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In this paper, we propose a fast and scalable, yet effective, metaheuristic called FILO to solve large-scale

instances of the Capacitated Vehicle Routing Problem. Our approach consists of a main iterative part,

based on the Iterated Local Search paradigm, which employs a carefully designed combination of existing

acceleration techniques, as well as novel strategies to keep the optimization localized, controlled and tailored

to the current instance and solution. A Simulated Annealing-based neighbor acceptance criterion is used to

obtain a continuous diversification, to ensure the exploration of different regions of the search space. Results

on extensively studied benchmark instances from the literature, supported by a thorough analysis of the

algorithm’s main components, show the effectiveness of the proposed design choices, making FILO highly

competitive with existing state-of-the-art algorithms, both in terms of computing time and solution quality.

Finally, guidelines for possible efficient implementations, algorithm source code and a library of reusable

components are open-sourced to allow reproduction of our results and promote further investigations.

Key words : Capacitated Vehicle Routing Problem, Metaheuristics, Acceleration Techniques, Large-Scale

Instances

1. Introduction
The Capacitated Vehicle Routing Problem (CVRP) has been studied for several decades but still

remains a challenging problem to solve in practice. Recently, several new benchmark instances

having large and very large scale of this fundamental problem (see X dataset, Uchoa et al. (2017)

and B dataset, Arnold, Gendreau, and Sörensen (2019)) have brought it into focus again in the

vehicle routing scene. The careful design and implementation of solution algorithms becomes of

primary importance when dealing with large instances. Failing to find the best tradeoff between

effectiveness and efficiency has dramatic effects which are much more noticeable than when dealing

with smaller instances. While computer memory capacity is a less pressing problem every year,
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finding a solution of satisfactory quality within a reasonable computing time still remains the real

challenge: algorithm designers cannot rely on continuous increments in the working frequency of

future processors. Processing units have, in fact, almost hit their maximum physical speed. New

chips are moving towards massive parallelization (see Etiemble (2018)), possibly initiating an age

of new algorithms that make use of concurrent decomposition techniques.

The CVRP can be described by using an undirected graph G= (V,E) where V is the vertex set

and E is the edge set. The vertex set V is partitioned into V = {0} ∪ Vc where 0 is the depot and

Vc = {1, . . . ,N} is a set of N customers. A cost cij is associated with each edge (i, j)∈E. Moreover,

we assume that the cost matrix c satisfies the triangle inequality. For a vertex i ∈ V and a subset

of vertices V ′ ∈ V , we identify with N k
i (V ′) the set of the k nearest neighbor vertices j ∈ V ′ of i

with respect to the cost matrix c. The set N k
i (V ′) is shortened to Ni(V ′) for the case k= |V ′|. Each

customer i ∈ Vc requires an integer quantity qi > 0 from the depot, and q0 = 0. An unlimited fleet

of homogeneous vehicles with capacity Q is located at the depot available to serve the customers.

Recalling that a Hamiltonian circuit is a closed cycle visiting a set of customers exactly once, a

CVRP solution S is composed of a number |S| of Hamiltonian circuits, called routes, starting from

the depot, visiting a subset of customers and coming back to the depot. We identify with ri the

route of load qri serving customer i ∈ Vc. A solution is feasible if all customers are visited exactly

once and none of the vehicles exceed its capacity. The cost of a solution S is given by the sum of

the cost of the edges defining the routes of S. Finally, the CVRP goal is to find the feasible solution

with the minimum cost.

A rough analysis of the computing time, normalized to be comparable, of three of the current

state-of-the-art CVRP algorithms having a termination criterion based on the number of iterations

is shown in Figure 1. Algorithms using a time-based termination criterion are not included because

they are not comparable. In fact, even if such an approach were preferable in practice, it may not

be the best in comparison settings due to the high variability in the number of steps executed by

the algorithm (even occurring within the same hardware configuration), which may harm the repro-

ducibility of final solutions; see Johnson (1999). Moreover, as described in Chapter 4 of Toth and

Vigo (2003), computing time is just one among many, seldom conflicting, dimensions characterizing

heuristic solution approaches. The quality of the solutions is often another of the most obvious

criteria used to assess algorithm quality. In addition, scalability with respect to the instance size is

another very valuable quality, especially when moving to very large-scale instances. Figure 1 shows

that these algorithms often exhibit a non-linear growth of the computing time that may, in their cur-

rent state, undermine their applicability to large-scale instances within a reasonable computational

effort. This growth is the main motivation of our research.
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Figure 1 Computing time growth trends for state-of-the-art CVRP algorithms proposed for the X dataset by Uchoa

et al. (2017).

The challenge we faced in this research was to design an effective and scalable heuristic approach

to the CVRP that can solve, in reasonable computing times, very large-scale instances without

an explicit instance decomposition. We reviewed and adapted existing local search acceleration

techniques and introduced new strategies to keep the optimization localized, controlled, and tailored

to the current instance and solution. The result is a well-defined and cohesive solution method.

In fact, local search acceleration techniques represent a very promising direction in the design

of scalable algorithms that are efficient but still retain their effectiveness. The local search compo-

nent, for a local search-based solution method, is typically one of the most time-consuming. Naive

implementations, e.g., those built on full neighbor enumeration, fail to be competitive even for

medium-sized instances. Among the most popular acceleration techniques, Granular Neighborhoods
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(GNs), proposed by Toth and Vigo (2003), define a heuristic filtering of less promising neighbors.

This approach has been experimentally shown to provide an excellent compromise between comput-

ing time and solution quality; see, e.g., Toth and Vigo (2003), Zachariadis and Kiranoudis (2010),

Schneider, Schwahn, and Vigo (2017), Accorsi and Vigo (2020). The Sequential Search proposed by

Irnich, Funke, and Grünert (2006) breaks a local search move into basic blocks called partial moves.

The execution of those partial moves can be aborted if certain conditions are met, thus pruning in

advance a non-promising local search move. Finally, Static Move Descriptors (SMD), introduced by

Zachariadis and Kiranoudis (2010) and later improved by Beek et al. (2018), provide a data-oriented

approach to the local search execution that avoids unnecessary evaluations by exploiting the locality

of a local search move application.

Successful CVRP algorithms for large-scale instances typically make use of acceleration techniques

and ad-hoc data structures to support their optimization process. Kytöjoki et al. (2007) have devised

a Variable Neighborhood Search (VNS, see Mladenović and Hansen (1997)) algorithm combined with

the Guided Local Search metaheuristic (GLS, see Voudouris and Tsang (1999)) to escape from local

optima by accepting moves that worsen the solution value according to certain solution features.

Their method is able to solve problems with up to twenty thousand customers in short computing

times by using a number of implementation techniques to reduce memory utilization (e.g., storing

compact representations for the cost matrix) and speeding up the computation with appropriate

data structures and smart pre-processing. Zachariadis and Kiranoudis (2010) propose a Tabu Search

metaheuristic (TS, see Glover (1989)) based on the SMD concepts in which a penalization strategy is

used to diversify the search process. The method is able to solve problems with up to three thousand

customers by exploiting the acceleration role of the SMD and a neighborhood reduction policy

similar to the GN concept. Finally, Arnold, Gendreau, and Sörensen (2019) propose an adaptation

for very large instances, having up to thirty thousand customers, of the algorithm introduced in

Arnold and Sörensen (2019), consisting of a local search-based approach using a GLS metaheuristic

enhanced by knowledge extracted from previous data mining analyses. The authors reduce the

computing time and space requirements by limiting the amount of information stored and using

pruning and sequential search techniques.

The algorithm described in this paper, called FILO, consists of a main iterative part based on the

Iterated Local Search paradigm, coupled with a Simulated Annealing-based neighbor acceptance

criterion to obtain a continuous diversification aimed at exploring diversified regions of the search

space. Our approach makes use of GNs and SMDs to speed up the local search executions, together

with other newly introduced concepts to keep the optimization localized, controlled, and tailored

to the current instance and solution. The main design contributions, embedded into the proposed

solution algorithm, are the following:
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• We extend the move generator concept introduced in Schneider, Schwahn, and Vigo (2017) to

support a dynamic, fine-grained management to intensify the local search only in areas that

are more likely to require a more accurate optimization process, such as parts of the solution

that were not improved after several attempts.

• We introduce a selective caching of vertices to identify solution parts that are more likely to

be relevant for forthcoming decisions (e.g., because they were changed more recently). This

technique is used to selectively optimize restricted solution areas.

• We develop a semi-structured organization of local search operators to achieve the best com-

promise between diversification and intensification, likelihood of escaping from local optima,

and execution time.

• We refine the integration of GNs and SMDs in light of the above concepts. We also provide

guidelines on the implementations of local search operators that (to the best of our knowledge)

were never encoded into the SMD framework, such as the general CROSS-exchange (see Taillard

et al. (1997)) and the ejection-chain (see Glover (1996)) operators.

• We detail a strategy to iteratively adapt the strength of a compatible shaking procedure based

on the quality and structure of instances and solutions.

Finally, as the result of a thorough analysis we are able to combine the above defined concepts to

obtain a fast, scalable, and effective CVRP solution algorithm.

The paper is structured as follows. Section 2 describes the details of our solution approach. Section

3 provides the experimental results, and Section 4 offers an experimental analysis of the algorithm

components. Finally, the Appendix contains supplemental material covering implementation details.

2. Solution Approach

The metaheuristic we propose, whose high-level pseudocode is shown in Algorithm 1, consists of a

construction phase (Line 3), which builds an initial feasible solution using a restricted version of the

savings algorithm (see Clarke and Wright (1964)). Then, it follows an improvement phase (Lines

4-6) aimed at further enhancing the initial solution quality. More precisely, the improvement phase

may first employ a route minimization procedure, to possibly reduce the number of routes in the

initial solution when it is considered to be using more routes than necessary. A core optimization

procedure, which is the central part of our algorithm, then uses an iterative, and localized optimiza-

tion scheme to further improve the solution quality. Both route minimization and core optimization

follow the Iterated Local Search paradigm (ILS, see Lourenço, Martin, and Stützle (2003)) in which

shakings, performed in a ruin-and-recreate fashion (see Schrimpf et al. (2000)), and local search

applications interleave for a prefixed number of iterations. The result is a Fast ILS Localized Opti-

mization algorithm, shortened to FILO. The following paragraphs provide a detailed description of
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the algorithm, which is the outcome of an iterative design process based on the analyses described in

Section 4. In particular, we first describe the construction phase, then the local search engine, which

is a central component of the improvement phase, and finally, the section ends with the definition

of the improvement procedures.

Algorithm 1 High-level FILO structure
1: procedure filo(I, s)

2: R←RandomEngine(s)

3: S←Construction()

4: k←GreedyRoutesEstimate(I)

5: if |S|>k then S←RouteMin(S,R)

6: S←CoreOpt(S,R)

7: return S

8: end procedure

Notation: I instance, s seed

2.1. Construction

The initial solution is built using an adaptation of the well-known savings algorithm by Clarke and

Wright (1964). As was already shown by other authors (see, e.g., Arnold, Gendreau, and Sörensen

(2019)), the savings computation, which is quadratic in nature, can be linearized by considering

for each customer i ∈ Vc a restricted number ncw of neighbors j ∈ N ncw
i (Vc) for which the saving

value is computed. By limiting the number of savings, one can speed up the construction process

without significantly harming the quality and compactness (i.e., the number of routes) of initial

solutions especially when working with very large-scale instances. Note in addition that, since the

construction phase is executed only once per run, over-optimizing it does not substantially contribute

to the efficiency of the whole algorithm. As suggested in Arnold, Gendreau, and Sörensen (2019),

we set ncw = 100, and we compute the savings values for the arcs connecting each customer i to its

ncw neighbor customers j using a lexicographic order for the customers so as to avoid symmetries.

More precisely, this set is given by the arcs {(i, j) : i ∈ Vc, j ∈ N ncw
i ({j ∈ Vc : i < j})}. In fact, as

reported in Section 4.1, larger ncw values did not create significant differences either in the quality

or compactness of the solutions.

2.2. Local Search Engine

Improvement procedures are designed around a complex local search engine making use of a tight

integration of GNs, SMDs, and a novel selective vertex caching whose details are described in

Sections 2.2.2 to 2.2.4. The result is a very fast and extremely localized local search execution,

exploring neighborhoods induced by the following operators:
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• an exchange of a contiguous sequence, or path, of n vertices with another path of m vertices

belonging either to the same or a different route, see CROSS-exchange, Taillard et al. (1997).

In the following this exchange is referred to as nmex. For example, 21ex identifies the case

in which n = 2 and m = 1. In particular, we implement the neighborhoods associated with

n,m= 0, . . . ,3 such that n≥m and nmex is equivalent to mnex;

• variants for 20ex, 21ex, 22ex, 30ex, 31ex, 32ex and 33ex, in which the first path of n vertices

is reversed before being exchanged, called nmrex;

• variants for 22ex, 32ex and 33ex, in which both paths are reversed before being exchanged,

called nmrex∗;

• an intra-route 2-opt procedure, called twopt, as it is designed for the Traveling Salesman

Problem, see Reinelt and Rinaldi (1994);

• two inter-route adaptations of the 2-opt procedure, called tail and split, both working on

two different routes at a time. By denoting with head, a path of vertices belonging to the initial

part of a route, and with tail, a path of vertices belonging to the final part of a route, tail

swaps the tail of the two involved routes at some point, whereas split cuts the two routes

at some point, then it replaces the tail of the first route with the reversed head of the second

route and the head of the second route with the reversed tail of the first route;

• finally, an ejection-chain procedure, called ejch, implementing the first improving sequence of

10ex, found by exploring a restricted number of sequences. That is, starting from an initial

10ex, a tree of at most nEC nodes representing partial sequences is built. The sequence with the

most improving value is always explored first, and a number of relocations (10ex) are generated

by ejecting customers that restore the feasibility of the current route sequence endpoint. A 10ex

may visit the same route more than once and no limit on the length of a sequence is imposed.

As soon as a sequence is found to restore the feasibility of the target route, the associated 10ex

exchanges are implemented. For more details, see Appendix B.3.8.

The above operators are structured in a Hierarchical Randomized Variable Neighborhood Descent

(see Section 2.2.1), whose aim is to define a balanced combination of intensification-diversification,

likelihood of escaping from local optima, and execution efficiency.

The next paragraphs provide a detailed description of the individual components of the local

search engine that are extensively used in both improvement procedures. Finally, the section ends

with characterizations of the route minimization and core optimization.

2.2.1. Hierarchical Randomized Variable Neighborhood Descent. We propose a local

search architecture based on a combination of the Variable Neighborhood Descent (VND, see, e.g.,

Duarte et al. (2018)) and the Randomized VND (RVND, see, e.g., Subramanian, Uchoa, and Ochi
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(2013)) principles. Both VND and RVND consider a set of local search operators that are sequentially

applied to a solution S, generating a so-called neighborhood of S containing a number of neighbor

solutions, or simply neighbors, of S. The key difference between VND and RVND is the criterion

defining the order in which those operators are applied.

In the VND, operators are generally sorted in increasing neighborhood cardinality, with larger

neighborhoods possibly including smaller ones. A typical example is a sequence of k-opt operators,

with k = 2,3, . . . , `. This order has an efficiency purpose, because smaller neighborhoods are faster

to explore, and a functional purpose, because larger neighborhoods are used to escape from the local

optima of smaller ones. Whenever an improving neighbor is found, the search is restarted from the

initial smallest neighborhood.

In contrast, in the RVND, the sequence of operators is randomly shuffled before each local search

execution. This approach is used when neighborhoods induced by local search operators are not

related one to another or have the same cardinality, because there are no well-defined guidelines

providing hints about the order that will eventually lead to the best possible outcome. Relying on

randomness is thus a reasonable approach that does not bias the search towards any operator, pro-

vides a natural diversification that still improves the objective function, and prevents the designers

from enforcing a neighborhood exploration order that might not be ideal. When an improvement is

found, all the operators are re-considered (after possibly being re-shuffled).

The Hierarchical RVND (HRVND) we propose mixes the two principles by defining a slightly more

structured neighborhood exploration strategy, in which the operator order is neither completely

random nor fixed a priori. More precisely, local search operators are arranged in tiers. Each tier

is a compound operator that applies its subset of local search operators by following the RVND

principles. The overall HRVND links the tiers together once they have been ordered according to the

criteria defined by the VND, such as the overall computational complexity of the operators involved

in the tier. The HRVND can thus be seen as a standard VND in which each tier is a compound

local search operator and where successively more expensive tiers are used to escape from the local

optima of the previous ones.

The proposed HRVND local search applies the operators described in Section 2.2 organized in the

following two tiers: (i) 10ex, 11ex, split, tails, twopt, 20ex, 21ex, 22ex, 20rex, 21rex, 22rex,

22rex∗, 30ex, 31ex, 32ex, 33ex, 30rex, 31rex, 32rex, 33rex, 32rex∗ and 33rex∗, and (ii) ejch.

The first tier contains operators defining neighborhoods of quadratic cardinality and having very

similar execution times; whereas the second tier contains the most expensive operator employed by

the local search engine. More details about computing times and improving power are provided in

the analysis in Section 4.2 and in Section A.2 of the Appendix.
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Algorithm 2 HRVND tier application
1: procedure TierApplication(S,O,R)

2: O← Shuffle(O,R)

3: e← 0, c← 0

4: repeat

5: S′←Apply(Oc, S)

6: if Cost(S′)<Cost(S) then S← S′, e← c

7: c← (c+ 1) mod Length(O)

8: until c 6= e

9: return S

10: end procedure

Notation: O list of tier operators, Oc operator in position c, R random engine.

