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The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring 
of infections and epidemics, as well as for the study of human health and its relationship with 
commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted 
sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered 
into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, 
representative OTU sequences are compared with reference (human-made) databases to derive their 
phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define 
the phylogenetic distance between bacteria based on protein domains, which are the evolving units of 
proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological 
approach to model their Relative Species Abundance distribution. Based on the model parameters, 
we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based 
distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based 
method fails, providing a possibly complementary approach , which is particularly promising for the 
analysis of bacterial populations measured by shotgun sequencing.

The accurate identification and classification of bacteria is essential for epidemiological surveillance, as well as 
for the study and understanding of specific ecosystems such as the human microbiome. Bacterial classification, 
however, is a complex problem, especially at the intraspecies level. Commonly used methods include the recon-
struction of phylogenetic trees based on the comparison of specific molecular sequences (e.g. 16S rRNA gene) 
with reference databases, which contain annotated sequences of previously classified bacteria . This allows to 
generate the so-called taxonomic classification of the sampled bacteria.

The basic unit of classification in taxonomy is usually the species level. While such resolution may be sufficient 
for other domains of life, the intraspecies level of bacteria includes high amounts of genomic and phenot ypic 
variation, through which strains of bacteria belonging to the same species manifest highly different behaviours1. 
For instance, different strains can infect different hosts2–4, or even more extremely, some bacterial species can have 
both pathogenic and non-pathogenic isolates1,5. The 16S rRNA gene is commonly used for bacterial classifica-
tion since random mutations of the 16S rRNA gene sequence serve as a proxy of evolutionary time6. However, 
bacterial classification based on 16S rRNA gene has low phylogenetic power at the intraspecies level, where 
functional diversification of strains is faster than random mutations of the 16S rRNA gene6. Various alternative 
approaches to estimate the bacterial phylogeny have hence been proposed7–9. Such methods mainly start from 
specific bacterial molecular sequences and either compute a distance matrix or model the substitution process 
through which the molecular sequences have evolved. In both cases, the appropriate choice of the specific 
molecular sequences to be investigated is crucial. The chosen sequences have to satisfy two conditions for the 
phylogenetic reconstruction to be successful: orthologs of sequences have to be shared by the tested bacteria 
and they have to contain a vertical phylogenetic signal. Approaches that use a single molecular sequence, such 
as 16S rRNA, may work well at higher taxonomic levels, but they are usually too generic to differentiate species 
or strains. A popular method which overcomes this problem while still controlling the phylogenetic noise is 
multilocus sequence analysis (MLSA)10,11, which simultaneously uses sequences of seven housekeeping genes. 
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However, phylogenetic signals are not equally distributed across the genome and, while some classes of genes 
are expected to perform better for phylogenetic inference than others12, the choice of the specific set of genes to 
be used is still a matter of debate.

Here, we develop a new measurement of evolutionary distance derived from the ecological modeling of 
the protein domains that populate the bacterial genome and we propose to exploit such distance to deepen the 
characterization of bacteria at the intraspecies level. Our method does not rely on the selection of a specific set 
of genes or molecular sequences, but is based on the ecological modelling of the whole set of protein domains 
within the bacterial genome. Protein domains are segments of proteins and are defined as substructures pro-
duced by any contiguous part of a polypeptide chain that can fold independently of the rest of the protein into 
a compact and stable structure13,14. Studies on the conformation, function and evolution of proteins suggest 
to consider the protein as a molecule composed of a set of independent protein domains, which constitute its 
organizational units, so as its evolutionary components. The evolution of living organisms, or rather, the proteome 
evolution, is caused by the occurrence of random modifications of the genetic code and these events affect each 
protein domain independently. Protein domain duplication, mutation, recombination, relocation and horizontal 
transfer are in fact the main mechanisms that allow the outbreak of proteins with new functionalities, thereby 
contributing to the emergence of complexity15–17. As a matter of fact, the relationship between protein domain 
evolution and phylogeny has already been investigated in previous works, with findings suggesting a connection 
between the two. On the one hand the phylogeny of hundreds of organisms (including more than 100 bacteria) 
has been reconstructed satisfactorily (i.e., in good agreement with the classical taxonomy) based on the presence 
or absence of protein domain superfamilies18, or based on specific patterns of protein domains19. On the other 
hand the evolutionary origin and history of protein domains has been reconstructed based on the taxonomic 
tree of organisms20.

