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Abstract
The increasingly growing scale of modern computing infrastructures solicits more ingenious and automatic solutions to 
their management. Our work focuses on file transfer failures within the Worldwide Large Hadron Collider Computing Grid 
and proposes a pipeline to support distributed data management operations by suggesting potential issues to investigate. 
Specifically, we adopt an unsupervised learning approach leveraging Natural Language Processing and Machine Learning 
tools to automatically parse error messages and group similar failures. The results are presented in the form of a summary 
table containing the most common textual patterns and time evolution charts. This approach has two main advantages. First, 
the joint elaboration of the error string and the transfer’s source/destination enables more informative and compact trouble-
shooting, as opposed to inspecting each site and checking unique messages separately. As a by-product, this also reduces the 
number of errors to check by some orders of magnitude (from unique error strings to unique categories or patterns). Second, 
the time evolution plots allow operators to immediately filter out secondary issues (e.g. transient or in resolution) and focus 
on the most serious problems first (e.g. escalating failures). As a preliminary assessment, we compare our results with the 
Global Grid User Support ticketing system, showing that most of our suggestions are indeed real issues (direct association), 
while being able to cover 89% of reported incidents (inverse relationship).
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Introduction

To cope with the growing amount of data to store and pro-
cess [12], the big data players of both industry and acad-
emy have gradually moved to new computing paradigms in 
recent years. For instance, alternative infrastructures such 
as distributed and cloud computing have been specifically 
designed to address these new requirements, exploiting mul-
tiple resources geographically distributed and accessible via 
a network. However, the boost in performance guaranteed 
by these technologies comes with the price of requiring 
very complex interactions of both hardware and software 

components. Indeed, the wider the infrastructure, the higher 
the chances of something going wrong and the bigger the 
effort to detect, inspect and solve the issues. For this reason, 
we propose a data-driven pipeline to reduce the workload for 
maintaining the infrastructure integrity. Although applicable 
to several use cases, the presented approach is discussed in 
the framework of data transfer failures within the Worldwide 
Large Hadron Collider Computing Grid (WLCG) [7].

Background

WLCG is a global collaboration that links up more than 
170 computing centers in 42 countries, serving an audience 
of more than 12000 physicists all around the world. The 
WLCG mission is to provide computing resources to store, 
distribute and analyze the data generated by the Large Had-
ron Collider (LHC). Given the scale and complexity of the 
LHC data, this requires massive storage facilities, immense 
computing power, global networking, tailored software, ade-
quate personpower and, of course, funding. To achieve such 
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challenging goals, WLCG leverages a distributed computing 
paradigm, where resources are shared among member states 
and made equally available to all partners, regardless of their 
physical location.

Scientific data are arguably the most valuable asset of 
the High-Energy Physics community. As a consequence, 
they are continuously transferred across the grid for several 
purposes, and a paramount part of the WLCG operations 
involves Distributed Data Management (DDM) processes. 
Indeed, stringent workflows are put in place by the experi-
ments to ensure data distribution and redundancy, thus pre-
venting data loss and guaranteeing reliable accessibility. 
Also, analysis workflows require individual researchers to 
transfer data of interest for their analyses. This potentially 
requires retrieving data from geographically distributed and 
heterogeneous storage resources (e.g. tape or disk), trans-
ferring them to computing resources that may be situated 
elsewhere, and transferring the results back to their machines 
to conduct their studies.

As a result, massive amounts of data are constantly moved 
across the grid thanks to various services for file transfer that 
perform “third party copy”, i.e. a direct storage-to-storage 
movement of files without routing them through the client. 
These services are used alternately or concurrently to cre-
ate a chain of software interfaces between the end-users and 
the physical resources. At the lowest level there is the File 
Transfer System (FTS) [25], which is configured to reliably 
interact with diverse storage devices and filesystems, execute 
fault-tolerant transactions and support users authentication. 
On top of that, the various collaborations may add other 
middleware layers as higher-level interfaces for the users. 
For example, ATLAS [5] uses an open-source framework 
called Rucio [6] that orchestrates the transfers, creating a 
catalog to track data locations, managing replication rules 
and retries in case of failures. Clearly, ensuring high quality 
of service—in terms of transfer error rates, data integrity and 
resources availability—is very hard due to the huge volumes 
transferred, the heterogeneity of the software and hardware 
components and the large user base.

In practice, occasional faults may happen at various levels 
during data transfers, which may include a wide range of root 
causes, provoking failures during the shipment of the files. 
When this happens, FTS collects the output statuses of all 
sub-systems that play a role during the transfer, and it con-
catenates them sequentially into a single message that can be 
inspected for debugging. These errors may vary from naive 
ones—e.g. a mistyped command or the request of an una-
vailable file—to more severe software and hardware defects. 
For instance, the requesting endpoint or archiving server 
might be temporarily unreachable (connection shortage). 
Likewise, the requested data may be corrupted (checksum 
error) due to storage hardware faults or unstable connections 
(network problem). Also, there might be timeouts when the 

shipment takes more than the pre-configured waiting win-
dow—e.g. when the desired data are bigger than usual and/
or must be retrieved from tape, thus requiring more time. In 
addition, errors of a different nature may often arise due to 
the interactions between miscellaneous middleware layers. 
All of these factors, and more, can generate significant ser-
vice disruptions and infrastructure malfunctions that require 
prompt intervention. For this reason, data transfer processes 
are continuously monitored by teams of operators. When an 
issue is detected, the operators report it through the Global 
Grid User Support (GGUS) ticketing system [3], and experts 
and site maintainers take care of their solution.

