
Vol.:(0123456789)1 3

Computing and Software for Big Science (2022) 6:16
https://doi.org/10.1007/s41781-022-00089-z

ORIGINAL ARTICLE

Analyzing WLCG File Transfer Errors Through Machine Learning

An Automatic Pipeline to Support Post-mortem Distributed Data Management

Luca Clissa1,2  · Mario Lassnig3  · Lorenzo Rinaldi1,2 

Received: 20 April 2022 / Accepted: 20 September 2022
© The Author(s) 2022

Abstract
The increasingly growing scale of modern computing infrastructures solicits more ingenious and automatic solutions to
their management. Our work focuses on file transfer failures within the Worldwide Large Hadron Collider Computing Grid
and proposes a pipeline to support distributed data management operations by suggesting potential issues to investigate.
Specifically, we adopt an unsupervised learning approach leveraging Natural Language Processing and Machine Learning
tools to automatically parse error messages and group similar failures. The results are presented in the form of a summary
table containing the most common textual patterns and time evolution charts. This approach has two main advantages. First,
the joint elaboration of the error string and the transfer’s source/destination enables more informative and compact trouble-
shooting, as opposed to inspecting each site and checking unique messages separately. As a by-product, this also reduces the
number of errors to check by some orders of magnitude (from unique error strings to unique categories or patterns). Second,
the time evolution plots allow operators to immediately filter out secondary issues (e.g. transient or in resolution) and focus
on the most serious problems first (e.g. escalating failures). As a preliminary assessment, we compare our results with the
Global Grid User Support ticketing system, showing that most of our suggestions are indeed real issues (direct association),
while being able to cover 89% of reported incidents (inverse relationship).

Keywords  Machine learning · Text processing · Clustering · Distributed data management · WLCG

Introduction

To cope with the growing amount of data to store and pro-
cess [12], the big data players of both industry and acad-
emy have gradually moved to new computing paradigms in
recent years. For instance, alternative infrastructures such
as distributed and cloud computing have been specifically
designed to address these new requirements, exploiting mul-
tiple resources geographically distributed and accessible via
a network. However, the boost in performance guaranteed
by these technologies comes with the price of requiring
very complex interactions of both hardware and software

components. Indeed, the wider the infrastructure, the higher
the chances of something going wrong and the bigger the
effort to detect, inspect and solve the issues. For this reason,
we propose a data-driven pipeline to reduce the workload for
maintaining the infrastructure integrity. Although applicable
to several use cases, the presented approach is discussed in
the framework of data transfer failures within the Worldwide
Large Hadron Collider Computing Grid (WLCG) [7].

Background

WLCG is a global collaboration that links up more than
170 computing centers in 42 countries, serving an audience
of more than 12000 physicists all around the world. The
WLCG mission is to provide computing resources to store,
distribute and analyze the data generated by the Large Had-
ron Collider (LHC). Given the scale and complexity of the
LHC data, this requires massive storage facilities, immense
computing power, global networking, tailored software, ade-
quate personpower and, of course, funding. To achieve such

 *	 Luca Clissa
	 luca.clissa2@unibo.it

1	 National Institute for Nuclear Physics, Bologna, Italy
2	 Department of Physics and Astronomy, University

of Bologna, Bologna, Italy
3	 CERN, Geneva, Switzerland

http://orcid.org/0000-0002-4876-5200
http://orcid.org/0000-0002-9541-0592
http://orcid.org/0000-0001-9608-9940
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-022-00089-z&domain=pdf

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 2 of 15

challenging goals, WLCG leverages a distributed computing
paradigm, where resources are shared among member states
and made equally available to all partners, regardless of their
physical location.

Scientific data are arguably the most valuable asset of
the High-Energy Physics community. As a consequence,
they are continuously transferred across the grid for several
purposes, and a paramount part of the WLCG operations
involves Distributed Data Management (DDM) processes.
Indeed, stringent workflows are put in place by the experi-
ments to ensure data distribution and redundancy, thus pre-
venting data loss and guaranteeing reliable accessibility.
Also, analysis workflows require individual researchers to
transfer data of interest for their analyses. This potentially
requires retrieving data from geographically distributed and
heterogeneous storage resources (e.g. tape or disk), trans-
ferring them to computing resources that may be situated
elsewhere, and transferring the results back to their machines
to conduct their studies.

As a result, massive amounts of data are constantly moved
across the grid thanks to various services for file transfer that
perform “third party copy”, i.e. a direct storage-to-storage
movement of files without routing them through the client.
These services are used alternately or concurrently to cre-
ate a chain of software interfaces between the end-users and
the physical resources. At the lowest level there is the File
Transfer System (FTS) [25], which is configured to reliably
interact with diverse storage devices and filesystems, execute
fault-tolerant transactions and support users authentication.
On top of that, the various collaborations may add other
middleware layers as higher-level interfaces for the users.
For example, ATLAS [5] uses an open-source framework
called Rucio [6] that orchestrates the transfers, creating a
catalog to track data locations, managing replication rules
and retries in case of failures. Clearly, ensuring high quality
of service—in terms of transfer error rates, data integrity and
resources availability—is very hard due to the huge volumes
transferred, the heterogeneity of the software and hardware
components and the large user base.

In practice, occasional faults may happen at various levels
during data transfers, which may include a wide range of root
causes, provoking failures during the shipment of the files.
When this happens, FTS collects the output statuses of all
sub-systems that play a role during the transfer, and it con-
catenates them sequentially into a single message that can be
inspected for debugging. These errors may vary from naive
ones—e.g. a mistyped command or the request of an una-
vailable file—to more severe software and hardware defects.
For instance, the requesting endpoint or archiving server
might be temporarily unreachable (connection shortage).
Likewise, the requested data may be corrupted (checksum
error) due to storage hardware faults or unstable connections
(network problem). Also, there might be timeouts when the

shipment takes more than the pre-configured waiting win-
dow—e.g. when the desired data are bigger than usual and/
or must be retrieved from tape, thus requiring more time. In
addition, errors of a different nature may often arise due to
the interactions between miscellaneous middleware layers.
All of these factors, and more, can generate significant ser-
vice disruptions and infrastructure malfunctions that require
prompt intervention. For this reason, data transfer processes
are continuously monitored by teams of operators. When an
issue is detected, the operators report it through the Global
Grid User Support (GGUS) ticketing system [3], and experts
and site maintainers take care of their solution.

To give an idea of the volumes involved, after the last
LHC run1 the ATLAS collaboration alone experienced
an average traffic of more than 2 PB per day in 2019 [10],
corresponding to roughly 1.5–2 million files moved each
day. Nearly 10% of these transfers failed producing about
100–200k errors on a daily basis. In total, transfer failures
generated more than 4k incident reports filed in 2019 for all
the LHC experiments (1141 for ATLAS only). Due to the
complexity of the infrastructure and its layered composi-
tion, understanding the root causes of the problem and fix-
ing them requires time and demands a great human effort—
a few dozens of part-time contributors [36]—which may
entail disruptions of service. The average solving time may
vary from a few hours or days—e.g. in the case of issues
that are easy to solve or have already been dealt with in the
past—to entire weeks—e.g. for unknown problems or more
troublesome malfunctions that imply important software
or hardware interventions. In practice, the median solving
time for incidents reported by the ATLAS, CMS and LHCb

all atlas cms lhcb
0

20

40

60

80

100

collaboration

so
lv

in
g

tim
e

(d
ay

s)

Fig. 1   Tickets solving time. Boxplot of the distribution of the solv-
ing time for GGUS incidents reported in 2019 by ATLAS, CMS and
LHCb collaborations. The box sits on the central half of the distri-
bution (25-th–75th percentiles), while the whiskers span the standard
+/– 1.5 times the interquartile range. The solid and dashed horizontal
lines indicate the median and the mean, respectively

1  The figures presented in this paragraph remained quite stable dur-
ing the LHC shutdown and are still indicative of current loads.

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 3 of 15  16

collaborations in 2019 was around 17 days, with a 90th per-
centile of 44 days and a long tail extending over 100 days
(see Fig. 1).