Taking an ecological approach, we here focus on the dynamic processes that led to the current configuration 
of protein domains, assuming that this could highlight important aspects of the evolution of genomes, proteins, 
and organisms. The proposed phylogeny will then be based on the evolutionary model of protein domains, 
incorporating the parameters estimated from such model.

Evolutionary modeling of protein domains.  In the past, various models of evolution have been pro-
posed for protein domains, each linked to a particular distribution of the protein domains frequencies. This 
distribution is what in ecology is called Relative Species Abundance distribution (RSA). It is a measure of the 
biodiversity of an ecosystem, in our case the set of protein domain families that populate the genome, and can be 
used to fit real data in order to verify the validity of the underlying ecological hypothesis. Among the proposed 
ecological models for protein domains, the birth-death-innovation one stands out. The RSA distribution pre-
dicted by this model is a Pareto distribution and it fits the RSA of a wide range of genome-associated quantities 
well, including protein domains21,22.

Here, we consider a generalization of the birth-death-innovation model21 in which both demographic and 
environmental noise are added to the model. Environmental stochasticity is due to environmental changes 
which act simultaneously on all individuals while demographic stochasticity reflects the reproduction differences 
among individuals within a population. A suitable generalized model was developed by S. Engen and R. Lande 
in 199623,24, who proposed that the RSA distribution could be a Poisson Log-Normal or a Negative Binomial, 
depending on the assumptions.

Following Engen and Lande’s derivation23,24, we make the neutral ecological equivalence assumption that 
the evolutionary dynamics is the same for all the protein domain families. In this way, we will not need to 
introduce protein domain family-specific indices for the evolutionary rates in the following equations25. As in 
Engen and Lande’s papers, we also assume that protein domain families enter the protein domain community 
(i.e. the genome) at times generated by an inhomogeneous Poisson process (see Supplementary Material or, for 
more details, Karlin and Taylor textbooks26,27) with rate ω(t) and that they evolve independently of each other. 
Denoting the present time as t = 0 , speciations (i.e. arrivals of new protein domain families in the genome) up to 
now have then occurred at negative times, generated by ω(t) . Let the distribution of the abundance X(t) at time 
t = 0 of a protein domain family entering the genome at time −t < 0 be f(x; t) and let p(t) be the probability that 
it has not gone extinct. Then, Engen and Lande showed that the abundances x of the protein domain families in 
the community are generated by an inhomogeneous Poisson process with rate

Now, we let the process for each protein domain family be a diffusion process (see Supplementary Material) 
which is a solution of the stochastic growth equation

where x still indicates the number of individuals within a protein domain family (i.e., its abundance), r is the 
constant growth rate ( r = b− d , where b is the birth rate and d is the death rate), g(x) is a density regulation 
function, σ 2

r = σ 2
e + σ 2

d /x is the sum of the environmental ( σ 2
e  ) and demographic ( σ 2

d /x ) stochasticities, and the 
process B(t) is a standard Brownian motion, so that dB(t)dt  is the so-called white noise. It can be shown (see Supple-
mentary Material) that the diffusion process which solves the stochastic differential Eq. (2) has infinitesimal mean 
m(x) = [r + σ 2

d /(2x)+ σ 2
e /2]x − xg(x) which can be rewritten as m(x) = [r − g(x)]x + (1/2)σ 2

d + (1/2)σ 2
e x . 

The noise term hence turns out to be composed by a multiplicative part (i.e., the environmental noise, which 

(1)�(x) =
∫ ∞

0
ω(−t)p(t)f (x; t)dt,
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dx

dt
= rx − xg(x)+ xσr(x)

dB(t)
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acts on the whole population of family domains), and an additive one (i.e., the demographic noise, which acts 
on individuals within the population and whose effect is thus stronger in smaller populations).