To give an idea of the volumes involved, after the last 
LHC run1 the ATLAS collaboration alone experienced 
an average traffic of more than 2 PB per day in 2019 [10], 
corresponding to roughly 1.5–2 million files moved each 
day. Nearly 10% of these transfers failed producing about 
100–200k errors on a daily basis. In total, transfer failures 
generated more than 4k incident reports filed in 2019 for all 
the LHC experiments (1141 for ATLAS only). Due to the 
complexity of the infrastructure and its layered composi-
tion, understanding the root causes of the problem and fix-
ing them requires time and demands a great human effort—
a few dozens of part-time contributors [36]—which may 
entail disruptions of service. The average solving time may 
vary from a few hours or days—e.g. in the case of issues 
that are easy to solve or have already been dealt with in the 
past—to entire weeks—e.g. for unknown problems or more 
troublesome malfunctions that imply important software 
or hardware interventions. In practice, the median solving 
time for incidents reported by the ATLAS, CMS and LHCb 
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Fig. 1   Tickets solving time. Boxplot of the distribution of the solv-
ing time for GGUS incidents reported in 2019 by ATLAS, CMS and 
LHCb collaborations. The box sits on the central half of the distri-
bution (25-th–75th percentiles), while the whiskers span the standard 
+/– 1.5 times the interquartile range. The solid and dashed horizontal 
lines indicate the median and the mean, respectively

1  The figures presented in this paragraph remained quite stable dur-
ing the LHC shutdown and are still indicative of current loads.
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collaborations in 2019 was around 17 days, with a 90th per-
centile of 44 days and a long tail extending over 100 days 
(see Fig. 1).

When a transfer failure happens, the FTS log files are 
parsed and the most relevant transfer features are extracted 
and re-organized in a structured format. In particular, this 
involves collecting the exit status of each of the subsystems 
responsible for the transfer and appending them to compose 
a global error message. This information is then exposed to 
the on-duty operators along with other characteristics—e.g. 
source and destination endpoints, file size, exchange proto-
col and so on—and visualizations—e.g. time evolution plots 
or site transfer efficiency—for more in-depth investigations.

Current operations are based on a site-centric approach 
where trained personnel monitor the status of the various 
services almost 24/7 and try to spot hints of incorrect or 
undesired behaviors. In particular, the operators look at 
Grafana dashboards to get a high-level overview of the 

system. A usual starting point is the so-called efficiency 
matrix (Fig. 2), where the percentage of successful transfers 
is reported. The granularity level is customizable and it may 
range from global transfers between national cloud infra-
structures involving more computing centers to a finer track-
ing of particular site exchanges or even specific endpoint 
links. When the efficiency falls below an acceptable thresh-
old, typically 60–70%, on-duty operators start to investigate 
the issue at a lower level by checking (i) where the error hap-
pened, (ii) how many errors are produced, (iii) what is the 
time pattern (temporary, extended or cyclical) and (iv) which 
error messages are generated. However, this procedure gives 
rise to many false alarms as it is usual to encounter prob-
lems that do not represent a real concern. For instance, this 
may happen when few transfers are attempted so even a low 
number of errors imply a high failure rate, or when there 
are after-effects of a transient issue that had already been 
fixed. Likewise, sometimes unnecessary drill-down activity 

Fig. 2   Transfer efficiency matrix (Grafana). Transfer sources are shown as columns and destinations as rows. The drop-down menus at the top 
allow for custom filtering at the desired level of granularity
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is performed for actual issues that were already known, as 
in the case of ongoing tickets or site downtimes, for which 
reporting is not required. As a result, many human resources 
are employed in repetitive tasks that would enormously ben-
efit from automation.

In addition to that, the site-centric strategy described 
above has some drawbacks. Firstly, monitoring focuses on 
spotting where issues occur, while understanding the actual 
root causes is typically demanded of site experts in a sub-
sequent investigation. Secondly, problems generating few 
error messages are usually ignored. This is natural, and to 
some extent desirable, as having limited resources forces us 
to address bigger malfunctioning first. However, that could 
be a potential pitfall in cases where promptly fixing a minor 
issue may prevent the appearance of a more significant and 
longer to solve defect.

All these problems could be tackled programmatically 
by standardizing the logging output of all the services. In 
this way, neat error messages would point directly to the 
source of the problem, thus allowing complete automation. 
However, the distributed nature of the infrastructure ham-
pers such an approach. In fact, the heterogeneous nature of 
WLCG computing resources and their intricate interactions 
demands for custom adjustments and local configurations 
which are just too complex to accommodate using a static 
strategy only. Hence, all these considerations expose the 
need for an intelligent support tool for speeding up infra-
structure management to meet the productivity requirements 
for the near future.

