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Multivariate cluster-weighted models based on
seemingly unrelated linear regression

Cecilia Diani, Giuliano Galimberti, Gabriele Soffritti∗

Abstract

A class of cluster-weighted models for a vector of continuous random variables

is proposed. This class provides an extension to cluster-weighted modelling of

multivariate and correlated responses that let the researcher free to use a differ-

ent vector of covariates for each response. The class also includes parsimonious

models obtained by imposing suitable constraints on the component-covariance

matrices of either the responses or the covariates. Conditions for model identifi-

ability are illustrated and discussed. Maximum likelihood estimation is carried

out by means of an expectation-conditional maximisation algorithm. The effec-

tiveness and usefulness of the proposed models are shown through the analysis

of simulated and real datasets.

Keywords: cluster analysis, ECM algorithm, Gaussian mixture model,

multivariate linear regression, parsimonious model

2010 MSC: 62J05, 62H12, 62F12

1. Introduction1

Cluster-weighted modelling is a flexible framework for data analysis intro-2

duced by Gershenfeld (1997) in which the joint distribution of a given random3

vector is modelled by assuming that this vector is composed of an outcome Y4
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(response, dependent variable) and its explanatory variables X (covariates, pre-5

dictors); in order to account for the possible presence of unknown clusters of ob-6

servations, a finite mixture is embedded into the model. Thus, cluster-weighted7

models are useful to perform multivariate regression analysis with random co-8

variates in the presence of unobserved heterogeneity. Such models play a promi-9

nent role when the sample observations come from several sub-populations, the10

distribution of the outcome as well as the effect of the covariates on the response11

change with the sub-populations and the covariates are not under the control12

of the researcher.13

An intense research into cluster-weighted models has been carried out over14

the last decade. Ingrassia et al. (2012) and Ingrassia et al. (2014) have developed15

models for continuous variables under both Gaussian and Student t mixture16

distributions. Solutions suitable for dealing with various types of responses are17

detailed in Punzo and Ingrassia (2013), Punzo and Ingrassia (2015), Ingrassia18

et al. (2015) and Di Mari et al. (2020). Models with non-linear relationships or19

many covariates have been proposed by Punzo (2014) and Subedi et al. (2013),20

respectively. Robustified solutions have been developed by Subedi et al. (2015)21

and Punzo and McNicholas (2017). As far as vectors of continuous random22

variables with a multivariate response are concerned, Dang et al. (2017) have23

developed a family of parsimonious Gaussian cluster-weighted models, where24

suitable constraints are imposed on the eigen-decomposition of the component-25

covariance matrices so as to mitigate the problem of a large number of model26

parameters when dealing with several variables. An underlying assumption27

in the family of parsimonious Gaussian cluster-weighted models introduced by28

Dang et al. (2017) is that all the covariates in the model affect each examined re-29

sponse. However, in some situations there may be prior information concerning30

the absence of certain covariates from the linear term employed in the prediction31

of a certain response, and different covariates may be expected to be relevant32

in the prediction of different responses, as in the seemingly unrelated regression33

context (Srivastava and Giles, 1987). This approach to multivariate regres-34

sion has been extensively employed in the modelling of multivariate economic35
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data, where some given aspects of economic behaviour are typically assumed to36

depend on different economic variables according to a certain general theory.37

Classical examples can be found in White and Hewings (1982) and Giles and38

Hampton (1984), where multivariate regression models with different vectors39

of covariates were specified and estimated based on employment equations and40

Cobb-Douglas production functions in different geographical locations, respec-41

tively. Other fields in which the same approach has been successfully employed42

are medicine, food quality, tourism economics, quality of life and health (see,43

e.g., Keshavarzi et al., 2012; Cadavez and Henningsen, 2012; Keshavarzi et al.,44

2013; Disegna and Osti, 2016; Heidari et al., 2017). Other regression models for45

multivariate responses based on finite mixture models have been introduced by46

Soffritti and Galimberti (2011); Dang and McNicholas (2015); Galimberti et al.47

(2016). The flexmix package (Grün and Leisch, 2008) in the R environment48

(R Core Team, 2020) provides a general framework for the specification and49

estimation of finite mixtures of regression models.50

This paper introduces a class of multivariate seemingly unrelated Gaussian51

linear cluster-weighted models. Models from this class are able to capture both52

the linear dependencies among responses and the linear effects of the covariates53

on the responses from sample observations coming from heterogeneous popu-54

lations. Furthermore, with these models the researcher is enabled to specify55

a different vector of covariates for each response. The paper addresses the56

model identification and maximum likelihood (ML) estimation. This latter task57

is carried out by resorting to an expectation-conditional maximisation (ECM)58

algorithm. In order to keep the total number of parameters as low as possi-59

ble, parsimonious models are included into the novel class, where parsimony is60

attained by constraining the component-covariance matrices using a parameteri-61

sation for such matrices which is based on their spectral decomposition (see, e.g.,62

Celeux and Govaert, 1995). With this approach, fourteen different covariance63

structures are allowed for both the covariates and the responses. The useful-64

ness and the great flexibility of the resulting model class is shown through two65

studies, based on the analysis of real datasets, aiming at determining the effect66

3



of prices and promotional activities on sales of canned tuna and at evaluating67

the link between tourism flows and attendance at museums and monuments.68

The effectiveness of an approach based on the proposed model class in terms of69

parameter recovery and classification recovery is demonstrated through Monte70

Carlo studies.71

The paper is organised as follows. Section 2.1 defines the novel class of72

cluster-weighted models. Section 2.2 shows how the models belonging to this73

class relate to some existing models. Information on model identifiability is74

provided in Section 2.3. Details about the ML estimation are given in Section 2.475

and the Appendices. The initialisation and convergence of the ECM algorithm76

and the issue of model selection are treated in Sections 2.5 and 2.6. Parsimonious77

models are introduced in Section 2.7. Results of the analyses of simulated and78

real datasets are summarised in Sections 3 and 4, respectively. Section 5 provides79

some concluding remarks.80

2. Multivariate seemingly unrelated linear cluster-weighted analysis81

2.1. Multivariate seemingly unrelated linear cluster-weighted models82

Following Dang et al. (2017), in a cluster-weighted model the random vec-83

tors Xi and Yi containing the P covariates and the D responses for the ith84

observation, respectively, come from a population Ω which is assumed to be85

partitioned into K disjoint groups Ω1, . . . ,ΩK . Thus, Ω = Ω1 ∪ . . . ∪ ΩK ; fur-86

thermore, Ωk ∩ Ωk′ = ∅ ∀k 6= k′. In the models proposed here both Xi and Yi87

are continuous random vectors, Xi takes values in RP , Yi takes values in RD
88

and the probability density function (p.d.f.) of (Xi,Yi) can be written as89

f(xi,yi) =

K∑
k=1

πkf(xi|Ωk)f(yi|xi,Ωk), (1)90

where πk = P(Ωk) is the mixing weight and represents the prior probability of91

the kth group, f(xi|Ωk) is the p.d.f. of Xi given Ωk and f(yi|xi,Ωk) is the92

conditional p.d.f. of the response Yi given the value xi of the covariates Xi and93

the group Ωk. As far as the mixing weights are concerned, they are supposed to94
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be positive (πk > 0 ∀k); in addition, they have to sum to 1 (
∑K

k=1 πk = 1). Here95

Xi|Ωk is assumed to follow a P -variate normal distribution with mean vector96

µXk
and covariance matrix ΣXk

, k = 1, . . . ,K. Thus, the expected values,97

variances and covariances of Xi|Ωk are equal for all observations coming from98

group Ωk, while they are different for observations belonging to other groups.99

As far as Yi|(Xi = xi,Ωk) is concerned, its distribution is modelled using a100

D-variate normal distribution with conditional expected vector given by some101

linear transformation of xi and covariance matrix ΣYk
. Thus, variances and102

covariances of Yi|(Xi = xi,Ωk) are equal for observations coming from the same103

group; the expected values of Yi|(Xi = xi,Ωk) for such observations vary with104

the observations. Furthermore, different correlation structures among both the105

covariates and the responses across the K groups are assumed.106

In order to describe how a cluster-weighted model with a different vector107

of covariates for each response can be obtained, the following additional no-108

tation is required. Suppose that only Pd of the P covariates (Pd ≤ P ) are109

considered to be relevant for the prediction of the dth response. Thus, let110

xid = (xi,d1 , xi,d2 , . . . , xi,dPd
)′ be the vector composed of the values of such111

Pd covariates for the ith observation and x∗id = (1,x′id)′. Furthermore, let112

βkd = (βkd1
, βkd2

, . . . , βkdPd
)′ be the Pd-dimensional vector of regression coeffi-113

cients capturing the linear effect of these Pd covariates on the dth response in the114

kth group, and β∗kd = (βkd0,β
′
kd)′. Then, the vector containing all linear effects115

on the D responses in the kth group is given by β∗k = (β
∗′
k1, . . . ,β

∗′
kd, . . . ,β

∗′
kD)′;116

the length of this vector is (P ∗+D), where P ∗ =
∑D

d=1 Pd. Finally, the following117

(P ∗ +D)×D partitioned matrix is required:118

Xi =


x∗i1 0P1+1 . . . 0P1+1

0P2+1 x∗i2 . . . 0P2+1

...
...

...

0PD+1 0PD+1 . . . x∗iD

 ,119

with 0Pd+1 denoting the (Pd + 1)-dimensional null vector. With this notation,120
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the conditional expected vector of Yi|(Xi = xi,Ωk) is given by121

µYk
(xi;β

∗
k) = X ′iβ

∗
k = (x

∗′
i1β
∗
k1, . . . ,x

∗′
idβ
∗
kd, . . . ,x

∗′
iDβ

∗
kD)′. (2)122

According to this equation, the conditional expected value of the dth response123

within the kth group is given by the linear term x
∗′
idβ
∗
kd, which only depends on124

the Pd covariates included in the vector xid. It is worth noting that the regres-125

sion coefficients vary across groups, which means that the effect of the covariates126

on the responses changes with the groups. Embedding all these assumptions into127

model (1) leads to128

f(xi,yi;ψ) =

K∑
k=1

πkφP
(
xi;µXk

,ΣXk

)
φD (yi|xi;X ′iβ

∗
k,ΣYk

) , (3)129

where φP (φD) represents the p.d.f. of a P -variate (D-variate) Gaussian ran-130

dom vector, ψ =
{
π1, . . . , πK ,µX1

, . . . ,µXK
,ΣX1

, . . . ,ΣXK
,β∗1, . . . ,β

∗
K ,ΣY1

,131

. . . ,ΣYK
} denotes the set of all model parameters and Ψ is the parameter space.132

The number of free parameters in ψ is K − 1 + K(P + P ∗ + D) + K[P (P +133

1)/2+D(D+1)/2], which is the sum of the unknown mixture weights, expected134

values, variances and covariances.135

It is worth stressing that the model in equation (3) differs from the model136

proposed by Dang et al. (2017) because of a different definition of the linear term137

for the conditional expected value of Yi|(Xi = xi,Ωk). If all the P covariates138

are considered to be relevant for the prediction of all responses, that is xid = xi139

∀d, then x∗id = x∗i ∀d, where x∗i = (1,x′i)
′, and the following equality holds:140

Xi = ID ⊗ x∗i ,141

where ID is the identity matrix of order D and ⊗ denotes the Kronecker product142

operator (see, e.g., Magnus and Neudecker, 1988). Then, equation (2) can be143

rewritten as144

µYk
(xi;β

∗
k) = (ID ⊗ x∗i )