If protein domain families evolve independently from each other, then Engen and Lande showed that their 
abundances are generated by an inhomogeneous Poisson process with rate �(x) (see Supplementary Material). 
Specifically, depending on which assumptions are made on the model parameters, the predicted RSA distribution 
could be a Poisson Log-Normal, a Negative Binomial, or a Log-Series distribution.

Engen and Lande showed that if we consider the Gompertzian density regulation function23,28 
g(x) = γ ln(x + ǫ) , where γ is a constant and ǫ = σ 2

d /σ
2
e  , then

where ω0 is the speciation parameter and α = 2
σ 2
e
e

γ

σ2e

[

ln(1+ǫ)− r
γ

]2

 . When ǫ ≪ x , �(x) can be approximated to a 
Log-Normal distribution

with parameters µ = r/γ and σ 2 = σ 2
e /2γ . This implies that the RSA distribution of protein domains would be 

a Poisson Log-Normal with parameters µ and σ 2.
If instead, we consider a linear density regulation function24 g(x) = ηx , where η is a constant, then

where ω0 is the speciation parameter, ǫ = σ 2
d /σ

2
e  and a = 2e2(1+ǫ)η/σ2e

σ 2
e (1+ǫ)2(r+ηǫ)/σ2e

 . When ǫ ≪ x , �(x) is now a Gamma 
distribution with shape α = 2(r + ηǫ)/σ 2

e  and rate β = 2η/σ 2
e  , and the RSA distribution of protein domains is 

a Negative Binomial

with dispersion α and success rate q = σ 2
e /(2η + σ 2

e ).
Finally, if we consider the limit of Eq. (6) in which the dispersion parameter α tends to zero, the Negative 

Binomial density function [Eq. (6)] converges to a Log-Series

that hence represents a special case of Negative Binomial model when 2(r + ηǫ)/σ 2
e → 0.

Here, we aim to model the evolution of protein domains within the genome using Engen and Lande’s theo-
retical framework. Specifically, modeling the protein domain RSA of thousands of bacterial genomes, we intend 
to provide a novel phylogenetic characterization of bacteria.

We hypothesize that new protein domain families are generated in the genome at times specified by an inho-
mogeneous Poisson process and that different families are mutually independent. Within the protein domain 
families, we assume that the evolutionary dynamics can be described by a stochastic birth-death process in 
which: (i) the growth rate r is constant; (ii) both environmental and demographic noise are included; iii) density 
regulation function is either linear or Gompertzian. The growth rate r can be interpreted as the rate by which a 
protein domain family gets a new copy inside the genome. This unifies two different events, the birth and death 
of protein domains which correspond to protein domain duplication and protein domain inactivation/deletion. 
Regarding the two noise terms ( σ 2

d  and σ 2
e  ), the demographic variance σ 2

d  captures small differences in duplica-
tion or survival between different individual domains which belong to the same protein domain family, while the 
environmental variance σ 2

e  represents larger scale disruptions of the proteome which act on all protein domains 
within the family simultaneously. Events such as horizontal gene transfer are an example of environmental 
stochasticity. The role of the density regulation, g(x), is to keep the abundance of protein domain family from 
diverging. This is usually a consequence of the limited availability of resources in the community, and it can be 
related to the limited size of the genome (and consequently of the proteome) in the contest of protein domains29.

The modeling of protein domain RSA within bacterial genomes will allow us to derive a novel measurement 
of phylogenetic distance. Specifically, we will show that the Poisson Log-Normal distribution [Eq. (4)] is the one 
that best fits the empirical RSA of bacterial protein domain families and we will derive our novel phylogenetic 
distance based on its two parameters µ = r/γ and σ 2 = σ 2

e /2γ , together with the protein domains density within 
the bacterial genome, as detailed in the "Materials and methods" section. In the following, we will show how 
such distance is related to the usual 16S rRNA gene-based and taxonomic classifications of bacteria and how it 
constitutes a promising measurement to investigate the bacterial phylogeny at the intraspecies level, where both 
16S rRNA and taxonomic classification fail.

(3)�(x) =
αω0

x + ǫ
e
− 1

2
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Results and discussion
Protein domains show a Gompertzian growth.  The protein domain RSA distributions of 3368 bacte-
rial genomes were obtained as detailed in the "Materials and methods" section. Briefly, for each bacterial genome 
we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein 
domains belonging to each protein domain family.

Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the 
Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike 
Information Criterion (AIC)30, in 99.97% of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). 
This model performed better than both the Log-Series and the Negative Binomial and described the data well, 
with an average R2 of 0.97 (minimum R2=0.86). The selection of the Poisson Log-Normal model instead of the 
Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a 
Gompertzian density regulation function ( g(x) = γ ln(x + ǫ) ) rather than a linear one ( g(x) = ηx ). This sug-
gests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for 
the high abundant ones.

Protein domains deactivation is faster than duplication.  The examination of the Poisson Log-Nor-
mal scale ( µ ) and location ( σ 2 ) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting 
procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein 
domains.

First of all, Fig. 2 shows that µ has negative values in all bacterial genomes. Recalling that µ = r/γ , where r 
is the growth rate and γ is the multiplicative constant of the Gompertzian function, which must be positive, this 
implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed 
as the difference between the birth and the death rate, r = b− d . Hence, a negative r means that the death rate is 
greater than the birth rate ( d > b ). In the evolutionary model of protein domains, the birth rate b has the mean-
ing of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r 
hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the 
coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain 
sequence within the genome.

Furthermore, the plot of µ as a function of σ 2 (Fig. 2) highlights the negative linear relationship between µ 
and σ 2 . Such relationship can also be deduced mathematically.

Starting from the expressions µ = r/γ and σ 2 = σ 2
e /2γ , and after simple algebraic manipulation, we can 

in fact obtain that µ = 2rσ 2/σ 2
e  , which explains the negative linear relationship between the two parameters.

Besides the negative relationship, the plot of µ versus σ 2 also highlights the presence of clusters of bacterial 
genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When 
we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are 
related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny 
based on the ecological modeling of protein domains and the consequent estimation of the parameters µ and σ 2.

Figure 1.   Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different 
distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial 
genome GCA_000717515 . The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion 
parameter α of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the 
dispersion parameter obtained for the 3368 bacterial genomes are 2.67× 10−4 and 2.62× 10−7 , in agreement 
with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-
Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 
bacterial genomes.
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Protein domain RSA and evolutionary distance.  We propose to calculate the pairwise evolutionary 
distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters 
discussed above ( µ and σ ), and the density of protein domains in the bacterial genome. Such density describes 
to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an addi-
tional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance 
between bacteria is specifically computed as the 3D euclidean distance in the scaled space of µ , σ , and protein 
domain density. In the following, we refer to such distance as ‘RSA distance’.

To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with 
both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from 
the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters 
with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared 
with the bacterial taxonomic classification.

Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit 
the complementary information that these two approaches provide, despite their intrinsic connection. Namely, 
modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly 
used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows 
us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to 
classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the 
evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-
defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships 
at the intraspecies level, for which the taxonomic classification is not available.

As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S 
rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was 
retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order 
to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic 
level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent 
to the number of taxa available at the selected taxonomic level.

At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement 
between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval 
[0, 1] , NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the 
baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the 
low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used 
simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).

As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red 
dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) 
and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher 
than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing 
the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both 
taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking 
as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, 
signifying that 65% of bacteria are correctly classified.

To assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein 
domains, we randomly selected subsamples of protein domains in different proportions (from 10% to 90% of all 

Figure 2.   Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal 
parameters µ versus σ 2 obtained fitting the protein domains RSAs. Only species represented by at least 10 
different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different 
species. Different colors represent different species as indicated in the legend.
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protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained 
using all protein domains (see Materials and Methods for details), and the correlation between the trees was 
calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into 
account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsam-
pling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein 
domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 
0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as 
expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that 
the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling 
height of the branches correlates with the full-data height only at larger subsampling proportions.

To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of 
species for which at least 10 different strains were present in our data (48 species). Among them, we selected the 
species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which 
published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 
species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the "Materials and 
methods" section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are 
in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the 
correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary 
Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of 
the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correla-
tion (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between 
the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the 
randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic 
signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial 
species in more details.

RSA‑based method distinguishes subspecies infecting different hosts.  Xanthomonas citri subsp. 
citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here 
we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not 
detected comparing the 16S rRNA gene sequences.

Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting 
different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* 
and AW , have a much more limited host range with XCC pathotype AW infecting only Key lime (C. aurantifo-
lia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC 
pathotype AW2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which 
coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the 
two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and AW have different 
hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling 
the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.

Figure 3.   Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) 
are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 
16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are 
considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent 
the baselines of NMI score and are based on simulations.
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Figure 4.   (Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions 
obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the 
left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. 
The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas 
citri belong to two different pathovars: A (orange) and AW (purple). (b) 10 strains of Chlamydia pneumoniae 
are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains 
represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line 
is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 
11 strains have two circular chromosomes Chr1 ( ∼ 3 Mb) and Chr2 ( ∼ 1 Mb) (magenta). 2 strains have one ∼ 4 
Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ( ∼ 3 Mb), Chr2 ( ∼ 1 Mb) and 
Chr3 ( ∼ 1 Mb) (violet).
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Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of 
XCC included in our data set have diverse geographical origin. While all AW strains were sampled from USA, 
strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their 
sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané 
et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of 
strain jx-6 ( GCA_001028285 ) coming from China.

For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread 
in human population and causes acute respiratory disease. Besides humans, different animal species can be 
infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 
1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from 
the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based cluster-
ing (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived 
isolates and the koala strain LPCoLN ( GCA_000024145 ) through whole-genome sequencing showed a much 
higher variation between human and koala-derived strains than within the human-derived strains35.

Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia 
pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn 
tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of 
multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were 
used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the 
maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation 
between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in sepa-
rating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster 
of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that 
tissue tropism is not entirely captured by our method.

RSA‑based method discriminates subspecies with different genome composition.  In some 
cases, subspecies of the same species are characterized by global differences in the genome composition. This 
is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model 
is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.

Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromo-
somes: Chr1 ( ∼ 3 Mb) and Chr2 ( ∼ 1 Mb). However, some strains show a different karyotype. The two strains 
1154-74 ( GCA_000969235 ) and 10432-62 ( GCA_000969265 ), for instance, underwent the process of chromo-
somal fusion and possess only one ∼ 4 Mb long circular chromosome, which shows a high degree of synteny with 
the two chromosomes of the more common strains36. The strain TSY216 ( GCA001045415 ), on the other hand, 
besides having the original two chromosomes, also contains an additional ∼ 1 Mb long replicon, which does not 
share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome 
strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra 
replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the 
three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae 
strains included in our data set are located on ∼ 3 Mb long chromosome, which shows high synteny across all 
strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global 
genomic differences that exist between the considered strains. On the other hand, the results obtained with the 
RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The 
reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, 
the RSA-based distance depends on the Poisson Log-Normal location parameter σ 2 , which increases with the 
genome length (Supplementary Fig. S1): by definition, σ 2 = σ 2

e /2γ , and, while the environmental noise σ 2
e  can 

be reasonably considered independent of the genome length, the density regulation γ is expected to be stronger 
for smaller genomes, which repesent a scarcer environment with less resources.

Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids 
(members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process 
of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length < 1 Mb. 
One of the main processes which contributed to genome reduction is gene inactivation followed by progressive 
gene disintegration38. An intermediate step of this process is pseudogenization. For this reason, we expect the 
number of pseudogenes within a genome to be related to its evolutionary state and strains with similar numbers 
of pseudogenes to be phylogenetically similar. Among the 13 strains of Buchnera aphidicola available in our data 
set, we observe a high variability in the number of pseudogenes, with 12 strains having between 7 and 63, and 
one strain (JF98, GCA_000183305 ) having 176 pseudogenes. Since the total number of genes (considering both 
protein coding genes and pseudogenes) is similar in all strains, this implies that JF98 has a smaller proteome 
compared to the others. Our results show that the divergence of strain JF98 from the others is evident from the 
RSA-based clustering (Supplementary Fig. S3-a, left), while it is not clear from the 16S rRNA-based one (Sup-
plementary Fig. S3-a, right).