Each tier stores its operators in a circular list which is shuffled before the application (see

Algorithm 2). The neighborhood associated with an operator is completely explored and all the

improvements are applied before moving to the next operator on the list. More details about the

neighborhood exploration are given in Section 2.2.3 and in Section B.2 of the Appendix. The next

tier is only applied when the solution is a local optimum for the previous tiers. Moreover, as in

the standard VND setting, if the solution improved after a complete tier execution, the search is

restarted from the initial tier (see Algorithm 3).

Algorithm 3 HRVND application
1: procedure hrvnd(S,T ,R)

2: e← 0

3: repeat

4: S′←TierApplication(S,Te,R)

5: if Cost(S′)<Cost(S)∧ e > 0 then

6: S← S′, e← 0

7: else

8: e← e+ 1

9: end if

10: until e <Length(T )

11: return S

12: end procedure

Notation: T list of tiers, Te operators in tier indexed e, R random engine

2.2.2. Move Generators and Granular Neighborhoods. A move generator (i, j) ∈ E is

an arc that, as the name suggests, is used to generate and identify a unique move in a local search

context. In Toth and Vigo (2003), a set T of move generators is used to define a restricted local search
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neighborhood, also known as a granular neighborhood (GN), containing a subset of the possible

moves associated with a local search operator.

One way to select the arcs of interest is to use a sparsification rule. For example, in Toth and Vigo

(2003) and Accorsi and Vigo (2020), arcs are chosen if their cost is below a given threshold, while

in Schneider, Schwahn, and Vigo (2017), the reduced cost coming from a simple relaxation is used

for the same purpose. Performing a local search by considering moves induced by move generators

in T only allows to linearize the search time to O(|T |).

In our approach, to speed up the local search execution, all neighborhoods induced by local search

operators are implemented as GNs.

We define the set T of move generators to contain all arcs connecting a vertex i∈ V to its ngs = 25

nearest vertices. More precisely, the set T = ∪i∈V {(i, j), (j, i) ∈ E : j ∈ N ngs
i (V r {i})}. Note that

move generators are described by arcs instead of edges. In fact, a GN is said to be asymmetric if

the move induced by (i, j) is different from that induced by (j, i), and symmetric otherwise. All the

local search operators we considered, with the exception of twopt and split, identify asymmetric

GNs. The defined sparsification rule comes directly from the original GN definition by Toth and

Vigo (2003), where the emphasis was on trying to replace long edges with short ones. However, in

their work the sparsification is based on a cost rule selecting all edges having a cost lower than a

given threshold, while here we adopt a nearest-neighbor rule that ensures a minimum number of

move generators involving any vertex. A cost rule may in fact not be well suited when the standard

deviation among arc costs is high, e.g., in clustered instances, and may cause several vertices not to

have any move generator associated with them when the threshold is very low.

As described in previous works such as those by Schneider, Schwahn, and Vigo (2017) and Accorsi

and Vigo (2020), by using an additional value called a sparsification factor, one could further filter

the set of move generators according to some criteria, typically based on the arc cost, resulting in a

dynamic GN based on a dynamic set of active move generators. In the following, a move generator

is said to be active when selected by the current sparsification factor.

In our implementation, instead of using a single sparsification factor, we propose a more fine-

grained management of dynamic move generators by means of a vertex-wise sparsification factor

γi ∈ [0,1] for each vertex i∈ V . The dynamic set of active move generators for a sparsification vector

γ = (γ0, γ1, . . . , γN) is identified by T γ =∪i∈V {(i, j), (j, i)∈E : j ∈N ki
i (V r{i})} and ki = bγi ·ngse,

where bxe denotes the nearest integer to x. Because the local search is indeed local, precise control

over the move generators may allow the search to be tailored for specific areas where it is more

needed. For example, the number of move generators may be increased for a part of the solution in

which no (local) improvement has happened after several search attempts. Because GNs are used
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in both improvement procedures, the precise description of the sparsification vector γ management

is detailed in their respective sections.

Finally, several papers (e.g., Schneider, Schwahn, and Vigo (2017)), support the inclusion of all

the edges connecting the depot to customers in the set of move generators. However, in our experi-

ence, when scaling to large-scale instances, even the dynamic management of the move generators

becomes very challenging, causing a significant increase in computing time without guaranteeing

any improvements to the solution quality. More details are given in Section 4.4.

2.2.3. Static Move Descriptors. Static move descriptors (SMDs), introduced for compound

neighborhoods by Zachariadis and Kiranoudis (2010) and later adapted to the VND setting by

Beek et al. (2018), enable the efficient execution of local search procedures by replacing the classical

for-loop exploration of neighborhoods with a structured inspection of the moves associated with a

local search operator, through the careful design of specialized data structures and procedures.

SMDs can be used to thoroughly describe the neighborhood of a solution. Every SMD identifies a

unique local search move generating a neighbor solution and the associated change in the objective

function value, called δ-tag. The combination of GNs and SMDs arises very naturally. In fact, a

move generator uniquely defines a move within a GN and thus unambiguously identifies an SMD.

On the other hand, an SMD uniquely describes a move (and its effect on the objective function)

and thus unambiguously identifies the move generator inducing that move. For this reason, in the

rest of the paper we will use SMD and move generator interchangeably.

A local search operator whose neighborhood is designed according to the SMD principles requires

four stages. First, an initialization stage, executed once at the beginning of the neighborhood explo-

ration, computes the δ-tag for the available SMDs. Then, a sequence of search, execution, and update

stages is performed until no more improving solutions are available in the neighborhood. The search

stage looks for a feasible and improving SMD - that is, an SMD associated with a move that gener-

ates a feasible and improving neighbor solution. Moreover, the SMD might also be required to meet

some additional criteria (e.g., the SMD associated with the most improving feasible move might be

sought). Once found, the move associated with the SMD that meets the criteria is executed during

the execution stage. Because a local search application causes only a local change in a solution,

most of the SMDs will still hold a correct δ-tag even after (part of) the solution is changed. An

operator-specific list of SMDs requiring an update to their δ-tag can thus be considered during the

update stage. Finally, the neighborhood exploration ends when the search stage is no longer able to

identify a feasible and improving SMD.

In our implementation, all (granular) neighborhoods are designed according to the SMD principles,

and a binary heap is used to store the SMDs, corresponding to active move generators, organized
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according to their δ-tag. During the initialization stage, only improving SMDs are inserted into

the heap, to keep the computational complexity of managing the heap to a minimum. As in Beek

et al. (2018), during the search stage, instead of retrieving the most improving SMD by removing

infeasible SMDs until a feasible one is found, we linearly scan the vector representing the heap data

structure searching for a feasible SMD. This approach does not require the re-insertion of removed

SMDs once a feasible move is found, but it no longer guarantees the execution of the most improving

move. However, since the SMDs are roughly sorted by the heap’s internal procedures, the linear

scan provides a so called rough-best-improvement move acceptance strategy. Note that the heap

data structure is not unique for a set of entries, and the linear scan is highly affected by the order in

which heap management operations are executed. For more details we refer the reader to Sections

B.2 and B.3 of the Appendix.

Finally, to speed up the initialization stage we coupled it with the selective vertex caching strategy

described in Section 2.2.4 that forces the local search to focus on recently changed areas of the

solution.

2.2.4. Selective Vertex Caching. Sparsification rules describing GNs are complemented by

the identification of a set of vertices of interest by means of a selective vertex caching (SVC) strategy.

In particular, every solution S keeps track of a subset of vertices V̄S ⊆ V that, for the current

algorithm state, is considered to be highly relevant.

In our implementation, V̄S consists of the set of vertices directly belonging to solution areas that

recently underwent some changes. Without loss of generality, changes in a solution S, seen from

a vertex perspective, can be subdivided into insertions and removals. For example, consider the

relocation of vertex i from its original position to another one between vertex j and its predecessor

πj. The removal directly affects vertex i itself, its successor σi, and its predecessor πi, while the

subsequent insertion affects vertices i, j and πj. Within this setting, after the move execution, we

say that i, πi, σi, j, and πj are cached for S: i.e., they are inserted into V̄S. This strategy allows us

to easily keep track of solution areas that were recently changed. However, not all changes have the

same importance; more recent ones are more likely to be relevant to a forthcoming decision. This

aspect is captured by imposing a limit, for a solution S, on the maximum number of vertices that

can be cached at the same time equal to a constant value C, by imposing |V̄S| ≤C and adopting a

least recently used strategy to maintain V̄S.

2.2.4.1. SVC to Restrict Local Search Execution. Vertices can be selectively cached in order to

identify a kernel of relevant vertices to be used in local search procedures. As mentioned at the

end of Section 2.2.3, we used this method as a heuristic acceleration and filtering technique for the

initialization stage of the SMDs, which as shown in the analysis of Section 4.5, may also have a

significant influence on subsequent SMD stages and, ultimately, on the overall local search execution.
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Figure 2 A 20ex application induced by move generator (i, j) relocating path (πi − i) between πj and j. SMDs

involving vertices in the gray area require an update to their δ-tag after the move execution.

During the optimization of a solution S, the SMD initialization stage considers, for the heap inser-

tion, the restricted subset of move generators (i, j)∈ T̄ γ(S)⊆ T γ , such that at least one of the end-

points i or j belongs to the subset of cached vertices V̄S. More precisely, T̄ γ(S) =∪i∈V̄S{(i, j), (j, i)∈

E : j ∈N ki
i (V r {i})} with ki = bγi ·ngse. During subsequent SMD update stages, additional move

generators might, however, be added to the heap due to the search incrementally extending to

vertices not belonging to the selective cache and whose SMDs require an update although they

have not been directly involved in a change of the solution. To better understand this, consider the

scenario shown in Figure 2 in which, during a 20ex neighborhood exploration, a move induced by

move generator (i, j) is executed, causing the relocation of path (πi − i) between πj and j. Once

the move is executed, vertices π2
i , πi, i, σi, πj and j will be marked as cached. However, as shown

by the gray overlay, two additional vertices, namely σ2
i and σj are also (indirectly) affected by the

move execution. In particular, active move generators involving σ2
i , i.e. {(σ2

i , j) : j ∈ V }∩T γ , require

an update because the predecessor of σi changes from i to π2
i . Similar reasoning applies to some

move generators involving σj. More details about update lists associated with different local search

operators are given in Section B.3 of the Appendix. Note that σ2
i and σj do not belong to the cache,

but their move generators will be updated and, if improving, inserted into the heap and considered

during subsequent SMD search stages.

Move generators evaluated during the SMD search stage could hence have been considered,

because they involve vertices belonging to the selective vertex cache or vertices indirectly affected

by a previous move application. Thus, it is clear that the cache dimension C actually imposes a soft

constraint on the SMDs considered during the local search execution: starting from the restricted

kernel of cached vertices, the search may extend to include move generators involving all instance

vertices.

A possible scenario in any of the improvement procedures, analyzed from the perspective of the

number of distinct vertices either cached or (directly and indirectly) reached by the local search

execution, is depicted in Figure 3. Improvement procedures, at the beginning of each iteration, work

with solutions S having no cached vertices, i.e., V̄S = ∅. As mentioned in Section 2.2, both procedures

make use of a shaking performed in a ruin (R−) and recreate (R+) fashion. The vertices involved in
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Figure 3 Evolution of an improvement procedure iteration in terms of number of distinct vertices simultaneously

cached and considered during a neighborhood exploration (Reached). The number of vertices is analyzed

after the ruin (R−), recreate (R+), and local search operator applications. Each local search operator

application is partitioned into an SMD initialization (I) and a sequence of search (S) and execute and update

(X) stages.

the disruptive effects of the shaking applied to solution S are added to the set V̄S. This set is the

kernel of vertices used to identify the area where the optimization of the subsequent local search

execution is focused. In particular, each SMD initialization stage (I) considers the current kernel of

cached vertices. Then, a sequence of SMD search (S) and execution and update (X) stages might

cause the search to reach far more vertices than those cached (dashed line), potentially covering all

vertices. However, as discussed in Section 4.5, the maximum size C of this kernel indirectly affects

the exploration power as well as the computing time of the local search. The overall result is an

implicit dynamic instance decomposition, induced by a very focused and localized neighborhood

exploration strategy which mainly considers the areas of the solution that are more likely to require

further optimization because they were more recently changed.

2.3. Improvement

Improvement procedures are iterative randomized local search-based procedures aimed at further

enhancing the initial solution quality. Both procedures, namely route minimization and core opti-

mization, work by re-optimizing, through the local search engine, a restricted area disrupted by a

ruin-and-recreate application. This area is identified by a number of vertices stored in the selective

vertex cache. At the beginning of each improvement procedure iteration, the cache is emptied to

perform an optimization focused primarily on the very limited solution area identified by the upcom-

ing shaking application. The route minimization procedure may visit infeasible solutions to perform

its route compacting action, while the core optimization procedure only moves in the feasible space

and achieves its diversification by means of an effective simulated annealing strategy.

2.3.1. Route Minimization. The CVRP typically does not impose any limit on the number

of routes that solutions may have. However, there is often a positive correlation between the number



Accorsi and Vigo: Heuristic Solution of Large-Scale CVRPs
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 15

of routes in a solution and its cost. Moreover, many simple construction algorithms, such as the one

we use, typically produce solutions using far more routes than those found in good-quality solutions.

We thus include an optional route minimization procedure that may be executed right after the

initial solution construction.

This procedure is applied to a solution S built by the initial construction phase whenever the

number |S| of its routes is found to be greater than an ideal estimated number of routes k. The

value k is computed by heuristically solving a bin-packing problem with an item of weight qi for

each customer i ∈ Vc and bins of capacity Q through a simple greedy first-fit algorithm (see, e.g.,

Chapter 8 of Martello and Toth (1990)).

The route minimization procedure, whose pseudocode is shown in Algorithm 4, starts by setting

the best found solution S∗ to be equal to the initial solution S generated by the construction phase.

During each iteration a pair (ri, rj) of routes belonging to S is selected and their customers removed

from the solution and placed into a list of unrouted customers L (Lines 5-7). The first route ri
is chosen as the route containing a random customer seed i. The second route rj is identified by

considering customer neighbors j ∈Ni in increasing cij cost until a customer j belonging to a route

rj 6= ri is found. Customers in L are, with equal probability, either randomly shuffled or sorted

according to their demand, in decreasing order. Then, for each unrouted customer i∈L, a position

in the current set of existing routes is searched, such that with the insertion of i the target route

remains feasible and the insertion cost is minimized (Lines 10-21). When such a position cannot be

found (i.e., when inserting i violates the capacity constraints of all existing routes), and consequently

a new route should be created to accommodate customer i, an action is selected according to the

current number of routes |S|. If |S| is lower than the estimate k, a new single-customer route with

i is created. Otherwise, the single-customer route serving i is created only when a random number

drawn from a uniform real distribution in the interval [0,1] is greater than a threshold P, set to P = 1

at the beginning of the route minimization procedure. When the random number is not greater than

P, i is inserted into an additional list L̄. Once all customers in L have been considered, the list L

is set to L= L̄ and the threshold P is lowered according to an exponential schedule P = z · P with

z = (Pf/P0)(1/∆RM ), Pf = 0.01, and P0 = 1. Where Pf and P0 are the final and initial probabilities

of not creating an additional single-customer route, respectively.

Next, a restricted HRVND, consisting of the first tier only but using all the available move gener-

ators, i.e., γi = 1, i∈ V , is applied to the (possibly partial) current solution. We restrict the HRVND

to the first tier because we noticed it was sufficient to obtain good-quality solutions and resulted in a

considerable computing time saving. Moreover, we set γi = 1, i∈ V to avoid a complex management

of move generators in this secondary improvement phase which, as shown in the parameters Table

1, is executed for a small number ∆RM = 1000 of iterations.
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Algorithm 4 Route minimization procedure
1: procedure RouteMin(S,R)

2: S∗← S,P ←P0,L← [ ]

3: for n← 1 to ∆RM do

4: V̄S←∅

5: (ri, rj)←PickPairOfRoutes(S,R)

6: L← [L,CustomersOf(ri),CustomersOf(rj)]

7: S← Sr rir rj
8: L←DefineOrder(L,R)

9: L̄= [ ]

10: for i∈L do

11: p←BestInsertionPositionInExistingRoutes(i, S)

12: if p 6= none then

13: S← Insert(i, p,S)

14: else

15: if |S|<k∨U(0,1)>P then

16: S←BuildSingleCustomerRoute(i, S)

17: else

18: L̄← [L̄, i]

19: end if

20: end if

21: end for

22: L← L̄

23: S← hrvnd.tier1(S,R)

24: if |L|= 0∧ (Cost(S)<Cost(S∗)∨ (Cost(S) = Cost(S∗)∧ |S|< |S∗|)) then

25: S∗← S

26: if |S∗| ≤ k then return S∗

27: end if

28: P ← z · P

29: if Cost(S)>Cost(S∗) then S← S∗

30: end for

31: return S∗

32: end procedure

When a solution S in which all customers are routed is found, the best solution S∗ is replaced

with S if the latter has a lower cost or the same cost but fewer routes. Moreover, we impose an

early stopping condition (Line 26) such that if S∗ has a number of routes less than or equal to k,

the route minimization procedure prematurely ends and returns S∗.

