum” where the existence of
Hamilton leaves implies non analytic regularity.

Somewhat symmetrically the analog of Σ1 for the operator P of
(4.18) turns out to be symplectic.

The following question has, to our knowledge, received no answer
yet:

Problem 5.1. Define a stratification of the characteristic variety in
real analytic manifolds such that when each stratum is a symplectic
manifold then the operator in analytic hypoelliptic.

This would allow to reformulate, regardless of the local or microlocal
aspect of the question, Treves conjecture as

Conjecture 5.2. A sum of squares operator with real analytic coeffi-
cients is analytic hypoelliptic if and only if every stratum of the strati-
fication is a symplectic real analytic manifold.
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