On the other hand, another outstanding property of the Buchnera aphidicola strains is their capability to 
infect different hosts. Focusing on this aspect, we notice that the RSA-based clustering only partially agrees with 
a grouping of the strains based on the infected host. The 16S rRNA-based method, instead, finds more coherent 
results (Supplementary Fig. S3-b), possibly due to the fact that endosymbionts and their hosts tend to co-evolve 
together once their endosymbiotic relationship starts4.
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Distinct bacterial isolates detected by the RSA‑based method.  For several species in our data set, 
the RSA-based phylogenic tree indicates the presence of outlier strains (see Supplementary Fig. S8). For two of 
such species (Listeria monocytogenes and Francisella tularensis), in particular, we were able to find bibliographic 
information at the strain level which provides a biological explanation to our findings.

Listeria monocytogenes is a food-borne pathogenic bacterium which causes listeriosis in humans. From the 48 
Listeria monocytogenes strains present in our data set, RSA-based clustering identifies a subgroup of two strains 
(Supplementary Fig. S4). These two strains, La111 ( GCA_000382925 ) and N53-1 ( GCA_000382945 ), seem to 
have very similar proteome composition which differs from that of the other strains. Holch et al. investigated 
strains La111 and N53-1 in their study on bacterial persistence in Listeria monocytogenes39. Based on whole-
genome analysis, the authors found that these two strains, which were isolated 6 years apart from different Danish 
fish processors, are extremely similar and collectively different from the other analyzed strains, in agreement 
with our RSA-based results.

Francisella tularensis, instead, is an intracellular bacterium which is a causal agent of tularemia. Our data set 
includes 25 Francisella tularensis strains from different subspecies: tularensis, holarctica, mediasiatica and novi-
cida. While neither RSA- nor 16S rRNA-based clustering accurately separate subspecies of Francisella tularensis, 
the RSA method identifies one outlier, strain TIGB03 ( GCA_000248415 ) (Supplementary Fig. S5). Unlike the 
other 24 virulent strains, strain TIGB03 is an attenuated tularensis strain. This strain was described by Modise 
et al. as an attenuated O-antigen mutant of the virulent strain TI0902 ( GCA_000248435)5. Indeed, we notice that 
16S rRNA genes of these two strains are identical (Supplementary Fig. S5) and thus 16S rRNA-based cluster-
ing is unable to detect the mutant strain. Comparing whole-genome sequences of strains TIGB03 and TI0902, 
Modise et al. found 31 nonsynonymous point mutations and a 75.9 kb long duplicated region in the mutant 
strain TIGB03. However, such long duplication does not make TIGB03 an outlier in terms of genome length (the 
genome length of TIGB03 is 1.97 Mb and that of the other 24 strains included in our study ranges from 1.86 to 
2.05 Mb). This indicates that the presence of nonsynomymous mutations led to different proteome composition, 
which is recognized by our method.

Conclusion
The de novo clustering of phylogenetically similar metagenomes is a crucial step for the study of bacterial popu-
lations. To this aim, a typical approach is the pairwise comparison of 16S rRNA sequences derived from the 
biological sample of interest. After computing the pairwise distance matrix, clusters are defined based on a cus-
tom similarity threshold. Then, clusters are usually compared to databases of annotated sequences to derive the 
taxonomic classification, that is to associate human-made hierarchical labels (bacterial names) to the detected 
metagenomes. While taxonomic classification allows to recognize known bacteria and their phenotype, de novo 
clustering potentially allows to obtain a higher resolution of the bacterial population at the intraspecies level, 
unaffected by the possible bias of human-made classifications.

Here, we proposed to measure the phylogenetic distance between bacteria, based on their genomic evolving 
units: protein domains. Specifically, we exploited the ecological modeling of ecosystems proposed by Engen and 
Lande23 to describe the evolution of protein domains, considering them as ‘species’ that populate the genome. 
Based on such modeling, we derived a new phylogenetic distance that can be computed fitting the protein 
domains Relative Species Abundance distribution (RSA). We showed that clustering the bacterial genomes based 
on 16S rRNA or exploiting our model allows to capture different features in terms of both genome composition 
(e.g. presence of additional replicon, pseudogenes, duplicated regions, or nonsynomymous mutations) and 
bacterial phenotype (e.g. infected host). Our results hence open to the possibility of developing an algorithm in 
which both pieces of information are exploited to obtain an overall best inference of bacterial phylogeny. This 
will hopefully be part of future works.

