
16 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Field-informed Reinforcement Learning of Collective Tasks with Graph Neural Networks / Aguzzi, Gianluca;
Viroli, Mirko; Esterle, Lukas. - ELETTRONICO. - (2023), pp. 37-46. (Intervento presentato al convegno 4th
IEEE International Conference on Autonomic Computing and Self-Organizing Systems - ACSOS 2023
tenutosi a Toronto, ON, Canada nel September 25-29, 2023) [10.1109/acsos58161.2023.00021].

Published Version:

Field-informed Reinforcement Learning of Collective Tasks with Graph Neural Networks

This version is available at: https://hdl.handle.net/11585/962277 since: 2024-02-27

Published:
DOI: http://doi.org/10.1109/acsos58161.2023.00021

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/962277
http://doi.org/10.1109/acsos58161.2023.00021

Field-informed Reinforcement Learning of
Collective Tasks with Graph Neural Networks

Gianluca Aguzzi
Alma Mater Studiorum — Università di Bologna

Cesena, Italy
gianluca.aguzzi@unibo.it

Mirko Viroli
Alma Mater Studiorum — Università di Bologna

Cesena, Italy
mirko.viroli@unibo.it

Lukas Esterle
Aarhus University
Aarhus, Denmark

lukas.esterle@ece.au.dk

Abstract—Coordinating a multi-agent system of intelligent
situated agents is a traditional research problem, impacted by the
challenges posed by the very notion of distributed intelligence.
These problems arise from agents acquiring information locally,
sharing their knowledge, and acting accordingly in their envi-
ronment to achieve a common, global goal. These issues are even
more evident in large-scale collective adaptive systems, where
agent interactions are necessarily proximity-based, thus making
the emergence of controlled global collective behaviour harder.

In this context, two main approaches have been proposed
for creating distributed controllers out of macro-level task/goal
descriptions: manual design, in which programmers build the
controllers directly, and automatic design, which involves syn-
thesizing programs using machine learning methods. In this
paper, we consider a new hybrid approach called Field-Informed
reinforcement learning (FIRL). We utilise manually designed
computational fields (globally distributed data structures) to
manage global agent coordination. Then, using Deep Q-learning
in combination with Graph Neural Networks we enable the agents
to learn the necessary local behaviour automatically to solve
collective tasks, relying on those fields through local perception.
We demonstrate the effectiveness of this new approach in
simulated use cases where tracking and covering tasks for swarm
robotics are successfully solved.

Index Terms—Aggregate Computing, Graph Neural Networks,
Cyber-Physical Swarms, Many Agent Reinforcement Learning.

I. INTRODUCTION

The coordination of a group of autonomous agents that can
perceive and act in their environment is a fundamental problem
in artificial intelligence. Such agents need to cooperate and
communicate in order to achieve a common goal, while deal-
ing with the challenges of distributed and situated intelligence.
These challenges include the limited and local nature of the
information available to each agent and the emergence of
global behaviour from local interactions.

One domain where these challenges are particularly evident
is Cyber-Physical Swarms (CPSs, or swarm-like systems),
where a large number of agents interact with each other and
their environment based on spatial proximity. Examples of
CPSs include swarm robotics [1], smart cities [2], sensor
networks [3], and social systems [4]. In these systems, agents
need to adapt to dynamic and uncertain situations, while
ensuring the achievement of global objectives that may not
be directly observable or measurable by individual agents.

A key question in designing swarm-like systems is how to
create distributed controllers for the agents that enable them to

perform complex collective tasks. Two main approaches have
been proposed for this problem: manual design and automatic
design. In manual design, programmers build the controllers
directly, using domain knowledge and programming languages
or frameworks that support distributed computation and com-
munication like macro-programming approaches [5]. In au-
tomatic design, machine learning methods like multi-agent
reinforcement learning (MARL) and evolutionary algorithms
are used to synthesize programs or policies for the agents from
the high-level task or goal descriptions. Both approaches have
advantages and disadvantages. Manual design allows program-
mers to specify desired properties for the system declaratively,
however, it can be tedious and error-prone. Automatic design
can overcome these limitations by learning from data and
experience. However, automatic design can also suffer from
several challenges, such as learning the right representation
for agent communication.

In this paper, we propose a novel hybrid approach that
combines manual and automatic design of distributed con-
trollers. This follows a novel trend in which high-level
declarative programming languages are mixed with machine
learning techniques in order to synthesise robust collective
controllers [6], [7], [8]. Specifically, we propose a solution
called Field-Informed Reinforcement Learning (FIRL) that
utilises aggregate computing [9] together with a graph neural
network (GNN) [10] in combination with a reinforcement
learning approach, namely Deep Q-Learning (DQN) [11].
Here the GNN is trained on field-information from aggregate
computing and provides so-called node embeddings for each
agent, serving as input for the DQN. The DQN provides then
the appropriate actions for the agent to achieve their tasks.
The main contribution of FIRL is the definition of distributed
controllers that are informed by collective knowledge that
has been distilled during training, but that use only local
information when deployed. This way, FIRL can achieve a
balance between manual design and automatic design, com-
bining the benefits of both approaches while mitigating their
drawbacks. Moreover, the learned policies have the potential to
scale with size and adapt to different network topologies due
to the inherent nature of GNNs and aggregate computations.
FIRL can also be seen as a way of bridging the gap between
symbolic and sub-symbolic AI methods, by integrating declar-
ative programming with deep learning. Conceptually, FIRL

(a) Start (b) After 50 steps (c) After 200 steps

Fig. 1: Agents (coloured dots) are deployed in an area and have
to coordinate to cover the phenomenon. The phenomenon can
have varying areas of importance. Over time, the phenomenon
will be covered sufficiently without any central controller.

leverages the ideas of behaviour implicit communication [12]
[13], whereby intelligent agents (here trained by DQN) achieve
collective goals by learning how to use signs they left in the
environment (here made of fields): much like ants collectively
rely on pheromones they produce [14].