When a transfer failure happens, the FTS log files are
parsed and the most relevant transfer features are extracted
and re-organized in a structured format. In particular, this
involves collecting the exit status of each of the subsystems
responsible for the transfer and appending them to compose
a global error message. This information is then exposed to
the on-duty operators along with other characteristics—e.g.
source and destination endpoints, file size, exchange proto-
col and so on—and visualizations—e.g. time evolution plots
or site transfer efficiency—for more in-depth investigations.

Current operations are based on a site-centric approach
where trained personnel monitor the status of the various
services almost 24/7 and try to spot hints of incorrect or
undesired behaviors. In particular, the operators look at
Grafana dashboards to get a high-level overview of the

system. A usual starting point is the so-called efficiency
matrix (Fig. 2), where the percentage of successful transfers
is reported. The granularity level is customizable and it may
range from global transfers between national cloud infra-
structures involving more computing centers to a finer track-
ing of particular site exchanges or even specific endpoint
links. When the efficiency falls below an acceptable thresh-
old, typically 60–70%, on-duty operators start to investigate
the issue at a lower level by checking (i) where the error hap-
pened, (ii) how many errors are produced, (iii) what is the
time pattern (temporary, extended or cyclical) and (iv) which
error messages are generated. However, this procedure gives
rise to many false alarms as it is usual to encounter prob-
lems that do not represent a real concern. For instance, this
may happen when few transfers are attempted so even a low
number of errors imply a high failure rate, or when there
are after-effects of a transient issue that had already been
fixed. Likewise, sometimes unnecessary drill-down activity

Fig. 2   Transfer efficiency matrix (Grafana). Transfer sources are shown as columns and destinations as rows. The drop-down menus at the top
allow for custom filtering at the desired level of granularity

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 4 of 15

is performed for actual issues that were already known, as
in the case of ongoing tickets or site downtimes, for which
reporting is not required. As a result, many human resources
are employed in repetitive tasks that would enormously ben-
efit from automation.

In addition to that, the site-centric strategy described
above has some drawbacks. Firstly, monitoring focuses on
spotting where issues occur, while understanding the actual
root causes is typically demanded of site experts in a sub-
sequent investigation. Secondly, problems generating few
error messages are usually ignored. This is natural, and to
some extent desirable, as having limited resources forces us
to address bigger malfunctioning first. However, that could
be a potential pitfall in cases where promptly fixing a minor
issue may prevent the appearance of a more significant and
longer to solve defect.

All these problems could be tackled programmatically
by standardizing the logging output of all the services. In
this way, neat error messages would point directly to the
source of the problem, thus allowing complete automation.
However, the distributed nature of the infrastructure ham-
pers such an approach. In fact, the heterogeneous nature of
WLCG computing resources and their intricate interactions
demands for custom adjustments and local configurations
which are just too complex to accommodate using a static
strategy only. Hence, all these considerations expose the
need for an intelligent support tool for speeding up infra-
structure management to meet the productivity requirements
for the near future.

Related Works

The automation of infrastructure management and mainte-
nance has become crucial in recent years. The increasingly
large scale of modern data centers, and the adoption of dis-
tributed resources that necessitate the interaction of diverse
hardware and software components, have made this task
extremely complex. Consequently, traditional approaches
to infrastructure management where manual human inter-
vention is required have become impractical or even use-
less. For this reason, several communities involved in the
Worldwide LHC Computing Grid have started a project
named Operational Intelligence2 that aims at increasing the
level of automation in computing operations, thus reducing
human interventions. As a result of the joint effort, several
strategies have already been proposed to support operational
workflows in various ways [16–18, 26]. Some works address
anomaly detection by leveraging overall workloads—e.g.
number of running processes, hardware resources usage,

network saturation—as indicators of infrastructure health
and monitoring their trends over time.

The deviations from normal operations are considered
anomalies and trigger alerts to be investigated by experts
[21].

Other attempts rely on event logs as the primary way
to register key runtime information. These reports record
events happening during the execution of a system to provide
an audit trail that can be helpful to understand the system
activity and diagnose problems. This information can be
exploited in various forms. Some approaches focus on log
activity summary statistics (e.g. number of printed lines) and
try to disentangle nominal behaviors from suspect activity
[13, 14, 31]. Other alternatives use the log content instead,
thus directly analyzing the textual information contained
in the log files [20]. These vary from traditional keyword
searches—e.g. “kill”, “error”, “fail”, “exception”— and heu-
ristics [37] to smarter tools based on deep learning language
models.

Another interesting approach suggests using a convenient
pipeline to group logs of failed jobs and exploit the knowl-
edge coming from previous failures [27]. After substituting
placeholders instead of parametric parts, the textual informa-
tion of each log line is encoded (vectorization stage) based
on Inverse-Document event Frequency (IDF) and contrast-
based weighting. The resulting numerical representation
undergoes an agglomerative hierarchical clustering algo-
rithm that finds groups of similar logs. The resulting clusters
are then summarized by their centroids and compared to a
knowledge base of previous failures and corresponding solu-
tions. If the sequence similarity to one of the known issues
is above a given threshold, the corresponding actions are
applied to solve the problem. Otherwise, the log sequence
is passed to system experts for manual inspection and the
reference dataset is successively updated. In this way, human
resources are involved only in handling new issues, while
previous knowledge is exploited for recurrent ones.

Some approaches specifically target data processing
workflows within WLCG, with a focus on error messages
coming from failed analysis jobs [22]. First, the error mes-
sages are tokenized (for more details see Sect. 2.2) and
cleaned from digits, punctuation and special characters.
Then, a hashing algorithm replaces the parametric parts of
the message with a placeholder, and the resulting patterns
are exploited for the following elaborations. In this way, the
total amount of data is reduced by 90–95%. After the above
pre-processing, the vectorization stage is based on word-
2vec [30] that computes a numerical representation for each
token. The overall message representation is then retrieved
by averaging over single word embeddings. The resulting
representation is then reduced in dimension by means of
principal components analysis [39], and a DBSCAN [19]
algorithm is adopted for the clustering stage. Finally, cluster 2  For more details: https://​opera​tional-​intel​ligen​ce.​web.​cern.​ch/.

https://operational-intelligence.web.cern.ch/

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 5 of 15  16

descriptions are extracted by searching common textual pat-
terns and key phrases for all messages belonging to the same
cluster.

The advantage of text-based pipelines is that the textual
information can aid system experts finding root causes and
explanations which are harder to grasp from the amount of
logging activity alone. However, the above methods require
significant pre-processing that may need deep customization
for specific data, which hampers their adaptation to novel
use cases with possibly diverse logging conventions, termi-
nology and structure. Furthermore, no additional informa-
tion (e.g. site, time pattern) is leveraged apart from the text
itself, which limits their practical impact.

Contribution

The goal of this work is to discuss a complementary
approach to support current DDM operations for grid moni-
toring based on a computer-aided strategy independent of
experiment-specific settings. In particular, we propose a
pipeline that takes into account FTS error messages, source
and destination hostnames, and time patterns. Unsupervised
machine learning techniques are then leveraged to identify
clusters of similar failures that act as suggestions of potential
issues for on-duty operators. Also, we perform a post-mor-
tem analysis to test our approach in a real-world scenario,
showing that: (i) our approach is able to find groups of simi-
lar errors and (ii) the proposed visualization enables to spot
quickly what failures are more frequent, where they occur
and whether their time trend is of concern. Furthermore, we
compare our results with service tickets and show how the
highlighted clusters reflect the issues reported by the opera-
tors. Finally, we provide a full, scalable implementation3
developed in compliance with the Operational Intelligence
software framework4 to allow fast integration and testing by
the whole LHC community.

Methods

The pipeline proposed in this work comprises an initial pre-
processing step followed by the vectorization, clustering
and description stages. Figure 3 reports a diagram that sum-
marizes our workflow from the initial error message to the
final outputs, and the next subsections provide a thorough
description of each of the stages.

Pre‑Processing

Our approach applies minimal pre-processing to limit hard-
coded feature engineering and let the subsequent vectoriza-
tion stage figure out linguistic features of the error mes-
sages—e.g. grammar, syntax, lexicon and semantic—on its
own. The rationale behind this choice is that the resulting
representation should be more expressive, thus better mod-
eling the semantic of the messages and easing the successive
clustering phase.