Before proceeding to the next iteration, a partial or feasible solution S having a cost higher than

the current best solution S∗ is reset to the latter; i.e., S = S∗.
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Finally, solution S∗ is returned after ∆RM iterations if the early stopping condition is not met

throughout the route minimization execution.

2.3.2. Core Optimization. The core optimization procedure, whose pseudocode is shown in

Algorithm 6, is iterative and randomized. By making use of an adaptive shaking strategy and the

local search engine, it implements a powerful localized solution improvement.

First, the best solution S∗ is set equal to solution S, generated by the construction phase and

possibly improved by the route minimization procedure. A shaking application, whose pseudocode

is shown in Algorithm 5, performs a ruin step, removing a number of customers in the customer sub-

graph by means of a random walk. Then, a simple greedy recreate step defines the new position for

the previously removed customers. More precisely, the ruin step, starting from a randomly selected

seed customer i ∈ Vc, identifies a random walk of length ωi in the sub-graph G′ = (V ′c ,E
′
c) where

V ′c = Vc and E′c = {(i, j) : i, j ∈ V ′c } is the set of arcs connecting customers. When a customer i is

visited, it is removed from the solution and the sub-graph G′ is updated accordingly by setting

V ′c = V ′c r {i} and E′c =E′cr {(i, j), (j, i) : j ∈ V ′c }. A partial walk ending at customer i is extended

by moving either forward or backward within the same route ri, or by jumping to a neighbor route,

which can be any route or a not yet visited one (Lines 7-20). First, whether to move along the

same route or jump to another is decided; then the possible options associated with that choice

are considered. At every step, the choices are considered with equal probability. When a jump to

a neighbor route is selected to extend a walk ending at i ∈ V ′c , customers j ∈Ni(V ′c ) are examined

in increasing cij cost until a route rj satisfying the appropriate requirements, i.e., either any route

(including rj = ri) or a not yet visited one, is found. The rj, identified by scanning the routes to

which neighbor customers j of i belong, is considered to be a neighbor route of ri. In the unlikely

case that such a route cannot be found, the ruin procedure is prematurely aborted (Line 18). Note

that a jump to a neighbor route is always selected when the current route ri contains customer i

only (Line 7).

The recreate step greedily inserts the removed customers into the position that minimizes the

insertion cost after they have, with equal probability, either been randomly shuffled or sorted by

decreasing demand or by increasing or decreasing distance from the depot.

The ruin intensity is controlled by a meta-procedure (described in Paragraph 2.3.2.1) that itera-

tively adapts the random walk length ωi from a seed customer i∈ Vc to identify a disruptive action

that best suits the instance and solution under examination.

The HRVND is then applied to the shaken solution S to identify a local optimum S′. Whether

to accept S′ as the next point in the search trajectory is determined by a simulated annealing

acceptance strategy; see Kirkpatrick, Gelatt, and Vecchi (1983). In particular, S′ is accepted if
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Algorithm 5 Adaptive shaking procedure
1: procedure Shake(S,R, ω̄)

2: i′←RandomCustomer(R)

3: i← i′, e← 0,C = [ ],R= {}

4: B←RandomBoolean(R)

5: repeat

6: C← [C, i],R←R∪{ri}

7: if |S|> 1∧B( ) then

8: if B( ) then

9: j←NextCustomerInRoute(i)

10: else

11: j←PrevCustomerInRoute(i)

12: end if

13: else

14: if B( ) then

15: j←NearestServedCustomer(S, i)

16: else

17: j←NearestServedCustomer(S, i) such that rj 6∈R

18: if j = none then e←∞

19: end if

20: end if

21: S←RemoveCustomer(S, i)

22: i← j

23: until e < ωi′

24: C←DefineOrder(C,R)

25: for i∈C do

26: p←BestInsertionPositionInExistingRoutes(i, S)

27: if p 6= none then

28: S← Insert(i, p,S)

29: else

30: S←BuildSingleCustomerRoute(i, S)

31: end if

32: end for

33: return S, i′

34: end procedure

c(S′)< c(S) +T · lnU(0,1). The value of T is initially set to T = T0 and lowered at the end of each

core optimization iteration by performing T = c · T with c= (Tf/T0)(1/∆CO); ∆CO is the number of

core optimization iterations.

The core optimization makes full use of vertex-wise dynamic move generators. In particular, at

the beginning of the procedure, sparsification parameters γi are set to a base value γbase. Whenever
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(δ ·∆CO ·average(|V̄S|))/|V | nonimproving iterations involving a vertex i are performed, the value

is updated as γi = min{γi · λ,1} where δ ∈ [0,1] is a reduction factor, average(|V̄S|) denotes the

average number of vertices cached after previous local search executions, and λ is an increment

factor. However, the value of γi is reset to γbase whenever a solution S improving S∗ is found

during the execution of a local search involving i (i.e., i ∈ V̄S after the HRVND application). This

update rule is a possible vertex-wise implementation of the standard way of handling dynamic move

generators described in Schneider, Schwahn, and Vigo (2017) in which the total number of core

optimization iterations is partitioned over restricted working areas identified by cached vertices.

Note that, when the cache size C is smaller than the total number of instance vertices, i.e., C < |V |,

some vertex i may not be considered for the γi update even if it is involved in a change during

the HRVND execution because, due to the limit imposed by C, it is no longer cached after the

optimization. However, as shown in the analysis in Section 4.5, an accurate selection of C, which

might heuristically filter out some vertices from the update, does not prevent good solutions from

being found much faster than in the scenario in which C = |V | and the SVC is completely disabled.

Algorithm 6 Core optimization procedure
1: procedure CoreOpt(S,R)

2: ω̄← (ω0, ω1, . . . , ω|Vc|), ωi← ωbase ∀i∈ V

3: γ̄← (γ0, γ1, . . . , γ|Vc|), γi← γbase ∀i∈ V

4: S∗← S,T ←T0

5: for n← 1 to ∆CO do

6: V̄S←∅

7: Ŝ, i′← Shake(S,R, ω̄),S ← V̄Ŝ r {0}

8: S′← hrvnd(Ŝ,R),L← V̄S′

9: if Cost(S′)<Cost(S∗) then

10: S∗← S′

11: ResetSparsificationFactors(γ̄,L)

12: else

13: UpdateSparsificationFactors(γ̄,L)

14: end if

15: UpdateShakingParameters(ω̄, S′, S, i′,S,R)

16: if AcceptNeighbor(S,S′,T ) then S← S′

17: T ← c · T

18: end for

19: return S∗

20: end procedure
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2.3.2.1. Structure-Aware and Quality-Oriented Shaking Meta-Strategy. We propose a declarative

approach to the selection of the shaking intensity that, if coupled with a shaking procedure able to

take advantage of it, improves flexibility and adaptability compared to a random or fixed intensity.

This strategy makes use of a number of integer shaking parameters ωi, i ∈ Vc defining the intensity

of a shaking application seeded at customer i.

The idea is to iteratively adapt the parameters ωi so that solution S′, obtained by re-optimizing

the disrupted area of solution S, meets some quality criteria with respect to S. On the one hand, S′

could be of lower quality than S or, more precisely, the distance in terms of cost between S′ and S is

greater than an intensification upper bound threshold ΩUB, i.e., Cost(S′)−Cost(S)>ΩUB. From

a simplified perspective, we may assume this happened because the initial disruption produced by

the ruin was too strong, causing so much turbulence on the original solution S that subsequent

local search procedures were not able to successfully correct and improve it. On the other hand,

S′ and S may be of comparable quality and in particular, 0 ≤ Cost(S′)−Cost(S) < ΩLB with

ΩLB an intensification lower bound threshold. In this case, the disruptive effect of the ruin was

probably not strong enough to jump to a different search space area, and the subsequent local search

procedures were able to partially undo the changes. Finally, S′ may be better than S, showing that

the combination of shaking and subsequent re-optimization was appropriate. In our implementation,

we define ΩLB = c̄S · ILB and ΩUB = c̄S · IUB, where c̄S is the average cost of an arc in solution S,

computed as c̄S = Cost(S)/(N + 2 · |S|); ILB, IUB ∈R are shaking factors.

From the above observations, we can derive a simple update rule for the shaking parameters ωi

that is executed at every core optimization iteration (Line 15 of Algorithm 6). Denoting by w̃=wi′

the shaking parameter value associated with the current seed customer i′

ωi =


ωi + 1, if 0≤Cost(S′)−Cost(S)<ΩLB ∧ωi < ω̃+ 1 (i)

ωi− 1, if Cost(S′)−Cost(S)>ΩUB ∧ωi > ω̃− 1 (ii)

randomly select between (i) and (ii), otherwise (iii)

i∈ S

where S = V̄Ŝ r {0} is the set of vertices cached in the shaken solution Ŝ right after the shaking

execution (excluding the depot, which is never considered in the ruin execution); see Line 7 of

Algorithm 6. Shaking parameters ωi, i∈ S are moved towards the new value for ω̃, without exceeding

it. This limit prevents situations in which a single vertex j surrounded by a set of vertices Ṽ , all

having a very small (respectively, large) shaking parameter value has its wj indirectly incremented

(respectively, decremented) to very large (respectively, small) values due to updates involving some

i∈ Ṽ . Furthermore, update rule (iii) describes the scenario in which S′ is improving with respect to

S or the shaking was of the appropriate strength; i.e, ΩLB ≤ cost(S′)−cost(S)≤ΩUB. Through

experimentation, we found it beneficial to perform limited random variations of the involved shaking
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Figure 4 Shaking parameters values at the end of the core optimization procedure for instance X-n979-k58 of the X

dataset. Each circle represents a customer i in its xi and yi coordinates and the color denotes the shaking

parameter ωi value.

parameter values, to avoid their stagnation to minimum values which satisfied rules (i) and (ii) in

order to explore other promising combinations of values. Finally, the update depends on the specific

area where the shaking was executed; the parameters are iteratively adjusted according to the effects

on nearby areas caused by previous shaking applications. This adaptive procedure thus makes the

shaking aware of both the structure of the instance and the solution under examination.

As an example, consider Figure 4, showing shaking parameter values ωi, i ∈ V for instance X-

n979-k58 of the X benchmark after the core optimization procedure. As can be seen from the figure,

very dense areas of customers typically require lower values for the shaking parameters, whereas

customers in sparse areas are associated with stronger shaking applications.

Note that set S also contains vertices involved in the recreate step. An ideal update rule should

consider only customers involved in the ruin step or, even better, only the seed customer. However,

especially for large-scale instances, this rule would require an enormous amount of iterations for

the procedure to converge on reasonably effective shaking parameter values, which would likely still

require an update as the algorithm evolves. We thus found that updating the shaking parameters

for all vertices that are in the selective cache after the shaking application is a reasonable strategy

to identify a number of vertices that are somehow related and can be thought of as belonging to

the same area.

Finally, the initial value for the shaking parameters is not relevant for small-sized instances in

which an initial value of ωbase = 1 may be used. On the contrary, it becomes quite important when

moving to very large instances, if the total number of core optimization iterations remains constant.

In fact, on the one hand, using a small value might cause several fruitless shaking iterations in which

ωi values are slowly increased to more effective values, wasting precious computing resources with

insufficient disruptions. On the other hand, a value that is too high might dramatically slow down

the overall algorithm execution with the risk of an excessive ruin activity. We experimentally found
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a reasonable compromise by setting ωbase = dln |V |e as the initial shaking intensity, which is then

automatically adjusted by the above update rules.

3. Computational Results
The computational testing has the main objective of assessing the performance of the proposed

algorithm. To accomplish this, we first show its effectiveness on the X dataset proposed by Uchoa

et al. (2017), on which state-of-the-art CVRP algorithms are typically evaluated. Then, we proceed

to the real target of the paper, showing how the designed components allow the overall algorithm

to easily scale to very large-scale instances while still retaining its effectiveness. To this end, we

focus on the increasingly popular B instances proposed by Arnold, Gendreau, and Sörensen (2019)

and on two less-studied very large-scale datasets, K and Z proposed by Kytöjoki et al. (2007) and

Zachariadis and Kiranoudis (2010), respectively.

3.1. Implementation and Experimental Environment

The algorithm was implemented in C++ and compiled using g++ 8.3.0. The experiments were

performed on a 64-bit desktop computer with an Intel Xeon CPU E3-1245 v5 central processing

unit (CPU), running at 3.5 GHz and with 16 GB of RAM on a GNU/Linux Ubuntu 18.04 oper-

ating system. The algorithm source code, together with a library of reusable components, can be

downloaded from https://acco93.github.io/filo/; detailed instructions are given to accurately

reproduce our results. In all the computational testing, we considered a standard version of FILO

and a longer version, called FILO (long), which performs ten times more core optimization iter-

ations than the standard version. Because of the randomized nature of the algorithm, for every

experiment, we executed a symbolic number of fifty runs for each instance, defining the seed of

the pseudorandom engine (the Mersenne twister of Matsumoto and Nishimura (1998)) as equal to

the run counter minus one. Moreover, to mitigate the impact of small time-variations due to the

overhead of the operating system, we used a clock function that reports running times with the

minimum recordable run time set to one second.

To better compare our results with other algorithms executed on different hardware configurations,

for which no source code was available, we used the single-thread rating defined by PassMark®

Software (2020). At the time of writing, a score of 2285 was assigned to our CPU. Competing

methods’ CPU times are scaled to match our CPU score; their normalized time is identified by

t̂ = t · (PA/PB), where PA is the competing method’s CPU single-thread rating, PB is our CPU

rating, and t is the raw computing time. All times refer to an average run and are reported in

minutes. For randomized algorithms we report, when available, the best (Best), average (Avg) and

worst (Worst) gaps of the solution found by the algorithm, with respect to the best known solution

value (BKS). Gaps are computed as 100 · (Cost(S)−BKS)/BKS, where S is the final solution.

For deterministic algorithms, we report the gap (Gap) of the solution found by a single run.

https://acco93.github.io/filo/
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E3-1245+v5+%40+3.50GHz&id=2674
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Table 1 Parameters of Algorithm FILO.

Initial solution definition – Described in Sections 2.1 and 2.3.1 – Analyzed in Section 4.1

ncw = 50 Number of neighbors considered in the savings computation.
∆RM = 103 Maximum number of route minimization iterations.

Granular neighborhood – Described in Section 2.2.2 – Analyzed in Section 4.4

ngs = 25 Number of neighbors considered by the sparsification rule.
γbase = 0.25 Base sparsification factor.
δ= 0.5 Reduction factor used in the definition of the fraction of non-improving iterations performed

before increasing a sparsification parameter.
λ= 2 Sparsification increment factor.

Core optimization – Described in Sections 2.2, 2.2.4, 2.3.2, and 2.3.2.1 – Analyzed in Sections 4.2, 4.5 and 4.3

∆CO = 105,106 Number of core optimization iterations for a short and a long run.
T0, Tf Initial and final simulated annealing temperature.
C = 50 Maximum number of cached vertices.
ωbase = dln |V |e Initial shaking intensity.
nEC = 25 Maximum number of sequences explored by ejch for each move generator.
ILB = 0.375, IUB = 0.85 Shaking factors.

3.2. Parameter Tuning

Crafting algorithm FILO and tuning its parameters followed an iterative process whose key decisions

are detailed in Section 4. Parameters are summarized in Table 1; their tuning, whose hidden inter-

actions and interconnected effects might be very challenging to analyze, followed a straightforward

sequential strategy aimed at keeping the tuning effort low but still able to identify good perform-

ing values for each parameter considered individually. First, reasonable values were identified using

the authors’ judgment and experience, along with a trial-and-error approach. Then we evaluated

the algorithm’s behavior while changing the value of one parameter at a time (keeping the others

fixed). A new value was kept when it allowed an improvement in quality without increasing the

computing time. This process was iterated several times until satisfactory results were obtained.

In fact, we noticed that the iterated sequential tuning of individual parameters, without a prefixed

order, was enough to reach good local optima without exploring all possible combinations of values.

The parameter tuning, as well as the algorithm design, was mainly performed by considering the

largest X instances - in particular, those with more than five hundred vertices. The resulting tuned

algorithm was then used for all our computational testing.

We briefly summarize, in the following, the key choices made during the parameter tuning pro-

cedure, referring to Section 4 for more details.

The number of customers ncw for which the savings are computed in the construction phase and

the maximum number of route minimization iterations ∆RM are both low impact parameters. Once

they are set to reasonable values, small variations do not significantly change the outcome of the

procedures in which they are employed. We set them approximately to one of the smallest values
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able to provide results of a quality comparable to larger values, which may, however, have required

a longer computing time.

Conversely, the value of ngs, γbase, δ and λ heavily affect the algorithm performance. The number

of neighbors ngs, the base sparsification factor γbase and the reduction factor δ were set so as to

obtain the best trade-off between computing time and solution quality; see Section 4.4. In particular,

we noticed that a milder sparsification (obtained, for example, by increasing ngs, γbase or both; or by

decreasing δ) may sometimes provide slightly better solutions, but with an unacceptable increment

in the computing time. This is particularly noticeable in instances for which very good-quality (or

near-optimal) solutions are found early in the search, and for which the sparsification is just steadily

decreased by increasing the γi, i ∈ V and never reset; see, e.g., the computing time for instance X-

n219-k73 of the X dataset in Table 9 (Section C of the Appendix) and the outliers associated with

FILO in Figure 1. We set the the value for λ as in the original proposal of Toth and Vigo (2003),

leaving the other granular parameters depending on it. On average, we found a very aggressive

sparsification associated with an large number of optimization iterations to be preferable to a very

accurate local search execution performed with fewer iterations.