We employ this approach in a swarm-like system setting
where agents are tasked to cover phenomena detected in their
environment. Over time, the agents have to converge over each
phenomenon in order to cover it appropriately as illustrated in
Figure 1.

The remainder of this paper is structured as follows. First,
we introduce the relevant background and problem formulation
in Section II. Afterwards, we introduce our approach in
Section III. Section IV outlines the performed experiments
and discusses the obtained results. Finally, we will present
our conclusions in Section V.

II. BACKGROUND AND MOTIVATION

A. Swarm systems

This article studies intelligent collective behaviours within
the context of large-scale distributed systems. Specifically,
we focus on Cyber-Physical Swarms or swarm-like systems
consisting of devices governed by autonomous software agents
and equipped with sensors and actuator able to interact with
the real world. Each of these agents can interact with its direct
neighbours, either based on physical (e.g. communication
range) or logical distance (e.g. 1-hop neighbourhood).

Each agent executes a local control loop. In each iteration of
this loop, the agent can access the information available within
its own context. This context is comprised of information
acquired by the agent directly through its sensors and the
information received from its neighbours. At the end of each
control loop iteration, the agent can send messages to its
neighbourhood. This message may contain raw sensor data or
aggregated information over time or from other neighbours.
Examples of such large-scale systems can be a network of
robots (e.g., swarm robotics), camera and IoT networks, or a
network of mobile phones. Our goal is to find a homogeneous
distributed controller π, namely the same controller for all
agents of the system: starting from only local configurations,
it leads the system to achieve a certain collective requirement

through cooperation, such as spatial area coverage, phenomena
tracking, and robot aggregation [15]. The homogeneity of the
controller is a key requirement to ensure the scalability of the
approach, as it allows us to avoid the need for a centralised
controller that would be a bottleneck for the system, and it is
the typical choice in swarm-like systems [1], [16], [17], [18].

B. Field-based Coordination

The field-based coordination approaches utilise a concept of
computational fields (or simply fields), which are distributed
data structures that associate each location with a computa-
tional value that evolves over time. Aggregate computing [9],
a modern field-coordination approach, is rooted in earlier
work on artificial potential fields [19] and co-fields [20]. This
macro-programming [5] paradigm can be realised to devise
collective and self-organizing behaviour through a composition
of functions operating on fields. The fields map a set of
individual agents to computational values, allowing them to
associate what they sense, process, and actuate. Fields are
computed locally but subject to a global viewpoint, enabling
emergent collective behaviour through the interplay of the
system model (i.e., structure and dynamics of the systems)
and the programming model (i.e., how collective behaviours
are expressed).

On the one hand, the system model is structurally similar to
swarm-like systems, as it is composed of a set of agents that
interact with each other through a network of neighbourhood
relations. The dynamics of each agent follow a local control
loop called round that comprises the following steps:

1) Sense: the agent acquires information from the environ-
ment and collects the messages of its neighbourhood,
building a context;

2) Compute: the agent executes a program that computes
an export, that is a set of values to be sent to the
neighbourhood;

3) Act: the agent sends the export to its neighbourhood and
updates its internal state acting on the environment.

The proactive and iterative execution of the round by each
agent leads to the emergence of collective behaviour specified
by the program.

On the other hand, the programming model is ruled by
the field calculus [21], [22], a core language that allows the
expression of collective behaviours through the composition
of functions operating on fields. Field calculus includes main
operators for expressing spatio-temporal computations that
allow for i) the progression of values over time, achieved
by transforming a field computed in a previous round into
a new field; ii) the exchange of data with neighbouring
fields (typically referred to as nbr), where received data is
accessed by adjacent fields; and iii) the conditional division of
computation into distinct domains of collective computation.
For further elaboration on the actual field calculus, please refer
to the work of [23].

On these minimal operators, it is then possible to build self-
organizing coordination blocks. One of the founding blocks is
the gradient essential for information flows [24]. This operator

generates a numerical field that represents the minimum dis-
tance from a source zone. In other words, it maps a Boolean
field (where “true” indicates the presence of a source agent
and “false” indicates its absence) to a distance field that
indicates the proximity to the nearest source. In the ScaFi [25]
implementation of field calculus is defined by function:

def gradient(source: Boolean): Double

Along the gradient, it is possible to cast information within the
system, accumulating value during the field expansion. This
pattern is called gradient-cast (or G):

def G[V](source: Boolean, value: V, acc: V => V): V

where source is a Boolean field indicating the presence of
a source agent, value is the value to be cast, and acc is the
accumulation function that is applied to the value during the
cast. This is a fundamental building block for the coordination
of swarm-like systems: in fact, the resulting system can be
used to broadcast information, or route towards selected nodes.

C. Graph Neural Networks

GNN is a novel neural network model used to process
graph-structured data with deep learning approaches. Let
G = (V,E) be a graph where E ⊆ V × V defines the
neighbourhood relations for each participating node, and V
identifies the nodes present in the graph. Each node v ∈ V
is associated with an observation (or feature set) fv . For the
sake of simplicity, we thereafter describe Gf as a graph that
contains the feature set fv for each node v ∈ V . Note that,
when we refer to Gf and Go we are referring to the same
graph G but with different node features. Also, to access the
feature set fv of a node v ∈ V we use the notation fv or
Gf [v]. Given fv , the goal of a GNN is to learn the node
embedding hv for each node v ∈ V . The node embedding
hv describes the node in the network and summarises the
geometric properties of the graph in this location, allowing
for comparison of various nodes in the graph. In modern
GNNs, the node embedding hv is computed by aggregating
information from the node’s neighbours NG(v), and then
combining it with the node’s current embedding hv in a
process called message passing [26]. The GNNs is partitioned
into several message passing layer k where each of them is
responsible for computing the node embedding h(k)v for each
node v ∈ V . Formally, a GNN can be defined by three phases:

m(k)
uv = ψ(k)