With this goal in mind, the raw error strings are first
transformed to lowercase and enriched by appending the
source and destination hostnames. In particular, both host-
names are inserted at the end of each message with pre-
pended src_ or dst_ prefixes to distinguish whether
they were involved as source or destination, respectively.
The resulting text then undergoes a process of quantiza-
tion whereby the raw strings are decomposed into unitary
pieces of information. This process is commonly referred
to as tokenization and the resulting atomic units are called
tokens. In our case, we resort to whitespace tokenization for
the sake of simplicity, which means individual words are

Summary
table

Time plot

Vectorization

Clustering

Post-processing

Impossible to connect to
$URL /srm/managerv2 :
server responded with an
error [3010] login failed

[“impossible”, “connect”,
“hostname01:8443”,
“/srm/managerv2”, “server”,
“error”, “[3010]”, “login”,
“failed”]

Pre-processing

Impossible to connect to
hostname01:8443/srm/managerv2
: server responded with an error
[3010] login failed

Error message

Fig. 3   Pipeline diagram. The error message is first pre-processed and
split into tokens (1). Then, the vectorization stage transforms the tex-
tual information into numeric data (2). The next step is clustering,
where similar error messages are grouped (3). Finally, the messages
are post-processed to get common patterns (4) and the resulting clus-
ters are presented to the operators in the form of a summary table and
time evolution plots

3  https://l.​infn.​it/​opint-​pyspa​rk.
4  https://l.​infn.​it/​opint-​frame​work.

https://l.infn.it/opint-pyspark
https://l.infn.it/opint-framework

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 6 of 15

used as tokens. Once tokens are obtained, they are stripped
of leading and trailing punctuation (":;,.-") . After that,
tokens corresponding to common English stopwords (refer
to pyspark.ml.feature.StopWordsRemover doc-
umentation5 for a full list) or unuseful punctuation (":-+")
are discarded. Finally, the URL addresses are split into two
components: the net location and the relative path of the
requested resources. For instance, httpg://::/srm/
managerv2 is decomposed as httpg://: and srm/
managerv2 . In this way, it is possible to exploit the com-
positional structure of the URL addresses to reduce the
vocabulary of unique tokens. Also, this allows the model to

disentangle the contribution of the single parts in different
messages. The above transformations are illustrated for a
sample error message in Table 1.

Vectorization

The vectorization stage transforms the pre-processed text of
each error message into numeric information that quantita-
tive techniques can digest. Ideally, we would like to map
each message to a point in a vectorial subspace (embedding)
where “similar” messages are close to each other, so that
they can be subsequently grouped based on their location.
Although more recent and powerful alternatives are avail-
able for this purpose [9, 15, 34], they do not work well with
short-text data [1]. Thus, we adopt the simpler yet effec-
tive word2vec language model [30] (skip-gram architecture

Table 1   Message pre-processing pipeline

The table illustrates the pre-processing steps (left) and the resulting data (right) for a sample error message. The raw error string is reported at
the top, and the resulting pre-processed data at the bottom

Raw message “DESTINATION OVERWRITE srm-ifce err: Communication error on send, err: [SE][srmRm][] httpg://hostname01.
Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running on fts-address-004.cern.ch reports Error initializing context
GSS Major Status: Authentication Failed GSS Minor Status Error Chain: globus_gsi_gssapi: SSL handshake problems
globus_gsi_callback_module: Could not verify credential globus_gsi_callback_module: Could not verify credential
globus_gsi_callback_module: The certificate has been revoked: Serial number = -1 (0xFFFFFFFFFFF”

Append hostnames “DESTINATION OVERWRITE srm-ifce err: Communication error on send, err: [SE][srmRm][] httpg://hostname01.
Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running on fts-address-004.cern.ch reports Error initializing context
GSS Major Status: Authentication Failed GSS Minor Status Error Chain: globus_gsi_gssapi: SSL handshake problems
globus_gsi_callback_module: Could not verify credential globus_gsi_callback_module: Could not verify credential
globus_gsi_callback_module: The certificate has been revoked: Serial number = -1 (0xFFFFFFFFFFF src_srmatlas.pic.
es dst_hostname01.Site-4.ch”

Tokenization [“destination”, “overwrite”, “srm-ifce”, “err:”, “communication”, “error”, “on”, “send,”, “err:”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443:/srm/managerv2:”, “gsi-gsoap”, “running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”,
“initializing”, “context”, “gss”, “major”, “status:”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain:”,
“globus_gsi_gssapi:”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module:”, “could”, “not”, “verify”, “cre-
dential”, “globus_gsi_callback_module:”, “could”, “not”, “verify”, “credential”, “globus_gsi_callback_module:”, “the”,
“certificate”, “has”, “been”, “revoked:”, “serial”, “number”, “=”, “-1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_host-
name01.Site-4.ch”]

Remove punctuation [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “on”, “send”, “err”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443:/srm/managerv2”, “cgsi-gsoap”, “running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”,
“initializing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”,
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “could”, “not”, “verify”, “cre-
dential”, “globus_gsi_callback_module”, “could”, “not”, “verify”, “credential”, “globus_gsi_callback_module”, “the”,
“certificate”, “has”, “been”, “revoked”, “serial”, “number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_host-
name01.Site-4.ch”]

Remove stopwords [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”, “err”, “[se][srmrm][]”, “httpg://host-
name01.Site-4.ch:8443:/srm/managerv2,cgsi-gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initial-
izing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”,
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “verify”, “credential”, “glo-
bus_gsi_callback_module”, “verify”, “credential”, “globus_gsi_callback_module”, “certificate”, “revoked”, “serial”,
“number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_hostname01.Site-4.ch”]

Url split [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”, “err”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443”, “/srm/managerv2”, “cgsi-gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”,
“initializing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”,
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “verify”, “credential”, “glo-
bus_gsi_callback_module”, “verify”, “credential”, “globus_gsi_callback_module”, “certificate”, “revoked”, “serial”,
“number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_hostname01.Site-4.ch”]

5  https://​spark.​apache.​org/​docs/​latest/​api/​python/​refer​ence/​api/​pyspa​
rk.​ml.​featu​re.​StopW​ordsR​emover.​html.

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StopWordsRemover.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StopWordsRemover.html

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 7 of 15  16

implemented by pyspark) to compute message embed-
dings starting from pre-processed tokens. Specifically, the
model is trained once on one month of data—from 2020-
10-01 to 2020-10-31—for a total of nearly 28.6 M error
messages, corresponding to a vocabulary of 970 unique
tokens. The pre-trained model is then re-used as-is for online
application, possibly updating it once in a while—say every
4–6 months. The assumption underneath this strategy is that
semantic and syntactic relationships within messages should
be stable or slowly-varying across time, thus not requiring
frequent updates of token’s embedded representations. Once
the model is trained, the resulting word embeddings are used
to transform single tokens into numerical vectors, and they
are then averaged to get the corresponding message repre-
sentations. Regarding hyper-parameters, the window size,
the embedding size and the minimum count were the ones
affecting the final representation the most. For this reason, a
grid search is conducted to compare alternative parametriza-
tions in terms of the following clustering performance. In
practice, the word2vec model is trained with a given hyper-
parameters configuration and then used as embedding for the
subsequent clustering stage. The latter is repeated several
times for errors happening on different days (not included in
the word2vec training period), and the optimal configuration
is then chosen based on the compactness of the resulting
groups in terms of the WSSE and ASW metrics introduced
in Sect. 2.3. The values of w = 12 (window size), h = 300
(embedding size) and min_count = 50 (minimum count)
seem to work best in our experiments and are therefore
adopted in the following.

Clustering

The next step of the pipeline is the clustering stage. In this
study, we resort to clustering for grouping messages includ-
ing similar content. The resulting clusters are therefore inter-
preted as error categories. The idea is to repeat this stage for
online processing of new data bunches, e.g. every day, every
shift or every 4 hours. In fact, conversely to the message
structure, the malfunctions observed in the infrastructure
may change from day to day, which calls for a more flexible
definition of what and how many error categories are present
in the analyzed data.

