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ERRATUM TO: INTRINSIC CURVATURE OF CURVES AND SURFACES

AND A GAUSS–BONNET THEOREM IN THE HEISENBERG GROUP

ZOLTÁN M. BALOGH, JEREMY T. TYSON, AND EUGENIO VECCHI

In the publication [1] there is an unfortunate computational error, which however does
not affect the correctness of the main results.
Let us recall some notation from the paper. By γ : [a, b] → R

3 we denote a C2 smooth
parametrized regular curve t → γ(t) = (γ1(t), γ2(t), γ3(t)). The action of the standard

contact form ω = dx3 −
1

2
(x1dx2 − x2dx1) on γ is denoted by

ω(γ̇) = ω(γ̇)(t) = γ̇3(t)−
1

2
(γ1(t)γ̇2(t)− γ2(t)γ̇1(t)) .

A point t0 ∈ [a, b] is called horizontal if and only if ω(γ̇)(t0) = 0. The mistake in the
paper arises due to a statement implicitly assumed in the proof of Lemma 3.4, that at any
horizontal point we also have that ω(γ̈)(t0) = 0, where

ω(γ̈) = ω(γ̈)(t) = γ̈3(t)−
1

2
(γ1(t)γ̈2(t)− γ2(t)γ̈1(t)) .

This fact is in general not true. As a result, various statements in the paper, including the
second formula in equation (1.1), equation (3.4), the second part of equation (3.10), and
the second displayed equations in both Lemma 4.8 and Proposition 4.13, do not hold for all
horizontal points.

However, noticing that ω(γ̈) = d

dt
ω(γ̇) we see that the assertion ω(γ̈)(t0) = 0 is still true

for horizontal points that arise as accumulation points of other horizontal points. Since the
parameterizing interval is compact, there are at most a finite number of isolated horizon-
tal points t1, . . . , tN at which the quantity ω(γ̈)(ti) may be nonzero, and hence all of the
preceding formulas hold at all points of [a, b] except for this finite number of isolated points.
The main result of the paper, Theorem 1.1, is not affected by these corrections since its

proof is based on an approximation argument relying on the Lebesgue dominated convergence
theorem. In the application of this theorem a set of countably many points can be ignored
as a null set, and the proof works as indicated in Section 6 of the paper.
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