(
h(k−1)
u , h(k−1)

v , e(k−1)
uv

)
(1)

a(k)u =

(k)⊕({
m(k)

uv : v ∈ NG(u)
})

(2)

h(k)u = ϕ(k)
(
h(k−1)
u , a(k)u

)
(3)

where hkv is the embedding of node v within the k-th layer,
NG(v) is the set of neighbours of node v computed from
E. h0v is the initial embedding of node v, and it is usually

set to the node’s feature vector fv . The differential part
comes into play in the ψ and ϕ functions, which is usually
a differentiable function such as a neural network. The ψ
function is called message function, and it is responsible for
computing the message m(k)

uv from node u to node v. The ϕ
function is called update function, and it is responsible for
updating the node embedding h(k)v of node v.

⊕
instead is a

function that aggregates the information from the neighbours
of a node v and it could be a simple sum, max or sum
of products and it should be permutation invariant. More
complex aggregation functions are available [27]. Thereafter,
we express the application of a GNN to a graph Gf as:

GNN (Gf) = {h(k)v : v ∈ V, k ∈ N} (4)

This formulation allows GNNs to effectively process and
extract features from graph-structured data by iteratively ag-
gregating and transforming information from the node’s neigh-
bours.

GNNs are used in several application areas such as social
network analysis, chemistry, and physics. In this paper, we use
GNNs to learn a local behaviour for each agent in a multi-
agent system (more details in Section III).

D. Many-Agent Reinforcement Learning

Reinforcement learning (RL) has gained a lot of interest
recently, thanks to its successful application in various scenar-
ios, ranging from video games (such as Alpha Go [28] and
Atari [29]) to chatbots (like ChatGPT [30]). In RL, an agent
(i.e., a smart entity capable of making decisions) performs
actions in an environment (i.e., everything outside the agent)
according to a policy, to maximise long-term reward signal.

One interesting application of RL is when there are mul-
tiple learning agents involved. Such scenarios are referred
to as multi-agent reinforcement learning (MARL) [31]. In
particular, in this work, we consider homogenous many-agent
reinforcement learning (ManyRL) [16], where the set of agents
is large (N ≫ 2) and each agent is interchangeable and indis-
tinguishable. This research area is relevant in the context of
large-scale systems where collective intelligence emerges from
local and repeated interaction of simple entities, like in swarm
robotics. In such many-agent scenarios, the implementation
of fully decentralized learning is often unfeasible due to the
large number of learning agents, which makes the system non-
stationary and difficult to manage. Conversely, a centralized
controller capable of coordinating the entire system may not
be a viable solution due to scalability concerns. To address this
challenge, a practical solution is the adoption of centralized
training and decentralized execution (CTDE) approach. The
idea is to learn a policy at simulation time when there is a
collective view of the system, and then at runtime use that
policy but only with local observations. The typical approach
in such cases is based on actor-critic systems [32], [33], [34],
[35], where the actor is the distributed policy (with only local
information) and the critic is a neural network that takes
the overall system state. Mean-field RL [17] is one of such
concrete applications of CTDE where the interactions among

the population of agents are estimated by considering either
the effect of a single agent and the average impact of the entire
population or the influence of neighbouring agents. Some
known approaches using mean-field reinforcement learning
include Q-mean, which is an extension of Q-learning to mean-
field settings [36], and actor-critic mean-field [37], which com-
bines actor-critic algorithms with mean-field approximations.
These approaches have shown promising results in various
domains, such as multi-agent coordination and decentralised
control, and are actively being researched and developed for
further applications.

E. Problem formalisation

Given the homogeneity, large system scale, and the locality
(i,e., each agent can only observe its neighbours), the problem
can be modelled through the SwarMDP model [38]—an exten-
sion of the decentralized partially observable Markov decision
processes (DecPOMDP) [39] model for swarm-like systems. A
SwarMDP is characterised by a swarming agent (A) and the
dynamics of the environment (E). Specifically, A is a tuple
(S,O,A,R, π) where:

• S,O,A are the set of local states, observations (or
features), and actions, respectively;

• R : S → R is the reward function, which is influenced
by the environment;

• π : O → A is the policy function, which maps the
observations to the actions: it could be deterministic or
stochastic.

Starting from this definition, the environment E is defined as
a tuple (P,A, T , ξ), where:

• P is the total number of agents in the systems (the agent
population), which is assumed to be fixed;

• A is the defined agent prototype that rules each agent
v ∈ P ;

• T : SP ×AP ×SP → R is the transition global function,
which is influenced by the actions of the agents and
returns a collective reward – this is typically not known
by the swarming agents;

• ξ : SP → OP is the global observation model of the
systems.

In swarMDP, the neighbourhood is not directly defined, but it
is implicitly defined by the observation model ξ. In our specific
case, the agents can only interact with 1-hop neighbours and
are not directly influenced by other agent observations. We
can therefore restrict the observation model as follows:

ξ(v) : {sj , j ∈ N v} → O ξ = {ξ(v), v ∈ P}

where N v is the set of neighbours of v. This model can be
used then to express the evolution of the system in time.
Specifically, starting from a global state SPt , the next state
SPt+1 is defined as:

AP
t = π(ξ(SP

t)) SPt+1 = T (SPt ,AP
t)

Given a time t, the system can be also represented as a
graph Gt = V t, Et, where Et is built from N . Each node

GN
N

AC

Environment

t t+1

Fig. 2: High-level description of FIRL approach. For each time
step t, a graph is constructed from the environment, and it will
associate each node with a local feature ovt (hexagons in the
picture). Using this feature, an aggregate program computes
spatio-temporal information that enhances the feature set of
each agent producing fv , depicted as colours in the middle
graph. Finally, utilizing the GNN, actions are computed for
each agent in the system to be performed against the environ-
ment, enabling advancement in the simulations according to
swarMDP rules.

is then decorated with the local observation perceived at the
time t: ovt ∈ O. This graph can be used both to compute
computational fields and, as done in previous work [40], [41],
[42], can be the input for a GNN.