In practice, we adopt a slight variation of the k-means
algorithm [28] referred to as k-means++ [4]. Although
more advanced clustering algorithms are available and may
be applied to our use case [2, 19, 29, 33, 41], the choice of a
k-means algorithm is justified by its intuitive approach and
good performance in practice in a wide range of applica-
tions [38]. Also, a perhaps more profound and substantial
motive is that the clustering strategy may be seen as a func-
tional but not primary pipeline stage. Indeed, the learned
language model determines the geometry of the embedded

space, thus influencing the point cloud shapes of different
error categories. For this reason, we embrace the idea that
a simple clustering algorithm is preferable, and particular
attention must be devoted to tuning the vectorization stage
for easing the subsequent clustering, possibly even foster-
ing the learning of an optimal representation for a specific
clustering algorithm [40].

To demonstrate the approach, we report the analysis of
FTS data from one full day of operation (2021-01-15)—cor-
responding to roughly 1 M errors and 1.5 GB of data—,
where the cosine similarity is adopted as common practice
in similar applications. To help the successive evaluation
phase, only transfers between pledged WLCG resources
(namely Tier-0, Tier-1s and Tier-2s) are considered in the
analysis, thus discarding transfers involving local clusters
or HPC centers.

The number of clusters, k—in our case, the unknown
number of error categories—is selected at each clustering
stage based on a grid search for k ∈ [12, 15, 20, 30] . For this
purpose, two geometrical criteria are considered to compare
results of different settings. The first is the Within cluster
Sum of Squared Errors (WSSE):

where xi is a generic data point, dist is a desired distance
measure, and Cj and x̄j indicate a generic cluster and its
centroid, respectively. The second is the Average Silhouette
Width (ASW) [35]:

where n is the total number of observations, i.e. error mes-
sages in our case, āi is the average distance of xi from all
the other points belonging to the same cluster CI , and bi is
the minimum average distance of xi from the observations
in all the other clusters Cj,∀j ≠ I . The WSSE measures the
internal cluster variability, so the lower its value, the bet-
ter the performance. The ASW, instead, accounts for both
internal homogeneity and external separation of the clusters
(bounded in the interval [−1,+1] : the closer to 1, the better).
Given the more intuitive reading of ASW values, the latter is
used in the following as the main figure of merit. The results
of the comparison between WSSE and ASW for different
values of k are reported in Fig. 4. Both indicators tend to
improve as the number of clusters increases. In particular,
a value of k = 30 clusters seems to be optimal according to
both criteria. Notably, however, the ASW indicator reaches
very high values (around 0.9) even for lower k values, which
means nearly-optimal performances can be achieved with
fewer clusters. For this reason, the configuration having k =

(1)WSSE(dist, k) =

k
∑

j=1

∑

xi∈Cj

dist
(

xi − x̄j
)

,

(2)ASW(dist, k) =
1

n

n
∑

i=1

bi − āi

max
(

āi, bi
) ,

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 8 of 15

15 is preferred to limit the number of suggested issues and
minimize the operators effort.

Cluster Description

The last stage of the pipeline is the cluster description. This
step is fundamental to present the results in the most intel-
ligible and immediate format for end-users. Indeed, given
the unsupervised learning approach adopted, the interpreta-
tion of the clustering output resorts to the manual inspec-
tion of each group’s content. This, in turn, potentially means
reading hundreds of error strings, comparing the source and
destination information, and spotting suspect time patterns.
Therefore, producing a nice and compact visualization of
the results is paramount to make the approach effective and
avoid excessive manual checks by the operators. For this
reason, the clustering results are summarized into two com-
plementary outputs that are presented to the operators.

First, the summary table Figs. 5 and 6 represents the
most important and informative visualization. This output
is obtained by a first pre-aggregation of the clusters and
is organized in a tabular format. The first three columns
provide numeric summaries concerning the cluster size,
the number of unique strings within each group, and the
corresponding number of unique patterns. The latter is

12 15 20 30
5k

10k

15k

20k

25k

0.86

0.88

0.9

0.92

0.94

Weighted Sum of Squared Errors Average Silhouette Width
k

W
SS

E

AS
W

Fig. 4   Optimization of k. The plot shows the value of the WSSE and
ASW metrics as a function of the number of clusters, k. The hexago-
nal markers indicate the optimal values, which correspond to k = 30
for both indicators

ID

cluster
size # strings # patterns

Top 3

message n % source
rcsite

destination
rcsite

0 819465 117 14

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

85545 10.44% Site-1 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

84453 10.31% Site-2 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

77410 9.45% Site-3 Site-4

6 9673 347 60

source srm_get_turl srm-ifce err connection timed out err [se][statusofgetrequest]
[etimedout] \$URL /srm/managerv2 user timeout over 1838 19.00% Site-22 Site-46

transfer globus_ftp_client the server responded with an error 421 service busy
connection limit exceeded please try again later closing control connection 522 5.40% Site-33 Site-47

transfer globus_ftp_client the server responded with an error 421 service busy
connection limit exceeded please try again later closing control connection 300 3.10% Site-29 Site-47

3 34183 1568 1537

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 13118 38.38% Site-12 Site-35

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 9333 27.30% Site-12 Site-17

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 1707 4.99% Site-12 Site-22

$ADDRESS$URL L

$URL L $ADDRESS

$URL L $ADDRESS

117 14

9673 347 60

connection timed out

service busy
connection limit exceeded

service busy
connection limit exceeded

destination overwrite

authentication failed

could not verify credentia
the certificate has been revoked

Site-4

Site-4

Site-4

[srm_invalid_path] no such file or directory Site-12

Site-12

Site-12

819465

Fig. 5   Summary table: successes. The figure illustrates the main
achievements of the pipeline. Cluster 3 provides immediately clear
indication of the error type, i.e. message, and where it occurs

(green). The others also suggest the approach is actually learning to
understand message parameters and message semantic (yellow, clus-
ters 0 and 6)

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 9 of 15  16

obtained from the raw strings by means of an abstraction
mechanism6 that removes the parametric parts—like file
paths, IP addresses, URLs, checksum values, and so on—
and replaces them by parameter-specific placeholders—
e.g. $FILE_PATH, $ADDRESS, $URL and $CHECKSUM,
respectively. The core part of this visualization is then rep-
resented by the Top 3 section. Here, the three most frequent
triplets of <pattern>-<source>-<destination>
are reported in descending order for each cluster, alongside
their cardinality and the percentage over the cluster size.
Such information provides several precious insights for spot-
ting the source of potential problems, e.g. whether a pattern
is responsible for a large number of failures or if it accounts
for a conspicuous fraction of the cluster.

In addition, this representation allows us to investigate
the contribution of source/destination pairs to each cluster.
In this way, it is possible to discriminate failures based on
both the nature of the problem and the location where they
occurred.

The second output of the pipeline consists of a time evo-
lution plot depicting the temporal trend of the number of
errors generated by each cluster (Fig. 7).

This piece of information is crucial to discriminate
between serious issues that require immediate actions (e.g.

escalating or cyclical failures, see Figs. 7a and d) and prob-
lems that are transient (Fig. 7b) or in resolution (Fig. 7c).

Overall, the idea behind our pipeline is to exploit the sum-
mary tables and the time plots for each cluster as sugges-
tions of potential issues to investigate further. In this way,
the operators can have a first grasp of what kind of failures
are observed and their corresponding amounts (Top-3 sec-
tion), also having an indication of where they are happen-
ing (source/destination sites). Moreover, by looking at the
time charts it is possible to immediately discard transient
(Fig. 7b) or resolved (Fig. 7c) problems based on the evolu-
tion of the number of generated failures over time.

Results

Performance assessment is one of the trickiest parts when
coming to unsupervised methods [24, 38]. Although simi-
larity metrics as ASW and WSSE can be exploited for this
purpose, they only measure the internal homogeneity of
clusters, and their separation from one another. Thus, these
are mere geometric indicators that do not take into account
the actual meaning of the data points clustered in the same
group, i.e. whether the messages share similar content and/
or meaning.