The number of core optimization iterations ∆CO was set appropriately to suit all the medium

to very-large instances we considered. However, to alleviate the above-mentioned indiscriminate

increment for γi values in small-sized instances, which typically converge to the final value faster,

defining the number of iterations as a function of the instance size might be more appropriate.

Nonetheless, we preferred not to use that approach in order to better highlight the scalability

properties of FILO.

The simulated annealing temperatures T0 (initial) and Tf (final) were defined to be proportional

to the average cost of an arc in an instance. In particular, the value of T0 is defined as 0.1 times

the average instance arc cost; i.e., T0 = 0.1 ·
∑

i,j∈V :i<j cij/(|V | · (|V |−1)/2) and Tf is 0.01 times T0.

In fact, we found this strategy to be better than defining a fixed range when applied to different

datasets with completely unrelated arc costs. For example, the average arc cost for the K dataset is

about 3, 500% larger than that for the X dataset and 164,100% larger than that for the Z dataset.

The size of the selective cache C was chosen to be the value that identified a good trade-off

between computing time and solution quality; see Section 4.5.

As mentioned in Section 2.2.4, both small and large-scale instances are not significantly affected by

the choice of the initial shaking intensity ωbase; in fact, comparable quality and computing time are

obtained by setting ωbase = 1. However, when considering very large-scale instances, the difference

in the final outcome is much more noticeable. We found that setting ωbase as a logarithmic function

of the number of vertices provides a reasonable starting point. The shaking procedure then actually
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Figure 5 State-of-the-art CVRP algorithms performance comparison over the X instances of Uchoa et al. (2017).

A tuple describing the computing time and the average percentage gap is reported below each algorithm

name. For ILS-SP and HGSADC we report a range of times since the exact CPU model is not specified.

performs some fruitful iterations in large instances before reaching better-performing values for the

shaking parameters ωi, i∈ Vc.

We set the number nEC of ejch sequences explored from every move generator, to the minimum

value that could provide reasonably good improvements with a much more limited computing time

variability compared to larger values; see Section 4.2.

Finally, the shaking factors ILB and IUB can have a major impact on the overall algorithm execu-

tion. In fact, assigning them large values allows the guiding meta-strategy to increment the ωi values,

inducing a stronger shaking effect that will eventually require a longer local search re-optimization.

On the other hand, values that are too low do not disrupt the current solution sufficiently to allow

the re-optimization the possibility of performing some improvements. The identified values, coming

from the limited random search analysis (see Bergstra and Bengio (2012)) described in Section 4.3,

define an associated shaking which is neither too disruptive nor too gentle, resulting once again in

a compromise between computing time and final solution quality.

3.3. Testing on X Instances

The X instances introduced in Uchoa et al. (2017) are the current standard benchmark for the CVRP.

They consist of a hundred small- to large-sized instances, containing up to one thousand customers

and covering a wide range of demand distributions and customer layouts. The performance of FILO

is compared with current state-of-the-art algorithms on this dataset.

• The iterated local search matheuristic (ILS-SP), proposed by Subramanian, Uchoa, and Ochi

(2013), consists of an ILS interacting with a mixed integer programming (MIP) solver. The
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MIP solver is used to define new solutions as a combination of routes belonging to previously

found local optima, through the time-limited solution of a set partitioning model.

• The Hybrid Genetic Search with Adaptive Diversity Control (HGSADC), proposed by Vidal

et al. (2012), is a population-based method with an advanced and continuous diversification

procedure.

• The Knowledge-Guided Local Search (KGLS), proposed by Arnold and Sörensen (2019), is a

GLS metaheuristic enhanced by knowledge extracted from previous data mining analyses.

• Finally, the Slack Induction by String Removal (SISR) recently introduced by Christiaens

and Vanden Berghe (2020), is a sophisticated, yet easily reproducible, ruin-and-recreate-based

approach combined with a simulated annealing metaheuristic.

ILS-SP, HGSADC, and SISR are general methods able to solve a broad class of VRP variants, while

KGLS also supports the Multi-Depot VRP and the Multi-Trip VRP. ILS-SP, HGSADC, and KGLS

are local search-based methods, whereas SISR performs its improvement action through a ruin-and-

recreate approach. Finally, KGLS defines a time-based termination condition of three minutes every

100 customers, while all the other methods fix a maximum number of iterations.

Figure 5 provides a graphic comparison of the algorithms’ performances in terms of efficacy and

efficiency by reporting the average behavior over 50 runs for ILS-SP, HGSADC, SISR, and FILO,

and over a single run for KGLS, since it is a deterministic algorithm. The best known solution

values (BKS) used to compute gaps are taken, at the time of writing, from CVRPLIB (2020). FILO

compares favorably with the best existing algorithms, achieving an excellent compromise between

solution quality and computing time. In fact, FILO finds average solutions that are significantly

better than those of ILS-SP and KGLS, and similar to those found by HGSADC. However, SISR

outperforms FILO. FILO (long), on the other hand, finds average solutions that are significantly

better than those of ILS-SP, HGSADC, and KGLS and similar to those found by SISR. See Section

C of the Appendix for full details.

As mentioned in Section 3.1, the average computing time for a single run t̂ has been roughly

normalized to match our CPU score by using the single-thread rating of PassMark® Software

(2020), which assigns a score in the range of 1389 – 1491 to the compatible Intel Xeon CPUs used

by ILS-SP and HGSADC (for which the precise model is not specified in Uchoa et al. (2017)), a

score of 2052 to the AMD Ryzen 3 1300X CPU used by KGLS, and a score of 1662 to the Intel

Xeon E5-2650 v2 CPU used by SISR.

Table 2 provides aggregate computations, grouped by instance size. The table highlights the

scalability properties of FILO, by showing that the computing time for the largest instances is

very similar to that obtained for smaller ones, yet the solution quality remains comparable to that

achieved by other state-of-the-art algorithms. In fact, the computing time of FILO is more related

https://www.cpubenchmark.net/cpu.php?cpu=AMD+Ryzen+3+1300X&id=3057
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+v2+%40+2.60GHz&id=2042
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+v2+%40+2.60GHz&id=2042
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Table 2 Aggregate computations on X instances.

ILS-SP HGSADC KGLS SISR FILO FILO (long)

Size Vertices Avg t̂1 Avg t̂1 Avg t̂ Avg t̂ Avg t Avg t

S 101 – 247 0.31 1.52 0.07 3.79 0.28 4.66 0.11 3.78 0.18 1.69 0.09 18.06
M 251 – 491 0.59 14.57 0.30 19.09 0.64 9.40 0.25 19.64 0.40 1.66 0.25 17.51
L 502 – 1001 0.98 123.32 0.50 169.28 0.69 19.47 0.21 110.54 0.50 1.72 0.30 17.56

1 obtained by averaging normalized times associated with the fastest and the slowest compatible CPUs.

to the number of core optimization iterations rather than to the instance size. Moreover, when

the computing times of FILO and FILO (long), which differ by the number of core optimization

iterations by a factor of ten, are compared, the increase in computing time is proportional to the

increase in the number of iterations. More experiments can be found in Section 4.6; for the largest

instances, we studied the effects of further increasing the number of core optimization iterations

which resulted in lowering the average gap to 0.19%.

3.4. Testing on Very Large-Scale Instances

Having assessed the performance of FILO on the standard X instances, we now examine the real

target of the proposed approach: very large-scale instances. To this end, we tested FILO on three

challenging datasets containing instances with several thousands of customers.

The B instances proposed by Arnold, Gendreau, and Sörensen (2019) are a set of ten very large-

scale instances containing up to thirty thousand customers and reflecting real-world parcel distri-

bution problems in Belgium. They include a first scenario, in which the depot is located centrally

with respect to the customers and relatively short routes are performed, and a second one in which

the depot is eccentric with respect to the service zone, thus much longer routes are required to

visit the customers. We mainly compared FILO with KGLSXXL proposed in Arnold, Gendreau, and

Sörensen (2019), an adaptation for very large-scale instances of the KGLS algorithm introduced in

Section 3.3. Like KGLS, KGLSXXL also defines a time-based termination condition of either three

or twelve minutes every 1000 customers for the short or the long version, respectively. KGLSXXL

was executed on the same hardware configuration described for the X dataset. Moreover, for the

sake of completeness, we include results obtained by the LKH-3 algorithm proposed by Helsgaun

(2017) in very long computing sessions (up to several days). The best known solution values (BKS)

were taken, at the time of writing, from CVRPLIB (2020) and used to compute gaps. We note that

for many of those BKS, no citable publication is available; the results are typically the outcome

of very long runs. In other cases, as reported us by the authors (see Cavaliere, Bendotti, and Fis-

chetti (2020) and Uchoa (2020)), the methods were initialized with previously-known best solutions.

Therefore, their achievements cannot be compared with monolithic approaches such as the one we

propose. As can be seen from Table 3, FILO is able to successfully find very good quality solutions
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Table 3 Computations on B instances.

KGLSXXL KGLSXXL(long) LKH-3 FILO FILO (long)

ID (|Vc|) BKS Gap t̂ Gap t̂ Gap Best Avg Worst t Best Avg Worst t

L1 (3000) 193092 0.74 13.47 0.71 53.88 0.67 0.26 0.38 0.50 2.13 -0.02 0.12 0.20 21.50
L2 (4000) 111810 4.18 17.96 2.69 71.84 1.50 0.43 0.62 0.86 3.28 -0.13 0.07 0.29 36.20
A1 (6000) 478091 0.83 26.94 0.73 107.76 0.68 0.35 0.43 0.55 2.76 0.04 0.10 0.17 28.00
A2 (7000) 292597 2.62 31.43 1.18 125.72 1.67 0.53 0.68 0.87 3.11 -0.10 0.00 0.14 33.66
G1 (10000) 470329 0.86 44.90 0.69 179.61 0.82 0.51 0.59 0.67 3.63 0.08 0.14 0.19 36.57
G2 (11000) 259712 2.94 49.39 1.85 197.57 2.33 0.50 0.72 1.06 4.62 -0.39 -0.31 -0.20 59.34
B1 (15000) 503407 1.35 67.35 0.73 269.41 1.20 0.66 0.75 0.82 4.67 0.03 0.09 0.14 47.83
B2 (16000) 349602 3.49 71.84 1.77 287.37 2.23 0.58 0.80 1.08 5.34 -0.72 -0.60 -0.45 62.70
F1 (20000) 7256529 0.97 89.80 0.54 359.21 0.61 0.52 0.56 0.62 7.22 0.08 0.12 0.18 78.44
F2 (30000) 4405678 3.65 134.70 2.24 538.82 2.13 1.21 1.40 1.57 10.99 -0.12 -0.02 0.12 150.93

Mean 2.16 54.78 1.31 219.12 1.38 0.56 0.69 0.86 4.78 -0.12 -0.03 0.08 55.52

New best solutions: (L1, 193052);(L2, 111661);(A2, 292303);(G2, 258700);(B2, 347092);(F2, 4400188).

in a shorter computing time than KGLSXXL. In fact, the average gap of FILO is almost half that

of KGLSXXL (long) in just about five minutes of computing time. Furthermore, FILO (long) is able

to find several new BKS in less than three hours of computing time, and the computing times

remain consistent across instances with different structures. We again note the scalability of FILO

by observing that, to solve an instance with ten times more customers, the computing time only

increases approximately fivefold.

The K dataset proposed by Kytöjoki et al. (2007) contains eight very large-scale instances with

up to twelve thousand customers. The first four instances (W, E, S, and M) are derived from real-life

waste collection problems in Finland, while the remaining instances contain customers randomly

and uniformly distributed. Again, we mainly compared FILO with KGLSXXL proposed in Arnold,

Gendreau, and Sörensen (2019) but we also include results of the GVNS algorithm introduced in

Kytöjoki et al. (2007) (the first method used to solve the K instances). GVNS was run on an AMD

Athlon 64 3000+ having a single thread score of 554 and KGLSXXL was run on the same hardware

configuration as for the B dataset. As can be seen from Table 4, FILO is able to successfully find very

good-quality solutions in a relatively short computing time compared to KGLSXXL. Importantly,

both FILO and FILO (long) find new best solutions for all instances. The computing time associated

with random instances follows the same trend seen for the B instances. On the other hand, instances

derived from real-life problems require a much longer computing time. By analyzing the structure

of the final solutions obtained by FILO (long), we note that they are composed of few very long

routes with several hundred customers. Moreover, the shaking intensity at the end of a run ω̄ =∑
i∈Vc ωi/|Vc|, averaged over the W, E S and M instances, has a value four times larger than that

associated with the B dataset (91.37± 28.86 and 22.42± 4.40, respectively). The reason for such a

high average value may be related to the shaking procedure. In particular, given the very low number

of routes for those instances (on average 15.00±1.83), the shaking procedure might choose to jump

https://www.cpubenchmark.net/cpu.php?cpu=AMD+Athlon+64+3000%2B&id=66
https://www.cpubenchmark.net/cpu.php?cpu=AMD+Athlon+64+3000%2B&id=66
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Table 4 Computations on K instances.

GVNS KGLSXXL KGLSXXL (long) FILO FILO (long)

ID (|Vc|) BKS∗ Gap t̂ Gap t̂ Gap t̂ Best Avg Worst t Best Mean Worst t

W (7798) 4481423 1.75 8.36 0.39 7.72 0.00 35.02 -7.35 -5.71 -3.31 9.59 -8.47 -7.74 -6.23 145.23
E (9516) 4507948 5.54 20.34 0.33 18.86 0.00 42.66 -2.87 -2.01 -0.58 14.10 -4.06 -3.41 -2.49 248.11
S (8454) 3189850 4.51 13.63 0.46 12.66 0.00 38.17 -5.04 -3.85 -1.90 9.30 -6.07 -5.48 -4.07 146.82
M (10217) 3071090 3.25 18.81 0.78 17.42 0.00 45.80 -2.54 -1.82 0.44 15.86 -3.46 -3.13 -2.74 263.56
R3 (3000) 182206 2.20 1.16 0.50 1.08 0.00 13.47 -0.50 -0.39 -0.25 2.25 -0.88 -0.81 -0.70 21.09
R6 (6000) 347224 1.58 5.92 0.19 5.48 0.00 26.94 -0.35 -0.27 -0.19 2.97 -0.81 -0.74 -0.68 27.70
R9 (9000) 511378 1.19 13.99 0.05 12.93 0.00 40.41 -0.25 -0.17 -0.09 3.70 -0.70 -0.66 -0.61 33.48
R12 (12000) 672456 1.25 26.28 0.06 24.34 0.00 53.88 -0.09 -0.01 0.07 4.47 -0.60 -0.54 -0.50 39.76

Mean 2.66 13.56 0.35 12.56 0.00 37.04 -2.37 -1.78 -0.73 7.78 -3.13 -2.81 -2.25 115.72

∗ taken from Arnold, Gendreau, and Sörensen (2019).
New best solutions: (W, 4101686.00);(E, 4324802.50);(S, 2996254.00);(M, 2964867.25);(R3, 180597.91);(R6, 344407.00);(R9, 507787.66);(R12,
668435.00).

to a not-yet-visited neighbor route that is not available. In such cases, the ruin is prematurely

aborted, possibly causing a mismatch between the actual shaking intensity and the required one

identified by ωi, i ∈ Vc values. The mismatch may cause the average shaking intensity to increase

to an abnormally large value. In many cases, the ruin activity is unaffected, because it will be

prematurely aborted. However, if the early stop comes after several customers have already been

removed, the average ruin activity will be stronger than required, causing a more time-consuming

re-optimization.

Finally, the Z dataset was proposed in Zachariadis and Kiranoudis (2010). The dataset contains

four large-scale instances, representing the actual distribution of customers’ locations within Greek

cities. All instances have three thousand customers whose demand is uniformly distributed in 1–100.

The vehicle capacity is set to 1000. We compared FILO with the Penalized Static Move Descriptors

Algorithm (PSMDA) described in Zachariadis and Kiranoudis (2010), consisting of a Tabu Search

metaheuristic in which the local search is executed by means of SMDs considering compound oper-

ators and a neighborhood pruning technique similar to that of GNs. The algorithm was run for a

prefixed amount of time on an Intel Core2 Duo T5500 CPU with a single-thread score of 573. As can

be seen from Table 5, FILO successfully solved the Z dataset, finding new best solutions for all four

Table 5 Computations on Z instances.

PSMDA FILO FILO (long)

ID (|Vc|) BKS Best Avg t̂1 Best Mean Worst t Best Avg Worst t

ZK1 (3000) 13666.36 0.00 0.94 60.18 -1.45 -1.31 -1.14 2.50 -1.81 -1.71 -1.54 22.68
ZK2 (3000) 3536.25 0.00 1.32 60.18 -2.14 -1.97 -1.76 2.30 -2.68 -2.55 -2.36 20.81
ZK3 (3000) 1170.33 0.00 1.55 60.18 -2.67 -2.53 -2.39 1.97 -3.24 -3.09 -2.96 18.60
ZK4 (3000) 1139.08 0.00 1.32 60.18 -2.23 -2.08 -1.91 1.86 -2.76 -2.65 -2.55 16.84

Mean 0.00 1.28 60.18 -2.12 -1.97 -1.80 2.16 -2.62 -2.50 -2.35 19.73

1 max (normalized) time per run.
New best solutions: (ZK1, 13419.44);(ZK2, 3441.54);(ZK3, 1132.47);(ZK4, 1107.62).

https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T5500+%40+1.66GHz&id=922
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instances in a very short computing time, which is comparable to that associated with instances of

similar size of the B and K datasets.