F. Motivation

As mentioned above, our work falls in between automatic
and manual approaches, specifically in the areas of field-
based coordination and ManyRL with the use of GNNs.
Compared to earlier works on field-based coordination, our
approach builds on the concept of co-fields [20], where agents
construct and exploit the field as a “digital sign” [12] to receive
system-wide information and apply reasoning to this data.
We present a subsequent approach where agent intelligence
is synthesised through ManyRL and GNN is used to learn a
local representation from the neighbourhood. By learning a
smart policy directly in the environment, the agent becomes
capable of adapting its behaviour to new situations.

The use of GNNs as part of a distributed controller has
been explored in previous literature [42], [40], where it was
shown that they could be used to break down the evaluation
of local and distributed systems. However, in these works,
communication was left entirely to the neural network, making
the learning process potentially more complex and unstable. In
our approach, the GNN is informed by computational fields
that collect the necessary information to compute a certain
task, limiting learning to only the specific task defined by a
collective reward function. This will speed up the learning
process and make it more stable.

III. FIELD-INFORMED REINFORCEMENT LEARNING

In this section, we discuss the components involved in our
proposed solution (i.e., architecture) and how these compo-
nents interact with each other to bring the system to perform
the collective behaviour (i.e., dynamics). Finally, we will detail

the learning algorithm designed and used to synthesise the
policy.

A. Architecture, fields and aggregate dynamics

The proposed solution, summarised in Figure 2, consists
mainly of two parts, i) the aggregate program used to create
part of the observation and ii) the policy πgnn learned through
GNN-based approach. Let Γ be the aggregate program that
takes a graph Gt decorated by ovt , representing the partic-
ipating agents and their neighbourhood relations at time t,
as input. The evaluation of Γ produces a field value θvt for
each node v in Gt. From this field, we construct the feature
vector fv for each node v in Gt as follows: fv = (θvt , o

v
t).

The policy πgnn is then evaluated for each agent using fv as
input, producing an action avt that will then modify the global
state of the system. While the graph, containing the aggregate
information, might appear as global knowledge, this is not
the case as the information is never aggregated globally. The
individual agents only combine information from their local
neighbourhood. In fact, the program Γ is proactively executed
at every agent, and the GNN can be locally evaluated using
only neighbourhood information. We want to emphasise that,
in this case, the GNNs must be 1-hop; otherwise, they could
not have a local interpretation for each agent, according to our
system model.

B. Learning algorithm

Since we consider swarm-like systems, which are an exam-
ple of many-agent systems, the proposed approach follows
a CTDE learning pattern, but differently from mean-field
approaches and actor-critic solutions, we use a value-based
approach combined with a GNN as a function approximator.
Specifically, we leveraged the property of GNNs to have a dual
interpretation, i.e., to function globally over the entire graph
and locally only over the neighbourhood. Importantly, each
agent only has local information from itself and its neighbour-
hood to utilise in the GNN. As value-based algorithm we relied
on DQN [29] with two major modifications (see Algorithm 1):

1) experience replay stores experiences in the form of
graphs decorated with features (e.g., observations, ac-
tions, rewards, etc.),

2) the neural network used to compute the Q function is
based on a GNN with an multi-layer perceptron (MLP)
downstream.

The first point is a natural extension because we work on
graphs rather than simple values. This also influences how we
create a batch of experiences to train the network. In fact, we
sample a batch of graphs from the replay buffer, and then we
merge them into a single graph, which is then used to train the
network. This process is called graph mini-batching [43], [44]
and its main purpose is to pass an entire batch of graphs to the
same GNN for improved performance. For the second point,
the use of GNNs allows us to define policies on a variable
neighbourhood, which is essential in such systems as this can
change due to the applied neighbourhood policy. It is known
that GNNs have a certain ability to generalise to new structures

and scale with different agents [45], [46]. Additionally, using
the overall graph compared to local experiences makes learn-
ing more stable as it reduces the non-stationarity of the envi-
ronment perceived by each node. This is because, even though
the actions are produced using only local and neighbourhood
information, during the learning phase, we have access to the
internal graph, which will influence the policy through non-
local information during the backpropagation.

Algorithm 1: Deep Q-Network (DQN) with GNN and
Graph Replay Buffer executed by each agent
Input: Environment E, graph replay buffer D, target

network θ−, current network θ, exploration
strategy ϵ

Output: Trained DQN model θ
Initialise D with random initial transitions;
Initialise θ with random weights;
Set θ− ← θ;
while not done do

Observe current graph observations Go;
if random < ϵ then

select a random action a;
else

Gq = Q(Go, θ);
a = {v ∈ Gq|av ∈ argmaxavGq[v](av)};

end
Execute the collective action Ga in the

environment E and observe a graph-level reward
Gr and the next observation G′

o;
Store transition (Go, Ga, Gr, G

′
o) in D;

Sample a batch of graph transitions
(Gi

o, G
i
a, G

i
r, G

′i
o) from D and merge them in

(Gb
o, G

b
a, G

b
r, G

′b
o);

Compute the target Q-value for each node v in the
graph Gb:
yv = Gb

r[v] + γ ∗max a′Q(G′b
o [v], G

b
a[a

′]; θ−);
Compute the current expected value for each node
v in the graph Gb: y∗v = Q(Gb

o[v], G
b
a[v]; θ);

Update the current network weights using gradient
descent: θ ← θ − α∇θ 1

|Gb| (y − y
∗)2;