′
β∗k = B′kx∗i , k = 1, . . . ,K,145

where Bk = [β∗k1 · · ·β
∗
kd · · ·β

∗
kD], thus leading to the multivariate Gaussian146

cluster-weighted model introduced by Dang et al. (2017). As illustrated in Sec-147

tion 1, seemingly unrelated regression models can be considered as multivariate148
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regression models in which prior information about the absence of certain covari-149

ates for the prediction of certain responses is explicitly taken into consideration150

(Srivastava and Giles, 1987). Thus, equation (3) can also be seen as a multivari-151

ate Gaussian cluster-weighted model in which some regression coefficients are152

constrained to be a priori equal to zero. To the best of the authors’ knowledge,153

the inclusion of such constraints in the multivariate Gaussian cluster-weighted154

model framework has not been addressed yet.155

2.2. Relationships with linear clusterwise regression models156

Under suitable conditions, it is possible to establish some relationships be-157

tween the multivariate seemingly unrelated Gaussian linear cluster-weighted158

models just introduced and some Gaussian linear clusterwise regression models.159

In Section 2.1 it has been highlighted that models (3) assume that Xi|Ωk ∼160

NP (µXk
,ΣXk

), for k = 1, . . . ,K. If the p.d.f of Xi|Ωk does not depend on161

group Ωk, i.e., φP
(
xi;µXk

,ΣXk

)
= φP (xi;µX,ΣX) for every k = 1, . . . ,K,162

then equation (3) can also be written as163

f(xi,yi;ψ) = φP (xi;µX,ΣX)

K∑
k=1

πkφD (yi|xi;X ′iβ
∗
k,ΣYk

) , (4)164

where165

f(yi|xi; ψ̃) =

K∑
k=1

πkφD (yi|xi;X ′iβ
∗
k,ΣYk

) , (5)166

with ψ̃ = {π1, . . . , πK ,β∗1, . . . ,β
∗
K ,ΣY1 , . . . ,ΣYK

}, is the seemingly unrelated167

Gaussian clusterwise linear regression model described in Galimberti and Sof-168

fritti (2020). This means that the assignment of the data points to the groups is169

independent of the covariates; such a condition is also known as assignment inde-170

pendence (see, e.g., Hennig, 2000). Furthermore, if the researcher sets xid = xi171

∀d (i.e., all the P covariates are assumed to be relevant for the prediction of172

all responses), then equation (5) leads to the traditional multivariate Gaussian173

clusterwise linear regression models (Jones and McLachlan, 1992). Thus, when174

in equation (3) the following conditions hold true: µXk
= µX, ΣXk

= ΣX for175

k = 1, . . . ,K, then the information about the K disjoint groups Ω1, . . . ,ΩK176
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that compose the population Ω can be equivalently obtained either from the177

analysis of the conditional p.d.f. f(yi|xi; ψ̃) through seemingly unrelated linear178

clusterwise models or from the analysis of the joint p.d.f. f(xi,yi;ψ) through179

seemingly unrelated linear cluster-weighted models.180

Furthermore, when the following conditions hold true: i) the conditional dis-181

tribution of Yid|Xi = xi changes withKd disjoint groups Ωd1, . . . ,Ωdkd
, . . . ,ΩdKd

182

that compose the population Ω for d = 1, . . . , D; ii) these D partitions of Ω as-183

sociated with the D responses are mutually independent (i.e., the population184

is characterised by D independent cluster structures) (Galimberti and Soffritti,185

2007); iii) the assignment independence condition holds true for each of these186

groupings, then the following model can be defined:187

f(xi,yi;ψ) = φP (xi;µX,ΣX)

D∏
d=1

Kd∑
kd=1

πkd
φ1
(
yid|xi; x

∗′
idβ
∗
kdd

, σ2
kdd

)
, (6)188

where yid is the dth element of yi, x
∗′
idβ
∗
kdd

and σ2
kdd

are the conditional expected189

value and the variance of Yid|Xi = xi within the group Ωdkd
, respectively. Thus,190

under conditions i)–iii), model (6) holds true and the information about the D191

independent partitions of the sample observations should be obtained from D192

univariate seemingly unrelated linear clusterwise regression models.193

In the light of the relationships just illustrated, it is possible to conclude194

that multivariate seemingly unrelated linear cluster-weighted models will be195

more effective than multivariate seemingly unrelated linear clusterwise regres-196

sion models when the assignment independence condition does not hold true.197

Furthermore, an analysis based on the proposed models should be carried out198

rather than D separate analyses, based on D univariate seemingly unrelated199

linear clusterwise regression models, whenever either the condition of D inde-200

pendent cluster structures or the assignment independence condition do not201

hold for the examined population.202

2.3. Model identifiability203

Identifiability is essential for parameter estimation and represents a prelim-204

inary requirement for the consistency and other asymptotic properties of the205
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ML estimator. Generally speaking, several types of non-identifiability can af-206

fect finite mixture models. A first type is due to invariance to relabeling the207

components (also known as label-switching). Furthermore, non-identifiability208

is caused by potential overfitting associated with empty components or equal209

components (see, e.g., Frühwirth-Schnatter, 2006, p. 15). Thus, identifiability210

of finite mixture models may be achieved after imposing suitable constraints211

on the parameter space. As far as multivariate Gaussian cluster-weighted mod-212

els are concerned, conditions ensuring their identifiability have been defined by213

Dang et al. (2017). Those conditions can be easily modified in order to hold214

true also for the seemingly unrelated Gaussian linear cluster-weighted models215

defined according to equation (3).216

The constraints to be imposed on the parameters are πk > 0 ∀ k and217

(β∗k,ΣYk
) 6= (β∗h,ΣYh

) for k 6= h. These constraints make it possible to218

avoid the two types of non-identifiability illustrated above. Thus, in order to219

ensure identifiability, the following class of seemingly unrelated cluster-weighted220

models has to be considered:221

F =
{
f(x,y; ψ̄) : f(x,y; ψ̄) =

K∑
k=1

πkφP
(
x;µXk

,ΣXk

)
φD (y|x;X ′β∗k,ΣYk

) ,222

(x,y) ∈ RP+D, ψ̄ ∈ Ψ̄,K ∈ N
}
,223

where Ψ̄ is the constrained parameter space, defined as follows:224

Ψ̄ =

{
ψ̄ ∈ Ψ : πk > 0,

K∑
k=1

πk = 1, (β∗k,ΣYk
) 6= (β∗h,ΣYh

) for k 6= h

}
.225

An additional condition for the class F to be identifiable is the existence of226

a set W ⊆ RP having probability equal to one according to the P -dimensional227

Gaussian distribution such that the following clusterwise regression model228

K∑
k=1

φM (y|x;X ′β∗k,ΣYk
)αk(x), y ∈ RD,229

is identifiable for each fixed x ∈ W, where α1(x), ..., αK(x) are positive weights230

summing to one for each x ∈ W. Under this condition, it is possible to prove that231

the class F results to be identifiable in W×RD. The proof of this result can be232
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easily obtained from the proof of the analogous result for multivariate Gaussian233

cluster-weighted models (see Dang et al., 2017, Appendix A), by simply changing234

the linear term for the conditional expected value of Y|(X = x,Ωk).235

2.4. Parameter estimation236

Given a sample S = {(x1,y1), . . . , (xI ,yI)} of I independent observations237

from model (3), ML estimation of the model parameters ψ can be carried out238

by means of an ECM algorithm developed under a general framework dealing239

with incomplete-data problems (Dempster et al., 1977; Meng and Rubin, 1993).240

The missing information is the specific component of the mixture from which241

the sample observations come from; such information can be described by the242

K-dimensional vectors (z1, . . . , zI), where zi = (zi1, . . . , ziK)′ with zik = 1 if the243

ith observation comes from the kth component and zik = 0 otherwise, for k =244

1, . . . ,K. Then, the complete data would be Sc = {(x1,y1, z1), . . . , (xI ,yI , zI)}.245

Thus, the likelihood functions derived from the incomplete data and the com-246

plete data are247

L(ψ|S) =

I∏
i=1

[ K∑
k=1

πkφP
(
xi;µXk

,ΣXk

)
φD (yi|xi;X ′iβ

∗
k,ΣYk

)
]
,248

L(ψ|Sc) =

I∏
i=1

K∏
k=1

[
πkφP

(
xi;µXk

,ΣXk

)
φD (yi|xi;X ′iβ

∗
k,ΣYk

)
]zik

,249

respectively; the complete-data log-likelihood function employed in the ECM250

algorithm for the computation of the parameter estimates is251

`(ψ|Sc) =

I∑
i=1

K∑
k=1

zik

[
lnπk + lnφP

(
xi;µXk

,ΣXk

)
252

+ lnφD (yi|xi;X ′iβ
∗
k,ΣYk

)
]
. (7)253

The hth iteration of the E-step in the ECM algorithm consists in calculating254

the conditional expectation of the complete-data log-likelihood (7) on the basis255

of the current estimate ψ̂
(h)

of the model parameters ψ:256

E
ψ̂

(h) [`(ψ|Sc)] =

I∑
i=1

K∑
k=1

τ̂
(h)
ik

[
ln π̂

(h)
k +Q1

(
µXk

,ΣXk
|ψ̂

(h)
)

257

+Q2

(
β∗k,ΣYk

|ψ̂
(h)
)]
, (8)258

10



where259

Q1

(
µXk

,ΣXk
|ψ̂

(h)
)

=
1

2

[
− P ln(2π)− ln |Σ̂

(h)

Xk
|260

−
(
xi − µ̂(h)

Xk

)′
Σ̂

(h)(−1)
Xk

(
xi − µ̂(h)

Xk

)]
,261

Q2

(
β∗k,ΣYk

|ψ̂
(h)
)

=
1

2

[
−D ln(2π)− ln |Σ̂

(h)

Yk
|262

−
(
yi −X ′i β̂

∗(h)
k

)′
Σ̂

(h)(−1)
Yk

(
yi −X ′i β̂

∗(h)
k

)]
,263

and τ̂
(h)
ik provides the posterior probability (evaluated using the current estimate264

ψ̂
(h)

) that (xi,yi) is generated from the kth component of the mixture, that is265

τ̂
(h)
ik = E

ψ̂
(h) [Zik|xi,yi] = P

ψ̂
(h){Zik = 1|xi,yi}266

=
π̂
(h)
k φP

(
xi; µ̂

(h)
Xk
, Σ̂

(h)

Xk

)
φD

(
yi|xi;X ′i β̂

∗(h)
k , Σ̂

(h)

Yk

)
∑K

k′=1 π̂
(h)
k′ φP

(
xi; µ̂

(h)
Xk′ , Σ̂

(h)

Xk′

)
φD

(
yi|xi;X ′i β̂

∗(h)
k′ , Σ̂

(h)

Yk′

) . (9)267

268

The (h + 1)th update of ψ̂
(h)

is obtained by a sequence of CM-steps involved269

in the ECM algorithm. These steps are meant to maximise the conditional270

expectation of `(ψ|Sc) with respect to ψ. This maximisation can be achieved271

by setting the first order derivatives of E [`(ψ|Sc)] equal to zero and then solving272

the resulting system of equations with respect to the parameters of interest.273

Since this expected value can be decomposed in a sum of three terms, each one274

depending on a specific set of parameters (see equation (8)), maximisation can275

be carried out separately for each set of parameters. The resulting updates of276

π̂
(h)
k , µ̂

(h)
Xk

, Σ̂
(h)