To summarize, FILO and FILO (long) obtain, in short computing time, average solutions that

are generally significantly better than those found by the competing algorithms. We refer to Section

D of the Appendix for the statistical significance of the above reported results.

4. Algorithmic Components Analysis

The design of FILO followed an iterative process, whose core decisions were driven by the analyses

detailed in this section. We review (i) the definition of the initial solution by means of the construc-

tion phase, possibly followed by the route minimization procedure; (ii) the acceleration and pruning

techniques employed by the local search engine; and (iii) the guiding of the shaking strategy. As for

the parameter tuning, if not stated otherwise, the analyses reported here refer to the set of large-size

X instances with more than five hundred vertices. Moreover, when analyzing components involving

some randomization, we performed ten runs by setting the pseudorandom engine seed equal to the

run counter minus one and reported aggregated results averaged over seeds and instances. Finally,

we refer to Section A of the Appendix for additional material.

4.1. Initial Solution Definition

The construction phase depends on the parameter ncw to identify, for each customer i ∈ Vc, the

number of neighbors j ∈N ncw
i ({j ∈ Vc : i < j})} involved in the savings computation. Figure 6 (left)

shows the variation of the solution quality (quality gap) and compactness (route gap) when

varying ncw. We focused on the subset of instances, listed in Table 6, for which computing an initial

solution of good quality is difficult (i.e., instances for which initial solutions have a large gap and

use more routes than suggested by the heuristic estimate). Our findings validate what was already

proposed in Arnold, Gendreau, and Sörensen (2019). A value of ncw around 100 provides initial

solutions of quality comparable to that of larger values, but in slightly shorter computing times

(the differences are, however, in the order of a few tens of milliseconds for the largest ncw values

we considered). As in Section 3.1, the quality gap is defined as 100 · (Cost(S)−BKS)/BKS,

where S is the solution resulting from the procedure and, similarly, route gap is defined as

100 · (|S| − k)/k, where k is the heuristically found ideal estimated number of routes described in

Section 2.3.1.

Not surprisingly, using larger ncw values is not sufficient to increase solution compactness. Indeed,

the route minimization procedure tackles this strategic aspect of the CVRP, which is more concerned

with the assignment of customers rather than with their routing. Note, however, that, contrarily to

most existing route minimization procedures, the proposed one is still quality-oriented. In fact, a

solution with a better objective function is always preferred over a solution with a lower number
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Figure 6 Tuning of the ncw and ∆RM parameters based on instances listed in Table 6 for which initial solutions

have a large gap and use more route than suggested by the heuristic estimate. For each diagram, the middle

line represents the average and the grayed area identifies the standard deviation. Selected values for ncw

and ∆RM are marked with a vertical line.

of routes, but the procedure structure is more specifically aimed at reducing the number of routes

while also often obtaining the desirable effect of improving the objective function. Figure 6 (right)

shows the results of this procedure when it is applied, for different numbers of iterations ∆RM , to a

solution S built by the construction phase with ncw = 100. The diagrams highlight the procedure’s

effectiveness, both in improving low-quality initial solutions and in quickly compacting them by

(often significantly) reducing the number of routes. As a result, we selected ncw = 100 and ∆RM =

1000. The average computing time for largest values of ∆RM is approximately ten seconds.

In addition, Table 6 compares the final algorithm outcome when the route minimization procedure

is disabled, i.e., ∆RM = 0. Despite not always being crucial for the final solution quality because

of the complex interactions among all the algorithm’s components, the route minimization proce-

dure provides substantial improvement for those instances containing several customers with small

demand and a few customers with relatively large demand, such as X-n670-k130 and X-n936-k151.

We can conclude that, in average, the route minimization positively affects the final algorithm’s

outcome without any significant impact on the computing time.

4.2. Local Search

We analyzed the local search operators described in Section 2.2 in the context of the core opti-

mization procedure, where all features we propose are fully employed. The effect of a local search

operator application is tightly linked to the state of the algorithm in that specific instant. In our

approach, randomization plays a major role in selecting the area that, once disrupted by the shaking
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Table 6 Computations with and without route minimization (RM)
procedure.

FILO without RM FILO with RM
(∆RM = 0,∆CO = 105) (∆RM = 103,∆CO = 105)

ID1 Best Avg Worst t Best Avg Worst t

X-n524-k153 0.29 0.57 0.81 1.37 0.08 0.39 0.68 1.34
X-n536-k96 0.69 0.80 0.89 1.51 0.71 0.80 0.87 1.60
X-n586-k159 0.46 0.65 0.79 1.73 0.57 0.73 0.87 1.65
X-n599-k92 0.37 0.47 0.60 1.54 0.37 0.47 0.69 1.57
X-n613-k62 0.51 0.68 0.84 1.12 0.39 0.66 0.96 1.16
X-n670-k130 1.32 1.95 2.38 1.36 0.83 1.08 1.32 1.41
X-n685-k75 0.35 0.55 0.67 1.34 0.47 0.63 0.82 1.42
X-n733-k159 0.32 0.38 0.45 1.25 0.25 0.34 0.45 1.25
X-n749-k98 0.57 0.75 0.88 1.40 0.54 0.68 0.85 1.46
X-n766-k71 0.59 0.73 0.93 1.59 0.46 0.59 0.66 1.60
X-n783-k48 0.52 0.60 0.72 1.74 0.34 0.62 0.87 1.75
X-n819-k171 0.60 0.76 0.93 1.37 0.83 0.90 1.03 1.43
X-n936-k151 0.90 1.26 1.52 1.29 0.39 0.83 1.23 1.31
X-n979-k58 0.27 0.36 0.48 2.24 0.26 0.35 0.44 2.37

Mean 0.55 0.75 0.92 1.49 0.47 0.65 0.84 1.52

1 for which the route minimization procedure is executed.

procedure, is re-optimized, and the evolution of the algorithm affects shaking intensity and spar-

sification factors. We thus believe that the evaluation of a local search operator should not occur

“in a vacuum”, but needs to be performed within the algorithm execution. Therefore, we studied

the effectiveness of individual operators by sampling the algorithm state throughout the core opti-

mization phase. More specifically, a sample consists of a shaken solution S and its subset of cached

vertices V̄S, the shaking vector ω, and the sparsification vector γ. Each sample, derived from the

actual algorithm execution, is a relevant snapshot describing the algorithm evolution. Moreover,

according to when the sample is taken, it could describe initial or final algorithm states associated

with lower or higher quality solutions.

We tested every local search operator on each sample for a total number of ∆CO = 105 core

optimization iterations. In addition, we considered seven variants for the ejch operator, named

ejch(nEC), where nEC defines the maximum number of sequences explored from each move gener-

ator, when searching for a feasible sequence of relocations. For each local search operator (applied

to a shaken solution), we analyzed the gap improvement when successfully applied, the application

time, and the success ratio computed as the number of improving applications over the total number

of attempts. Full details are available in Section A.2 of the Appendix.

As expected, ejch(·) are the most effective, yet time-consuming, operators. Their success ratio

also suggest that in most shaken solutions, finding an improving ejection-chain is relatively easy.

However, when this is not the case, the computing time can be very large especially for the ejch

with the highest nEC . We also noted that simpler operators, such as 10ex, 11ex, tails, and split

have a large success ratio, meaning that they are more likely to be applied, and provide larger gap
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improvements compared to all other operators with quadratic cardinality. These differences may

occur because their feasibility requirements are more easily met, and thus they are more frequently

applied. On the other hand, all the remaining operators, despite having a lower success ratio,

still do allow better final solutions than when they are disabled. Surprisingly, twopt is seldom

useful, meaning that the shaking procedure typically generates routes that are almost two-optimal.

However, we kept it because of its very short application time.

When structuring the HRVND, we grouped all the operators with a comparable application time

in the first tier (i.e., all the operators but ejch(·)).

Selecting which ejch to include was guided by an additional analysis comparing the results

obtained by the ejch(nEC), for the different values of nEC , when applied to solutions that are

already a local optimum for the first HRVND tier. We observed that by applying the ejch(·)

operator on first tier local optima, the application time (as well as its variability) is dramatically

reduced to a magnitude similar to that of other simpler operators. Moreover, the success ratio, the

gap improvement, and experiments with an HRVND without ejch(·) all suggest that its application

may be beneficial to obtain high-quality final solutions. In our implementation, we selected ejch(25)

(shortened to ejch in the rest of the paper), because it is more compatible with the scalability

objectives of our approach while still retaining its effectiveness compared to ejch(·) with greater

nEC .

Finally, as we apply the operators of each tier in an RVND fashion, we may expect a lower success

ratio and less gap improvement, as well as a shorter application time, when they are applied on

solutions that are already local optima for a number of other operators of the same tier.

We can now study how each operator contributes to the total improvement of the defined HRVND

structure in more detail. Denoting with O the set of local search operators we employ, we stored

the total gap improvement D(O) achieved in a number of I(O) successful applications for each

operator O ∈ O. Note that a single application consists of a full neighborhood exploration. The

ratio R(O) =D(O)/I(O) thus identifies the expected improvement that a successful exploration of

O would produce on an average solution. We can compute the percentage Relative Neighborhood

Improvement index of O with respect to the set of the available operators O as rni(O,O) = 100 ·

R(O)/
∑

O′∈OR(O′), which is shown in Figure 7. As shown in the figure, all the operators positively

contribute to the overall improvement process.

4.3. Shaking Guiding Strategy

The structure-aware and quality-oriented strategy employed by the core optimization procedure to

guide the shaking intensity uses two factors to determine whether to increment, reduce, or randomly

change the parameters ωi, i ∈ Vc of customers involved in a shaking application. More precisely,
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Figure 7 Percentage relative neighborhood improvement index for each local search operator in the engine. The index

summarizes the contribution of each operator to the total improvement.

ILB determines when shaking parameters are increased, while IUB defines when they are decreased.

Together, they identify the range in which the guiding strategy actively operates. To determine

reasonably effective values for ILB and IUB, we performed a limited random search, testing a hundred

unique combinations for ILB ∈ [0.2,0.4] discretized with steps of 0.025, and IUB ∈ [0.5,1.5] discretized

with steps of 0.05. A graphic representation for the different configurations and their performances

is depicted in Figure 8. The proposed ranges are the outcome of an iterative process in which larger

ones were narrowed down to focus on combinations producing good-quality solutions in a short

computing time. As shown in Figure 8, the values in the selected ranges have a minor impact on

the solution quality and a slightly greater one on the computing time.
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Figure 8 Tuning of ILB and IUB. In the left diagram, the configurations we considered in the random search. In the

right, the performance associated with each configuration obtained by running FILO with the ones we plot

on the left diagram. Only the best configurations are numbered.
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In our implementation, we selected configuration 78 (ILB = 0.375 and IUB = 0.85). We noticed

that slightly better solutions can be obtained when using moderately larger values particularly for

IUB. However, as shaking parameters reach larger values, we expect the associated re-optimization

time to increase and selecting values that are too large may also result in poor quality final solutions.

Finally, once the factors, which are used in combination with the average cost of a solution arc (see

Section 2.3.2.1), are set to reasonable values, the procedure can generalize well to solutions and

instances with a very different structure, as shown by our computational results.

4.4. Move Generators and Granular Neighborhoods

The benefits of GNs are well documented in several papers, such as Toth and Vigo (2003) and

Schneider, Schwahn, and Vigo (2017). However, careful tuning is necessary to get the best out of

GNs. In fact, different values for the number of neighbors considered in the sparsification rule ngs,

the base sparsification factor γbase, and the reduction factor δ affecting the number of nonimproving

iterations before increasing a sparsification factor, can dramatically alter the performance of the

algorithm and, more specifically, its computing time. The sparsification increment factor λ may also

play a role; however, we fixed it to λ = 2, as in the original GN definition, and made the other

parameters depend on its value.

As for the shaking parameters, we studied the effect of varying ngs, γbase and δ by performing

a limited random search among reasonable ranges of values. The selected configurations and the

associated performances can be seen in Figure 9. In particular, we generated a hundred unique

combinations for ngs ∈ {25,50,75,100}, γbase ∈ [0.1,0.5] discretized with steps of 0.025, and δ ∈

[0.1,1] discretized with steps of 0.05. As expected, a larger value for ngs is generally associated with

a better final solution quality. However, the associated computing time increment provides only an

extremely limited gap improvement.

In our implementation, we selected configuration 40 (ngs = 25, γbase = 0.25, and δ= 0.5) because it

allows solutions of very good quality in a relatively short computing time. We classified those Pareto

optimal configurations producing an average gap lower than or equal to 0.55% within a computing

time not longer than 5 minutes as high-performing, and the remaining as low-performing; thus we

obtained a dataset of 14 high-performing and 16 low-performing configurations. We gained some

insights about the granular-related characteristics of these configurations by analyzing a simple J48

decision tree trained with WEKA 3.8 (Frank, Hall, and Witten (2016)) on the above dataset. A

configuration can be classified as high-performing with an accuracy of about 97% if ngs ≤ 50∧0.12<

γbase ≤ 0.35 or ngs > 50∧ γbase ≤ 0.15. Apparently, δ does not provide useful insights for classifying

configuration performances. These rules suggest that a very aggressive sparsification is preferable

for obtaining reasonably good results in short computing times. The reason may be related to the
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Figure 9 Tuning of ngs, γbase, and δ. In the top row, the configurations we considered in the random search. In

the bottom row, the performance associated with each configuration obtained by running FILO with the

configuration values. Only the best configurations are numbered; seven suboptimal ones, with computing

times greater that 15 minutes, are omitted.

neighbor acceptance strategy used in FILO that is based on a simulated annealing rule. In fact, the

current search trajectory may be far worse than the current best solution, thus making additional

core optimization iterations more convenient than very accurate neighborhood explorations.

As suggested in several papers, we then studied the effect of including arcs incident into the depot

in the sparsified set.We considered the set T0 = ∪i∈Vc{(i,0)(0, i)} and defined T ′ = T ∪ T0, where

T is the set of move generators defined in Section 2.2.2. Moreover, we defined the dynamic set of

move generators T γ0
0 = {(i,0), (0, i) : i ∈N k(Vc)} ⊆ T0 with k = bγ0 · |Vc|c. The new complete set of

dynamic move generators is thus T ′γ = T γ ∪T γ0
0 . Note that, by filtering each set separately, we avoid

the possibility that one set completely overshadows another in case it considers shorter arcs. The

average gap obtained by running FILO with this new set of move generators was 0.51%, compared

to the 0.49% obtained with move generators defined by the rule of Section 2.2.2. Moreover, the

computing time was approximately 115% larger (i.e., 3.70 minutes compared to 1.72). In light of

this result, including all arcs incident into the depot may not be appropriate when moving to very

large-scale instances.

Finally, we compared the vertex-wise management of move generators with the more standard

one, in which after a number of δ ·∆CO nonimproving iterations the total number of active move

generators is doubled; i.e., γi = min{γi · λ,1}, i ∈ V . When a solution improving the current best
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Figure 10 Tuning of C. Computational results (left) and local search statistics (center, right) obtained by running

FILO with the associated C value.

solution is identified, all sparsification factors are reset; i.e., γi = γbase, i∈ V . By running FILO with

move generators managed in the standard way we obtained a gap of 0.51% compared to a gap of

0.49% with the vertex-wise management, and computing times were similar. However, we believe

both strategies to be equally effective when properly tuned. To conclude, the proposed vertex-wise

management of move generators might be a reasonable and effective alternative generalization of

the standard one and better fits the localized optimization design of FILO.

4.5. Selective Vertex Caching

The dimension of the cache C may considerably affect the overall algorithm outcome by indirectly

acting on the different components employed: a smaller C value will promote a milder shaking

intensity. In fact, most of the customers involved in stronger shakings would not be considered by

subsequent local search application because they were not cached, due to the limit imposed by

C. Furthermore, a low C value would cause the local search to perform fewer improvements per

iteration, reducing the likelihood of improving the best solution S∗. As a result, sparsification factors

γi, i∈ V might reach larger values compared to scenarios using a larger C. Figure 10 illustrates the

average performance of FILO and statistics related to the local search execution as C is varied. In

our implementation, we selected C = 50 because it produces solutions of a quality comparable to

larger values but with shorter computing times. Note, however, that the SVC and shaking guiding

strategy are highly interconnected components. In fact, even when C >> 100, results and statistics

remain comparable to those with C ≈ 100, because of the limits on the number of ruined customers

imposed by the shaking guiding strategy.

Figure 11 provides a number of hints about the scalability of FILO. In fact, we observed that

the number of moves explored by the local search, as well as its average application time, does not

depend on the instance size. There is, however, a positive correlation between the number of routes

and the number of explored moves.
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Figure 11 Statistics for local search operators while varying the instance size and the nominal number of routes, i.e.,

defined in the X instance name.

Finally, we tested FILO without the SVC: we set C = |V | and included all vertices in the cache

(never removing them). Recall that, normal cache behavior requires that it be emptied at the

beginning of each improvement iteration. Several components make use of the cache to identify areas

where it may be worth working. In this scenario, the update of the shaking parameters will try to

identify a set of values that are globally good. The average results were comparable with those with

C = 50 and the cache enabled: the average gap was 0.50%, but the computing time increased by a

factor of ten, increasing to 20.15 minutes.