Every C steps, update the target network weights:
θ− ← θ ;

end

IV. EVALUATION

To test the effectiveness of the proposed approach, we exper-
iment with a case study related to swarm robotics, specifically,
tracking and coverage of a spatio-temporal phenomenon—
cf. tracking a wildfire or monitoring the water levels in a
canal with multiple autonomous agents embodied in embedded
devices (e.g., drones or IoT devices). The individual agents
do not have any knowledge of the initial phenomenon itself
(i.e., shape, size, location, velocity, and so on). Initially, we
perform the training phase using a stationary phenomenon
before expanding towards a moving phenomenon in the test

(a) (b) (c)

Fig. 3: Simulations of the case study scenario in Alchemist.
The dots represent the agent, the circle area on represents
the phenomenon to be monitored. Figure 3a represents the
scenario used during training as well as during test. The others
instead are only used in the test phase to evaluate the policy
found.

phase. Finally, the phenomenon may have varying areas of
interest, defined by an underlying distribution function. This
underlying distribution is utilised in the feature set of each
agent’s observation and guides the agents to rally over the
phenomenon. While we only use Guassian distributions but
we can use any other distribution and shape. As a simulation
environment, we use Alchemist [47], a simulator for multi-
agent systems that allows us to simulate the swarm behaviour
of the agents and the phenomenon of interest. For the GNN, we
use the implementation provided by PyTorch Geometric [48],
which is a library for deep learning on graphs built on top of
PyTorch [49]. Finally, we use ScaFi [25] as the aggregate pro-
gramming language to support our field-informed approach.
The evaluation is performed in two stages, first the neural
networks are trained in an explicit training phase before being
extensively evaluated in the testing stage. 1

A. Scenario

Figure 3 presents the three different types of scenarios
utilised within the evaluation. The first type of experiments
considers a single phenomenon at a static location (i.e.,
Zone Fixed), the second type of experiment considers two
phenomena in two independent but static locations (i.e., Two
Zones), and the third type of experiment considers a moving
phenomenon (i.e., Moving). All phenomena are modelled as
a Gaussian distribution. Importantly, only the left scenario
illustrated in Figure 3a was used for training the neural
networks. Furthermore, all three types of scenarios contain
a set of P = 25 agents placed in a 2D grid large 1000x1000
meters. Each agent can perceive the presence of the phe-
nomenon of interest through an installed sensor ζv with v ∈ V.
(e.g., camera, temperature sensor, etc.) if it is within range.
Additionally, each agent has a coverage range ω (fixed to 75
meters) that describes the area it can monitor. Each agent can
only communicate directly with its own neighbourhood N ,
which in this case depends on a O range fixed to 300 meters.
Through this communication channel, agents can exchange

1The simulations are publicly available at https://github.com/
AggregateComputing/experiment-2023-acsos-field-informed-rl.

information. Each agent moves following a certain action
composed of two components (r, i) which respectively describe
the angle and intensity of the movement (i.e., the velocity
vector). Since we used a value-based approach, the action
space A is discrete and composed of 18 possible angles and 3
possible intensities. In particular, the angles are quantized to
20 degrees, and for the velocities, we have selected [0, 5, 10]
m/s.

For the aggregated information, each agent will produce a
computation field with which they will try to approximate the
direction of the phenomenon of interest. The program Γ in
question is a simple application of block G, where the source
is the maximum value of the neighbourhood. This can be
expressed in ScaFi as follows:

val source = maxHood(nbr(sense(ζ))) == sense(ζ)
G(source, Point3D.Zero, _ + nbrVector())

where maxHood is a function that returns the maximum value
of the neighbourhood, nbr is a function that a neighbourhood
field of values (in this case, the sensor value ζ), sense is a
function that returns the value of the sensor, and nbrRange
is a function that returns an approximate direction for each
agent in the neighbourhood. This value will then be fed into
the πGNN to compute the action to be performed.

B. Goal

The objective of this scenario is threefold:
1) maximise the number of agents within the phenomena;
2) minimise the number of agents without neighbours;
3) maximise the coverage of the system.
As we are modelling a reinforcement learning system, these

three components must be encoded in a reward function that
provides an estimate of the current action taken by a given
agent. Formally, we define the reward of an agent being within
the phenomenon as:

Ra
v = 1 if ζv > 0 else 0 (5)

Namely, an agent is considered within the phenomena as soon
as the drone can sense the phenomenon. This will lead the
system to prefer a configuration in which every agent is present
within the phenomenon. The second element in the objective
function ensures cohesion among the agents. This is important
because if the system breaks into many scattered agents,
the observability of the phenomenon is reduced, limiting the
ability of the agents to move appropriately in the environment.
In this case, the reward is defined as:

RN
v = 1 if |N | > 0 else 0

Finally, to maximise the coverage, we define a reward
function that favours the maximum distance between the
agents equal to the coverage range ω. This will minimise
multiple agents covering a common area. This means that the
average distance will tend towards the one expressed by the
viewing range of each agent:

RC
v = 1− dmin

ω

https://github.com/AggregateComputing/experiment-2023-acsos-field-informed-rl
https://github.com/AggregateComputing/experiment-2023-acsos-field-informed-rl

Where dmin describes and minimum distance of the agent to
its neighbourhood. The final reward function Rv for an agent
v is defined as:

Rv = (
Ra

v +RN
v +RC

v

3
)− 1

Specifically, we decided to express the signal as a regret as it
is a more general measure of the quality of the action taken
by the agent.