Related Works

The automation of infrastructure management and mainte-
nance has become crucial in recent years. The increasingly 
large scale of modern data centers, and the adoption of dis-
tributed resources that necessitate the interaction of diverse 
hardware and software components, have made this task 
extremely complex. Consequently, traditional approaches 
to infrastructure management where manual human inter-
vention is required have become impractical or even use-
less. For this reason, several communities involved in the 
Worldwide LHC Computing Grid have started a project 
named Operational Intelligence2 that aims at increasing the 
level of automation in computing operations, thus reducing 
human interventions. As a result of the joint effort, several 
strategies have already been proposed to support operational 
workflows in various ways [16–18, 26]. Some works address 
anomaly detection by leveraging overall workloads—e.g. 
number of running processes, hardware resources usage, 

network saturation—as indicators of infrastructure health 
and monitoring their trends over time.

The deviations from normal operations are considered 
anomalies and trigger alerts to be investigated by experts 
[21].

Other attempts rely on event logs as the primary way 
to register key runtime information. These reports record 
events happening during the execution of a system to provide 
an audit trail that can be helpful to understand the system 
activity and diagnose problems. This information can be 
exploited in various forms. Some approaches focus on log 
activity summary statistics (e.g. number of printed lines) and 
try to disentangle nominal behaviors from suspect activity 
[13, 14, 31]. Other alternatives use the log content instead, 
thus directly analyzing the textual information contained 
in the log files [20]. These vary from traditional keyword 
searches—e.g. “kill”, “error”, “fail”, “exception”— and heu-
ristics [37] to smarter tools based on deep learning language 
models.

Another interesting approach suggests using a convenient 
pipeline to group logs of failed jobs and exploit the knowl-
edge coming from previous failures [27]. After substituting 
placeholders instead of parametric parts, the textual informa-
tion of each log line is encoded (vectorization stage) based 
on Inverse-Document event Frequency (IDF) and contrast-
based weighting. The resulting numerical representation 
undergoes an agglomerative hierarchical clustering algo-
rithm that finds groups of similar logs. The resulting clusters 
are then summarized by their centroids and compared to a 
knowledge base of previous failures and corresponding solu-
tions. If the sequence similarity to one of the known issues 
is above a given threshold, the corresponding actions are 
applied to solve the problem. Otherwise, the log sequence 
is passed to system experts for manual inspection and the 
reference dataset is successively updated. In this way, human 
resources are involved only in handling new issues, while 
previous knowledge is exploited for recurrent ones.

Some approaches specifically target data processing 
workflows within WLCG, with a focus on error messages 
coming from failed analysis jobs [22]. First, the error mes-
sages are tokenized (for more details see Sect. 2.2) and 
cleaned from digits, punctuation and special characters. 
Then, a hashing algorithm replaces the parametric parts of 
the message with a placeholder, and the resulting patterns 
are exploited for the following elaborations. In this way, the 
total amount of data is reduced by 90–95%. After the above 
pre-processing, the vectorization stage is based on word-
2vec [30] that computes a numerical representation for each 
token. The overall message representation is then retrieved 
by averaging over single word embeddings. The resulting 
representation is then reduced in dimension by means of 
principal components analysis [39], and a DBSCAN [19] 
algorithm is adopted for the clustering stage. Finally, cluster 2  For more details: https://​opera​tional-​intel​ligen​ce.​web.​cern.​ch/.

https://operational-intelligence.web.cern.ch/
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descriptions are extracted by searching common textual pat-
terns and key phrases for all messages belonging to the same 
cluster.

The advantage of text-based pipelines is that the textual 
information can aid system experts finding root causes and 
explanations which are harder to grasp from the amount of 
logging activity alone. However, the above methods require 
significant pre-processing that may need deep customization 
for specific data, which hampers their adaptation to novel 
use cases with possibly diverse logging conventions, termi-
nology and structure. Furthermore, no additional informa-
tion (e.g. site, time pattern) is leveraged apart from the text 
itself, which limits their practical impact.

Contribution

The goal of this work is to discuss a complementary 
approach to support current DDM operations for grid moni-
toring based on a computer-aided strategy independent of 
experiment-specific settings. In particular, we propose a 
pipeline that takes into account FTS error messages, source 
and destination hostnames, and time patterns. Unsupervised 
machine learning techniques are then leveraged to identify 
clusters of similar failures that act as suggestions of potential 
issues for on-duty operators. Also, we perform a post-mor-
tem analysis to test our approach in a real-world scenario, 
showing that: (i) our approach is able to find groups of simi-
lar errors and (ii) the proposed visualization enables to spot 
quickly what failures are more frequent, where they occur 
and whether their time trend is of concern. Furthermore, we 
compare our results with service tickets and show how the 
highlighted clusters reflect the issues reported by the opera-
tors. Finally, we provide a full, scalable implementation3 
developed in compliance with the Operational Intelligence 
software framework4 to allow fast integration and testing by 
the whole LHC community.

Methods

The pipeline proposed in this work comprises an initial pre-
processing step followed by the vectorization, clustering 
and description stages. Figure 3 reports a diagram that sum-
marizes our workflow from the initial error message to the 
final outputs, and the next subsections provide a thorough 
description of each of the stages.