In light of the above concerns, our work splits the evalua-
tion of performances into two complementary phases. First,
a qualitative assessment explores the cluster contents and

ID

cluster
size # strings # patterns

Top 3

message n % source
rcsite

destination
rcsite

4 51370 10108 814

transfer globus_ftp_client the server responded with an error 500 command failed
open/create [error] server responded with an error [3021] unable to get quota
space quota not defined or exhausted $FILE_PATH disk quota exceeded

4912 9.56% Site-7 Site-31

transfer globus_ftp_client the server responded with an error 500 command failed
open/create [error] server responded with an error [3021] unable to get quota
space quota not defined or exhausted $FILE_PATH disk quota exceeded

3709 7.22% Site-8 Site-31

error on $IPv6 [error] server responded with an error [3010] login failed 2950 5.74% Site-9 Site-33

2 15132 11 9

transfer globus_ftp_control gss_init_sec_context failed
globus_gsi_callback_module could not verify credential
globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xffffffffffffffff) subject=/c=bm/o=quovadis limited/cn=quovadis grid ica g2

2048 13.53% Site-27 Site-42

destination srm_put_turl error on the turl request [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 1431 9.46% Site-28 Site-12

destination srm_put_turl error on the turl request [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 914 6.04% Site-15 Site-12

server responded with an error 500
[3021]

disk quota exceeded

server responded with an error

destination srm_put_turl error on the turl request [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists!

destination srm_put_turl error on the turl request [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists!

[3010] login failed

server responded with an error 500

disk quota exceeded
[3021]

Fig. 6   Summary table: limitations. The two clusters show evidence of contamination (red) due to generic partial matching (yellow, cluster 4) or
outliers aggregation (cluster 2)

6  Refer to the full implementation for more details: https://l.​infn.​it/​
opint-​abstr​action.

https://l.infn.it/opint-abstraction
https://l.infn.it/opint-abstraction

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 10 of 15

expresses the goodness of fit based on their interpretability,
i.e. how messages of the same cluster resemble each other’s
meaning. Second, a quantitative evaluation is addressed
by cross-checking the clustering result against the GGUS
reported incidents. In this way, a more direct measure of
impact is given by reckoning the ability of our approach to
mimic current operations.

Qualitative Assessment: Interpretability

This section presents a qualitative assessment of the clus-
tering performance based on the interpretability of the dis-
covered groups of messages. In particular, the discussion is
articulated by simulating the operator’s perspective when
reading the pipeline outputs. In the following, we report five
cherry-picked examples to showcase our approach’s major
successes and failures, articulating the discussion from the
operator’s perspective when reading the pipeline outputs.
Specifically, we first illustrate a thorough examination of the
biggest cluster discovered (see Fig. 5, cluster with id = 0).

Then we highlight some strengths and limitations of our
approach, bringing other exemplary cases as evidence. The
same procedure and similar conclusions apply likewise to
most groups. Thus, a complete dissertation is omitted here
for conciseness7.

The main output of our pipeline is the summary table
illustrated in Figs. 5, 6, which reports a succinct highlight
of the cluster contents and represents the most substantial
source of information. A reasonable reading approach is to
start with the groups including more errors and gradually
proceed with the smaller ones.

In this case, the biggest cluster is shown in Fig. 5 in the
first row with id = 0 . Despite including almost 820k error
strings (# cluster size), the actual number of different
messages is only 117 (# strings). This number further
reduces to simply 14 unique patterns (# patterns) after
the abstraction mechanism described in Sect. 2.4 is applied,
which is way more manageable for manual inspection than
the initial cluster size. A second insight is then provided
by the Top-3 section. Including the auxiliary information
about the source and destination sites involved makes it evi-
dent as the failures are united by the same error template
and destination site. This suggests that Site-4 may have a
problem and that its root cause is linked to the error pattern
reported in the message column. Finally, the last piece
of information to consider is the time evolution plot (see
Fig. 7a). In this case, the cluster shows an increasing trend
throughout the whole day of analysis. Specifically, the num-
ber of generated failures grows from less than 2000 errors at
the beginning of the day to a value around five times higher,
with an increment boost from 9 a.m. onwards. By and large,

Fig. 7   Time evolution charts. The figure illustrates several time patterns for the generated failures in 4 different clusters. Each plot reports the
count of errors in bins of 10 min

7  Full results available at: https://l.​infn.​it/​opint-​resul​ts.

https://l.infn.it/opint-results

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 11 of 15  16

all these factors clearly advise that a potential issue is hap-
pening at Site-4 as it always appears as a destination.
Also, the message information further suggests that the fail-
ure is linked to a revoked certificate that cannot be verified.
Finally, the time chart shows that the problem is escalating
and needs prompt intervention.

Despite providing only good proxies of the actual end
goals—i.e. root causes and solving actions—, this rapid
analysis already points to actionable insights regarding
where and what faults occur and whether they represent a
real concern. Notice that one can draw similar conclusions
by looking separately at the site transfer efficiency and the
most frequent unique strings or patterns. However, observ-
ing high failure rates for Site-4 only answers to where
the faults occur. Likewise, the information contained in the
errors only relates to the what part of the question. Thus,
both approaches would lead to partial conclusions and
require additional investigations to reach the same result.

Conversely, our approach addresses the two tasks
together, thus letting the conclusion emerge rapidly and
naturally. A further advantage is that one can leverage both
site and pattern information for more precise indications. For
instance, one could hypothesize that not only is Site-4
experiencing a problem, but the issue is limited to incom-
ing connections. Indeed, Site-4 is involved only as a des-
tination, and the error patterns point to something related
to destination overwrite. Therefore, the previous
advantages show how shifting from the current site-centric
focus to a hybrid strategy based on error messages and aux-
iliary information is beneficial.

In addition to the practical usage of our pipeline, the
results illustrated in Figs. 5 and 6 expose interesting insights
about what the models are actually learning. For instance,
the substantial reduction observed passing from errors to
patterns suggests that the pipeline has learned something
similar to an abstraction mechanism. Indeed, the raw
error strings of cluster 0 differ only by the $URL and
$ADDRESS parameters (see message column). Although
one may argue that the same could be obtained using a flex-
ible parsing strategy, the superiority of our approach is even
more evident in cluster 6 (Fig. 5). In this case, the
clustering joins two patterns with a far less straightforward
linkage. In fact, this result appears to resemble the human
association that connection timed out (first pat-
tern) may be linked to a service busy connection
limit exceeded (second and third) problem. Notably,

this is a much higher level of abstraction with respect to a
smart parsing approach, and it goes way beyond what one
could achieve based on good abstraction heuristics. Clearly,
this property is highly desirable in practice, as it testifies
that the approach produces a good embedded representation
and recognizes the similarity of messages sharing similar
content. In particular, this holds not only up to some para-
metric parts but also in terms of their actual meaning. In
turn, this observation corroborates the initial design choice
of applying minimal pre-processing and letting the model
learn by itself.

Another clear example of success is provided by the
cluster 3 (Fig. 5), where the visualization makes it
immediate for the operator to understand that the issue is
related to a missing file (no such file or direc-
tory) at Site-12.

However, our pipeline comes also with some limita-
tions (Fig. 6). For instance, the two patterns reported in
cluster 4 show a more vague connection that would
require more in-depth investigation. As a matter of fact, they
seem to be linked due to a generic server responded
with an error which is a very generic incipit to several
error strings. Apart from that, the error codes are different
([3021] vs [3010], which may imply the clustering is
too coarse and a more refined distinction is needed. Also, the
messages point to seemingly extraneous issues (storage vs
authentication). Such observations expose two limitations.
On the one hand, tuning the pipeline to meet the desired
level of granularity when separating different groups is
extremely complex. On the other hand, this behavior may
be due to the difficulty in comparing longer strings (first and
second patterns) with short-text (third).

Another drawback is related to how outliers are handled.
The k-means algorithm is bounded to the specified num-
ber of clusters, k, which sets the number of output groups
irrespectively of the underlying structure of the data. As
a result, the outliers are often incorporated into the closer
cluster. When the latter is big enough, they probably pass
undetected as they are dispersed into a heap of other mes-
sages. However, they may contaminate other clusters when
the affected group has a comparable size, as in the case of
second and third patterns in cluster 2.