Xk
, k = 1, . . . ,K are:277

π̂
(h+1)
k =

1

I

I∑
i=1

τ̂
(h)
ik , (10)278

µ̂
(h+1)
Xk

=

∑I
i=1 τ̂

(h)
ik xi∑I

i=1 τ̂
(h)
ik

, (11)279

Σ̂
(h+1)

Xk
=

∑I
i=1 τ̂

(h)
ik

(
xi − µ̂(h+1)

Xk

)(
xi − µ̂(h+1)

Xk

)′
∑I

i=1 τ̂
(h)
ik

. (12)280

Such updates coincide with the ones reported in Dang et al. (2017). The CM-281
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steps to update the remaining parameters are (see Appendix A for a proof)282

β̂
∗(h+1)

k =

[
I∑

i=1

τ̂
(h)
ik Xi

(
Σ̂

(h)

Yk

)−1
X ′i

]−1 [ I∑
i=1

τ̂
(h)
ik Xi

(
Σ̂

(h)

Yk

)−1
yi

]
, (13)283

Σ̂
(h+1)

Yk
=

∑I
i=1 τ̂

(h)
ik

(
yi −X ′i β̂

∗(h+1)

k

)(
yi −X ′i β̂

∗(h+1)

k

)′
∑I

i=1 τ̂
(h)
ik

. (14)284

It is worth noting that the matrix
∑I

i=1 τ̂
(h)
ik Xi

(
Σ̂

(h)

Yk

)−1
X ′i has to be nonsin-285

gular in order for the update β̂
∗(h+1)

k in equation (13) to exist. In addition,286

Appendix B shows that equation (13) is equivalent to the expression reported287

in Dang et al. (2017) for the updates of the regression coefficient matrix when288

xid = xi ∀d. As a consequence, in this special case the ECM algorithm de-289

scribed in this section reduces to the EM algorithm described in Dang et al.290

(2017). Finally, once the convergence is reached, the ECM algorithm also pro-291

vides estimates of the posterior probabilities according to equation (9), which292

can be used to partition the I observations into K clusters, by assigning each293

observation to the component showing the highest posterior probability.294

Difficulties with this ECM algorithm can arise when matrices Σ̂
(h+1)

Xk
and295

Σ̂
(h+1)

Yk
in equations (12) and (14) are singular or nearly singular. Another dif-296

ficulty with ML estimation of Gaussian mixture models is the unboundedness297

of the likelihood function (see, e.g. Frühwirth-Schnatter, 2006, p. 173). A way298

to deal with these problems is to introduce suitable constraints on the param-299

eter space Ψ and to perform the estimation under a constrained Ψ (see, e.g.300

Ingrassia and Rocci, 2011; Rocci et al., 2018). All the analyses illustrated in301

this paper have been carried out through an implementation of the proposed302

ECM algorithm, which also allows the estimation of the multivariate linear303

cluster-weighted models introduced by Dang et al. (2017), in the R environment.304

Such an implementation embeds suitable constraints on the eigenvalues of both305

Σ̂
(h+1)

Xk
and Σ̂

(h+1)

Yk
for k = 1, . . . ,K. Namely, following Dang et al. (2017), all es-306

timated covariance matrices have been required to have eigenvalues greater than307

the conservative bound 10−20; furthermore, the ratio between the smallest and308

the largest eigenvalues of such matrices is required to be not lower than 10−10.309
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Finally, in order to avoid problems associated with the invariance of a mix-310

ture distribution to relabeling its components (see, e.g., Frühwirth-Schnatter,311

2006, p. 15), the K estimated components of the model (3) have been labeled312

according to the estimated prior probabilities taken in non-decreasing order.313

2.5. Initialisation and convergence of the ECM algorithm314

A crucial point of any ECM algorithm is the choice of the starting values315

for the model parameters (i.e., ψ̂
(0)

). An approach based on multiple random316

initialisations and multiple executions of the ECM algorithm could be adopted.317

Approaches based on non-random choices can be employed. A solution could318

be obtained by resorting to the following two-step strategy. In the first step319

a mixture of K Gaussian models is estimated for the joint distribution all co-320

variates and responses. This task can be carried out, for example, by resorting321

to the mclust package (Scrucca et al., 2017) for the R environment. The K322

prior probabilities, mean vectors and covariance matrices for the predictors es-323

timated in this way are used as π̂
(0)
k , µ̂

(0)
Xk

and Σ̂
(0)

Xk
, for k = 1, . . . ,K. In the324

second step β̂
∗(0)
k and Σ̂

(0)

Yk
are obtained from an estimate of the parameters of325

the conditional distribution of the responses given the predictors based on the326

fitting of a seemingly unrelated Gaussian linear regression model to the sam-327

ple observations that have been assigned to the kth component of the mixture328

model estimated in the first step. The R package systemfit (Henningsen and329

Hamann, 2007) can be exploited to perform this task. Another way to obtain330

π̂
(0)
k , µ̂

(0)
Xk

and Σ̂
(0)

Xk
, for k = 1, . . . ,K could be based on the fitting of a mixture331

of K Gaussian models for the marginal distribution of the covariates in the first332

step of the previous strategy while keeping the second step unchanged. In all333

analyses reported in this paper involving either models defined in equation (3)334

or models introduced by Dang et al. (2017), both these strategies have been si-335

multaneously employed; thus, two different initialisations have been considered336

for each analysed dataset. Then, the ECM algorithm has been initialised with337

the strategy leading to the largest value of the incomplete log-likelihood.338

In the R function employed for the parameter estimation in all analyses339
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summarised in this paper, the convergence of the ECM algorithm has been340

evaluated through a criterion based on the Aitken acceleration (Aitken, 1926)341

which consists in stopping the ECM algorithm when
∣∣∣l(h+1)
A − `(ψ̂

(h)
|S)
∣∣∣< ε,342

where l
(h+1)
A is the (h + 1)th Aitken accelerated estimate of the log-likelihood343

limit and `(ψ̂
(h)
|S) is the value of the incomplete log-likelihood at the hth344

iteration (see, e.g., McNicholas, 2010, for more details). Such criterion can avoid345

premature stops associated with the use of lack of progress stopping criteria,346

such as the one based on the difference between the log-likelihood values at two347

consecutive steps of the ECM algorithm. The maximum number of iterations348

for the ECM algorithm and the value for ε have been set equal to 500 and 10−8,349

respectively.350

2.6. Model selection351

The ECM algorithm described in Section 2.4 performs the ML estimation352

for a given value of K. However, in most practical applications, the number353

of groups is not known and must be determined from the data S. A common354

solution to this task is obtained by resorting to model selection criteria which355

allows to trade-off the fit (measured by lM (ψ̂|S), the maximum of the incomplete356

loglikelihood of model M) and complexity (given by nparM , the number of357

free parameters in model M) (see, e.g., Frühwirth-Schnatter, 2006, subsections358

4.4.2-4.4.3). In the context of Gaussian mixture models and Gaussian cluster-359

weighted models (see, e.g., Fraley and Raftery, 2002; Dang et al., 2017), the360

Bayesian Information Criterion (BIC) (Schwarz, 1978) has performed well and361

is commonly employed. It can be computed as follows: BICM = −2lM (ψ̂|S) +362

nparM ln I.Given a collection of competing fitted candidate models, the one that363

minimises BICM is preferred. Model selection criteria that also consider the364

quality of the estimated partition of the sample observations represent another365

possible solution (see, e.g., Frühwirth-Schnatter, 2006, subsection 7.1.4).366

2.7. Parsimonious models367

As the number of free parameters in equation (3) incresases quadratically368

with both the number of responses and the number of predictors, analyses369
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based on the proposed models can become unfeasible in practical applications.370

This problem can be overcome by introducing constraints on the elements of371

the covariance matrices ΣXk
and ΣYk

(k = 1, . . . ,K) according to the ap-372

proach illustrated in Celeux and Govaert (1995). In this approach, the follow-373

ing eigen-decomposition of the covariance matrix ΣXk
has to be considered:374

ΣXk
= αkDkAkD′k, where αk = |ΣXk

|1/D, Ak is the diagonal matrix con-375

taining the eigenvalues of ΣXk
(normalised in such a way that |Ak| = 1) and376

Dk is the matrix of eigenvectors of ΣXk
. Thus, variances and covariances in377

ΣXk
can be obtained from αk, Ak and Dk. From a geometrical point of view,378

such parameters determine the volume, shape and orientation of the kth cluster379

of observations with respect to the predictors. By constraining one or more380

of these three parameters to be equal across components, 14 different covari-381

ance structures for the predictors in models (3) with K > 1 can be determined382

(see Celeux and Govaert, 1995, for more details). Additional information about383

these parameterisations can be found in Table 1. The application of the same384

approach to the covariance matrices ΣYk
, k = 1, . . . ,K leads to a class of 196385

different models for any given K > 1. Equations (12) and (14) represent the386

solutions for the model in which the covariance structures of both predictors387

and responses are fully unconstrained. For all other parsimonious models, the388

CM-step updates for the estimation of ΣXk
and ΣYk

in the ECM algorithm389

have to be modified; these modified updates can be computed either in closed390

form or using iterative procedures, depending on the specific parameterisation391

to be employed (see Celeux and Govaert, 1995, for more details). The CM-step392

updates Σ̂
(h+1)

Xk
and Σ̂

(h+1)

Yk
associated with the parameterisations EVE and VVE393

can be computed using the F-G algorithm (Flury and Gautschi, 1986) or one of394

its variants (see, e.g., Lin, 2014). Algorithms which are computationally feasible395

also in high-dimensional situations have been recently introduced (Browne and396

McNicholas, 2014a,b). All the experimental results illustrated here and concern-397

ing the EVE and VVE parameterisations have been obtained using the algorithms398

given in Browne and McNicholas (2014a). When K = 1, only three covariance399

structures for both responses and covariates are possible: diagonal with different400
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Table 1: Parsimonious parameterisations for the component-covariance matrices

Acronym Model Distribution Volume Shape Orientation

EEE αDAD′ Ellipsoidal Equal Equal Equal

VVV αkDkAkD′k Ellipsoidal Variable Variable Variable

EII αI Spherical Equal Equal −

VII αkI Spherical Variable Equal −

EEI αA Diagonal Equal Equal −

VEI αkA Diagonal Variable Equal −

EVI αAk Diagonal Equal Variable −

VVI αkAk Diagonal Variable Variable −

EEV αDkAD′k Ellipsoidal Equal Equal Variable

VEV αkDkAD′k Ellipsoidal Variable Equal Variable

EVE αDAkD′ Ellipsoidal Equal Variable Equal

VVE αkDAkD′ Ellipsoidal Variable Variable Equal

VEE αkDAD′ Ellipsoidal Variable Equal Equal

EVV αDkAkD′k Ellipsoidal Equal Variable Variable

entries (VI), diagonal with the same entries (EI) and fully unconstrained (VV).401

Thus, nine differentially parameterised one-component cluster-weighted models402

can be obtained.403

3. Results from Monte Carlo studies404

The main purpose of the studies based on simulated datasets illustrated here405

is to obtain an evaluation of the effectiveness of the proposed methodology in406

comparison with the approach introduced by Dang et al. (2017), where the same407

vector of covariates has to be employed for all responses. Thus, cluster-weighted408

models belonging to two different classes have been fitted to each simulated409

dataset: i) models in which all the D responses are assumed to depend on all410

the P examined covariates (i.e., the models proposed by Dang et al. (2017));411

ii) models defined according to equation (3) in which each response has its412
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specific predictors. From now on, such models have been denoted as CW and413