C. Training Phase

Before we can evaluate our approach, the underlying neural
networks have to be fine-tuned in a dedicated training phase.
The training process for each neural network was divided into
100 episodes, each consisting of 200 steps, resulting in a total
of 20,000 experiences. For each episode, the 25 agents are
semi-randomly positioned on a grid (i.e., in a lattice layout
with a random variation in their position) without knowing
the correct position of the phenomenon, but that is fixed in
the top right corner. The position of the phenomenon with an
example of positioned agents can be seen in Figure 3a. The
feature set used by the GNN created for each agent consists
of the vector computed by the aggregated program and the
value of the local sensor ζ. In this case, we chose to use an
exponential epsilon decay, defined as: ϵ = ϵmin + (ϵmax −
ϵmin) · e−λ·e. Where e is the current episode number. This
leads to a high number of random actions at the beginning
and gradually shifts towards exploitation in the later episodes.
In our training process, we set ϵmin = 0.02, ϵmax = 0.99,
and λ = 0.1. γ was set to 0.99, as we want to give more
value to future returns, aiming to achieve good coverage by
continuously tracking the phenomenon. The neural network
structure used consists of a layer of SuperGAT [50] – a GNN
based on attention mechanisms – and a layer of MLP. The
hidden size was set to 256. As the reward function is defined
as a regret, we decided to use the Huber loss function with
δ = 1. This function is used to penalise the agent if the action
taken is too far from the optimal action. We use the RMSprop
optimiser with a learning rate of 0.0001. Finally, we use a
replay buffer of size 1000 to store the graph experiences and
a batch size of 32.

D. Test phase

For the evaluation, we explore the previously discussed
three different types of experiments. We generated 64 ran-
dom scenarios for each type of experiment. Additionally, the
placement of the agents was randomised as it has been done
during training. For the first type, consider a single static
phenomenon randomly placed in the environment. This is in
contrast to the training where the phenomena were always
placed in the same location. For the second type, we placed
two distinct phenomena within the area. Their location is kept
constant in all 64 experiments. As the training only contained
a single phenomenon, this setup represents a challenge for the
agents. Finally, the third type contained moving phenomena. In
each scenario, the starting position as well as the direction of
movement is randomly sampled from a uniform distribution.

The movement is in a straight line with a constant speed of
5m/s within an unbounded environment. Examples of all three
types of experiments are shown in Figure 3.

E. Baselines

We compare our FIRL approach against baseline approaches
where the DQN utilises a MLP as well as an approach only
relying on GNNs, without additional field information. In all
approaches, the underlying neural network (i.e., the MLP and
the GNN) are trained with a single, stationary phenomenon.

The MLP uses the same feature set as the GNN but applies
it in the DQN but without leveraging the graph structure.
Moreover, we increase the batch size to 512 and the replay
buffer to 10000 since we record 25 agents’ experiences for
each step instead of one graph experience. The GNN alone,
without using the field information, apply the position of
agents and the local sensor value directly as input features
within the DQN. These baselines are used to verify the
effectiveness of the components used in the FIRL. Indeed the
MLP baseline is used to verify the effectiveness of the GNN
in the proposed approach, while the GNN baseline is used to
verify the effectiveness of the field information in the proposed
approach.

F. Metrics

We evaluate the performance of the different approaches
by measuring the coverage of the phenomenon over time.
The coverage is defined as the percentage of the phenomenon
covered by the agents. Specifically, we can measure the
coverage as the intersection over the union of the phenomenon
and the agents’ view range. Formally, we define the overall
coverage for a certain time step as:

Ω =
⋃
v∈V

ωv C =
|Ω ∩ P|
|P|

where P is the area of the phenomenon and Ω is the area
covered by the agents. In the training phases, we measure
the average coverage in each episode, and the total reward
obtained by the agents at each episode of the simulation.
We also measure the number of agents that are within the
phenomenon at each step of the simulation. This will be a
measure of how well the agents are tracking the phenomenon.

G. Discussion and Results

The results of the training process are summarized in
Figure 4. In the charts, the line represents the average value
of a metric of interest, while the shaded area represents its
standard deviation. Specifically, we observe that the proposed
version achieves higher coverage and total reward compared to
other approaches. Interestingly, despite the global information
available in GNNs without fields, they fail to converge to a
good result like the one obtained with the field. This outcome
was expected, as the computed field helps agents encode the
necessary information to navigate towards the phenomenon.
Furthermore, we note that GNN combined with DQN and
graph replay buffer outperforms the simple MLP informed

field computation. This is because relying solely on MLP
and basic deep learning leads to non-stationary and unstable
learning, as evident from the wider confidence interval of the
reward over training time.

Focusing now on the results of the test phase, highlighted in
Figure 5, we observe that the field-informed version achieves
higher coverage than the other approaches in all scenarios
since it shows the ability of our solution to generalize to situa-
tions. We observe that the field-informed version successfully
moves the agents closer to the target phenomenon, distributing
them evenly without collapsing into a single central point.
Figure 5 quantitatively presents the results across various
previously described scenarios.

For all experiments, both GNN versions demonstrate the
capability to transfer the learned experience to the test phase
whereas the MLP version fails to generalize. It is worth noting
that, in the Zone Fixed experiment, once the desired configu-
ration is achieved in the static case, the agents cease to move,
maintaining the found configuration. Interesting observations
arise when we use scenarios different from the training phase.
In the Two Zones experiment, we notice that our approach
using field-information finds a better configuration than the
simple GNN counterpart. It exhibits both higher overall cov-
erage and manages to divide the system into two equally
covered parts. Indeed, observing the Figure 6, we notice that
the informed version maintains a balanced coverage between
the two zones, with a difference of less than 5% between the
two parts, maintaining a fair division of the phenomena. In
contrast, the uninformed version also maintains a fair division
but with significantly different coverage between the two parts,
indicating a wrong placement among the agents in one of
the zones. This is a consequence of the uninformed version’s
inability to encode the necessary information to divide the
agents into two zones, therefore it is not able to generalise.
Finally, the Moving experiment emphasizes how the informed
version generates a more robust policy for new scenarios.
Indeed, we observe that our approach using FIRL maintains
higher coverage and a greater number of agents on the
target phenomenon compared to the other two solutions. The
uninformed GNN version, however, fails again to generalize its
movement behaviour, as evidenced by the simulations where
the agents, once reaching the target zone, stop moving due to
tracking issues.