Table 2   GGUS pre-validation

Summary of the cross-check between clusters and incidents reported in GGUS. Most of the groups discov-
ered are linked to reported issues, with only 3 false positives and 1 false negative

N. clusters ASW WSSE Perfect match Fuzzy match Partial match False positives False negatives

15 0.89 17107 7 3 2 3 1

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 12 of 15

Quantitative Assessment: GGUS Tickets

The drawback of unsupervised techniques lies in the inherent
difficulty of the evaluation phase, as no ground truth is avail-
able for comparison [38]. A first assessment may come from
the similarity measures computed on the resulting clusters
(see Table 2). The ASW value is around 0.9, which is close
to the optimal value of 1 for such indicator. Hence the clus-
tering stage does a decent job in discovering groups that are
internally compact and well separated. However, this met-
ric does not measure directly the content similarity between
messages. In fact, the ASW treats the strings as points dis-
entangled from their meaning, and we would have the same
score by randomly shuffling the text associated to points
in the embedded representation. This means that the ASW
makes sense only if the word2vec embedding is appropriate,
which is difficult to check. To overcome this limitation, we
have conducted extensive testing using incidents reported in
GGUS as a benchmark. In this way, we attempt to provide a
quantitative assessment of the pipeline performances and a
more direct measure of its potential impact when applied in
practice. In particular, we explore the overlapping between
discovered clusters and the reported issues in two directions
expressing alternative perspectives to the problem. On one
side, we evaluate the usefulness of our approach for the
operators, i.e. how clusters explain failures/tickets (direct
association). On the other, we study the overall capacity of
the pipeline to discover and highlight issues—i.e. how many
failures/tickets are reflected in the clusters (inverse associa-
tion). In the first case, the objective is to limit the effort of
the operators by suggesting as few potential failures as pos-
sible, meanwhile still highlighting the major concerns for the
infrastructure. Thus, the focus is on limiting false positives
at the expense of neglecting minor issues. On the contrary,
the second point of view requires a more comprehensive
search aimed at isolating all the ongoing malfunctions, irre-
spectively of their current priority. Hence, this time the focus
is on maximizing true positives. Table 2 reports a summary
of the evaluation according to both perspectives.

Concerning the first angle, we consider GGUS issues
reported in a skewed time window of 17 days (01-01 to
01-18) around the day of the analysis for a total of 20
tickets related to data transfer failures. Adopting this fil-
tering strategy is convenient since it considers both previ-
ously known issues and delayed detections. The former is
necessary because standard practice in current operations
requests not to open new incident reports when related
investigations are already ongoing. Hence, consider-
ing only tickets opened on the analysis day may lead to
incorrect conclusions. Instead, the latter is convenient
to account for a “grace period” if the operators do not
promptly spot failures that are really happening during the
analysis. Overall, a good level of agreement is observed

between the 15 discovered clusters and the 20 tickets.
Specifically, the 7 perfect matches indicate cases whereby
the reported message and the affected site coincide with
the ones highlighted by the clusters. The 3 fuzzy matches,
instead, refer to occasions whereby the agreement is less
obvious, meaning that the cluster has evident connections
with more than one ticket. Similarly, the 2 partial matches
describe cases whereby either the message or the site coin-
cide. The previous three statistics reveal that 12 out of the
15 suggested failures have led to fruitful investigations,
thus implying a precision between 0.46 and 0.8 depend-
ing on the degree of nuisance one is willing to tolerate.
Besides the above matches, 3 clusters highlight issues not
reported on GGUS in the considered time window. These
false positives indeed entail a futile effort for the operators
and should be avoided, e.g. thwarting in-depth investiga-
tions if the temporal pattern is not escalating and/or the
number of errors is not a concern. Nevertheless, in our
case, posterior checks on the 3 false positives showed hints
for real problems that went undetected or unreported by
the operators, i.e. the error pattern seemed similar to other
incidents opened to different sites.

For the second assessment, we investigate the relationship
between clusters and tickets in the opposite direction, i.e. by
looking at how many reported issues our approach captures.
In this case, we consider a different baseline that provides a
fairer detection performance evaluation. Indeed, it is reason-
able to think that the failures observed during the analysis
may be correlated to earlier tickets, thus justifying the adop-
tion of a wide time window for the direct association.

However, the same rationale does not necessarily apply
when we reverse our perspective. In fact, there is no prior
guarantee that a past ticket will generate new failures at a
given moment in the future. Hence, considering all tickets
undergoing investigations would potentially bias our meas-
urement since specific past failures may not produce new
malfunctions during the day of the analysis, thus resulting in
untruthful false negatives. For this reason, in the case of the
inverse association we limit our baseline to consider solely
the tickets for which failures were really observed during
the day of the analysis, thus reducing the initial 20 reports
to only 9. Given this reference framework, the clusters suc-
cessfully identify 8 out of 9 tickets, thus overlooking only
a single issue.

To summarize, the previous results show that the
approach presents promising perspectives given the com-
plexity of the task and the completely unsupervised approach
embraced. Although conducting an indisputable quantita-
tive assessment is challenging—if not impossible with the
available data—, the considerations expressed above fur-
nish a reasonable proxy of the potential of our approach. Of
course, a trade-off between the two perspectives is desirable

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 13 of 15  16

in practice, for which more tuning is necessary with the help
of operators and site experts.

Discussion

The huge scale of modern computing infrastructures has
made automatic management solutions essential for a proper
exploitation of such resources. This is particularly true for
WLCG and the LHC experiments, whereby the upcoming
upgrade will deliver ten times the current volumes at a flat
budget for infrastructure management.

This work proposes a pipeline to support DDM opera-
tions by suggesting potential transfer failures to investigate
more in depth. The approach has already undergone some
pre-production integration and testing. In particular, the
implementation is already compatible—at least to some
extent—with the production systems as it natively interacts
with the raw data streams, and it complies with the timely
execution requirements for online processing. In fact, the
pipeline takes around 2.5/3 h for one day of data, which
is compatible with one or two applications per 8-h shifts.
This runtime is almost equally divided among the cluster-
ing stage—with a grid search for the optimization of k as
described in Sect. 2.3—and the post-processing/pre-aggre-
gation needed for the visualization. Furthermore, no spe-
cific effort to optimize such runtimes was attempted, which
suggests that some space for improvement is probably still
available.

In terms of performance, our pipeline delivers promis-
ing results. The output clusters show an evident ability to
capture both structural and semantic similarity between
messages, as discussed in Sect. 3.1. This result is achieved
despite applying minimal hard-coded feature engineering
during pre-processing and exploiting simple models for
vectorization and clustering. Interestingly, incorporating
additional auxiliary information related to the source and
destination hostnames seems to help unravel higher-level
interactions between the nature of the issues and where they
occur. This, in turn, provides a finer detail when spotting
problems that may aid the human operators to restore the
proper functioning of the infrastructure faster.

The previous considerations are also corroborated by a
quantitative assessment of the pipeline’s potential impact
when applied to daily workflows. This is done by compar-
ing the outputs of our approach to the incidents reported in
GGUS in a reasonable time window around the day of the
analysis. In terms of the direct association between clusters
and tickets, the performance varies from average to decent
depending on how much nuisance one is willing to tolerate
in the output. Regarding the inverse relationship, instead, the

approach is highly accurate since it highlights 8 out of the 9
incidents observable on the day of the analysis.