SuCW, respectively. A hundred datasets of I = 450 independent observations414

have been randomly generated from model (3) with D = 2 responses, P = 3415

predictors and K = 3 components in which the elements of the conditional416

expected vector (2) are defined as follows:417

E(Yi1|Xi = xi,Ωk) = βk10 + βk11xi1 + βk12xi2, (15)418

E(Yi2|Xi = xi,Ωk) = βk20 + βk21xi1 + βk22xi3. (16)419

Thus, the model employed to generate the datasets assumes that the first re-420

sponse Y1 depends on X1 and X2 while Y2 depends on X1 and X3. Further-421

more, the component-covariance structures of both the predictors and the re-422

sponses are defined using the VVV parameterisation. The specific values of the423

parameters for the data-generating model are: π1 = 0.4, π2 = 0.35, π3 = 0.25,424

µX1
= (0, 0, 0)′, µX2

= (2, 4,−2)′, µX3
= µX2

+ 2ε · 1P , where 1P is the425

P × 1 vector having each element equal to 1, β∗1 = (−2, 0.75, 1, 1, 0.5,−2)
′
,426

β∗2 = (0.5, 1.75, 0.25, 1, 1, 1)
′
, β∗3 = β∗2+ε·16, ΣX1

=


1.72 −0.18 0.27

−0.18 1.89 0.27

0.27 0.27 2.89

,427

ΣX2
=


2.33 −0.52 −0.06

−0.52 0.88 −0.34

−0.06 −0.34 1.04

, ΣX3
= ΣX2

, ΣY1
=

1.34 0.47

0.47 1.66

, ΣY2
=428

0.50 0.04

0.04 1.50

, ΣY3
= ΣY2

. Since the second and third components of the429

data-generating model only differ in the values of intercepts and regression co-430

efficients and the expected values of the regressors, the separation between such431

components depends on ε. The simulated datasets have been generated using432

the following values of ε: 0.275, 0.3, 0.325, 0.350 and 0.375; this allows an evalu-433

ation of the performances of the approaches based on SuCW and CW models under434

different experimental levels of separation between those components. Figures 1435

and 2 show the scatterplots for two simulated datasets obtained with ε = 0.3436

and ε = 0.375, respectively.437
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Figure 1: Bivariate scatterplots for pairs of variables in a simulated dataset, ε = 0.3.
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Figure 2: Bivariate scatterplots for pairs of variables in a simulated dataset, ε = 0.375.
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A first analysis has been carried out where the 196 SuCW and CW models with438

K = 3 components associated with all the parameterisations for the component-439

covariance structures of both the predictors and the responses have been fitted to440

each dataset. It is worth noting that using CW models leads to non-parsimonious441

specifications for such datasets, as six regression coefficients (two for each com-442

ponent) have been estimated although in fact they are equal to zero. The443

analysis has been run on an IBM x3750 M4 server with 4 Intel Xeon E5-4620444

processors with 8 cores and 128GB RAM. The average execution times (over445

100 datasets) for SuCW models have ranged between 2.698 and 35.309 seconds,446

depending on the specific combination of parameterisations for the component447

covariance matrices and the value of ε. Concerning CW models, the minimum448

and maximum average execution times have resulted to be equal to 3.382 and449

40.710 seconds, respectively. Since the implementation of the ECM algorithm450

has not been carried out with the goal of being efficient from a computational451

point of view, these CPU times are merely illustrative and can be reduced using452

more efficient implementations. For all the models fitted to any dataset, the453

value of BIC has been computed and the models with the lowest BIC within454

the two collections of fitted models have been selected. The 100 pairs of models455

selected as just illustrated, one for each simulated dataset, have been employed456

to compare the effectiveness of the two approaches. As expected, SuCW models457

have resulted to be preferable to CW ones. For each dataset BICSuCW < BICCW for458

all the examined values of ε with the exception of two datasets when ε = 0.350.459

A further evaluation of the two approaches has been performed by examining460

their ability to recover the true values of the unknown parameters (i.e., param-461

eter recovery). In particular, the attention has been focused on the bias and462

the root mean squared error (RMSE) for the regression coefficients in equations463
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(15) and (16). Namely, the following quantities have been computed464

Bias
(
β̂kdp

)
=

∣∣∣∣∣βkdp −
∑100

r=1 β̂
(r)
kdp

100

∣∣∣∣∣ , k = 1, 2, 3, d = 1, 2, p = 1, 2,465

RMSE
(
β̂kdp

)
=

√√√√∑100
r=1

(
βkdp − β̂(r)

kdp

)2
100

, k = 1, 2, 3, d = 1, 2, p = 1, 2,466

where β̂
(r)
kdp is the ML estimate of βkdp obtained from the rth dataset (r =467

1, . . . , 100). Note that CW models contain additional regression coefficients as-468

sociated with the equation-specific irrelevant regressors. The bias and RMSE469

have been computed also for these additional coefficients, using 0 as their true470

value. Tables 2 and 3 report the values of bias and RMSE, respectively, ob-471

tained for each value of ε. Overall, both approaches tend to provide acceptable472

results in terms of recovering the true values of the regression coefficients. This473

is evident for the parameters of the first component. As far as the second and474

third components are concerned, there seems to be a tendency for SuCW models475

to perform slightly better than CW models, especially considering the RMSE for476

low values of ε. It is also worth noting that CW models appear to be capable of477

recognising the presence of irrelevant regressors, as the corresponding estimated478

regression coefficients are on average very close to 0. However, the RMSE of479

some of these estimates tend to be large, suggesting a a low precision in the480

estimation of the effect of some irrelevant regressors. This precision seems to481

improve as the separation among components increases.482

The performance of the two approaches has also been evaluated by their abil-483

ity to properly estimate the true classification of the sample observations (i.e.,484

classification recovery). This task has been carried out by means of the adjusted485

Rand index (ARI) (Hubert and Arabie, 1985). Some summary statistics of this486

index (over the 100 datasets) for both approaches by the five examined levels487

of separation are reported in Table 4. These results show that the classification488

recovery associated with the use of both approaches increases with the level of489

separation between the second and third components (see the mean and me-490

dian values of ARI in Table 4); on the contrary, the interquartile range and491
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Table 2: Bias for the regression coefficients under SuCW and CW models in the first study.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

SuCW CW SuCW CW SuCW CW SuCW CW SuCW CW

β111 = 0.75 0.005 0.003 0.005 0.004 0.006 0.005 0.007 0.005 0.006 0.005

β112 = 1 0.003 0.001 0.002 0.003 0.003 0.003 0.002 0.005 0.002 0.003

β121 = 0.5 0.010 0.013 0.005 0.007 0.005 0.008 0.002 0.006 0.005 0.008

β122 = −2 0.000 0.005 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004

β211 = 1.75 0.027 0.090 0.011 0.023 0.001 0.010 0.037 0.002 0.003 0.002

β212 = 0.25 0.067 0.160 0.023 0.040 0.009 0.022 0.010 0.023 0.000 0.002

β221 = 1 0.028 0.039 0.019 0.011 0.013 0.009 0.007 0.008 0.009 0.007

β222 = 1 0.004 0.026 0.028 0.042 0.027 0.023 0.027 0.053 0.028 0.028

β311 = 1.75 + ε 0.002 0.005 0.002 0.003 0.001 0.002 0.003 0.003 0.002 0.003

β312 = 0.25 + ε 0.052 0.100 0.014 0.034 0.010 0.016 0.012 0.016 0.004 0.017

β321 = 1 + ε 0.023 0.065 0.022 0.028 0.013 0.012 0.017 0.018 0.009 0.009

β322 = 1 + ε 0.004 0.020 0.013 0.015 0.016 0.007 0.009 0.011 0.020 0.021

Irrelevant regressors

β113 = 0 − 0.007 − 0.003 − 0.003 − 0.001 − 0.003

β123 = 0 − 0.022 − 0.021 − 0.021 − 0.022 − 0.021

β213 = 0 − 0.060 − 0.016 − 0.015 − 0.006 − 0.002

β223 = 0 − 0.001 − 0.011 − 0.005 − 0.004 − 0.003

β313 = 0 − 0.067 − 0.040 − 0.028 − 0.023 − 0.019

β323 = 0 − 0.082 − 0.011 − 0.002 − 0.007 − 0.003
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Table 3: RMSE for the regression coefficients under SuCW and CW models in the first study.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

SuCW CW SuCW CW SuCW CW SuCW CW SuCW CW

β111 = 0.75 0.058 0.059 0.058 0.059 0.059 0.059 0.060 0.060 0.058 0.060

β112 = 1 0.075 0.075 0.068 0.069 0.069 0.069 0.069 0.069 0.068 0.069

β121 = 0.5 0.096 0.094 0.075 0.077 0.075 0.077 0.077 0.078 0.075 0.077

β122 = −2 0.055 0.063 0.054 0.057 0.054 0.057 0.054 0.057 0.054 0.057

β211 = 1.75 0.264 0.374 0.087 0.121 0.058 0.088 0.487 0.135 0.045 0.045

β212 = 0.25 0.182 0.316 0.116 0.166 0.090 0.127 0.131 0.142 0.073 0.074

β221 = 1 0.211 0.339 0.096 0.120 0.080 0.105 0.111 0.117 0.067 0.073

β222 = 1 0.437 0.548 0.126 0.181 0.113 0.130 0.440 0.341 0.103 0.111

β311 = 1.75 + ε 0.089 0.176 0.083 0.100 0.074 0.089 0.074 0.085 0.059 0.063

β312 = 0.25 + ε 0.185 0.252 0.130 0.167 0.117 0.152 0.125 0.153 0.104 0.127

β321 = 1 + ε 0.112 0.275 0.103 0.115 0.083 0.113 0.086 0.099 0.076 0.088

β322 = 1 + ε 0.149 0.197 0.131 0.150 0.125 0.176 0.132 0.145 0.119 0.135

Irrelevant regressors

β113 = 0 − 0.057 − 0.048 − 0.048 − 0.052 − 0.048

β123 = 0 − 0.082 − 0.081 − 0.081 − 0.080 − 0.080

β213 = 0 − 0.179 − 0.106 − 0.099 − 0.081 − 0.062

β223 = 0 − 0.214 − 0.200 − 0.156 − 0.126 − 0.125

β313 = 0 − 0.353 − 0.139 − 0.108 − 0.101 − 0.089

β323 = 0 − 0.294 − 0.163 − 0.172 − 0.162 − 0.163
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Table 4: Summary statistics of the ARI index under SuCW and CW models in the first study:

mean, median, interquartile range (IQR) and standard deviation (SD). The p-values in the

last row refer to the paired samples Wilcoxon test for the hypothesis of equality between ARIs

for each ε.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

SuCW CW SuCW CW SuCW CW SuCW CW SuCW CW

Mean 0.852 0.806 0.901 0.887 0.927 0.920 0.936 0.936 0.956 0.956

Median 0.878 0.862 0.911 0.901 0.930 0.929 0.945 0.947 0.959 0.960

IQR 0.062 0.192 0.035 0.043 0.030 0.034 0.026 0.028 0.020 0.023

SD 0.083 0.121 0.037 0.070 0.026 0.048 0.057 0.053 0.018 0.019

p-value < 10−5 0.0717 0.573 0.262 0.935

Table 5: Distributions of the number of components for the best SuCW and CW models in the

second study.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

SuCW CW SuCW CW SuCW CW SuCW CW SuCW CW

K = 2 48 99 7 84 1 39 1 10 0 1

K = 3 52 1 93 16 99 61 98 90 100 99

K = 4 0 0 0 0 0 0 1 0 0 0

the standard deviation of ARI seem to show a decreasing trend. Furthermore,492

SuCW models tend to be characterised by a greater ability to properly estimate493

the true classification of the sample observations for each examined value of ε,494

even though the differences in terms of mean and median values of ARI seem495

to vanish for larger values of ε. This pattern is confirmed by the results of the496

paired samples Wilcoxon test, suggesting that the difference between the mean497

values of ARI with the two approaches appears to be statistically significant498

only when the degree of separation is low (see the p-values in the last row of499