4.6. Extreme Runs

In this section we investigate whether allowing longer computations is enough to improve the quality

of final solutions. This question is partially answered by the computational results of Section 3,

where we considered the FILO (long) version. In addition we performed an even longer run by setting

∆CO = 107. The average gap for the subset of large instances of the X decreased from the 0.30%

with FILO (long) to 0.19% in 183.74 minutes. Moreover, we found three new best solutions. The

increment in the computing time remains quite constant: i.e., increasing the number of iterations

by a factor of ten increases the computing time about ten times. Full details are given in Section

A.3 of the Appendix.

Finally, we studied whether performing a larger number of runs per instance drastically changes

the average result and computing time. To this end, we compared the results obtained on the large

scale X instances in 50 runs (described in Section 3.3) with the results obtained by performing 100

runs. Seeds were selected as described in Section 3.1. The average gap (rounded to two decimal
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Figure 12 Average gap and computing time comparison while varying the number of runs per instance. The median

value is shown below each boxplot.

places) when performing 100 runs increased to 0.51% and the computing time remained the same;

see Figure 12.

To better assess whether there was a statistically significant difference among the averages between

runs with seeds 0–49 and runs with seeds 0–99, we performed a Wilcoxon signed-rank test (Wilcoxon

(1945)) using the R software (R Core Team (2020)). The null hypothesis states that the two samples

of averages are identical; that is, they have the same median. Both the average gap and computing

time do not statistically differ, whether performing 50 or 100 runs. In fact, assuming a confidence

level α= 0.025, the p-values are 0.977935 and 0.500047 for the average solution quality and com-

puting time, respectively. In both cases, the p-value is greater than α and thus we cannot reject the

null hypothesis that the samples are not statistically different.

4.7. Simplified Versions of FILO

In this section, we study the behavior of two simplified versions of FILO to better understand and

assess the contribution of the main algorithmic components we developed when moving from large-

to very large-scale instances. To this end, we concentrate our analysis on the X and B datasets.

The first version, called FILO1, complies with the initial design objectives of FILO: realizing an

effective algorithm which exhibits an almost-linear computing time growth based on a localized

and tailored local search optimization. More precisely, FILO1 contains the following changes with

respect to FILO, which will make the implementation considerably easier:

• The HRVND is replaced by a RVND, containing only simple local search operators, identified

as the most effective according to Figure 15 of Section A.2 of the Appendix. In particular,

we selected 11ex, 10ex, tails and split because they have a high success rate (greater than

45%).

• The selected neighborhoods are explored according to a best-improvement strategy, without

exploiting SMDs.

• The route minimization phase is never executed.
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Figure 13 Performance comparison of FILO variants on the X (left) and B (right) instances.

Although their implementation may be easier because of the above changes, the following compo-

nents remain the same as in FILO:

• The vertex-wise management of move generators is still used to provide a tailored intensifica-

tion. However, its implementation becomes trivial when SMDs are not used.

• The SVC is still used to keep the optimization localized.

• The core optimization phase remains unchanged; e.g., the shaking procedure still contains the

adaptive update of shaking parameters to perform a tailored optimization.

Note, however, that removing the SMDs means that the cache size becomes a hard constraint, and

each neighborhood exploration will only consider those moves for which at least one of the vertices

is cached.

The second version, called FILO0, further simplifies FILO1 by retaining only the optimization due

to the random walk ruin-and-recreate, without the application of any local search - thus removing

all components associated with the local search engine.

Each X and B instance was solved 50 times with seeds defined as in Section 3.1. Parameters for

the preserved components have the same tuning as in Section 3.2. From the results (shown in Figure

13) we can summarize that:

• FILO0, inspired by the effectiveness of the work by Christiaens and Vanden Berghe (2020),

confirms that an accurate design of a ruin-and-recreate procedure, coupled with an effective

diversification strategy, may be enough to find good-quality solutions for medium to large

instances in negligible computing time. However, results on very large-scale instances show that,

given the same number of iterations, other strategies are necessary to improve the effectiveness

of the method.
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• FILO1, given enough iterations, proved to be competitive with FILO on the X dataset. How-

ever, it is not always Pareto-optimal on the largest B instances. The reduced number of local

search operators thus has a significant impact for the proposed algorithm when moving to very

large-scale instances. Finally, the SVC and GNs allow us to limit the computing time of FILO1

considerably, because the filtering of GNs is fairly aggressive with the proposed parametriza-

tions. We strongly suggest, however, the adoption of SMDs in VND settings, which would

allow considerable savings in the computational effort (see, Zachariadis and Kiranoudis (2010)

and Beek et al. (2018)). In fact, the computing time of FILO1 is reduced in average of about

10% when the implementation exploits SMDs even if using few local search operators and very

aggressive neighborhood filtering strategies.

5. Conclusions

In this paper, we presented FILO: an effective and scalable algorithm for the CVRP.

The proposed algorithm combines an efficient implementation of existing speedup techniques for

local search engines together with several new algorithmic components whose role and impact are

extensively analyzed. In particular, FILO performs its main improving action by re-optimizing a

very limited area that was previously disrupted by a localized shaking application. The shaking

is performed in a ruin-and-recreate fashion and guided by a meta-strategy that iteratively tailors

the ruin intensity to the current instance and solution. A sophisticated implementation of a local

search engine then re-optimizes the disrupted area by means of a number of interconnected compo-

nents, both novel and revisited, which characterize the effectiveness and scalability of the proposed

algorithm. More precisely:

• An innovative Selective Vertex Caching strategy is used to focus the optimization process on

solution areas that were recently changed.

• Dynamic Granular Neighborhoods (GN), managed in a more general way than was originally

proposed by Toth and Vigo (2003), are used to identify a number of promising neighbor solu-

tions by intensifying the search only where it is more required.

• A considerable number of local search operators are implemented using the Static Move Descrip-

tors (SMD), and structured into a Hierarchical Randomized Variable Neighborhood Descent

to actually perform the improvements.

• A new adaptive shaking strategy is proposed to iteratively modulate the intensity of the shaking

based on the quality and structure of instances and solutions.

Despite the exploration of several neighborhoods, the method is still very fast, thanks to an accu-

rate design; it also greatly benefits from the above-mentioned acceleration and pruning techniques.

Moreover, FILO exhibits a computing time that grows linearly with respect to the instance size,
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making it very suitable for solving very large-scale instances without sacrificing the quality of the

final solutions. In fact, it was able to find several new best solutions for very large-scale instances

and two new best solutions for the well-studied X dataset proposed by Uchoa et al. (2017).

The effectiveness and potential of the new algorithmic components proposed in FILO are further

assessed by analyzing two simplified versions, which maintain the main elements of FILO listed

above, but are considerably easier to implement. The first one does not make use of SMDs to speed

up the local search and removes some minor components, such as the route minimization step.

In contrast, the second one, inspired by the effective algorithm of Christiaens and Vanden Berghe

(2020), completely removes the local search engine and only performs a ruin-and-recreate, while

adopting the diversification and intensification strategies of FILO. Overall, the simplified versions

proved able to obtain very good solutions thanks to the contribution of the new components, partic-

ularly on medium and large instances. However, the combination of these new ideas with the faster

execution provided by the combination of GNs and SMDs in the local search engine leads to an

algorithm which is able to obtain much better solutions than the simplified versions, within the same

amount of time. In addition, the computational requirement of FILO grows almost linearly with

the instance size, so it is possible to efficiently solve very large-scale instances with much shorter

computing times than the existing methods from the literature.
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Appendix A: Algorithmic Components Analysis: Additional Material

This section contains additional material related to the Algorithmic Components Analysis Section.

A.1. Initial Solution Definition

Consider the scenario depicted in Figure 14, showing a single run for instance X-n936-k136. This example

illustrates the evolution of the route minimization procedure with ∆RM = 1000 on the left and of the core

optimization procedure with ∆CO = 5000 on the right. Both procedures ran for about three seconds and were

applied to the same starting solution generated by the construction phase. By moving into the infeasible

space, the route minimization procedure is very effective in quickly improving and compacting trivially bad

initial solutions. However, since its structure is specifically designed to reduce the number of routes, the

improvements vanish after a few hundred iterations.
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Figure 14 Example of improvement procedures evolution when applied to the same initial solution for instance X-

n936-k151. The continuous line shows the cost (top) and number of routes (bottom) associated with the

best solution (in terms of cost) found up to that iteration; dots represents the current search trajectory.

Gray and black dots are associated with infeasible and feasible solutions, respectively.

A.2. Local Search

Figure 15 shows, for each local search operator applied to a shaken solution, the gap improvement when

successfully applied, the application time in 10−6 seconds, and the success ratio computed as the number of

improving applications over the total number of attempts. Similarly, Figure 16 shows the effect of ejch(·)

when applied to solutions that are already a local optimum for the first HRVND tier.
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Figure 15 Statistics for local search operators when applied to shaken solutions. For each operator, we report the

expected gap improvement when successfully applied (left), the total exploration time (right), and the

success ratio (below each operator’s name). The median value is shown below each boxplot.
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Figure 16 Statistics for local search operators when applied to HRVND first tier local optima. For each operator, we

report the expected gap improvement when successfully applied (left), the total exploration time (right),

and the success ratio (below each operator’s name). The median value is shown below each boxplot.

A.3. Extreme Runs

Table 7 shows the results we obtained by setting ∆CO = 107.

A.4. Computations with Limited Memory Footprint

Random access memory (RAM) is relatively cheap nowadays, and large amounts are easily supported, even

by low-cost laptops. Time, on the other hand, is much more valuable; new chips are moving to massive

parallelization rather than an increase in their working frequency. Solution methods, however, seldom make

use of parallel processing to solve a single instance, even though this approach might be a very interesting,

yet challenging, research direction for very large-scale instances. We can thus state that the real bottleneck

is probably not the amount of available RAM, but the computing time used to solve an instance. Indeed,

the largest instance we considered, F2 from the B dataset, with thirty thousand vertices, can be easily

processed on a laptop with 16GB of RAM. During the main core optimization procedure, only about 66%

of the available RAM would be used. Despite the fact that RAM is not currently a limiting factor, in this

section we investigate the behavior of FILO when the cost matrix, which is one of the most RAM-consuming

data structures we use, is not stored but, instead, arc costs are computed on demand. In this case, the

computing time increases by about 52% (i.e., from 1.72 minutes to 2.60 minutes). As an example, without

storing the cost matrix, the F2 instance’s RAM requirements drop from 10.56 GB to 3.68GB. This may allow

the algorithm to be applicable to instances even larger than the one we considered. An alternative, more

sophisticated, method proposed in Arnold, Gendreau, and Sörensen (2019), consists of storing a number of

arcs connecting close vertices that are supposed to be used more frequently than others, in a hashmap.
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Table 7 Long computations on large-sized X
instances.

ID BKS Best Avg Worst t

X-n502-k39 69226 0.00 0.01 0.04 262.65
X-n513-k21 24201 0.00 0.07 0.16 222.27
X-n524-k153 154593 0.01 0.14 0.27 146.99
X-n536-k96 94868 0.50 0.60 0.71 161.76
X-n548-k50 86700 0.01 0.02 0.09 207.85
X-n561-k42 42717 0.08 0.20 0.28 138.73
X-n573-k30 50673 0.12 0.22 0.26 205.74
X-n586-k159 190316 0.20 0.25 0.31 181.93
X-n599-k92 108451 0.15 0.22 0.33 189.87
X-n613-k62 59545 0.12 0.20 0.39 121.34
X-n627-k43 62173 0.03 0.12 0.32 198.31
X-n641-k35 63705 0.05 0.11 0.18 206.51
X-n655-k131 106780 0.00 0.02 0.03 378.73
X-n670-k130 146332 0.50 0.64 0.90 136.33
X-n685-k75 68225 0.17 0.34 0.52 142.94
X-n701-k44 81923 0.03 0.11 0.35 163.87
X-n716-k35 43387 0.09 0.16 0.29 176.98
X-n733-k159 136190 0.06 0.13 0.20 135.04
X-n749-k98 77314 0.15 0.25 0.38 141.90
X-n766-k71 114456 0.16 0.27 0.34 156.24
X-n783-k48 72394 0.10 0.17 0.26 191.01
X-n801-k40 73331 -0.03 0.09 0.15 188.16
X-n819-k171 158121 0.39 0.44 0.53 141.35
X-n837-k142 193737 0.12 0.21 0.26 191.22
X-n856-k95 88990 0.01 0.07 0.13 188.52
X-n876-k59 99303 0.11 0.16 0.24 176.58
X-n895-k37 53928 -0.04 0.13 0.31 189.72
X-n916-k207 329179 0.19 0.23 0.31 200.72
X-n936-k151 132812 0.16 0.26 0.38 127.16
X-n957-k87 85469 -0.00 0.06 0.11 195.38
X-n979-k58 118988 0.05 0.16 0.24 244.49
X-n1001-k43 72369 0.06 0.17 0.27 169.54

Mean 0.11 0.19 0.30 183.74

New best solutions: (X-n801-k40, 73311);(X-n895-k37,
53906);(X-n957-k87, 85467).
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Appendix B: Move Generators and Static Move Descriptors

Efficiently managing move generators is crucial for any local search-based algorithm making use of GNs. In

addition, flexibility might be required when experimenting different sparsification rules and composition of

them, as we did in the analysis proposed in Section 4.4. In the following sections, we first discuss a flexible but

still efficient implementation of move generators for the symmetric CVRP, supporting the union of different

sparsification rules and a vertex-wise dynamic management. Then, we show how it can be used to efficiently

implement SMD-based local search operators.

B.1. Move Generators: Storage and Management

Given a set R of sparsification rules, the complete set of move generators T is defined by the union of a

number of move generator sets Tr, each one defined by a sparsification rule r ∈R; that is, T =
⋃
r∈R Tr. Each

set Tr may be filtered according to a sparsification vector γ = (γ0, γ1, . . . , γN) defining, for each vertex i∈ V ,

a percentage γi ∈ [0,1] of move generators in Tr to be considered as active. More precisely, the dynamic set of

move generators T γr filtered according to γ is defined as T γr =
⋃
i∈V {(i, j), (j, i) : j ∈ V ∧Condition(i, j, γi)},

where Condition(i, j, γi) is a criterion that determines whether (i, j) and (j, i) are active based on the value

of γi.

In the following, we describe a possible implementation of the above defined general framework for move

generators. An illustrative example, representing the implementation of a set of move generators T defined

by the union of two sparsification rules r0 and r1, is shown in Figure 17.

A list of move generators L(T ) is built by considering unique move generators defined by the different

sparsification rules r ∈ R. By denoting with L(T )` the move generator (i, j)` indexed by ` in L(T ), we

structured the list L(T ) so as to satisfy:

1. L(T )` = (i, j)` ∧L(T )`+1 = (j, i)`+1 for each even index `;

2. L(T ) /3 (i, i),∀i∈ V .

Condition 1 asks that both (i, j) and (j, i) are considered. This ensures the evaluation of a consistent set

of moves when exploring asymmetric neighborhoods. Moreover, (i, j) and (j, i) are stored contiguously into

L(T ) so that given a move generator indexed by `, its reversed counterpart can be efficiently retrieved, when

necessary. Finally, Condition 2 discards self-moves which are typically not used in local search procedures.

A number of lists L(Tr, v), one for each vertex v ∈ V , is associated with each sparsification rule r ∈ R.
Those lists identify a portion of L(T ) consisting of move generators (i, j)∈ Tr. In particular, each list L(Tr, v)

keeps track of the even indices ` of move generators (i, j)` such that v= i or v= j. Because of Condition 1 on

L(T ), it is not necessary to store the index of the counterpart of (i, j) that can be found accessing L(T )`+1.

In addition, each list L(Tr, i), along with indices `, stores an inclusion percentage value pri` used to define

whether move generators (i, j)` and (j, i)`+1 are active according to the current sparsification factor γi. More

precisely, the above defined Condition(i, j, γi) is implemented as Condition(i, j, γi) = pri` ≤ γi where ` is
the even index pointing to move generator L(T )` having i and j as endpoints.

Depending on how the inclusion percentage values are defined we can model the classical or the vertex-wise

management of the dynamic move generators for a sparsification rule r ∈ R. In the classical management∑
i∈V

∑
`∈L(Tr,i)

pri` = 1 whereas in the vertex-wise management
∑

`∈L(Tr,i)
pri` = 1 for each i∈ V .
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Figure 17 Implementation of the list L(T ) of move generators defined by two sparsification rules r0 and r1. Two

move generators (i, j) and (j, i) indexed ` and `+ 1 respectively, are explicitly shown. As can be seen,

those move generators are defined by both sparsification rules and the associated entry in the lists point

to the same shared entry in L(T ). The inclusion percentages pr0i` and pr1j` might however cause those

move generators to be active at different times according to the value of γi and γj .

The complete dynamic set of move generators can thus be addressed by iterating over each sparsification

rule r ∈R, each vertex i∈ V , each list L(Tr, i), and considering move generators (i, j)` and (j, i)`+1 such that

pri` ≤ γi.

Note that by storing indices instead of move generators, different sparsification rules identifying the same

subset of move generators would point to the same entry of L(T ).