In conclusion, the results demonstrate how the proposed
idea can generate more robust controllers. By guiding in-
formation flow in GNNs, we improve learning efficiency
and alleviate the challenge of encoding relevant information.
Nevertheless, we acknowledge the crucial role of GNNs. Our
modified version of DQN, combined with GNNs, enables the
discovery of robust behaviours in a few episodes, which is
challenging to capture with MLPs combined with DQN, even
if we use field information.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel approach for
constructing distributed controllers by leveraging aggregate

0 20 40 60 80 100
episode

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

co
ve

ra
ge

mode
GNN (informed)
GNN
MLP

(a) Average coverage for each episode in training

0 20 40 60 80 100
episode

2500

2400

2300

2200

2100

2000

to
ta

lR
ew

ar
d
mode

GNN (informed)
GNN
MLP

(b) Reward during training

Fig. 4: Training results of FIRL. It can cover the phenomenon
better than the baselines and it reaches a higher reward.

computing to encode agent interactions, along with the com-
bination of DQN and GNN for synthesizing distributed intel-
ligence. The proposed Field-Informed reinforcement learning
(FIRL) approach offers a promising solution to the challenges
faced in coordinating multi-agent systems. By combining
manual design and machine learning techniques, the approach
enables agents to autonomously learn and adapt their be-
haviour while leveraging locally available information. The
demonstrated success in the proposed case study in solv-
ing collective tasks underscores the potential impact of this
approach in advancing the field of multi-agent systems and
swarm robotics.

Future research could explore its application in diverse
domains and evaluate its scalability and robustness in increas-
ingly complex scenarios. In addition, we also plan to take the
approach to modern actor-critical solutions, which are better
suited to modern swarm robotics problems because of the
continuous action space.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm

0 50 100 150 200
time

0.1

0.2

0.3

0.4

0.5
co

ve
ra

ge

experiment = Zone Fixed

0 50 100 150 200
time

experiment = Two Zones

0 50 100 150 200
time

experiment = Moving

mode
GNN (informed)
GNN
MLP

(a) Ratio of coverage of the phenomena. Our FIRL approach can outperform other approaches lacking field information.

0 50 100 150 200
time

0

5

10

15

20

in
sid

e[
su

m
]

experiment = Zone Fixed

0 50 100 150 200
time

experiment = Two Zones

0 50 100 150 200
time

experiment = Moving

mode
GNN (informed)
GNN
MLP

(b) Number of agents inside the phenomenon in the three types of experiments

Fig. 5: Quantitative test results. The proposed approach can cover and track the phenomenon better than the baselines.

0 50 100 150 200
time

0

2

4

6

8

10

12

in
sid

e[
su

m
]

mode = GNN (informed)

0 50 100 150 200
time

mode = GNN

0 50 100 150 200
time

mode = MLP

area
1
2

(a) Two Zones experiment: aggregated number of agent inside each phenomenon

0 50 100 150 200
time

0.10

0.15

0.20

0.25

0.30

co
ve

ra
ge

mode = GNN (informed)

0 50 100 150 200
time

mode = GNN

0 50 100 150 200
time

mode = MLP

area
1
2

(b) Two Zones experiment: ratio of covered to the uncovered zones both phenomena

Fig. 6: Coverage of two zones using the different modes of the controller.

Intell., vol. 7, no. 1, pp. 1–41, 2013.
[2] D. Bajovic, A. Bakhtiarnia, G. Bravos, and et al., “Marvel: Multimodal

extreme scale data analytics for smart cities environments,” in Conf. on
Communications and Networking. IEEE, 2021, pp. 143–147.

[3] D. Pianini, F. Pettinari, R. Casadei, and L. Esterle, “A collective adaptive
approach to decentralised k-coverage in multi-robot systems,” ACM
Trans. on Auton. and Adapt. Systems, vol. 17, no. 1-2, pp. 1–39, 2022.

[4] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Cyber-physical-social systems:
A state-of-the-art survey, challenges and opportunities,” IEEE Commu-
nications Surveys & Tutorials, vol. 22, no. 1, pp. 389–425, 2019.

[5] R. Casadei, “Macroprogramming: Concepts, state of the art, and
opportunities of macroscopic behaviour modelling,” CoRR, vol.
abs/2201.03473, 2022.

[6] G. Aguzzi, “Research directions for aggregate computing with machine
learning,” in Proc. of the Int. Conf. on Autonomic Computing and Self-
Organizing Systems. IEEE, 2021, pp. 310–312.

[7] G. Aguzzi, R. Casadei, and M. Viroli, “Machine learning for aggregate
computing: a research roadmap,” in Proc. of the Int. Conf. on Distributed
Computing Systems. IEEE, 2022, pp. 119–124.

[8] ——, “Towards reinforcement learning-based aggregate computing,”
in Proc. of the Int. Conf. on Coordination Models and Languages.
Springer, 2022, pp. 72–91.

[9] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” Computer, vol. 48, no. 9, pp. 22–30, 2015.

[10] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, and et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, 2015.

[12] C. Castelfranchi, G. Pezzulo, and L. Tummolini, “Behavioral implicit
communication (BIC): communicating with smart environments,” Int. J.
Ambient Comput. Intell., vol. 2, no. 1, pp. 1–12, 2010.

[13] L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, and A. Omicini,
““exhibitionists” and “voyeurs” do it better: A shared environment for
flexible coordination with tacit messages,” in Proc. of Int. Workshop on
Environments for Multi-Agent Systems. Springer, 2004, pp. 215–231.

[14] H. V. D. Parunak, “"go to the ant": Engineering principles from natural
multi-agent systems,” Ann. Oper. Res., vol. 75, pp. 69–101, 1997.

[15] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm robotic
behaviors and current applications,” Frontiers Robotics AI, vol. 7, 2020.