Table 4). This behaviour might be connected to the fact that, as the value of ε500

increases, not only the differences between the two approaches in recovering the501

actual values of the parameters tend to vanish, but also there is an improvement502

in the ability of CW models to recognise the presence of irrelevant regressors.503
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A second analysis has been carried out, where the performance of the two504

approaches has been evaluated without exploiting the knowledge of neither the505

number of components nor the parameterisation of the component-covariance506

matrices of X and Y employed to generate the datasets. Thus, 597 different507

SuCW models have been estimated for each simulated dataset: 196 differentially508

parameterised models for each K = 2, 3, 4 and 9 models with K = 1. The same509

task has been carried out by employing CW models. Then, the best SuCW and CW510

models fitted to each dataset have been selected according to the BIC. Table 5511

summarises the results of this procedure in terms of recovery of the true K.512

The impact of the value of ε on this aspect is evident. Generally speaking, the513

ability to select the correct value of K improves as the separation increases.514

By focusing the attention on the distributions of the number of components515

for the best CW models fitted to the 100 datasets, it emerges that with such an516

approach the true number of components tends to be severely underestimated517

with the two lowest levels of separation (ε = 0.275, 3). On the contrary, using518

SuCW models leads to the selection of the correct number of components for the519

majority of the simulated datasets with all levels of separation; furthermore, the520

proportion of datasets for which the selected SuCW model has three components521

increases quickly with ε, reaching 93% when ε = 0.3 and approaching nearly522

100% for larger values of ε.523

In order to assess the possible consequences of a wrong choice of K on524

the ability of CW models to recognise the presence of equation-specific irrelevant525

regressors, the biases of the estimates of the effects of these regressors have been526

computed for CW models with K equal to 1, 2 and 4. According to the values527

reported in Table 6, it appears that the estimates of the regression coefficients for528

the irrelevant regressors can be severely biased when the number of components529

is lower than the true one. On the contrary, when the number of components530

exceeds the true K, the results are comparable with those obtained in the first531

analysis using models with K = 3 components (see the lower part of Table 2).532

It is also worth noting that for some coefficients the bias seems to show a trend533

which increases with the separation among components.534
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Table 6: Bias for the regression coefficients for equation-specific irrelevant regressors under CW

models in the second study.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

K = 1
β113 = 0 0.047 0.065 0.084 0.105 0.127

β123 = 0 0.525 0.504 0.483 0.462 0.440

K = 2

β113 = 0 0.003 0.003 0.003 0.003 0.003

β123 = 0 0.022 0.022 0.022 0.022 0.022

β213 = 0 0.377 0.428 0.479 0.529 0.578

β223 = 0 0.110 0.128 0.147 0.166 0.186

K = 4

β113 = 0 0.011 0.024 0.023 0.008 0.032

β123 = 0 0.034 0.047 0.043 0.035 0.027

β213 = 0 0.017 0.012 0.004 0.014 0.013

β223 = 0 0.095 0.015 0.011 0.093 0.065

β313 = 0 0.056 0.017 0.010 0.011 0.012

β323 = 0 0.009 0.056 0.004 0.011 0.004

β413 = 0 0.070 0.017 0.026 0.024 0.018

β423 = 0 0.057 0.024 0.013 0.013 0.000
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As far as the classification recovery is concerned, the obtained results demon-535

strates that the ability to estimate the true classification of the sample observa-536

tions with both approaches increases with ε. However, the gap between the two537

approaches in terms of mean and median ARI is quite large and statistically538

significant for the three smallest values of ε (see the Table 7). It is worth noting539

that the behaviour of the variability of the ARI index is strictly related to the540

variability in the distribution of the optimal value of K selected according to the541

BIC. In summary, the obtained results seem to suggest that the inclusion of the542

regressor X3 in the equation (15) and the regressor X2 in the equation (16) has543

a negative impact both on the choice of the correct number of components and544

on the reconstruction of the true classification of the sample observations. How-545

ever, the consequences of including these irrelevant regressors seem to become546

negligible as the separation among components increases. A possible explana-547

tion of this behaviour could be related to the fact that the clustering task is548

eased when the components are well-separated. In such situations, even if CW549

models are non-parsimonious, they can lead to the correct choice of K. As a550

consequence, they are able to provide estimates for the regression coefficients of551

irrelevant regressors that are sufficiently close to zero, so that the inclusion of552

such regressors has little effect on the estimated posterior probabilities employed553

to classify the sample observations.554

4. Results from the analysis of real data555

Two real situations have been examined to evaluate the practical usefulness556

of SuCW models in comparison with CW models. For both these model classes,557

models have been estimated for K from 1 to 9. For each of these values, all558

possible parsimonious CW and SuCW models have been fitted (see Section 2.7).559

Analyses of the examined real datasets have been carried out also through the560

clusterwise regression models described in Section 2.2. Namely, the comparison561

with models (5) allows to assess the adequacy of the assignment independence562

assumption. Furthermore, from the comparison with models (6) it is possi-563
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Table 7: Summary statistics of the ARI index for the best model SuCW and CW model in the

second study: mean, median, interquartile range (IQR) and standard deviation (SD). The p-

values in the last row refer to the paired samples Wilcoxon test for the hypothesis of equality

between ARIs for each ε.

ε = 0.275 ε = 0.3 ε = 0.325 ε = 0.350 ε = 0.375

SuCW CW SuCW CW SuCW CW SuCW CW SuCW CW

Mean 0.766 0.644 0.885 0.687 0.924 0.820 0.939 0.916 0.956 0.953

Median 0.785 0.644 0.905 0.652 0.929 0.904 0.945 0.945 0.959 0.960

IQR 0.236 0.036 0.041 0.048 0.030 0.273 0.026 0.030 0.020 0.023

SD 0.120 0.034 0.071 0.103 0.035 0.138 0.038 0.087 0.018 0.036

p-value < 10−10 < 10−15 < 10−8 0.022 0.851

ble to establish whether fitting multivariate cluster-weighted models based on564

seemingly unrelated linear regression for D responses leads to an improvement565

over an approach based on D univariate seemingly unrelated linear clusterwise566

regression models. From now on, models (5) and (6) are denoted as SuCR and567

uSuCR, respectively. Models from equations (5) and (6) have been estimated568

also using the same vector of covariates for all responses (i.e., with xid = xi569

∀d); in the following, they are denoted as CR and uCR, respectively. All these570

clusterwise regression models have been fitted for a number of components from571

1 to 9 through a specific function developed in the R environment which also572

allows the estimation of seemingly unrelated linear parsimonious clusterwise573

models (for more details see Galimberti and Soffritti, 2020). Parameters µX574

and ΣX of the Gaussian distribution for the covariates in models (5) and (6)575

have been estimated under three possible structures of ΣX: fully unconstrained576

(VV), diagonal with P unequal variances (VI) and diagonal with equal variances577

(EI). As far as the variances σkdd, kd = 1, . . . ,Kd, in the univariate clusterwise578

regression models are concerned, the estimation has been carried out under both579

an homoscedastic (E) and heteroscedastic (V) assumption.580
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4.1. Canned tuna sales in USA581

Data taken from Chevalier et al. (2003) and available within the R package582

bayesm (Rossi, 2012) provides information about seven of the top 10 U.S. brands583

in the canned tuna product category for I = 338 weeks between September584

1989 and May 1997 (tuna dataset). The available information is the volume585

of weekly sales (Move), a measure of the display activity (Nsale) and the log586

price (Lprice) of each brand. Analyses illustrated here have been focused on587

D = 2 products: Bumble Bee Chunk 6.12 oz. (BBC) and Bumble Bee Solid588

6.12 oz. (BBS). A previous study about the effect of prices and promotional589

activities on sales for these two products, based on clusterwise linear regression590

models (Galimberti and Soffritti, 2020), demonstrated that the effect of log price591

on log unit sales is not homogeneous during the examined period of time for592

both products. Furthermore, a search for the predictors to be employed in the593

two regression equations showed that models including only the log unit prices594

should be preferred. Thus, the analysis here has been focused on four variables:595

Y = (Lmove BBC, Lmove BBS)′, X = (Lprice BBC, Lprice BBS)′, where Lmove596

denotes the logarithm of Move. As typically happens with food prices, also597

prices of BBC and BBS appear to change according to an almost discrete grid of598

values (see the scatterplot on the left part of Figure 3). Although the Pearson’s599

correlation coefficient between the two responses is low (0.1844), according to600

the Student’s t test the hypothesis of linear independence between Lmove BBC601

and Lmove BBS has to be rejected; Lmove BBC results to be negatively and602

strongly correlated with Lprice BBC; there is also a negative and significant603

linear dependence between Lmove BBS and the logarithm of the prices for both604

products (see Table 8).605

By assuming that prices for each of the two examined products can only606

affect sales of the same product, SuCW, SuCR and uSuCR models have been spec-607

ified by using Lprice BBS as regressor in the equation for Lmove BBS, Lprice608

BBC as regressor for Lmove BBC. Table 9 reports the models which best fit the609

tuna dataset according to the BIC for each combination of the nine examined610

values of K and each of the model types SuCW and CW. All these models have611
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Table 8: Pearson’s correlation matrix (lower diagonal part) and p-values of the Student’s t

test for the hypothesis of linear independence between variables (upper diagonal part) from

the tuna dataset.

Lmove BBC Lmove BBS Lprice BBC Lprice BBS

Lmove BBC 1.0000 0.0007 < 10−67 0.2678

Lmove BBS 0.1844 1.0000 0.0011 < 10−8

Lprice BBC −0.7727 −0.1767 1.0000 0.4420

Lprice BBS −0.0604 −0.3172 0.0420 1.0000

Figure 3: Scatterplots for three pairs of variables from the analysis of the tuna dataset. Ob-

servations are pictured with seven different colours and symbols according to the classification

obtained from the best model.
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Table 9: Best models fitted to the tuna dataset within some given model classes and their BIC

values. Columns acr.X and acr.Y report the acronyms of the parsimonious paramaterisations

for the component-covariance matrices of X and Y, respectively.

Model K acr.X acr.Y BICM Model K acr.X acr.Y BICM

SuCW 1 EEI EEI −18.9 CW 1 EEI EEI −18.1

SuCW 2 VVE EVV −812.2 CW 2 VVE EVV −794.2

SuCW 3 VVI EVV −929.1 CW 3 VEV VVE −922.3

SuCW 4 VVE VVE −1195.0 CW 4 VVE VVE −1157.4

SuCW 5 VVI VEV −1282.0 CW 5 VVI VVE −1267.1

SuCW 6 VVI VEV −1355.2 CW 6 VVI VVE −1333.7

SuCW 7 VVI VEV −1389.8 CW 7 VVI VVE −1331.4

SuCW 8 VVI VEV −1387.2 CW 8 VVI VVE −1341.3

SuCW 9 VVI VEV −1371.1 CW 9 VVI VVI −1326.4

been estimated within a limit of 237 iterations of the ECM algorithm. Figure 4612

shows the values of the BIC for the best CW and SuCW models by K. As far613

as the clusterwise regression models are concerned, Table 10 summarises some614

information about the best fitted models within each of the model classes SuCR,615

CR, uSuCR and uCR obtained from equations (5) and (6). Overall, it seems that616

the best trade-off between the fit and complexity can be obtained using the SuCW617

model with K = 7 clusters of weeks. The convergence of the ECM algorithm for618

the parameter estimation has been reached after 53 iterations. For the clusters619

detected by this model, the distributions of the two regressors are diagonal with620

variable volumes and shapes. As far as the joint conditional distributions of621

the two responses given the corresponding regressors are concerned, clusters are622

characterized by ellipsoidal distributions with variable volumes and orientations623

and equal shape.624

The first cluster is composed of 16 consecutive weeks corresponding to the625

period from end-October 1990 to mid-February 1991 (see the additional in-626

formation about this dataset available at the University of Chicago website627

http://research.chicagobooth.edu/kilts/marketing-databases/dominicks). In that628
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Table 10: Best models fitted to the tuna dataset within the model classes defined from equa-

tions (5) and (6) and their BIC values.