Pre‑Processing

Our approach applies minimal pre-processing to limit hard-
coded feature engineering and let the subsequent vectoriza-
tion stage figure out linguistic features of the error mes-
sages—e.g. grammar, syntax, lexicon and semantic—on its 
own. The rationale behind this choice is that the resulting 
representation should be more expressive, thus better mod-
eling the semantic of the messages and easing the successive 
clustering phase.

With this goal in mind, the raw error strings are first 
transformed to lowercase and enriched by appending the 
source and destination hostnames. In particular, both host-
names are inserted at the end of each message with pre-
pended src_ or dst_ prefixes to distinguish whether 
they were involved as source or destination, respectively. 
The resulting text then undergoes a process of quantiza-
tion whereby the raw strings are decomposed into unitary 
pieces of information. This process is commonly referred 
to as tokenization and the resulting atomic units are called 
tokens. In our case, we resort to whitespace tokenization for 
the sake of simplicity, which means individual words are 

Summary 
table

Time plot

Vectorization

Clustering

Post-processing

Impossible to connect to 
$URL /srm/managerv2 : 
server responded with an 
error [3010] login failed

[“impossible”, “connect”, 
“hostname01:8443”, 
“/srm/managerv2”, “server”, 
“error”, “[3010]”, “login”, 
“failed”]

Pre-processing

Impossible to connect to 
hostname01:8443/srm/managerv2 
: server responded with an error 
[3010] login failed

Error message

Fig. 3   Pipeline diagram. The error message is first pre-processed and 
split into tokens (1). Then, the vectorization stage transforms the tex-
tual information into numeric data (2). The next step is clustering, 
where similar error messages are grouped (3). Finally, the messages 
are post-processed to get common patterns (4) and the resulting clus-
ters are presented to the operators in the form of a summary table and 
time evolution plots

3  https://l.​infn.​it/​opint-​pyspa​rk.
4  https://l.​infn.​it/​opint-​frame​work.

https://l.infn.it/opint-pyspark
https://l.infn.it/opint-framework
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used as tokens. Once tokens are obtained, they are stripped 
of leading and trailing punctuation (":;,.-") . After that, 
tokens corresponding to common English stopwords (refer 
to pyspark.ml.feature.StopWordsRemover doc-
umentation5 for a full list) or unuseful punctuation (":-+") 
are discarded. Finally, the URL addresses are split into two 
components: the net location and the relative path of the 
requested resources. For instance, httpg://::/srm/
managerv2 is decomposed as httpg://: and srm/
managerv2 . In this way, it is possible to exploit the com-
positional structure of the URL addresses to reduce the 
vocabulary of unique tokens. Also, this allows the model to 

disentangle the contribution of the single parts in different 
messages. The above transformations are illustrated for a 
sample error message in Table 1.

Vectorization

The vectorization stage transforms the pre-processed text of 
each error message into numeric information that quantita-
tive techniques can digest. Ideally, we would like to map 
each message to a point in a vectorial subspace (embedding) 
where “similar” messages are close to each other, so that 
they can be subsequently grouped based on their location. 
Although more recent and powerful alternatives are avail-
able for this purpose [9, 15, 34], they do not work well with 
short-text data [1]. Thus, we adopt the simpler yet effec-
tive word2vec language model [30] (skip-gram architecture 

Table 1   Message pre-processing pipeline

The table illustrates the pre-processing steps (left) and the resulting data (right) for a sample error message. The raw error string is reported at 
the top, and the resulting pre-processed data at the bottom

Raw message “DESTINATION OVERWRITE srm-ifce err: Communication error on send, err: [SE][srmRm][] httpg://hostname01.
Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running on fts-address-004.cern.ch reports Error initializing context 
GSS Major Status: Authentication Failed GSS Minor Status Error Chain: globus_gsi_gssapi: SSL handshake problems 
globus_gsi_callback_module: Could not verify credential globus_gsi_callback_module: Could not verify credential 
globus_gsi_callback_module: The certificate has been revoked: Serial number = -1 (0xFFFFFFFFFFF”

Append hostnames “DESTINATION OVERWRITE srm-ifce err: Communication error on send, err: [SE][srmRm][] httpg://hostname01.
Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running on fts-address-004.cern.ch reports Error initializing context 
GSS Major Status: Authentication Failed GSS Minor Status Error Chain: globus_gsi_gssapi: SSL handshake problems 
globus_gsi_callback_module: Could not verify credential globus_gsi_callback_module: Could not verify credential 
globus_gsi_callback_module: The certificate has been revoked: Serial number = -1 (0xFFFFFFFFFFF src_srmatlas.pic.
es dst_hostname01.Site-4.ch”

Tokenization [“destination”, “overwrite”, “srm-ifce”, “err:”, “communication”, “error”, “on”, “send,”, “err:”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443:/srm/managerv2:”, “gsi-gsoap”, “running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”, 
“initializing”, “context”, “gss”, “major”, “status:”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain:”, 
“globus_gsi_gssapi:”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module:”, “could”, “not”, “verify”, “cre-
dential”, “globus_gsi_callback_module:”, “could”, “not”, “verify”, “credential”, “globus_gsi_callback_module:”, “the”, 
“certificate”, “has”, “been”, “revoked:”, “serial”, “number”, “=”, “-1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_host-
name01.Site-4.ch”]