Nonetheless, some adjustment and tuning would be help-
ful prior to full integration into production. First, the ana-
lyzed clusters show indications that additional tuning may be
needed to guarantee a more suitable level of granularity. This
task is highly application-specific and requires the direct
involvement of operators and site experts. A second concern
is related to the limited number of errors shown. Ideally, the
perfect output for our use case would be one error pattern—
or even a more human-readable description directly pointing
to the source of the problem—per cluster, for a small number
of clusters (e.g. ≤ 6 ). In practice, however, the magnitude
of the problem still refers to the actual number of failures.
Even reducing it to the minimum, this is still bounded by the
number of combinations between unique strings/patterns and
source/destination locations, which is clearly overwhelming
to handle for human operators. Therefore, the desired out-
put is hardly deliverable as there is a trade-off between the
clusters’ internal homogeneity (number of patterns) and their
number. For this reason, we reach a compromise by setting
a higher value of k and displaying just a fixed, customiz-
able portion of each cluster (three patterns in the current
implementation). However, limiting the visualized patterns
potentially hinders serious faults of medium and small sizes.
Moreover, the necessity to mask message parameters to get
more informative and abstract descriptions prevents using
their values for troubleshooting—e.g. when the failures are
due to specific parameter values. To comply with the above
requirements, a possible solution is the implementation of
a flexible and efficient user interface that allows the opera-
tors to adjust the number of displayed patterns and enables
interactive drill-down to investigate more closely the effect
of parametric values. Nevertheless, guaranteeing a good bal-
ance constitutes an intrinsic challenge of our use case, and
its resolution again requires a direct tuning by experts.

Furthermore, although it makes sense to cross-check clus-
tering results with GGUS tickets for a quantitative evalua-
tion, this comparison has drawbacks. On one side, GGUS
incidents force to focus solely on reported failures, thus pre-
venting the study of undetected issues and masking some
omission policies due to external factors— e.g. the site is in
downtime or blacklisted, or the fault is known to be transient
and therefore not reported. On the other side, the procedure
is sensitive to the choice of the time window. Indeed the
issues may have no match because they are reported before
the selected period or due to delays in their discovery and
reporting. All in all, the assessment may be biased because
of these factors, thus limiting the reaches of the conclusions
drawn. A better solution would be directly measuring the
impact on workloads, which requires the involvement of
operators and/or site experts for better tuning and use in
production. For this reason, the idea behind our work is to

	 Computing and Software for Big Science (2022) 6:16

1 3

 16   Page 14 of 15

showcase a possible approach and hopefully stimulate fur-
ther developments.

Finally, a potential issue may arise if the the error mes-
sages suddenly change in content or structure. However, this
is not likely to happen inadvertently and should therefore
be a minor concern. Moreover, a simple re-training of the
vectorization stage should suffice in such circumstance, so
that the updated embedding correctly represents the new
message structure and semantic.

Future Work

All of the previous adjustments demand additional in-depth
studies, each requiring a lengthy manual review of the results
due to the unsupervised approach. Also, most of the above
solicit direct participation of system experts to guarantee the
soundness of the results and proper tuning. Considering the
several appointed investigations and the conspicuous num-
ber of alternative combinations, it becomes clear how the
requested effort is not sustainable and does not scale to the
comparison of adversarial approaches. A possible solution
we envision for future developments is represented by the
collection of a reference dataset in which to store labels
for error categories, root causes, incident priority and solv-
ing actions. In this way, the evaluation of new experiments
would become immediate and systematic (e.g. [27]). Also,
this would make the investigation of novel techniques sus-
tainable, enlarging the plethora of applicable approaches
to supervised methods and enabling a coherent compari-
son of alternative algorithms. Perhaps more importantly,
the derived measure of performance would be linked to the
actual goal of the analysis, thus allowing a direct optimiza-
tion of the models for the specific task of interest.

Remaining in the unsupervised learning domain, sev-
eral alternative approaches can be explored both regarding
the vectorization stage [9, 15, 34] and for clustering [2, 19,
29, 33, 41]. Another interesting research line would be to
explore end-to-end solutions that address both vectorization
and clustering stages together. For example, one could try to
directly optimize the learned embedding for the following
clustering stage [40]. Alternatively, one can tap into topic
modeling literature to jointly compute the vector representa-
tion of the messages and the derived topics (error categories
in our use case) [8, 11, 23, 32].

Finally, a crucial contribution may come from the stand-
ardization of the error messages at source so to make them
more consistent and explanatory. This would be helpful in
two ways. On one side, more structured error templates
would be easier to parse during the abstraction mechanism,
thus improving the visualization of the results. On the other
side, it would facilitate the analysis of the messages, perhaps

allowing the adoption of simple heuristics for parsing them
and questioning the need of an intelligent approach in the
first place.

Acknowledgements  This work was done as part of the distributed
computing research and development programme within the ATLAS
Collaboration, which we thank for their support.

Funding  Open access funding provided by Alma Mater Studiorum -
Università di Bologna within the CRUI-CARE Agreement.

Data availability statement  The data that support the findings of this
study are available upon reasonable request from the respective LHC
Experiments.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Albalawi R, Yeap TH, Benyoucef M (2020) Using topic modeling
methods for short-text data: a comparative analysis. Front Artif
Intell. https://​doi.​org/​10.​3389/​frai.​2020.​00042

	 2.	 Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics:
ordering points to identify the clustering structure. SIGMOD Rec.
28(2):49–60. https://​doi.​org/​10.​1145/​304181.​304187

	 3.	 Antoni T, Bühler W, Dres H, Grein G, Roth M (2008) Global
grid user support—building a worldwide distributed user support
infrastructure. J Phys: Conf Ser 119(5):052002. https://​doi.​org/​10.​
1088/​1742-​6596/​119/5/​052002

	 4.	 Arthur D, Vassilvitskii S (2007) K-means++: the advantages of
careful seeding. In: In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms

	 5.	 ATLAS Collaboration: The atlas experiment at the cern large had-
ron collider. Journal of instrumentation 3:S08003 (2008)

	 6.	 Barisits M, Beermann T, Berghaus F, Bockelman B, Bogado J,
Cameron D, Christidis D, Ciangottini D, Dimitrov G, Elsing M
et al (2019) Rucio: scientific data management. Comput Softw
Big Sci 3(1):1–19

	 7.	 Bird I (2011) Computing for the large hadron collider. Ann Rev
Nuclear Particle Sci 61:99–118. https://​doi.​org/​10.​1146/​annur​
ev-​nucl-​102010-​130059

	 8.	 Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J
Mach Learn Res 3:993–1022

	 9.	 Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal
P, Neelakantan A, Shyam P, Sastry G, Askell A et al (2020)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/frai.2020.00042
https://doi.org/10.1145/304181.304187
https://doi.org/10.1088/1742-6596/119/5/052002
https://doi.org/10.1088/1742-6596/119/5/052002
https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1146/annurev-nucl-102010-130059

Computing and Software for Big Science (2022) 6:16 	

1 3

Page 15 of 15  16

Language models are few-shot learners. arXiv preprint arXiv:​
2005.​14165

	10.	 Calafiura P, Catmore J, Costanzo D, Di Girolamo A (2020) Atlas
hl-lhc computing conceptual design report. Tech. rep., CERN,
Geneva. https://​cds.​cern.​ch/​record/​27296​68

	11.	 Chen Y, Zhang H, Liu R, Ye Z, Lin J (2019) Experimental explo-
rations on short text topic mining between lda and nmf based
schemes. Knowl-Based Syst 163:1–13

	12.	 Clissa L (2022) Survey of big data sizes in 2021
	13.	 Decker L, Leite D, Giommi L, Bonacorsi D (2020) Real-time

anomaly detection in data centers for log-based predictive main-
tenance using an evolving fuzzy-rule-based approach. In: 2020
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1–8. https://​doi.​org/​10.​1109/​FUZZ4​8607.​2020.​91777​62

	14.	 Decker L, Leite D, Viola F, Bonacorsi D (2020) Comparison of
evolving granular classifiers applied to anomaly detection for pre-
dictive maintenance in computing centers. In: 2020 IEEE Confer-
ence on Evolving and Adaptive Intelligent Systems (EAIS), pp.
1–8. https://​doi.​org/​10.​1109/​EAIS4​8028.​2020.​91227​79

	15.	 Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-train-
ing of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:​1810.​04805

	16.	 Di Girolamo A, Legger F, Paparrigopoulos P, Schovancová J,
Beermann T, Boehler M, Bonacorsi D, Clissa L, Decker-de-Sousa
L, Diotalevi T, Giommi L, Grigorieva M, Giordano D, Hohn D,
Javurek T, Jezequel S, Kuznetsov V, Lassnig M, Mageirakos V,
Olocco M, Padolski S, Paltenghi M, Rinaldi L, Sharma M, Tisbeni
SR, Tuckus N (2022) Preparing distributed computing operations
for the hl-lhc era with operational intelligence. Front Big Data
4:115. https://​doi.​org/​10.​3389/​fdata.​2021.​753409