[16] Y. Yang, “Many-agent reinforcement learning,” Ph.D. dissertation, UCL
(University College London), 2021.

[17] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field
multi-agent reinforcement learning,” pp. 5571–5580, 2018.

[18] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu,
“Magent: A many-agent reinforcement learning platform for artificial
collective intelligence,” in Proc. of the Conf. on Artificial Intelligence.
AAAI Press, 2018, pp. 8222–8223.

[19] C. W. Warren, “Global path planning using artificial potential fields,” in
IEEE Conf. on Robotics and Automation, 1989.

[20] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: A physically
inspired approach to motion coordination,” IEEE Pervasive Computing,
vol. 3, no. 2, pp. 52–61, 2004.

[21] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in 2015
IEEE SASO conference, 2015, pp. 81–90.

[22] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1–5:55, 2019.

[23] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[24] T. D. Wolf and T. Holvoet, “Designing self-organising emergent systems
based on information flows and feedback-loops.” IEEE Computer
Society, 2007, pp. 295–298.

[25] R. Casadei, M. Viroli, G. Aguzzi, and D. Pianini, “Scafi: A scala dsl
and toolkit for aggregate programming,” SoftwareX, vol. 20, p. 101248,
2022.

[26] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. of the 34th
International Conference on Machine Learning, 2017, pp. 1263–1272.

[27] G. Pellegrini, A. Tibo, P. Frasconi, A. Passerini, and M. Jaeger, “Learn-
ing aggregation functions,” arXiv preprint arXiv:2012.08482, 2020.

[28] D. Silver, A. Huang, C. J. Maddison, and et al., “Mastering the game
of go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, 2016.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2015.

[30] C. Leiter, R. Zhang, Y. Chen, J. Belouadi, D. Larionov, V. Fresen,
and S. Eger, “Chatgpt: A meta-analysis after 2.5 months,” CoRR, vol.
abs/2302.13795, 2023.

[31] K. Zhang, Z. Yang, and T. Basar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” CoRR, vol.
abs/1911.10635, 2019.

[32] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. of the Annual Conf. on Neural Information Processing Systems,
2017, pp. 6379–6390.

[33] Y. Wu, Y. Li, Z. Wang, Y. Zhang, and T. Zhang, “More centralized
training, still decentralized execution: Multi-agent conditional policy
factorization,” arXiv preprint arXiv:2209.12681, 2022.

[34] Y. Song, Y. Li, Z. Wang, Y. Zhang, and T. Zhang, “Ctds: Centralized
teacher with decentralized student for multi-agent reinforcement learn-
ing,” arXiv preprint arXiv:2203.08412, 2022.

[35] ——, “Centralized training with hybrid execution in multi-agent rein-
forcement learning,” arXiv preprint arXiv:2210.06274, 2022.

[36] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean
field multi-agent reinforcement learning,” in Proc. of the Int. Conf. on
Machine Learning. PMLR, 2018, pp. 5571–5580.

[37] N. Frikha, M. Germain, M. Laurière, H. Pham, and X. Song, “Actor-
critic learning for mean-field control in continuous time,” arXiv preprint
arXiv:2303.06993, 2023.

[38] A. Sosic, W. R. KhudaBukhsh, A. M. Zoubir, and H. Koeppl, “Inverse
reinforcement learning in swarm systems,” in Proc. of AAMAS. ACM,
2017, pp. 1413–1421.

[39] D. S. Bernstein, S. Zilberstein, and N. Immerman, “The complexity
of decentralized control of markov decision processes,” in Proc. of the
Conf. in Uncertainty in Artificial Intelligence, 2000, pp. 32–37.

[40] E. I. Tolstaya, F. Gama, J. Paulos, G. J. Pappas, V. Kumar, and
A. Ribeiro, “Learning decentralized controllers for robot swarms with
graph neural networks,” in Proc. of the Conf. on Robot Learning, 2019,
pp. 671–682.

[41] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Proc. of the Conf. on Robot Learning. PMLR, 2020, pp.
671–682.

[42] W. Gosrich, S. Mayya, R. Li, J. Paulos, M. Yim, A. Ribeiro, and
V. Kumar, “Coverage control in multi-robot systems via graph neural
networks,” in Proc. of the Int. Conf. on Robotics and Automation. IEEE,
2022, pp. 8787–8793.

[43] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” CoRR, vol. abs/1903.02428, 2019.

[44] M. Wang, D. Zheng, Z. Ye, and et al., “Deep graph library: A graph-
centric, highly-performant package for graph neural networks,” arXiv
preprint arXiv:1909.01315, 2019.

[45] J. Zhou, G. Cui, S. Hu, and et al., “Graph neural networks: A review
of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.

[46] B. Knyazev, G. W. Taylor, and M. R. Amer, “Understanding attention
and generalization in graph neural networks,” in Conf. on Advances in
Neural Information Processing Systems, 2019, pp. 4204–4214.

[47] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with ALCHEMIST,” J. of Simulation, vol. 7,
no. 3, pp. 202–215, 2013.

[48] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[49] A. Paszke, S. Gross, F. Massa, and et al., “PyTorch: An Imperative Style,
High-Performance Deep Learning Library,” https://pytorch.org, 2019.

[50] D. Kim and A. Oh, “How to find your friendly neighborhood: Graph
attention design with self-supervision,” CoRR, vol. abs/2204.04879,
2022.

https://pytorch.org

	Introduction
	Background and Motivation
	Swarm systems
	Field-based Coordination
	Graph Neural Networks
	Many-Agent Reinforcement Learning
	Problem formalisation
	Motivation

	Field-informed Reinforcement Learning
	Architecture, fields and aggregate dynamics
	Learning algorithm

	Evaluation
	Scenario
	Goal
	Training Phase
	Test phase
	Baselines
	Metrics
	Discussion and Results

	Conclusion and Future Work
	References