Remove punctuation [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “on”, “send”, “err”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443:/srm/managerv2”, “cgsi-gsoap”, “running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”, 
“initializing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”, 
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “could”, “not”, “verify”, “cre-
dential”, “globus_gsi_callback_module”, “could”, “not”, “verify”, “credential”, “globus_gsi_callback_module”, “the”, 
“certificate”, “has”, “been”, “revoked”, “serial”, “number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_host-
name01.Site-4.ch”]

Remove stopwords [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”, “err”, “[se][srmrm][]”, “httpg://host-
name01.Site-4.ch:8443:/srm/managerv2,cgsi-gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initial-
izing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”, 
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “verify”, “credential”, “glo-
bus_gsi_callback_module”, “verify”, “credential”, “globus_gsi_callback_module”, “certificate”, “revoked”, “serial”, 
“number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_hostname01.Site-4.ch”]

Url split [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”, “err”, “[se][srmrm][]”, “httpg://
hostname01.Site-4.ch:8443”, “/srm/managerv2”, “cgsi-gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”, 
“initializing”, “context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”, 
“globus_gsi_gssapi”, “ssl”, “handshake”, “problems”, “globus_gsi_callback_module”, “verify”, “credential”, “glo-
bus_gsi_callback_module”, “verify”, “credential”, “globus_gsi_callback_module”, “certificate”, “revoked”, “serial”, 
“number”, “=”, “1”, “(0xfffffffffff”, “src_srmatlas.pic.es”, “dst_hostname01.Site-4.ch”]

5  https://​spark.​apache.​org/​docs/​latest/​api/​python/​refer​ence/​api/​pyspa​
rk.​ml.​featu​re.​StopW​ordsR​emover.​html.

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StopWordsRemover.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StopWordsRemover.html
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implemented by pyspark) to compute message embed-
dings starting from pre-processed tokens. Specifically, the 
model is trained once on one month of data—from 2020-
10-01 to 2020-10-31—for a total of nearly 28.6 M error 
messages, corresponding to a vocabulary of 970 unique 
tokens. The pre-trained model is then re-used as-is for online 
application, possibly updating it once in a while—say every 
4–6 months. The assumption underneath this strategy is that 
semantic and syntactic relationships within messages should 
be stable or slowly-varying across time, thus not requiring 
frequent updates of token’s embedded representations. Once 
the model is trained, the resulting word embeddings are used 
to transform single tokens into numerical vectors, and they 
are then averaged to get the corresponding message repre-
sentations. Regarding hyper-parameters, the window size, 
the embedding size and the minimum count were the ones 
affecting the final representation the most. For this reason, a 
grid search is conducted to compare alternative parametriza-
tions in terms of the following clustering performance. In 
practice, the word2vec model is trained with a given hyper-
parameters configuration and then used as embedding for the 
subsequent clustering stage. The latter is repeated several 
times for errors happening on different days (not included in 
the word2vec training period), and the optimal configuration 
is then chosen based on the compactness of the resulting 
groups in terms of the WSSE and ASW metrics introduced 
in Sect. 2.3. The values of w = 12 (window size), h = 300 
(embedding size) and min_count = 50 (minimum count) 
seem to work best in our experiments and are therefore 
adopted in the following.

Clustering

The next step of the pipeline is the clustering stage. In this 
study, we resort to clustering for grouping messages includ-
ing similar content. The resulting clusters are therefore inter-
preted as error categories. The idea is to repeat this stage for 
online processing of new data bunches, e.g. every day, every 
shift or every 4 hours. In fact, conversely to the message 
structure, the malfunctions observed in the infrastructure 
may change from day to day, which calls for a more flexible 
definition of what and how many error categories are present 
in the analyzed data.

In practice, we adopt a slight variation of the k-means 
algorithm [28] referred to as k-means++ [4]. Although 
more advanced clustering algorithms are available and may 
be applied to our use case [2, 19, 29, 33, 41], the choice of a 
k-means algorithm is justified by its intuitive approach and 
good performance in practice in a wide range of applica-
tions [38]. Also, a perhaps more profound and substantial 
motive is that the clustering strategy may be seen as a func-
tional but not primary pipeline stage. Indeed, the learned 
language model determines the geometry of the embedded 

space, thus influencing the point cloud shapes of different 
error categories. For this reason, we embrace the idea that 
a simple clustering algorithm is preferable, and particular 
attention must be devoted to tuning the vectorization stage 
for easing the subsequent clustering, possibly even foster-
ing the learning of an optimal representation for a specific 
clustering algorithm [40].

To demonstrate the approach, we report the analysis of 
FTS data from one full day of operation (2021-01-15)—cor-
responding to roughly 1 M errors and 1.5 GB of data—, 
where the cosine similarity is adopted as common practice 
in similar applications. To help the successive evaluation 
phase, only transfers between pledged WLCG resources 
(namely Tier-0, Tier-1s and Tier-2s) are considered in the 
analysis, thus discarding transfers involving local clusters 
or HPC centers.