	17.	 Di Girolamo (2020) Alessandro, Legger, Federica, Paparrigopou-
los, Panos, Klimentov, Alexei, Schovancová, Jaroslava, Kuznet-
sov, Valentin, Lassnig, Mario, Clissa, Luca, Rinaldi, Lorenzo,
Sharma, Mayank, Bakhshiansohi, Hamed, Zvada, Marian, Bona-
corsi, Daniele, Rossi Tisbeni, Simone, Giommi, Luca, Decker de
Sousa, Leticia, Diotalevi, Tommaso, Grigorieva, Maria, Padolski,
Sergey: Operational intelligence for distributed computing sys-
tems for exascale science. EPJ Web Conf. 245:03017. https://​doi.​
org/​10.​1051/​epjco​nf/​20202​45030​17

	18.	 Diotalevi T, Bonacorsi D, Falabella A, Giommi L, Martelli B,
Michelotto D, Morganti L, Rossi Tisbeni S (2019) Collection
and harmonization of system logs and prototypal Analytics ser-
vices with the Elastic (ELK) suite at the INFN-CNAF computing
centre. In: Proceedings of International Symposium on Grids &
Clouds 2019—PoS(ISGC2019), vol. 351, p. 027. https://​doi.​org/​
10.​22323/1.​351.​0027

	19.	 Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. KDD 96:226–231

	20.	 Giommi L, Bonacorsi D, Diotalevi T, Rinaldi L, Morganti L, Fala-
bella A, Ronchieri E, Ceccanti A, Martelli B, Tisbeni S (2019)
Towards predictive maintenance with machine learning at the
INFN-CNAF computing centre. In: Proceedings of International
Symposium on Grids & Clouds 2019—PoS(ISGC2019), 351:003.
https://​doi.​org/​10.​22323/1.​351.​0003

	21.	 Giordano D (2021) Paltenghi, Matteo, Metaj, Stiven, Dvorak,
Antonin: Anomaly detection in the cern cloud infrastructure. EPJ
Web Conf. 251:02011. https://​doi.​org/​10.​1051/​epjco​nf/​20212​
51020​11

	22.	 Grigorieva M, Grin D (2021) Clustering error messages produced
by distributed computing infrastructure during the processing of
high energy physics data. Int J Mod Phys A 36(10):2150070–130.
https://​doi.​org/​10.​1142/​S0217​751X2​15007​06

	23.	 Grootendorst M (2022) Bertopic: Neural topic modeling with a
class-based tf-idf procedure. https://​doi.​org/​10.​48550/​ARXIV.​
2203.​05794

	24.	 Guyon I, Von Luxburg U, Williamson RC (2009) Clustering: sci-
ence or art. In: NIPS 2009 workshop on clustering theory, pp.
1–11. Citeseer

	25.	 Karavakis E, Manzi A, Rios MA, Keeble O, Cabot CG, Simon M,
Patrascoiu M, Angelogiannopoulos A (2020) Fts improvements
for lhc run-3 and beyond. In: EPJ Web of Conferences, vol. 245,
p. 04016. EDP Sciences

	26.	 Leite D, Decker L, Santana M, Souza P (2020) Egfc: Evolving
gaussian fuzzy classifier from never-ending semi-supervised data
streams - with application to power quality disturbance detection
and classification. In: 2020 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pp. 1–9. https://​doi.​org/​10.​1109/​
FUZZ4​8607.​2020.​91778​47

	27.	 Lin Q, Zhang H, Lou JG, Zhang Y, Chen X (2016) Log clustering
based problem identification for online service systems. In: 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing Companion (ICSE-C), pp. 102–111. IEEE

	28.	 Lloyd S (1982) Least squares quantization in PCM. IEEE Trans
Inf Theory 28(2):129–137

	29.	 McInnes L, Healy J, Astels S (2017) hdbscan: hierarchical density
based clustering. J Open Sourc Softw 2(11):205

	30.	 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:​
1301.​3781

	31.	 Minarini F, Decker L (2020) Time-series anomaly detection
applied to log-based diagnostic system using unsupervised
machine learning approach. In: Conference of Open Innovations
Association, FRUCT, 27, pp. 343–348. FRUCT Oy

	32.	 Neogi PPG, Das AK, Goswami S, Mustafi J (2020) Topic mod-
eling for text classification. Emerging technology in modelling
and graphics. Springer, Berlin, pp 395–407

	33.	 Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analy-
sis and an algorithm. In: Advances in neural information process-
ing systems, pp. 849–856

	34.	 Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,
Zettlemoyer L (2018) Deep contextualized word representations.
arXiv preprint arXiv:​1802.​05365

	35.	 Rousseeuw PJ (1987) Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. J Comput Appl Math
20:53–65 https://​doi.​org/​10.​1016/​0377-​0427(87)​90125-7. www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​03770​42787​901257

	36.	 Schovancová J (2019) Atlas computing operations. Tech. rep.,
ATLAS Collaboration. https://​indico.​cern.​ch/​event/​809227/​contr​
ibuti​ons/​33708​97/​attac​hments/​18209​38/​29783​08/​20190​401-​
ATLAS_​Compu​ting_​Opera​tion_​parti​al_​view.​pdf

	37.	 Tisbeni SR (2019) Big data analytics towards predictive mainte-
nance at the infn-cnaf computing centre. PhD thesis, University
of Bologna. http://​amsla​urea.​unibo.​it/​18430/

	38.	 Von Luxburg U, Williamson RC, Guyon I (2012) Clustering: sci-
ence or art? In: Proceedings of ICML workshop on unsupervised
and transfer learning. JMLR Workshop and Conference Proceed-
ings, pp. 65–79

	39.	 Wold S, Esbensen K, Geladi P (1987) Principal component analy-
sis. Chemom Intell Lab Syst 2(1–3):37–52

	40.	 Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards
k-means-friendly spaces: Simultaneous deep learning and clus-
tering. In: International conference on machine learning, PMLR,
pp. 3861–3870

	41.	 Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient
data clustering method for very large databases. SIGMOD Rec.
25(2):103–114. https://​doi.​org/​10.​1145/​235968.​233324

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://cds.cern.ch/record/2729668
https://doi.org/10.1109/FUZZ48607.2020.9177762
https://doi.org/10.1109/EAIS48028.2020.9122779
http://arxiv.org/abs/1810.04805
https://doi.org/10.3389/fdata.2021.753409
https://doi.org/10.1051/epjconf/202024503017
https://doi.org/10.1051/epjconf/202024503017
https://doi.org/10.22323/1.351.0027
https://doi.org/10.22323/1.351.0027
https://doi.org/10.22323/1.351.0003
https://doi.org/10.1051/epjconf/202125102011
https://doi.org/10.1051/epjconf/202125102011
https://doi.org/10.1142/S0217751X21500706
https://doi.org/10.48550/ARXIV.2203.05794
https://doi.org/10.48550/ARXIV.2203.05794
https://doi.org/10.1109/FUZZ48607.2020.9177847
https://doi.org/10.1109/FUZZ48607.2020.9177847
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1802.05365
https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
https://indico.cern.ch/event/809227/contributions/3370897/attachments/1820938/2978308/20190401-ATLAS_Computing_Operation_partial_view.pdf
https://indico.cern.ch/event/809227/contributions/3370897/attachments/1820938/2978308/20190401-ATLAS_Computing_Operation_partial_view.pdf
https://indico.cern.ch/event/809227/contributions/3370897/attachments/1820938/2978308/20190401-ATLAS_Computing_Operation_partial_view.pdf
http://amslaurea.unibo.it/18430/
https://doi.org/10.1145/235968.233324

	Analyzing WLCG File Transfer Errors Through Machine Learning
	Abstract
	Introduction
	Background
	Related Works
	Contribution

	Methods
	Pre-Processing
	Vectorization
	Clustering
	Cluster Description

	Results
	Qualitative Assessment: Interpretability
	Quantitative Assessment: GGUS Tickets

	Discussion
	Future Work
	Acknowledgements
	References