In our implementation, the Sparsification Rule r0 described in Section 2.2.2 is implemented by defining

pr0v` = n/|L(Tr0 , v)|, where n is the index of move generator ` in a list of move generators (i, j) ∈ L(Tr0 , i)

sorted in increasing cij cost. The additional Sparsification Rule r1 employed in the analysis of Section 4.4

defines instead pr1v` = n/|Tr1 |, where n is the index of move generator ` in a list of move generators (i, j)∈

L(Tr1) sorted in increasing cij cost.

B.2. An Abstract SMD-based Local Search Operator

The general structure of all SMD-based local search operators we used is shown in Algorithm 7. Note that,

as mentioned in Section 2.2.3, we use the terms SMD and move generator interchangeably.

First, during a pre-processing step, additional computation useful for the actual neighborhood exploration

may be executed. As an example, tails and split benefit from pre-computing route cumulative loads.

A heap data structure H is initialized with the currently active move generators according to the sparsifi-

cation vector γ, and such that at least one of the endpoints belongs to the set V̄S of cached vertices for the

solution S under examination. In particular, those move generators, denoted by T γ(S), can be easily retrieved

by using the data structures defined in Section B.1 and, more specifically, T γ(S) =
⋃
r∈R,i∈V̄S

{(i, j)` : pri` ≤

γi, ` ∈ L(Tr, i)}. When dealing with local search operators defining asymmetric neighborhoods, both (i, j)`

and (j, i)`+1 have to be included. Given condition 1 on list L(T ) defined in Section B.1, this can be done by

setting T γ(S) = T γ(S)∪
⋃
r∈R,i∈V̄S

{(j, i)`+1 : pri` ≤ γi, `∈L(Tr, i)}.

For each move generator (i, j)∈ T γ(S), the δ-tag δ(i, j), identifying the effect of the application of the move

induced by (i, j) on S, is computed. Every (i, j) inducing an improving move (i.e., δ(i, j)< 0) is inserted into
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the heap data structure H. By only inserting improving move generators, the heap computational complexity

is kept at its minimum.

The heap H is linearly scanned until a feasible move is found. If such a move cannot be found, then S is

considered to be a local optimum with respect to the local search operator under examination. Note that by

heuristically restricting the initialization stage to only consider move generators involving vertices in V̄S some

improvement may be overlooked, but, as shown by the experiments in Section 4.5, this does not significantly

affect the final solution quality.

Once a move generator (i, j) inducing a feasible and improving change to S is found, a list A of operator-

dependant affected vertices is assembled. The application of (i, j) during the execute stage will change some

of the δ-tag of move generators involving vertices in A.

The update stage recomputes the δ-tag for active move generators U(i,j) =
⋃
r∈R,i∈A{(v1, v2)` : `∈L(Tr, i)∧

(v1 = i ∨ v2 = i) ∧ pri` ≤ γi}. In case of an asymmetric neighborhood, the updates are extended to U(i,j) =

U(i,j) ∪
⋃
r∈R,i∈A{(v2, v1)`+1 : `∈L(Tr, i)∧ (v1 = i∨ v2 = i)∧ pri` ≤ γi}. For each move generator requiring an

update (v1, v2)∈U(i,j), the following cases are possible:

• (v1, v2) is removed from the heap H if (v1, v2)∈H and δ(v1, v2)≥ 0;

• (v1, v2) is inserted into the heap H if (v1, v2) 6∈ H and δ(v1, v2)< 0;

• the heap property is checked and possibly restored if (v1, v2)∈H and δ(v1, v2)< 0;

• finally, (v1, v2) is ignored if (v1, v2) 6∈ H and δ(v1, v2)≥ 0.

Since different sparsification rules may refer to the same move generators, a timestamp associated with

each move generator (i, j) can be used to avoid evaluating it more than once, both in the initialization and

in the update stages. Note that also when using a single sparsification rule r, a double evaluation may occur

when i, j ∈A and T` = (i, j)` is such that `∈L(Tr, i)∧ pri` <γi and `∈L(Tr, j)∧ prj` <γj .

Algorithm 7 Abstract SMD-Based Local Search Operator
1: procedure Apply(S,Tγ)

2: Preprocess(S)

3: H← Initialization(S,Tγ)

4: n← 0

5: while n< len(H) do

6: (i, j)←Peek(H, n)

7: n← n+ 1

8: if ¬IsFeasible(S, (i, j)) then continue

9: A←AffectedVertices(S, (i, j))

10: S←Execute(S, (i, j))

11: Update(H, Tγ ,A)

12: n← 0

13: end while

14: end procedure



Accorsi and Vigo: Heuristic Solution of Large-Scale CVRPs
50 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

i σi

jπj

πi

bc
σ3

i

σj

bc

π3

i

bcbc

bc

bcbc

bc

rs

rs

bcbc
σ2

iπ2

i

σ2

j

bc

Figure 18 A 30ex application induced by move generator (i, j) relocating path (π2
i − i) between πj and j. Some

SMDs involving vertices in the gray area require an update to their δ-tag after the move execution.

B.2.0.1. Restricted Update for Asymmetric Neighborhoods. The δ-tag update of move generators

involving a vertex i ∈ A for a local search operator defining an asymmetric neighborhood may sometimes

be restricted from {(i, v2), (v1, i) : v1, v2 ∈ V } ∩ T γ to only one between {(i, v2) : v2 ∈ V } ∩ T γ and {(v1, i) :

v1 ∈ V }∩T γ . As an example, consider the 30ex application shown in Figure 18. The set of affected vertices

is A= {π3
i , π

2
i , πi, i, σi, σ

2
i , σ

3
i , πj , j, σj , σ

2
j }. However, not all move generators {(i, j), (j, i) : i ∈A, j ∈ V } ∩ T γ

have to be updated. For example, considering vertex π3
i , move generators (π3

i , j), j ∈ V require an update

since the successor of π3
i changes after the move execution, however, move generators (j, π3

i ), j ∈ V do not,

in fact, the predecessor of π3
i remains the same. For operator 30ex (and ignoring the current sparsification

level), the total number of move generators requiring an update after a 30ex application can be reduced of

approximately 36%.

Finally, we refer to Section B.3 of the Appendix for the operator-dependant definitions of the feasibility

check, the assembly of the list A of vertices, the restricted update and the execution stage.

B.2.1. Dynamic Vertex-wise Move Generators for SMD-based Local Search Operators.

Vertex-wise management of move generators requires a little extra care for the SMD update stage to be

correctly performed. To highlight this, consider a scenario in which a vertex j is currently marked as cached

at the beginning of a neighborhood exploration for a solution S; that is, j ∈ V̄S. An illustrative example is

shown in Figure 19. The figure represents a portion of an instance with six customers together with a number

of move generators depicted as lines ending with little circles. In particular, for a move generator (v1, v2),

a full circle near to v1 means that the move generator is currently active in v1, i.e., prv1` ≤ γv1 where ` is

the index of (v1, v2)` in L(T ), while an empty circle represents the opposite scenario, i.e., prv1` >γv1 . In the

bc

bcbc

bc j

V̄S bc

bc
i

v

Figure 19 A portion of an instance containing six customers (circles) and five move generators (lines). A move

generator (v1, v2)` active in v1, i.e., prv1` ≤ γv1 , is represented with a full circle near to v1, whereas an

empty circle denotes the opposite, i.e., prv1` > γv1 . As an example (i, j) is active in j but not in i. The

direction of move generators is not shown because not relevant.
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example, (i, j) is active in j but not in i. Finally, the grayed area identifies the set V̄S of currently cached

vertices for S.

During the SMD initialization stage, move generators involving vertices in V̄S are considered to be inserted

into the heap data structure H. Suppose that, because inducing an improving move and currently active in

j, move generator (i, j) along with with other improving move generators including (i, v) are inserted into H.

During the SMD search stage, move generator (i, v) is found feasible before the evaluation of (i, j). The move

induced by (i, v) is then applied and a number of affected vertices A may be such that i∈A but j 6∈A. Note

that i shares (i, j) with j but (i, j) is not currently active in i because of the sparsification factor γi. The

SMD update stage requires that, from each vertex v ∈A active move generators are updated. Should (i, j)

still be updated even if not active in i? The answer is yes. Being (i, j) active in j, it may be, as described in

this scenario, already into the heap H and possibly be extracted during future search stages. In fact, being i

among the affected vertices A as a result of the application of (i, v), the δ-tag of any move generator involving

a vertex v ∈A requires an update, and hence (i, j) does. On the other hand, if (i, j) were not active in both

j and i, updating it after (i, v) was not required because it could have never been inserted into H.

The dynamic management of vertex-wise move generators may thus require the update of move generators

that are not active in one of the affected vertices but only active in the other endpoint that may not be in

the list of vertices affected by the move application. A possible implementation uses two additional flags per

move generator (i, j) storing whether it is active in i and/or in j. During the SMD update stage the flags

are checked to identify whether an update is required.

Finally, note that this approach works correctly under the assumption that the sparsification vector γ is

not changed during a neighborhood exploration.

B.3. SMD Implementation Details of Local Search Operators

In the following, we provide a detailed description of the implementation for the local search operators used

in FILO. In particular, we detail the operator-dependant procedures to be defined when applying a move

induced by a move generator (i, j) within an SMD-based operator. To better accomplish this, we introduce

few additional notation elements. In particular, we denote by π`i and σ`i the `th- predecessor and successor

of vertex i ∈ V , respectively, in the solution under examination. We omit the apex when ` = 1. Moreover,

we identify with qupi and qfromi the cumulative load up to and from any customer i ∈ Vc included, i.e.,

qupi = qi + qπi
+ qπ2

i
+ . . .+ q0 and qfromi = qi + qσi + qσ2

i
+ . . .+ q0. In the following paragraphs, a figure is

shown for each local search operator highlighting the move induced by a move generator (i, j) and the set of

vertices affected by its application (grayed area). Note that the move generator direction does not necessarily

reflect the crossing direction in the resulting route. Finally, as defined in Section 2.2, path is used to refer to

a contiguous sequence of vertices belonging to a route, and head and tail are used to denote a path belonging

respectively to the initial and final part of a route.

B.3.1. twopt. Replace a path of vertices with its reverse.
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bc bcrs i σi

jσj

bc bc

• Type: symmetric.

• Pre-processing: none.

• Cost computation: δij =−ciσi + cij − cjσj + cσiσj .

• Feasibility Check: ri = rj .

• Update List: all vertices between i and σj , for which successors and predecessors change after the move

application.

• Execution: reverse the path between σi and j included.

B.3.2. split. Replace the tail of route ri with the reversed head of route rj and replace the head of

route rj with the reversed tail of route ri.

bc bcrs i σi

j σj

bc bcrs rs

rs

• Type: symmetric.

• Pre-processing: compute qupi and qfromi for any customer i∈ Vc.

• Cost Computation: δij =−ciσi + cij − cjσj + cσiσj .

• Feasibility Check: (ri 6= rj)∧ (qupi + qupj ≤Q)∧ (qfromσj
+ qfromσi

≤Q).

• Update List: all vertices from i to the depot and from the depot to σj , for which successors and

predecessors change after the move application.

• Execution: replace (i, σi) and (j, σj) with (i, j) and (σi, σj) and reverse paths from depot to j and from

σi to depot. Update the cumulative load qupv and qfromv for customers v belonging to ri and rj , if not

empty.
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B.3.3. tails. Swap the tails of two different routes.

rs i σi

jπj

bc

bc

bc

bcrs

• Type: asymmetric.

• Pre-processing: compute qupi and qfromi for any customer i∈ Vc.

• Cost Computation: δij =−ciσi + cij − cjπj
+ cπjσi .

• Feasibility Check: (ri 6= rj)∧ (qupi + qfromj ≤Q)∧ (qupπj
+ qfromσi

≤Q).

• Update List: i, σi, j and πj .

The update can be restricted to move generators {(i, v), (v,σi), (v, j), (πj , v) : v ∈ V }∩Tγ .

• Execution: replace (i, σi) and (πj , j) with (i, j) and (πj , σi). Update the cumulative load qupv and qfromv

for customers v belonging to ri and rj , if not empty.

B.3.4. n0ex with n≥ 1. Relocate a path of n vertices within the same or into a different route.

i σi

jπj

bc
σn
iπn

i

bc

bc

bcbc

bc

rs

rs

bc

π
n−1

i

σn−1

j

bc

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij =−cπn
i
πn−1
i
− ciσi − cjπj

+ cπn
i
σi + cπjπ

n−1
i

+ cij .

• Feasibility Check: logical disjunction of

— (ri = rj)∧
∧n−1
`=1 (j 6= π`i )∧ (j 6= σi).

When ri = rj and
∨n−1
`=1 j = π`i , the path to relocate overlaps with the destination position.

When ri = rj and j = σi, the move does nothing but the δij computation is not correct.

— (ri 6= rj)∧ (i 6= 0)∧
∧n−1
`=1 (π`i 6= 0)∧ (qrj + qi +

∑n−1
`=1 qπ`

i
≤Q).

The condition makes sure the depot is not relocated and the capacity constraint of the target route is

respected.

• Update List:
⋃n

`=1 π
`
i ∪ i∪

⋃n

`=1 σ
`
i ∪πj ∪ j ∪

⋃n−1
`=1 σ

`
j .

The update can be restricted to move generators
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—{(πni , v), (πn−1
i , v), (v,πn−1

i ) : v ∈ V }∩Tγ ;

—{(π`i , v) : `= n− 2, . . . ,1 and v ∈ V }∩Tγ ;

—{(i, v) : v ∈ V }∩Tγ ;

— if n= 1 include {(v, i) : v ∈ V }∩Tγ ;

—{(σi, v), (v,σi) : v ∈ V }∩Tγ ;

—{(σ`i , v) : `= 2, . . . , n and v ∈ V }∩Tγ ;

—{(πj , v) : v ∈ V }∩Tγ ;

—{(j, v), (v, j) : v ∈ V }∩Tγ ;

—{(σ`j , v) : `= 1, . . . , n− 1 and v ∈ V }∩Tγ .

• Execution: replace (πni , π
n−1
i ), (i, σi) and (j, πj) with (πni , σi), (π

n−1
i , πj) and (i, j).

B.3.5. n0rex with n≥ 2. Relocate a reversed path of n vertices within the same or into a different

route.

i σi

j

bc
σn
i

σj

πn
i

bc

bc

bcbc

bc

rs

rs

bc

πn−1

i

bc
σn
j

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij =−cπn
i
πn−1
i
− ciσi − cjσj + cπn

i
σi + cσjπn−1

i
+ cij .

• Feasibility Check: logical disjunction of

— (ri = rj)∧
∧n

`=1(j 6= π`i ).

When ri = rj and
∨n−1
`=1 j = π`i , the path to relocate overlaps with the destination position.

When ri = rj and j = πni , the move could be reduced to a twopt induced by move generator (j, i) but

would require a special handling in this context.

— (ri 6= rj)∧ (i 6= 0)∧
∧n−1
`=1 (π`i 6= 0)∧ (qrj + qi +

∑n−1
`=1 qπ`

i
≤Q).

The condition makes sure the depot is not relocated and the capacity constraint of the target route is

respected.

• Update List:
⋃n

`=1 π
`
i ∪ i∪

⋃n

`=1 σ
`
i ∪ j ∪

⋃n

`=1 σ
`
j .

The update can be restricted to move generators

—{(π`i , v), (π`i , v), (i, v), (v, i) : `= n, . . . ,1 and v ∈ V }∩Tγ ;

—{(σ`i , v), (σ`j , v) : `= 1, . . . , n and v ∈ V }∩Tγ ;

—{(j, v), (v, j) : v ∈ V }∩Tγ .

• Execution: replace (πni , π
n−1
i ), (i, σi) and (j, σj) with (πni , σi), (π

n−1
i , σj) and (i, j).
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B.3.6. nmex with 1≤m≤ n. Swap a path of n vertices with a path of m vertices within the same

or between different routes.

i σi

jπj

πn
i

bcbcrs

rs

πn−1

i

bc bc

πm
j

bc

σ
max{n,m+1}

i

bc bc bc bc

σ
max{n−1,m}

j
π
m+1

j

bc

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij =−cπn
i
πn−1
i
− ciσi − cπm+1

j
πm
j
− cjπj

+ cπn
i
πm
j

+ cπjσi + cπm+1
j

πn−1
i

+ cij .

• Feasibility Check: logical disjunction of

— (ri = rj)∧
∧n−1
`=1 (j 6= π`i )∧

∧m+1
`=1 (j 6= σ`i ).

When ri = rj and
∨m
`=1 j = σ`i ∨

∨n−2
`=1 j = π`i , the paths overlap.

When ri = rj and j = σm+1
i , the move could be reduced to a m0ex induced by move generator (σi, π

n−1
i )

or to a n0ex induced by move generator (i, j) but would require a special handling in this context.

When ri = rj and j = πn−1
i , vertex j is at the same time part of the path to move and destination of the

movement.

— (ri 6= rj)∧ (i 6= 0)∧
∧n−1
`=1 (π`i 6= 0)∧

∧m

`=1(π`j 6= 0)∧ (qrj + qi +
∑n−1

`=1 qπ`
i
−
∑m

`=1 qπ`
j
≤Q)∧ (qri − qi−∑n−1

`=1 qπ`
i

+
∑m

`=1 qπ`
j
≤Q).

The condition makes sure the depot is not relocated and the capacity constraints are not violated.

• Update List:
⋃n

`=1 π
`
i ∪ i∪

⋃max{n,m+1}
`=1 σ`i ∪

⋃m+1
`=1 π`j ∪ j ∪

⋃max{n−1,m}
`=1 σ`j .