The number of clusters, k—in our case, the unknown 
number of error categories—is selected at each clustering 
stage based on a grid search for k ∈ [12, 15, 20, 30] . For this 
purpose, two geometrical criteria are considered to compare 
results of different settings. The first is the Within cluster 
Sum of Squared Errors (WSSE):

where xi is a generic data point, dist is a desired distance 
measure, and Cj and x̄j indicate a generic cluster and its 
centroid, respectively. The second is the Average Silhouette 
Width (ASW) [35]:

where n is the total number of observations, i.e. error mes-
sages in our case, āi is the average distance of xi from all 
the other points belonging to the same cluster CI , and bi is 
the minimum average distance of xi from the observations 
in all the other clusters Cj,∀j ≠ I . The WSSE measures the 
internal cluster variability, so the lower its value, the bet-
ter the performance. The ASW, instead, accounts for both 
internal homogeneity and external separation of the clusters 
(bounded in the interval [−1,+1] : the closer to 1, the better). 
Given the more intuitive reading of ASW values, the latter is 
used in the following as the main figure of merit. The results 
of the comparison between WSSE and ASW for different 
values of k are reported in Fig. 4. Both indicators tend to 
improve as the number of clusters increases. In particular, 
a value of k = 30 clusters seems to be optimal according to 
both criteria. Notably, however, the ASW indicator reaches 
very high values (around 0.9) even for lower k values, which 
means nearly-optimal performances can be achieved with 
fewer clusters. For this reason, the configuration having k = 

(1)WSSE(dist, k) =

k
∑

j=1

∑

xi∈Cj

dist
(

xi − x̄j
)

,

(2)ASW(dist, k) =
1

n

n
∑

i=1

bi − āi

max
(

āi, bi
) ,
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15 is preferred to limit the number of suggested issues and 
minimize the operators effort.

Cluster Description

The last stage of the pipeline is the cluster description. This 
step is fundamental to present the results in the most intel-
ligible and immediate format for end-users. Indeed, given 
the unsupervised learning approach adopted, the interpreta-
tion of the clustering output resorts to the manual inspec-
tion of each group’s content. This, in turn, potentially means 
reading hundreds of error strings, comparing the source and 
destination information, and spotting suspect time patterns. 
Therefore, producing a nice and compact visualization of 
the results is paramount to make the approach effective and 
avoid excessive manual checks by the operators. For this 
reason, the clustering results are summarized into two com-
plementary outputs that are presented to the operators.

First, the summary table Figs. 5 and 6 represents the 
most important and informative visualization. This output 
is obtained by a first pre-aggregation of the clusters and 
is organized in a tabular format. The first three columns 
provide numeric summaries concerning the cluster size, 
the number of unique strings within each group, and the 
corresponding number of unique patterns. The latter is 

12 15 20 30
5k

10k

15k

20k

25k

0.86

0.88

0.9

0.92

0.94

Weighted Sum of Squared Errors Average Silhouette Width
k

W
SS

E

AS
W

Fig. 4   Optimization of k. The plot shows the value of the WSSE and 
ASW metrics as a function of the number of clusters, k. The hexago-
nal markers indicate the optimal values, which correspond to k = 30 
for both indicators

ID

cluster 
size # strings # patterns

Top 3 

message n % source
rcsite

destination
rcsite

0 819465 117 14

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

85545 10.44% Site-1 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

84453 10.31% Site-2 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

77410 9.45% Site-3 Site-4

6 9673 347 60

source srm_get_turl srm-ifce err connection timed out err [se][statusofgetrequest]
[etimedout] \$URL /srm/managerv2 user timeout over 1838 19.00% Site-22 Site-46

transfer globus_ftp_client the server responded with an error 421 service busy 
connection limit exceeded please try again later closing control connection 522 5.40% Site-33 Site-47

transfer globus_ftp_client the server responded with an error 421 service busy 
connection limit exceeded please try again later closing control connection 300 3.10% Site-29 Site-47

3 34183 1568 1537

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 13118 38.38% Site-12 Site-35

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 9333 27.30% Site-12 Site-17

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 1707 4.99% Site-12 Site-22

$ADDRESS$URL L

$URL L $ADDRESS 

$URL L  $ADDRESS

117 14

9673 347 60

connection timed out

service busy
connection limit exceeded

service busy
connection limit exceeded

destination overwrite

authentication failed

could not verify credentia
the certificate has been revoked

Site-4

Site-4

Site-4

[srm_invalid_path] no such file or directory Site-12

Site-12

Site-12

819465

Fig. 5   Summary table: successes. The figure illustrates the main 
achievements of the pipeline. Cluster 3 provides immediately clear 
indication of the error type, i.e. message, and where it occurs 

(green). The others also suggest the approach is actually learning to 
understand message parameters and message semantic (yellow, clus-
ters 0 and 6)
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obtained from the raw strings by means of an abstraction 
mechanism6 that removes the parametric parts—like file 
paths, IP addresses, URLs, checksum values, and so on—
and replaces them by parameter-specific placeholders—
e.g. $FILE_PATH, $ADDRESS, $URL and $CHECKSUM, 
respectively. The core part of this visualization is then rep-
resented by the Top 3 section. Here, the three most frequent 
triplets of <pattern>-<source>-<destination> 
are reported in descending order for each cluster, alongside 
their cardinality and the percentage over the cluster size. 
Such information provides several precious insights for spot-
ting the source of potential problems, e.g. whether a pattern 
is responsible for a large number of failures or if it accounts 
for a conspicuous fraction of the cluster.