The proposed approach is especially promising when samples are analysed by means of shotgun sequencing, 
rather than 16S rRNA sequencing40. Indeed, 16S rRNA sequencing is a powerful method to detect and compare 
metagenomes. However, it is limited by being based on the measurement of a single gene. On the other hand, 
information on the whole metagenome can be derived when using shotgun sequencing40. In terms of phylogeny, 
16S rRNA sequencing detects only metagenomic divergences which directly affect the 16S rRNA gene, and its 
ability to discriminate metagenomes at the intraspecies level is therefore limited6. Our RSA-based method, on 
the other hand, provides a global measurement based on the whole proteome. As highlighted by our results, these 
two approaches are hence somehow complementary, being the RSA-based method more sensitive to evolution-
ary processes that affect the metagenome globally, possibly leaving the 16S rRNA gene unaffected, and the 16S 
rRNA-based method being instead more sensitive when such gene is involved, such as in the case of Buchnera 
aphidicola. Overall, our results show that the RSA-based approach is a promising method that could be exploited 
to study the metagenomic composition of samples, in particular when shotgun sequencing is performed and 
the whole metagenome could be reconstructed, though experimental validation would be required to definitely 
assess the efficacy of our approach.

Materials and methods
Data retrieval.  The genome sequences of 3370 bacteria were downloaded from the NCBI database41. Draft 
genome sequences were discarded and only the higher quality fully circular genome sequences were retained. 
GeneBank files containing genome sequences and existing annotations were retrieved from the NCBI database 
and imported into the Semantic Annotation Platform for Prokaryotes42 using the EMBL/GBK to RDF SAPP 
module. De novo identification of genetic elements (gene calling) was performed using Prodigal (2.6)43 with 
codon table 11, which is recommanded when dealing with bacterial genomes. Dedicated SPARQL queries were 
built to extract all proteins and their sequences from the RDF triplestore used by SAPP to store the intermediate 
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results. InterProScan44 was used to identify protein domains in the corresponding sequences. Due to the high 
number of distinct protein sequences to be analyzed, the SURFsara GRID infrastructure was used45 to concur-
rently analyze the sequences. Dedicated SPARQL queries were used to retrieve all the identified domains and 
assign them to the originating protein and bacterial genome. Finally, the matrix generating module from SAPP 
was used to generate a matrix containing the number of instances of the detected domain (domain abundance) 
for each of the studied genomes and for each of the identified protein domains. Overall 3370 bacterial genomes 
were analyzed and 13,934 distinct domains were identified.

Model fitting and selection.  Protein domains RSAs were fitted with the Maximum Likelihood Estimation 
method implemented in R “sads” package v.0.4.246. Data were modelled with a truncated Poisson Log-Normal, 
a truncated Log-Series and a truncated Negative Binomial distribution, so that to test and compare different 
ecological hypothesis. In all cases, truncation was performed to exclude the zero abundance class, that is not 
observable in empirical data. Two bacterial genomes which couldn’t be fitted due to extreme RSA distributions 
are GCA_000200735 and GCA_000831405 . After removal of these bacteria, we proceeded with the analysis of 
the remaining 3368 bacterial genomes. Akaike Information Criterion (AIC)30 and R-squared were computed to 
assess the models performances and for model selection.

Calculation of RSA model‑based distance matrix.  Fitting truncated Poisson Log-Normal distribu-
tion to protein domain RSA, we obtained estimates µ and σ for 3368 bacteria. In addition to Poisson Log-
Normal parameters, we calculated protein domain density for every bacteria as ratio between total number of 
protein domains present in the genome and the genome length. RSA distance between each pair of bacteria was 
calculated as 3D euclidean distance in the scaled space of µ , σ and protein domain density. Scaling was per-
formed independently at each dimension subtracting the mean and dividing by standard deviation.