The update can be restricted to move generators

—{(πni , v) : v ∈ V }∩Tγ ;

—{(π`i , v) : `= n− 1, . . . ,1 and v ∈ V }∩Tγ ;

—{(v,π`i ) : `= n− 1, . . . , n− 1−m and v ∈ V }∩Tγ ;

—{(i, v) : v ∈ V }∩Tγ ;

— if n−m< 2 include {(v, i) : v ∈ V }∩Tγ ;

—{(σi, v), (v,σi) : v ∈ V }∩Tγ ;

—{(σ`i , v) : `= 2, . . . , n and v ∈ V }∩Tγ ;

—{(v,σ`i ) : `= 2, . . . ,m+ 1 and v ∈ V }∩Tγ ;

—{(πm+1
j , v) : v ∈ V }∩Tγ ;

—{(π`j , v), (v,π`j) : `=m, . . . ,1 and v ∈ V }∩Tγ ;

—{(j, v), (v, j) : v ∈ V }∩Tγ

—{(σ`j , v) : `= 1, . . . , n− 1 and v ∈ V }∩Tγ ;

—{(v,σ`j) : `= 1, . . . ,m and v ∈ V }∩Tγ .

• Execution: replace (πni , π
n−1
i ), (i, σi), (πm+1

j , πmj ) and (j, πj) with (πni , π
m
j ), (πn−1

i , πm+1
j ), (πj , σi) and

(i, j).
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B.3.7. nmrex (and nmrex∗) with 1≤m≤ n. Swap a reversed path of n vertices with a path of

m vertices within the same or between different routes (nmrex). If m≥ 2, we consider an additional variant

that also reverses the path of m vertices (nmrex∗).

rs i σi

j

rs

πn−1

i
σn
i

σj

πn
i

πm
jσm

j

bc bcbcbc bcbc
πn+m
i

bc bcbcbc bcbc
σ
m+1

jσ
n+m
j

rs i σi

j

rs

πn−1

i
σn
i

σj

πn
i

πm
jσm

j

bc bcbcbc bcbc
πn+m
i

bc bcbcbc bcbc
σ
m+1

jσ
n+m
j

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation:

—nmrex∗: δij =−cπn
i
πn−1
i
− ciσi − cjσj − cσm

j
σm+1
j

+ cπn
i
σm
j

+ cπn−1
i

σm+1
j

+ cσjσi + cij .

—nmrex: δij =−cπn
i
πn−1
i
− ciσi − cjσj − cσm

j
σm+1
j

+ cπn
i
σj + cπn−1

i
σm+1
j

+ cσm
j
σi + cij .

• Feasibility Check: logical disjunction of

— (ri = rj)∧
∧n+m
`=1 (j 6= π`i ).

When ri = rj and
∨n+m−1
`=1 j = σ`i , the paths overlap.

When ri = rj and j = σm+n
i

∗ nmrex∗: the move could be reduced to a twopt induced by move generator (j, i);

∗ nmrex: the move could be reduced to a n0rex induced by move generator (i, j);

but, in both cases, this would require a special handling.

— (ri 6= rj)∧ (i 6= 0)∧
∧n−1
`=1 (π`i 6= 0)∧

∧m

`=1(σ`j 6= 0)∧ (qrj + qi +
∑n−1

`=1 qπ`
i
−
∑m

`=1 qσ`
j
≤Q)∧ (qri − qi−∑n−1

`=1 qπ`
i

+
∑m

`=1 qσ`
j
≤Q).

The condition makes sure the depot is not relocated and the capacity constraints are not violated.

• Update List:
⋃n+m
`=1 π`i ∪ i∪

⋃n

`=1 σ
`
i ∪

⋃m

`=1 π
`
j ∪ j ∪

⋃n+m
`=1 σ`j .

The update can be restricted to move generators

— {(v,π`i ) : `= n+m, . . . , n+ 1 and v ∈ V }∩Tγ ;

— {(π`i , v), (v,π`i ) : `= n, . . . ,1 and v ∈ V }∩Tγ ;

— {(i, v), (v, i) : v ∈ V }∩Tγ ;

— {(σ`i , v) : `= 1, . . . , n and v ∈ V }∩Tγ ;

— {(σ`j , v) : `= n+m, . . . ,m+ 1 and v ∈ V }∩Tγ ;

— {(σ`j , v), (v,σ`j) : `=m, . . . ,1 and v ∈ V }∩Tγ ;

—{(j, v), (v, j) : v ∈ V }∩Tγ ;

—{(v,π`j) : `= 1, . . . ,m and v ∈ V }∩Tγ .

• Execution:

—nmrex∗: Replace (πni , π
n−1
i ), (i, σi), (j, σj) and (σmj , σ

m+1
j ) with (πni , σ

m
j ), (πn−1

i , σm+1
j ), (σj , σi) and

(i, j). Reverse the paths between πn− 1 and i and the path between σj and σmj .
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—nmrex: Replace (πni , π
n−1
i ), (i, σi), (j, σj) and (σmj , σ

m+1
j ) with (πni , σj), (π

n−1
i , σm+1

j ), (σmj , σi) and

(i, j). Reverse the path between πn− 1 and i.

B.3.8. ejch. Perform a sequence of 10ex applications.

i

j

bcbc
bc
bc bc

rs rs rs

bc
bc

bc

bc

bc bc

bcbc

bc

bc
bc

bc

bc

bc

rsbc

rs

rs

i1

j1

i2

j2

i3

j3

i j

i1 j1

i2 j2

i3 j3

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: same as for 10ex operator.

• Feasibility Check: a tree of nodes associated with 10ex moves is generated by using (i, j) as tree root. A

path from the tree root (i, j) to any other node in the tree is a sequence of 10ex moves. Every sequence

s stores a number of state variables defining the effect of its application on the current solution. The

goal of the feasibility check is to find a sequence whose application generates a feasible and improving

solution. In particular, each sequence s contains

—the modified loads qsr for each route r affected by 10ex moves of s;

—the change in the objective function δs due to the application of 10ex moves of s;

—a set Fsi storing customers that cannot be relocated because already involved in previous relocate

moves within s. More precisely, the successors or predecessors of customers in Fsi have changed in

previous 10ex moves of s but the current structure of the solution does not reflect these changes.

Note, in fact, that during the feasibility check we are only simulating the 10ex effects to find a

feasible and improving sequence without really changing the solution;

—finally, a set Fsj storing customers that cannot be the target of a relocate move because already

involved in previous relocate moves within s. More precisely, the predecessors of customers in Fsj
have changed in previous 10ex moves of s but, as described above, the current structure of the

solution does not reflect these changes.

Note that a different handling without Fsi and Fsj would require, for each tree node associated with a

sequence s, to keep a copy of the solution.
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A sequence s of 10ex moves generating a cost change δs in the objective function, ending with a move

(in, jn) that relocates customer in ∈ Vc from route rin to route rjn before vertex jn ∈ V , is extended by

scanning all customers in+1 belonging to rjn = rin+1
that satisfy the following joint conditions:

— qsrin+1
− qin+1

≤Q.

The removal of in+1 restores the feasibility of route rin+1 that was violated by the previous insertion of

jn.

— in+1 6∈ Fsi .

Customer in+1 can be relocated.

Every customer in+1 satisfying the previous conditions is considered as the new starting point for a

10ex for which a potential endpoint is generated by scanning the currently active move generators T γ

that have in+1 as the object of the relocation, i.e., {(in+1, jn+1), jn+1 ∈ Vc}∩T γ . A customer jn+1 ∈ Vc
belonging to route rjn+1

is selected to be the target of the relocation if it satisfies the following joint

conditions:

— jn+1 6= 0.

The depot alone does not allow to identify a specific route.

— rin+1
6= rjn+1

.

Customer in+1 is relocated into a route different from the origin one.

— δs + δin+1jn+1
< 0.

Sequence s still provides an improvement to the objective function.

— jn+1 6∈ Fsj .

Customer jn+1 can be the target of a relocation.

Every customer jn+1 satisfying the previous conditions is considered as an endpoint for the (in+1, jn+1)

10ex move and a new tree node s′, son of the current one s, is created. State variables of s′ are defined

as follows:

— qs
′

rin+1
= qsrin+1

− qin+1
;

— qs
′

rjn+1
= qsrjn+1

+ qjn+1
;

— δs′ = δs + δin+1jn+1
;

—Fs′i =Fsi ∪{πin+1
, in+1, σin+1

, πjn+1
, jn+1};

—Fs′j =Fsj ∪{in+1, σin+1
, jn+1}.

The tree frontier is explored by following a best-δ-first strategy, that is, the sequence providing the

greatest improvement is always extended first. This is obtained by using an additional heap data

structure managing the tree nodes. As can be inferred by the above description, sequences are not

limited in depth and the same route can be accessed by a 10ex move more than once. A limit is, however,

imposed on the total maximum number of explored tree nodes which in the proposed implementation

is nEC = 25. Finally, the feasibility check step ends as soon as a feasible sequence is found, i.e., the last

10ex move does not violate the capacity of the target route, or the maximum number of tree nodes is

explored.
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• Update List: Fs∗i with s∗ a feasible improving sequence.

For each 10ex (i, j) move generator composing the sequence s∗, the update can be restricted to move generators

{(πi, v), (i, v), (v, i), (σi, v), (v,σi), (j, v), (v, j), (πj , v) : v ∈ V }∩Tγ

• Execution: execute the 10ex moves of a feasible sequence. Note that, due to the restrictions imposed

during the sequence space exploration, the order in which moves are executed does not affect the final

result.
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Figure 20 Comparison of average gaps obtained by algorithms on the X dataset. For each group, boxplots, from left

to right, are associated with: ILS-SP, HGSADC, KGLS, SISR, FILO, and FILO (long).

Appendix C: Computational details for X instances

Detailed results about computations on the X dataset can be found in Tables 9 – 11 and Figure 20. Moreover,

to better assess whether the results obtained by FILO are statistically different with respect to competing

algorithms, we followed the procedure used in Christiaens and Vanden Berghe (2020). In particular, we

conducted a one-tailed Wilcoxon signed-rand test (Wilcoxon (1945)) in which we consider a null hypothesis

H0

H0 : AverageCost(FILO) = AverageCost(X)

and an alternative hypothesis H1

H1 : AverageCost(FILO)>AverageCost(X)

where X can be ILS-SP, HGSADC, KGLS, and SISR. We tested the above hypotheses on small, medium,

large and over all the instances. The p-values associated with the tested hypothesis are shown in Table 8

(left). The p-values for a similar analysis in which we compared FILO (long) with competing methods are

shown in Table 8 (right).

A hypothesis is rejected when its associated p-value is greater than a significance level α. Failing to reject

H0 means that the average results of the two compared methods are not statistically different. On the other

hand, when H0 is rejected, the average results obtained by the methods are statistically different and the

alternative hypothesis H1 can be tested to find whether the average results obtained by FILO are statistically

greater than those of the competing method. Rejecting H1 implies that FILO performs better than the

competing method.

When performing multiple comparisons involving the same data, the probability of erroneously rejecting

a null hypothesis increases. To control these errors, the significance level α is typically adjusted to lower

values. Bonferroni correction (Dunn (1961)) is a simple method used to adjust α when performing multiple

comparisons. In particular, given n comparisons, the significance level is set to α/n. In our case, for each



Accorsi and Vigo: Heuristic Solution of Large-Scale CVRPs
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 61

Table 8 Computations on the X dataset: p-values for FILO on the left and FILO (long) on the right.

Small

ILS-SP HGSADC KGLS SISR

H0 0.309491 0.000273 0.020427 0.064141
H1 0.154746 0.999876 0.010214 0.969381

Similar Worse Similar Similar

Medium

ILS-SP HGSADC KGLS SISR

H0 0.071754 0.001737 0.000000 0.000066
H1 0.035877 0.999183 0.000000 0.999970

Similar Worse Better Worse

Large

ILS-SP HGSADC KGLS SISR

H0 0.000335 1.000000 0.000234 0.000000
H1 0.000167 0.503678 0.000117 1.000000

Better Similar Better Worse

All

ILS-SP HGSADC KGLS SISR

H0 0.000036 0.007739 0.000000 0.000000
H1 0.000018 0.996173 0.000000 1.000000

Better Similar Better Worse

Small

ILS-SP HGSADC KGLS SISR

H0 0.000273 0.808654 0.000140 0.130121
H1 0.000136 0.404327 0.000070 0.065061

Better Similar Better Similar

Medium

ILS-SP HGSADC KGLS SISR

H0 0.001057 0.046584 0.000000 0.346122
H1 0.000528 0.023292 0.000000 0.830925

Better Similar Better Similar

Large

ILS-SP HGSADC KGLS SISR

H0 0.000000 0.000837 0.000000 0.002227
H1 0.000000 0.000419 0.000000 0.998963

Better Better Better Worse

All

ILS-SP HGSADC KGLS SISR

H0 0.000000 0.000111 0.000000 0.065432
H1 0.000000 0.000056 0.000000 0.967546

Better Better Better Similar

p-values in bold are associated with rejected hypothesis when α= 0.003125.
The last row of each group contains a p-value interpretation when α= 0.003125. In particular, FILO is not statistically
different from the competing method when H0 cannot be rejected (Similar), FILO is statistically better when both
H0 and H1 are rejected (Better), and, finally, FILO is statistically worse when H0 is rejected and H1 is not rejected
(Worse).

FILO configuration, we tested a total number of n = 8 hypotheses corresponding to the partitioning of

instances (Small, Medium, Large, and All) and to the two hypotheses (H0 and H1). Thus, by assuming an

initial significance level α0 = 0.025, the adjusted value becomes α= α0/8 = 0.003125.

As can ben seen from Table 8 (left)

• FILO performs better than ILS-SP on large instances and on all the X dataset, and it has a similar

performance on small and medium instances;

• FILO has a similar performance compared to HGSADC on large instances and on the whole X dataset,

however, HGSADC performs better on small and medium instances;

• FILO performs better than KGLS on medium and large instances, as well as on all the X dataset, and

it has a similar performance on small instances;

• finally, FILO has a similar performance compared to SISR on small instances, however, SISR performs

better on medium, large and on all the X dataset.

Table 8 (right) shows a similar analysis comparing FILO (long) with the other methods. In particular,

• FILO (long) performs better than ILS-SP on all partitions of instances;
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• FILO (long) performs better than HGSADC on large and on all the X dataset, and it has a similar

performance on small and medium instances;

• FILO (long) performs better than KGLS an all partitions of instances;

• finally, FILO has a similar performance compared to SISR on small, medium and on the whole X

dataset, however, SISR performs better on large instances.
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Figure 21 Comparison of average gaps obtained by algorithms on the B dataset.

Table 12 Computations on the B dataset: p-values for FILO on the left and for
FILO (long) on the right.

KGLSXXL KGLSXXL (long)

H0 0.001953 0.037109
H1 0.000977 0.018555

Better Similar

KGLSXXL KGLSXXL (long)

H0 0.001953 0.001953
H1 0.000977 0.000977

Better Better

p-values in bold are associated with rejected hypothesis when α= 0.0125.
The last row contains a p-value interpretation when α= 0.0125. In particular, FILO is not
statistically different from the competing method when H0 cannot be rejected (Similar),
FILO is statistically better when both H0 and H1 are rejected (Better), and, finally, FILO
is statistically worse when H0 is rejected and H1 is not rejected (Worse).

Appendix D: Computational details for very large-scale instances

This section contains computational details associated with large-scale datasets. In particular, Figures 21 – 23

show by means of boxplots the average gaps obtained by algorithms on the B, K, and Z dataset, respectively.

Average solution values are analyzed by conducting analyses similar to those for the X dataset described in

Section C. In particular, the null hypothesis H0 and the alternative hypothesis H1 are the same. However,

contrarily to the previous analysis, we did not partition dataset instances in smaller groups. Thus the total

number of analysis performed for each dataset is n= 2, one for each hypothesis. The initial confidence level

α0 = 0.025 is thus adjusted through the Bonferroni correction to α= 0.025/2 = 0.0125. Tables 12 and 13 show

the p-values associated with the B and K datasets, respectively. Finally, due to the very limited number of

instances of the Z dataset, the Wilcoxon signed-rank test cannot be used because it cannot give a significant

result.

As can be seen from Table 12

• FILO performs better than KGLSXXL and it has a performance similar to that of KGLSXXL (long);

• FILO (long) performs better than KGLSXXL and KGLSXXL (long).

As can be seen from Table 13, both FILO and FILO (long) performs better than KGLSXXL and KGLSXXL

(long).
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Figure 22 Comparison of average gaps obtained by algorithms on the K dataset.

Table 13 Computations on the K dataset: p-values for FILO on the left and for FILO
(long) on the right.

KGLSXXL KGLSXXL (long)

H0 0.0078125 0.0078125
H1 0.00390625 0.00390625

Better Better

KGLSXXL KGLSXXL (long)

H0 0.0078125 0.0078125
H1 0.00390625 0.00390625

Better Better

p-values in bold are associated with rejected hypothesis when α= 0.0125.
The last row contains a p-value interpretation when α = 0.0125. In particular, FILO is not
statistically different from the competing method when H0 cannot be rejected (Similar), FILO
is statistically better when both H0 and H1 are rejected (Better), and, finally, FILO is statis-
tically worse when H0 is rejected and H1 is not rejected (Worse).
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Figure 23 Comparison of average gaps obtained by algorithms on the Z dataset.
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