In addition, this representation allows us to investigate 
the contribution of source/destination pairs to each cluster. 
In this way, it is possible to discriminate failures based on 
both the nature of the problem and the location where they 
occurred.

The second output of the pipeline consists of a time evo-
lution plot depicting the temporal trend of the number of 
errors generated by each cluster (Fig. 7).

This piece of information is crucial to discriminate 
between serious issues that require immediate actions (e.g. 

escalating or cyclical failures, see Figs. 7a and d) and prob-
lems that are transient (Fig. 7b) or in resolution (Fig. 7c).

Overall, the idea behind our pipeline is to exploit the sum-
mary tables and the time plots for each cluster as sugges-
tions of potential issues to investigate further. In this way, 
the operators can have a first grasp of what kind of failures 
are observed and their corresponding amounts (Top-3 sec-
tion), also having an indication of where they are happen-
ing (source/destination sites). Moreover, by looking at the 
time charts it is possible to immediately discard transient 
(Fig. 7b) or resolved (Fig. 7c) problems based on the evolu-
tion of the number of generated failures over time.

Results

Performance assessment is one of the trickiest parts when 
coming to unsupervised methods [24, 38]. Although simi-
larity metrics as ASW and WSSE can be exploited for this 
purpose, they only measure the internal homogeneity of 
clusters, and their separation from one another. Thus, these 
are mere geometric indicators that do not take into account 
the actual meaning of the data points clustered in the same 
group, i.e. whether the messages share similar content and/
or meaning.

In light of the above concerns, our work splits the evalua-
tion of performances into two complementary phases. First, 
a qualitative assessment explores the cluster contents and 

ID

cluster 
size # strings # patterns

Top 3 

message n % source
rcsite

destination
rcsite

4 51370 10108 814

transfer globus_ftp_client the server responded with an error 500 command failed  
open/create  [error] server responded with an error [3021] unable to get quota 
space  quota not defined or exhausted $FILE_PATH disk quota exceeded

4912 9.56% Site-7 Site-31

transfer globus_ftp_client the server responded with an error 500 command failed  
open/create  [error] server responded with an error [3021] unable to get quota 
space  quota not defined or exhausted $FILE_PATH disk quota exceeded

3709 7.22% Site-8 Site-31

error on $IPv6 [error] server responded with an error [3010] login failed 2950 5.74% Site-9 Site-33

2 15132 11 9

transfer globus_ftp_control gss_init_sec_context failed 
globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xffffffffffffffff) subject=/c=bm/o=quovadis limited/cn=quovadis grid ica g2

2048 13.53% Site-27 Site-42

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 1431 9.46% Site-28 Site-12

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 914 6.04% Site-15 Site-12

server responded with an error 500 
[3021]

disk quota exceeded

server responded with an error

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists!

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists!

[3010] login failed

server responded with an error 500

disk quota exceeded
[3021]

Fig. 6   Summary table: limitations. The two clusters show evidence of contamination (red) due to generic partial matching (yellow, cluster 4) or 
outliers aggregation (cluster 2)

6  Refer to the full implementation for more details: https://l.​infn.​it/​
opint-​abstr​action.

https://l.infn.it/opint-abstraction
https://l.infn.it/opint-abstraction
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expresses the goodness of fit based on their interpretability, 
i.e. how messages of the same cluster resemble each other’s 
meaning. Second, a quantitative evaluation is addressed 
by cross-checking the clustering result against the GGUS 
reported incidents. In this way, a more direct measure of 
impact is given by reckoning the ability of our approach to 
mimic current operations.

Qualitative Assessment: Interpretability

This section presents a qualitative assessment of the clus-
tering performance based on the interpretability of the dis-
covered groups of messages. In particular, the discussion is 
articulated by simulating the operator’s perspective when 
reading the pipeline outputs. In the following, we report five 
cherry-picked examples to showcase our approach’s major 
successes and failures, articulating the discussion from the 
operator’s perspective when reading the pipeline outputs. 
Specifically, we first illustrate a thorough examination of the 
biggest cluster discovered (see Fig. 5, cluster with id = 0).

Then we highlight some strengths and limitations of our 
approach, bringing other exemplary cases as evidence. The 
same procedure and similar conclusions apply likewise to 
most groups. Thus, a complete dissertation is omitted here 
for conciseness7.

The main output of our pipeline is the summary table 
illustrated in Figs. 5, 6, which reports a succinct highlight 
of the cluster contents and represents the most substantial 
source of information. A reasonable reading approach is to 
start with the groups including more errors and gradually 
proceed with the smaller ones.