Model Best fitted model BICM

φP (xi;µX,ΣX) Ma: acr.X = VI −1408.0∑K
k=1 πkφD (yi|xi;X ′iβ∗k,ΣYk ) Mb: K = 3, acr.Y = EVV 652.5∑K
k=1 πkφD (yi|xi; B

′
kx∗i ,ΣYk ) Mc: K = 3, acr.Y = VVE 683.4∑K

k=1 πkφ1

(
yi1|xi; x

∗′
i1β
∗
k1, σ

2
k1

)
Md: K = 2, acr.Y = V 496.1∑K

k=1 πkφ1

(
yi1|xi;β

∗′
k1x
∗
i , σ

2
k1

)
Me: K = 2, acr.Y = V 505.4∑K

k=1 πkφ1

(
yi2|xi; x

∗′
i2β
∗
k2, σ

2
k2

)
Mf : K = 2, acr.Y = V 162.0∑K

k=1 πkφ1

(
yi2|xi;β

∗′
k2x
∗
i , σ

2
k2

)
Mg: K = 2, acr.Y = V 164.7

SuCR Ma and Mb −755.5

CR Ma and Mc −724.6

uSuCR Ma, Md and Mf −749.9

uCR Ma, Me and Mg −737.9

Figure 4: Tuna dataset: BIC values of the best CW and SuCW models by number of components.
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Table 11: Estimated πk, µXk
and β∗k of the best model fitted to the tuna dataset. a[l] denotes

the lth element of vector a.

k 1 2 3 4 5 6 7

π̂k 0.047 0.063 0.080 0.098 0.104 0.254 0.354

µ̂Xk
[1] −0.103 −0.106 −0.130 −0.085 −0.297 −0.366 −0.245

µ̂Xk
[2] 0.554 0.468 0.599 0.528 0.511 0.520 0.573

β̂
∗
k1[1] 7.946 8.506 8.925 8.203 7.844 7.751 8.239

β̂
∗
k1[2] −4.493 0.801 5.187 −0.421 −3.544 −5.090 −3.173

β̂
∗
k2[1] 17.051 8.820 16.503 −4.040 13.142 10.504 20.766

β̂
∗
k2[2] −22.692 −0.855 −14.724 22.436 −10.115 −4.920 −22.712

period a worldwide boycott campaign (promoted by the U.S. nongovernmental629

organisation Earth Island Institute) encouraged consumers not to buy Bumble630

Bee tuna because Bumble Bee was found to be buying yellow-fin tuna caught631

by dolphin-unsafe techniques (Baird and Quastel, 2011). The negative impact632

of such a campaign on Bumble Bee tuna sales appears to be evident for BBS633

(see the black points in the scatterplot of Figure 3 for this product). The mean634

prices of both products in the weeks of this cluster are quite high (see the first635

column in Table 11). Furthermore, prices of BBC in this cluster are highly636

homogeneous, as suggested by the low variance of Lprice BBC (not reported637

here). Finally, the effect of prices on sales in the same weeks is negative and638

particularly strong for BBS (see Table 11). The second cluster comprises 22639

weeks (red points in the scatterplots of Figure 3), some of which are in close640

correspondence with Easter 1990 and 1991, Christmas 1993, Presidents day and641

Labor day 1994. They are mainly characterized by the lowest mean price of BBS642

and a negligible impact of prices on sales for both products. Furthermore, prices643

of BBS in such weeks result to be quite homogeneous. Cluster 3 is composed644

of 27 weeks (green points in Figure 3) with the highest mean price of BBS. In645

this cluster, the effects of prices on sales are negative for BBS and positive for646

BBC; furthermore, prices of both products are homogeneous. The special events647

corresponding to the weeks of cluster 3 are: Memorial days 1994 and 1995, 4th648
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of July 1994 and 1995, Halloween and Thanksgiving 1994. Cluster 4 is mainly649

composed of weeks from end-November 1995 to end-April 1997; two distinctive650

features of this cluster (34 weeks, dark blue points) are that it shows the highest651

mean price of BBC and highly homogeneous prices of BBS; furthermore, the652

estimated effect of prices on sales of BBS is positive and particularly strong.653

Labor day 1991, January 1992, Memorial days 1992 and 1993 are the events654

and periods associated with the weeks in cluster 5 (37 weeks, sky-blue points),655

which is characterized by intermediate mean prices and mild negative effects656

of prices on sales for both products. As far as clusters 6 and 7 are concerned,657

they contain 78 (purple points) and 124 (yellow points) weeks, respectively. The658

main distinctive feature of cluster 6 is that the variances of Lprice BBC and659

Lprice BBS (not reported here) are extremely large; furthermore, this cluster660

registers the lowest mean price of BBC. Cluster 6 mainly comprises weeks from661

mid-September 1991 to end-December 1991, January 1993, and the periods as-662

sociated with Christmas 1992, Presidents day 1992 and 1993, Easter 1992, 1993663

and 1995. Weeks belonging to cluster 7 are characterized by high and highly664

homogeneous prices of BBS; furthermore, the effect of prices on sales of BBS in665

these weeks is negative and particularly strong. In summary, by focusing the666

attention on the estimated regression coefficients of the seven clusters of weeks667

detected by the model, the main interesting findings are a clear evidence of dif-668

ferential effects of the log prices on the log unit sales for both products and the669

identification of two clusters in which such effects are positive for either BBS670

or BBC. The overall agreement between this partition and the one produced671

by the best CW model, which is composed of 8 clusters (see Table 12), is high672

(ARI = 0.8293): weeks have been classified in almost the same way by the two673

approaches; some exceptions mainly involve the sixth cluster of the partition674

illustrated above.675

The comparison between these results and those produced from the best676

fitted linear clusterwise regression model (see the SuCR model in Table 10) shows677

that in the analysed dataset there is an additional source of heterogeneity over678

time, which appears to lie mainly in the prices of BBC tuna. Thus, when679
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Table 12: Cross-classification of the observations from the tuna dataset, based on the max-

imum posterior probabilities estimated from the best CW and SuCW fitted models. Labels for

clusters reported in rows and colums refer to CW and SuCW, respectively.

k 1 2 3 4 5 6 7

1 0 0 0 0 0 6 0

2 16 0 0 0 0 0 0

3 0 21 0 0 0 0 0

4 0 0 27 0 0 0 0

5 0 0 0 33 0 1 0

6 0 1 0 1 36 21 0

7 0 0 0 0 1 48 2

8 0 0 0 0 0 2 122

modelling the joint distribution of prices and sales for both products, more680

clusters have been detected (7 instead of 3). A further difference between the681

results obtained from these two approaches is that all the effects of log prices682

on the log unit sales for both products results to be negative within each cluster683

identified by the best linear clusterwise regression model. It is also worth noting684

that there is an almost perfect correspondence between one of the three clusters685

identified through the best linear clusterwise regression model and the first686

cluster described above (see Galimberti and Soffritti, 2020, for more details on687

the results obtained from the analysis of these data through the clusterwise688

regression approach).689

As illustrated in Section 2.1, an underlying assumption of the best fitted690

model is that both X|Ωk and Y|(X = x,Ωk) follow a multivariate normal dis-691

tribution for k = 1, . . . ,K. An evaluation of the adequacy of such an assumption692

for the examined dataset has been carried out by resorting to some measures693

of multivariate skewness and kurtosis (Mardia, 1970, 1974); by exploiting their694

asymptotic distribution derived under the the hypothesis of multivariate nor-695

mality, those measures can also be employed as statistics for testing the hy-696

pothesis of multivariate normality. Namely, the function mult.norm of the R697
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Table 13: P-values of Mardia’s skewness and kurtosis statistics for the residuals x−µXk
and

y −X ′βk, k = 1, . . . ,K, computed from the best model fitted to the tuna dataset.

k 1 2 3 4 5 6 7

x− µXk

skewness 0.2654 0.1887 0.0124 0.0370 0.7230 0.0013 0.0000

kurtosis 0.9963 0.3052 0.6470 0.3134 0.0510 0.0777 0.0371

y −X ′βk

skewness 0.0086 0.3526 0.7434 0.0829 0.8385 0.0002 0.0185

kurtosis 0.1308 0.5668 0.2121 0.3235 0.0483 0.0008 0.3927

package QuantPsych (Fletcher, 2012) has been employed to compute the values698

of such measures within each cluster detected by the best model from the es-699

timated residuals xi − µ̂Xk
and yi − X ′i β̂k ∀(i, k) ∈ {(i, k), i ∈ {1, . . . , I}, k =700

arg maxh{τ̂ih, h = 1, . . . ,K}}; the p-values associated with the so obtained re-701

sults are summarised in Table 13. Based on these findings, in the first five702

clusters the null hypothesis of multivariate normality should not be rejected703

at a Bonferroni-corrected 0.05/7 = 0.0071 significance level. On the contrary,704

both types of residuals clearly deviate from the multivariate normality within705

the sixth cluster. As far as the seventh cluster is concerned, the null hypothesis706

should be rejected only for the residuals x− µXk
.707

4.2. Regional tourism in Italy708

In line with studies aiming at evaluating the link between tourism flows and709

attendance at museums and monuments (see, e.g., Cellini and Cuccia, 2013), the710

data analysed here provides information about tourist arrivals (denoted Arriv),711

tourist overnights (Overn) and visits to State museums, monuments and mu-712

seum networks (Visit) with a monthly frequency over the period January 1999713

to December 2017 in two Italian regions: Emilia Romagna (ER) and Veneto (Ve).714

Data concerning Visit has been obtained from the website of the Italian Min-715
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istry of Cultural Heritage1; the sources for Arriv and Overn are the websites716

of the two regional governments2. In this dataset the average stays (AvStay),717

computed as the ratio between Overn and Arriv, are also provided. Thus, the718

dataset is composed of I = 228 monthly observations for eight variables; from719

now on, it has been denoted as RtI. The goal of the analysis is to study the effect720

of the tourist arrivals and average stays on the visits to State museums, mon-721

uments and museum networks in Emilia-Romagna and Veneto. Thus, in this722

analysis Y = (Visit ER, Visit Ve)′, X = (Arriv ER, AvStay ER, Arriv Ve,723

AvStay Ve)′. The analysis has been performed using data in thousands. Fig-724

ure 5 shows the bivariate scatterplots for pairs of regressors and pairs composed725

of one response and one regressor; month abbreviations are used as labels for the726

observations. Visits to to State museums, monuments and museum networks in727

the two regions result to be highly linearly dependent (see Table 14); high and728

positive pairwise correlations also characterise tourist arrivals and average stays729

in either region; the hypothesis of linear independence is not rejected between730

Visit ER and the average stays; the same result holds true also for Visit Ve.731

Table 14: Pearson’s correlation matrix (lower diagonal part) and p-values of the Student’s t

test for the hypothesis of linear independence between variables (upper diagonal part) from

the RtI dataset.