Calculation of 16S rRNA gene‑based distance matrix.  In order to calculate phylogenetic distances 
based on 16S rRNA gene, we used the silva database47 to retrieve the 16S rRNA reference sequences of the bac-
terial species for which protein domain data were available. For 48 bacteria, the 16S rRNA sequence was not 
present, so we considered only the remaining 3320 bacteria for the following analysis. Since the same bacterial 
genome can have multiple different copies of 16S rRNA gene, as 16S rRNA distance between a pair of bacteria we 
used the mean pairwise distance between all pairs of 16S rRNA sequences within two genomes48. The alignment 
of 16S rRNA sequences and calculation of distances was performed with mothur32 “pairwise.seqs” function with 
default parameters.

Comparison of different clustering solutions.  For each taxonomic level, we considered only bacteria 
for which the classification was known and which belonged to a taxonomic group with at least 10 members. As 
a result, we analysed 3270, 3148, 3032, 2714, 2139 and 161 bacteria at phylum, class, order, family, genus and 
species level, respectively. They belonged to 14, 20, 48, 63, 54 and 48 different taxonomic groups. Hierarchical 
clustering was performed on both RSA and 16S rRNA distance matrices. For RSA clustering we used Ward’s 
minimum variance method while for 16S rRNA we used average linkage method. The Ward’s method was used 
to minimize the total in-cluster variance49. Since this method is based on Euclidean distance, it couldn’t be 
applied to 16S rRNA distance matrix. To get clustering solutions for RSA and 16S rRNA, we cut the hierarchical 
tree fixing the number of clusters to the number of taxa at the selected taxonomic level. Finally, we used the NMI 
score as a measure of clustering agreement between the three approaches: RSA, 16S and predefined taxonomy. 
To calculate the baseline for the NMI score, we compared the taxonomy with clustering solutions based on 
simulations. For the fixed number of clusters and data points, each simulation assigned random cluster to each 
data point. Purity of a RSA cluster with respect to taxonomy is calculated as the ratio between the size of the 
cluster’s most abundant taxonomic group and the cluster size. The total purity of the RSA clustering solution is 
a weighted average of its clusters’ purities where weight is a cluster size.

Assessment of robustness and stability of the phylogeny.  To assess the robustness and stability 
of RSA-based phylogeny, regarding the choice of protein domains, we randomly selected subsamples of pro-
tein domains and we compared the obtained subsample-based results with the one obtained when all protein 
domains were used. Specifically, we subsampled protein domains in various proportions (ranging from 0.1 to 
0.9), then we fitted the subsampled protein domain RSA distribution with Poisson LogNormal distribution and 
we used the estimated parameters to calculate the phylogeny of the examined bacteria, following the same meth-
odology used when considering all protein domains. The obtained subsample-based phylogeny (i.e., dendro-
gram) was then compared to the full-data-based phylogeny calculating the correlation between dendrograms. 
Two different correlation measurements were used, cophenetic correlation and correlation based on common 
nodes (i.e., nodes that have the same list of leaves). For the calculations, the function “cor.dendlist” from the 
R “dendextend” package v.1.14.050 was used. For every subsampling proportion (0.1–0.9), 100 bacteria were 
randomly chosen from 3368 available bacteria and a random subsample of protein domains was taken from 
the remaining protein domains (which were present in at least one of the chosen bacteria). The correlation 
between two 100-leaf dendrograms (computed with all protein domains and with a chosen subsample of protein 
domains) was calculated. The procedure was repeated for 50 times, resulting in 50 correlation measurements for 
every subsampling proportion. Additionally, robustness and stability of phylogeny was assessed for 6 bacterial 
species (Xanthomonas citri, Vibrio cholerae, Francisella tularensis, Buchnera aphidicola, Listeria monocytogenes, 
Chlamydia pneumoniae). For every bacterial species and for different subsampling proportions (from 0.1 to 
0.9), with 100 repeats, a subsample of protein domains was randomly selected and subsample-based phylogeny 
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of the species was recontructed. Correlations between the full-data dendrogram and the 100 subsample-based 
dendrograms were calculated. Subsequently, the mean and standard deviation of correlation was obtained for 
every species and every subsampling proportion.

Data availability
The datasets analysed during the current study are available in the NCBI repository41 (https://www.ncbi.nlm.
nih.gov/). The complete list of accession numbers (GenBank IDs) is provided in the Supplementary material.
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