Visit ER Visit Ve Arriv ER AvStay ER Arriv Ve AvStay Ve

Visit ER 1.0000 < 10−66 0.0002 0.3684 0.0003 0.3879

Visit VE 0.8562 1.0000 < 10−8 0.7807 < 10−9 0.9572

Arriv ER 0.2421 0.3722 1.0000 < 10−53 < 10−166 < 10−47

AvStay ER −0.0598 0.0185 0.8081 1.0000 < 10−45 < 10−175

Arriv Ve 0.2394 0.4015 0.9826 0.7696 1.0000 < 10−40

AvStay Ve −0.0575 −0.0036 0.7833 0.9856 0.7456 1.0000

1http://www.statistica.beniculturali.it.
2https://statistica.regione.emilia-romagna.it/turismo,

https://www.veneto.eu/web/area-operatori/statistiche.
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Figure 5: Bivariate scatterplots for pairs of variables in the analysis of the RtI dataset. Month

abbreviations are used as labels. Observations are coloured according to the classification

obtained from the best model.
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Table 15: Best models fitted to the RtI dataset within some given model classes and their BIC

values. Columns acr.X and acr.Y report the acronyms of the parsimonious paramaterisations

for the component-covariance matrices of X and Y, respectively.

Model K acr.X acr.Y BICM Model K acr.X acr.Y BICM

SuCW 1 EEE EEE 10948.6 CW 1 EEE EEE 10965.7

SuCW 2 VVV EEV 10223.8 CW 2 VVV EEV 10146.2

SuCW 3 VVV VVV 9991.5 CW 3 VVV VVE 9934.6

SuCW 4 VVV VEV 9898.8 CW 4 VVV VEE 9886.6

SuCW 5 EVV VEE 9822.3 CW 5 VVV VII 9751.2

SuCW 6 VVV VVI 9716.5 CW 6 VVV VEE 9788.3

SuCW 7 VVV VEV 9736.9 CW 7 VVV VEE 9799.4

SuCW 8 EVV VEV 9796.0 CW 8 EVV VEE 9861.2

SuCW 9 VVV VEV 9815.0 CW 9 VVV VEE 9917.1

A first analysis has been performed by assuming that arrivals and average732

stays in each of the two regions can only affect attendance at museums and733

monuments of the same region. Thus, SuCW models have been specified by using734

Arriv ER and AvStay ER as regressors in the equation for Visit ER, Arriv Ve735

and AvStay Ve as regressors for Visit Ve. However, since Emilia-Romagna736

and Veneto are neighboring regions, arrivals and average stays in one region737

could also have an impact on the visits to State museums and monuments of738

the other region, hence the second analysis has been carried out through CW739

models. Table 15 provides information about the models which best fit the RtI740

dataset according to the BIC for each combination of the nine examined values741

of K and the two fitted model types. The convergence of the ECM algorithm for742

the estimation of these models has been reached within a limit of 161 iterations.743

Figure 6 shows the values of the BIC for the best CW and SuCW models by K.744

Table 16 provides a summary of the results obtained from the best fitted models745

within each of the model classes defined by equations (5) and (6). Overall,746

the model with the best trade-off between the fit and complexity seems to be747

the SuCW model with K = 6 clusters of months. The ECM algorithm for the748
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Figure 6: RtI dataset: BIC values of the best CW and SuCW models by number of components.

estimation of this model has reached the convergence after 47 iterations. For the749

resulting clusters, the four regressors have ellipsoidal distributions with variable750

volumes, shapes and orientations. As far as the joint conditional distributions751

of the two responses given the corresponding regressors are concerned, clusters752

show diagonal distributions with variable volumes and shapes, suggesting that753

Visit Ve and Visit ER are independent, conditionally on the regressors and754

cluster membership.755

Four clusters are perfectly related to some months (see Table 17). They are:756

cluster 2: observations in July and August;757

cluster 3: observations in June and September;758

cluster 4: observations in April and May;759

cluster 5: observations in March and October.760

As far as the months from November to February are concerned, observations761

from January 1999 to November 2010 and those of January 2011 and February762

2012 have been assigned to cluster 6; cluster 1 comprises all the remaining763

observations in such months. The obtained cluster structure clearly reflects764
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seasonal patterns characterising tourism flows. Observations in cluster 2 (July765

and August) are characterized by the highest mean values of tourist arrivals766

and average stays in both regions, followed by those in cluster 3 (June and767

September) and cluster 4 (April and May) (see Table 18). From the comparison768

between clusters 1 and 6 it emerges that wintertime tourism flows have changed769

in both regions, showing an increase in the mean number of arrivals and a770

decrease in the mean number of stays in recent years (cluster 1). In all clusters,771

Veneto is characterised by mean values of both regressors which are higher than772

those of Emilia-Romagna except for the average stays from June to September.773

As far as the estimated regression coefficients are concerned (see Table 18), the774

first interesting finding is that the effects of both the tourist arrivals and the775

average stays on the number of visits result to be not homogeneous during the776

examined period of time. In both regions, such effects are positive in July and777

August; in Emilia-Romagna, this result also holds true in the months belonging778

to cluster 6. In the other clusters of months the effect of tourist arrivals are779

generally positive in both regions, while the average number of stays seem to780

have a negative impact on the number of visits. This latter impact in Veneto781

appears to be stronger than that in Emilia-Romagna in April, May, June and782

September; the opposite result holds true for all the other months.783

The comparison between this partition and the one based on the maximum784

posterior probabilities estimated from the best CW fitted model (see Table 19)785

suggests that they are quite similar (ARI = 0.8014); the main difference is786

that according to the approach based on CW models all the observations in the787

months from November to February should be grouped into the same cluster.788

This latter result mainly depends on the fact that, in the best model fitted to the789

RtI dataset within the class of CW models with K = 6, the effects of both Arriv790

Ve on Visit ER and Arriv ER on Visit Ve in two clusters have been estimated791

to be quite similar (detailed results are not reported) and, thus, a better trade-792

off between the fit and the complexity is reached by the best fitted CW model with793

K = 5. Furthermore, the comparison between the results obtained through SuCW794

models and those produced from linear clusterwise regression analyses (see Table795
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Table 16: Best models fitted to the RtI dataset within the model classes defined from equa-

tions (5) and (6) and their BIC values.

Model Best fitted model BICM

φP (xi;µX,ΣX) Ma: acr.X = VV 6808.1∑K
k=1 πkφD (yi|xi;X ′iβ∗k,ΣYk ) Mb: K = 4, acr.Y = VEV 3943.3∑K
k=1 πkφD (yi|xi; B

′
kx∗i ,ΣYk ) Mc: K = 3, acr.Y = VEV 3920.2∑K

k=1 πkφ1

(
yi1|xi; x

∗′
i1β
∗
k1, σ

2
k1

)
Md: K = 4, acr.Y = V 2166.6∑K

k=1 πkφ1

(
yi1|xi;β

∗′
k1x
∗
i , σ

2
k1

)
Me: K = 3, acr.Y = V 2183.4∑K

k=1 πkφ1

(
yi2|xi; x

∗′
i2β
∗
k2, σ

2
k2

)
Mf : K = 4, acr.Y = E 1987.2∑K

k=1 πkφ1

(
yi2|xi;β

∗′
k2x
∗
i , σ

2
k2

)
Mg: K = 2, acr.Y = V 1987.1

SuCR Ma and Mb 10751.4

CR Ma and Mc 10728.3

uSuCR Ma, Md and Mf 10962.0

uCR Ma, Me and Mg 10978.6

Table 17: Cross-classification of the observations from the RtI dataset, based on their variable

time identified by month and maximum posterior probability estimated from the best fitted

model.

k Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 6 6 0 0 0 0 0 0 0 0 7 8

2 0 0 0 0 0 0 19 19 0 0 0 0

3 0 0 0 0 0 19 0 0 19 0 0 0

4 0 0 0 19 19 0 0 0 0 0 0 0

5 0 0 19 0 0 0 0 0 0 19 0 0

6 13 13 0 0 0 0 0 0 0 0 12 11
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Table 18: Estimated πk, µXk
and β∗k of the best model fitted to the RtI dataset. a[l] denotes

the lth element of vector a.

k 1 2 3 4 5 6

π̂k 0.121 0.167 0.167 0.167 0.167 0.213

µ̂Xk
[1] 377.1 1389.8 1001.0 767.7 487.4 316.5

µ̂Xk
[2] 2.350 6.304 4.847 2.823 2.572 2.694

µ̂Xk
[3] 665.5 2248.1 1639.0 1251.5 867.7 502.5

µ̂Xk
[4] 2.588 5.894 4.511 3.119 2.836 3.039

β̂
∗
k1[1] 34.063 −263.846 143.648 278.219 163.170 −68.964

β̂
∗
k1[2] 0.117 0.116 −0.028 −0.095 0.008 0.090

β̂
∗
k1[3] −15.948 26.302 −7.994 −14.227 −34.080 25.994

β̂
∗
k2[1] 29.502 −43.971 183.051 179.415 106.489 −6.196

β̂
∗
k2[2] 0.071 0.035 −0.006 0.003 0.032 0.132

β̂
∗
k2[3] −9.889 6.876 −20.067 −21.422 −16.044 −4.297

16) demonstrates that there is some clear evidence of seasonal heterogeneity796

not only in attendance at museums and monuments but also in tourism flows.797

Finally, a joint analysis for the two examined Italian regions based on seemingly798

unrelated cluster-weighted models results to be more effective than two separate799

linear clusterwise regression analyses.800

As in the previous application, the mult.norm function of the R package801

QuantPsych has been employed to obtain an evaluation of the adequacy of the802

normality assumption within each cluster detected by the best model, based on803

the p-values of Mardia’s measures of multivariate skewness and kurtosis com-804

puted from the estimated residuals xi− µ̂Xk
and yi−X ′i β̂k ∀(i, k) ∈ {(i, k), i ∈805

{1, . . . , I}, k = arg maxh{τ̂ih, h = 1, . . . ,K}} (see Table 20. The obtained re-806

sults suggest that the null hypothesis of multivariate normality should not be807

rejected at a Bonferroni-corrected 0.05/6 = 0.0083 significance level in any clus-808

ter.809
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Table 19: Cross-classification of the observations from the RtI dataset, based on the maximum

posterior probabilities estimated from the best CW and SuCW fitted models. Labels for clusters

reported in rows and colums refer to CW and SuCW, respectively.

k 1 2 3 4 5 6

1 0 0 34 0 0 0

2 0 0 0 38 0 0

3 0 0 0 0 38 0

4 0 38 4 0 0 0

5 27 0 0 0 0 49

Table 20: P-values of Mardia’s skewness and kurtosis statistics for the residuals x−µXk
and

y −X ′βk, k = 1, . . . ,K, computed from the best model fitted to the RtI dataset.

k 1 2 3 4 5 6

x− µXk

skewness 0.4513 0.3886 0.1150 0.4504 0.0422 0.0317

kurtosis 0.0171 0.0375 0.6161 0.4693 0.4039 0.8658

y −X ′βk

skewness 0.6053 0.6263 0.5742 0.2526 0.6386 0.0212

kurtosis 0.0369 0.3261 0.9268 0.3922 0.1747 0.7168
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5. Conclusions810

The proposed multivariate seemingly unrelated Gaussian linear cluster-weighted811

models can account for heterogeneous regression data with multivariate corre-812

lated responses, each one depending on its own set of covariates. This latter813

feature represents the main novelty of the models proposed here in reference814

with the ones introduced by Dang et al. (2017), thus leading to a more flex-815

ible modelling of data in applications where prior information concerning the816

absence of certain covariates from the linear term employed in the prediction817

of a certain response has to be conveyed into the model, and different covari-818

ates are expected to be relevant in the prediction of different responses. The819

distribution of the covariates is also explicitly incorporated in the model for-820

mulation. The resulting approach encompasses the models introduced by Dang821

et al. (2017) as well as other Gaussian mixture-based linear regression models822

with random covariates. Details about identifiability, ML estimation and model823

selection have been provided. Furthermore, models with a reduced number of824

variance-covariance parameters have been specified. The comparisons among825

some cluster-weighted models and clusterwise linear regression models based on826

the analyses of the tuna and RtI datasets have highlighted the effectiveness of827

the proposed models in detecting the presence of unobserved heterogeneity; such828

models have been proved to be useful also to establish the relevance of a multi-829

variate regression analysis and the inadequacy of the assignment independence830

assumption in both applications. From the Monte Carlo studies it appears that831

including irrelevant regressors in a cluster-weighted model can lead to a wrong832

choice of the number of components and a sub-optimal reconstruction of the833

true classification of the sample observations, especially when the components834

are not well-separated. The approach introduced here is able to avoid some835

drawbacks due to the presence of irrelevant regressors in a multivariate Gaus-836

sian linear cluster-weighted model. This happens because the proposed models837

are multivariate Gaussian linear cluster-weighted models in which some regres-838

sion coefficients are set a priori equal to zero. Thus, the proposed approach also839
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represents a framework for multivariate linear cluster-weighted analysis under840

such constraints.841

As far as the development of inferential methods for the parameters of the842

proposed models is concerned, an assessment of the sample variability of the pa-843

rameter estimates is required. Since the ECM algorithm does not automatically844

produce any estimate of the covariance matrix of the ML estimator, additional845

computations are necessary. To this end, several approaches commonly em-846

ployed under finite mixture models could be exploited (see, e.g., McLachlan847

and Peel, 2000). For example, estimates of the asymptotic covariance matrix848

of the ML estimator can be computed through an approach which is based on849

the gradient vector and the second-order derivative matrix of the incomplete850

data log-likelihood, and makes also use of a sandwich estimator. This approach851

has been successfully applied to Gaussian mixture models (Boldea and Magnus,852

2009), t mixture models (Wang and Lin, 2016), clusterwise Gaussian linear re-853

gression models (Galimberti et al., 2021) and Gaussian linear cluster-weighted854

models (Soffritti, 2021). In addition, given the critical role played by the initial-855

isation in any ECM algorithm, further investigation might be needed in order856

to confirm the encouraging results described in Section 3. In particular, this ad-857

ditional investigation should focus on the performance of the proposed strategy858

in presence of high dimensional data.859

Another crucial aspect associated with the adoption of the proposed models860

in practical applications is the assessment of their adequacy. For finite mixtures861

of linear regression models with a univariate response and fixed, concomitant or862

random covariates, Ingrassia and Punzo (2020) have recently introduced some863

indices able to measure the association between the response variable and the864

latent groups, the model goodness-of-fit, and the proportion of the total varia-865

tion in the response which remains unexplained by the fitted model. Local and866

overall coefficients of determination have also been described. After suitable867

modifications, those indices could also be employed to assess the adequacy of868

the multivariate cluster-weighted models based on seemingly underlated linear869

regression illustrated here.870
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Multivariate seemingly unrelated linear cluster-weighted analyses based on871

the proposed models implicitly require that the researcher has prior information872

on the specific covariates that have to be included in the linear term employed in873

the prediction of each response in the model. In practical applications in which874

the choice of the regressors to be used for different responses is questionable, the875

relevant regressors for each response can be detected through strategies (e.g.,876

stepwise techniques, genetic algorithms) that allow to perform variable selec-877

tion in a multivariate regression framework. To this end, the optimal model for878

the given dataset should be determined from a model class which also includes879

the cluster-weighted models based on seemingly unrelated linear regression il-880

lustrated in this paper.881

Finally, it is worth noting that the new multivariate seemingly unrelated882

cluster-weigthed models described here have been specified under the follow-883

ing assumptions: i) the joint conditional distribution of the P covariates given884

the group Ωk is Gaussian ∀k; ii) the joint conditional distribution of the D885

responses given the covariates and the group Ωk is Gaussian ∀k; iii) the con-886

ditional expected value of the D responses given the covariates and the group887

Ωk is a linear transformation of the covariates ∀k. These assumptions could888

be relaxed by resorting to the approaches developed by Punzo (2014), Punzo889

and McNicholas (2017), Gallaugher et al. (2021) or Sahin and Czado (2021)890

so as to obtain multivariate seemingly unrelated cluster-weigthed models which891

could be more effectively employed in the analysis of real datasets composed of892

unknown clusters of observations characterised by skewed distributions, outliers893

or non-linear relationships.894

Appendix A. Derivation of β̂
∗(h+1)

k and Σ̂
(h+1)

Yk
895

The CM-steps to update the estimates of the model parameters β∗k and ΣYk
896

at the (h+1)th iteration in the ECM algorithm, as illustrated in equations (13)897
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and (14), can be obtained as follows.898

∂

∂β
∗′
k

Q
(
ψ|ψ(h)

)
=

∂

∂β
∗′
k

I∑
i=1

K∑
k=1

τ̂
(h)
ik Q2

(
β∗k,ΣYk

|ψ(h)
)

899

=
∂

∂β
∗′
k

[
− 1

2

I∑
i=1

τ̂
(h)
ik

(
yi −X ′iβ

∗
k

)′
Σ

(h)(−1)
Yk

(
yi −X ′iβ

∗
k

)]
900

= −1

2

I∑
i=1

τ̂
(h)
ik

∂

∂β
∗′
k

(
− 2y′iΣ

(h)(−1)
Yk

X ′iβ
∗
k + β

∗′
k X

′
iΣ

(h)(−1)
Yk

X ′iβ
∗
k

)
901

= −1

2

I∑
i=1

τ̂
(h)
ik

(
− 2y′iΣ

(h)(−1)
Yk

X ′i + 2β
∗′
k XiΣ

(h)(−1)
Yk

X ′i
)

902

=

I∑
i=1

τ̂
(h)
ik y′iΣ

(h)(−1)
Yk

X ′i −
I∑

i=1

τ̂
(h)
ik β

∗′
k XiΣ

(h)(−1)
Yk

X ′i . (A.1)903

Setting (A.1) equal to the null vector, Σ
(h)
Yk

equal to Σ̂
(h)

Yk
and solving the so ob-904

tained system with respect to β∗k leads to the solution reported in equation (13).905

∂

∂Σ−1Yk

Q
(
ψ|ψ(h)

)
=

∂

∂Σ−1Yk

I∑
i=1

K∑
k=1

τ̂
(h)
ik Q2

(
β∗k,ΣYk

|ψ(h)
)

906

=
∂

∂Σ−1Yk

{
1

2

I∑
i=1

τ̂
(h)
ik

[
ln |Σ−1Yk

|907

−
(
yi −X ′iβ

∗(h+1)
k

)′
Σ−1Yk

(
yi −X ′iβ

∗(h+1)
k

)]}
908

=
1

2

I∑
i=1

τ̂
(h)
ik

∂

∂Σ−1Yk

[
ln |Σ−1Yk

|909

− tr
(
Σ−1Yk

(yi −X ′iβ
∗(h+1)
k )(yi −X ′iβ

∗(h+1)
k )′

)]
910

=
1

2

[
I∑

i=1

τ̂
(h)
ik ΣYk

−
I∑

i=1

τ̂
(h)
ik (yi −X ′iβ

∗(h+1)
k )(yi −X ′iβ

∗(h+1)
k )′

]
(A.2)911

where the second and third equalities are obtained using properties of trace and912

transpose and differentiation rules of functions of matrices. Setting (A.2) equal913

to the null matrix, β
∗(h+1)
k equal to β̂

∗(h+1)

k and solving the resulting system914

with respect to ΣYk
gives the update in equation (14).915
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Appendix B. Expression of β̂
∗(h+1)

k when xid = xi ∀d916

Similarly to Park (1993), equation (13) can be rewritten as917

β̂
∗
k =

{
X
[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
X ′
}−1
X
[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
y, (B.1)918

where the superscripts (h) and (h + 1) have been dropped to ease notation,919

X = [X1,X2, . . . ,XI ] is a (P ∗ + D) × (D · I) matrix, diag (τ̂ k) is a diag-920

onal matrix whose diagonal elements are the values τ̂ik (i = 1, . . . , I) and921

y = (y′1,y
′
2, . . . ,y

′
I)
′
. Consider now the vectors vd = (y1d, y2d, . . . , yId)

′
, con-922

taining the values of the dth response on the I observations (d = 1, . . . , D), and923

the vector v = (v′1, . . . ,v
′
D)
′
. It is evident that v and y contain the same values924

but in a different order. As shown in Park (1993), by exchanging the rows of925

the identity matrix of order D · I, it is possible to define a matrix L such that926

LL′ = L′L = ID·I927

and928

Ly = v.929

Matrix L can also be used to reorder the columns of X and the rows and columns930

of
[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
. Namely,931

XL′ = Z =


Z1 0(P1+1)×I . . . 0(P1+1)×I

0(P2+1)×I Z2 . . . 0(P2+1)×I
...

...
...

0(PD+1)×I 0(PD+1)×I . . . ZD

 ,932

where Zd = [x∗1d,x
∗
2d, · · · ,x∗Id] is a (Pd + 1)× I matrix (d = 1, . . . , D), and933

L
[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
L′ =

[
Σ̂
−1
Yk
⊗ diag (τ̂ k)

]
.934

Thus, an equivalent expression for β̂
∗
k is given by935

β̂
∗
k =

{
XL′L

[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
L′LX ′

}−1
XL′L

[
diag (τ̂ k)⊗ Σ̂

−1
Yk

]
L′Ly936

=
{
Z
[
Σ̂
−1
Yk
⊗ diag (τ̂ k)

]
Z ′
}−1
Z
[
Σ̂
−1
Yk
⊗ diag (τ̂ k)

]
v. (B.2)937
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If xid = xi ∀d, then Zd = [x∗1,x
∗
2, · · · ,x∗I ] = Z ∀d and938

Z = ID ⊗ Z. (B.3)939

By exploiting equation (B.3) and the properties of the Kronecker product (see,940

e.g., Magnus and Neudecker, 1988), equation (B.2) can be simplified as follows:941

942

β̂
∗
k =

{
ID ⊗ [Z diag (τ̂ k) Z′]

−1
Z diag (τ̂ k)

}
v. (B.4)943

Firstly, note that equation (B.4) does not depend on Σ̂Yk
. Furthermore, the944

matrix
{

ID ⊗ [Z diag (τ̂ k) Z′]
−1

Z diag (τ̂ k)
}

has a block-diagonal structure.945

By coupling it with the structure of the vector v, the following expression for946

the vector β̂
∗
kd containing the estimated coefficients associated with the dth947

response in the kth group can be obtained:948

β̂
∗
kd = [Z diag (τ̂ k) Z′]

−1
Z diag (τ̂ k) vd949

=

(
I∑

i=1

τ̂ikx∗i x
∗
i
′

)−1( I∑
i=1

τ̂ikx∗i yid

)
, d = 1, . . . , D. (B.5)950

Apart from differences related to notation, it can be noticed that equation (B.5)951

coincides with the dth row of the matrix defined in equation (8) in Dang et al.952

(2017).953
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