In this case, the biggest cluster is shown in Fig. 5 in the 
first row with id = 0 . Despite including almost 820k error 
strings (# cluster size), the actual number of different 
messages is only 117 (# strings). This number further 
reduces to simply 14 unique patterns (# patterns) after 
the abstraction mechanism described in Sect. 2.4 is applied, 
which is way more manageable for manual inspection than 
the initial cluster size. A second insight is then provided 
by the Top-3 section. Including the auxiliary information 
about the source and destination sites involved makes it evi-
dent as the failures are united by the same error template 
and destination site. This suggests that Site-4 may have a 
problem and that its root cause is linked to the error pattern 
reported in the message column. Finally, the last piece 
of information to consider is the time evolution plot (see 
Fig. 7a). In this case, the cluster shows an increasing trend 
throughout the whole day of analysis. Specifically, the num-
ber of generated failures grows from less than 2000 errors at 
the beginning of the day to a value around five times higher, 
with an increment boost from 9 a.m. onwards. By and large, 

Fig. 7   Time evolution charts. The figure illustrates several time patterns for the generated failures in 4 different clusters. Each plot reports the 
count of errors in bins of 10 min

7  Full results available at: https://l.​infn.​it/​opint-​resul​ts.

https://l.infn.it/opint-results
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all these factors clearly advise that a potential issue is hap-
pening at Site-4 as it always appears as a destination. 
Also, the message information further suggests that the fail-
ure is linked to a revoked certificate that cannot be verified. 
Finally, the time chart shows that the problem is escalating 
and needs prompt intervention.

Despite providing only good proxies of the actual end 
goals—i.e. root causes and solving actions—, this rapid 
analysis already points to actionable insights regarding 
where and what faults occur and whether they represent a 
real concern. Notice that one can draw similar conclusions 
by looking separately at the site transfer efficiency and the 
most frequent unique strings or patterns. However, observ-
ing high failure rates for Site-4 only answers to where 
the faults occur. Likewise, the information contained in the 
errors only relates to the what part of the question. Thus, 
both approaches would lead to partial conclusions and 
require additional investigations to reach the same result.

Conversely, our approach addresses the two tasks 
together, thus letting the conclusion emerge rapidly and 
naturally. A further advantage is that one can leverage both 
site and pattern information for more precise indications. For 
instance, one could hypothesize that not only is Site-4 
experiencing a problem, but the issue is limited to incom-
ing connections. Indeed, Site-4 is involved only as a des-
tination, and the error patterns point to something related 
to destination overwrite. Therefore, the previous 
advantages show how shifting from the current site-centric 
focus to a hybrid strategy based on error messages and aux-
iliary information is beneficial.

In addition to the practical usage of our pipeline, the 
results illustrated in Figs. 5 and 6 expose interesting insights 
about what the models are actually learning. For instance, 
the substantial reduction observed passing from errors to 
patterns suggests that the pipeline has learned something 
similar to an abstraction mechanism. Indeed, the raw 
error strings of cluster 0 differ only by the $URL and 
$ADDRESS parameters (see message column). Although 
one may argue that the same could be obtained using a flex-
ible parsing strategy, the superiority of our approach is even 
more evident in cluster 6 (Fig. 5). In this case, the 
clustering joins two patterns with a far less straightforward 
linkage. In fact, this result appears to resemble the human 
association that connection timed out (first pat-
tern) may be linked to a service busy connection 
limit exceeded (second and third) problem. Notably, 

this is a much higher level of abstraction with respect to a 
smart parsing approach, and it goes way beyond what one 
could achieve based on good abstraction heuristics. Clearly, 
this property is highly desirable in practice, as it testifies 
that the approach produces a good embedded representation 
and recognizes the similarity of messages sharing similar 
content. In particular, this holds not only up to some para-
metric parts but also in terms of their actual meaning. In 
turn, this observation corroborates the initial design choice 
of applying minimal pre-processing and letting the model 
learn by itself.

Another clear example of success is provided by the 
cluster 3 (Fig. 5), where the visualization makes it 
immediate for the operator to understand that the issue is 
related to a missing file (no such file or direc-
tory) at Site-12.

However, our pipeline comes also with some limita-
tions (Fig. 6). For instance, the two patterns reported in 
cluster 4 show a more vague connection that would 
require more in-depth investigation. As a matter of fact, they 
seem to be linked due to a generic server responded 
with an error which is a very generic incipit to several 
error strings. Apart from that, the error codes are different 
([3021] vs [3010], which may imply the clustering is 
too coarse and a more refined distinction is needed. Also, the 
messages point to seemingly extraneous issues (storage vs 
authentication). Such observations expose two limitations. 
On the one hand, tuning the pipeline to meet the desired 
level of granularity when separating different groups is 
extremely complex. On the other hand, this behavior may 
be due to the difficulty in comparing longer strings (first and 
second patterns) with short-text (third).

Another drawback is related to how outliers are handled. 
The k-means algorithm is bounded to the specified num-
ber of clusters, k, which sets the number of output groups 
irrespectively of the underlying structure of the data. As 
a result, the outliers are often incorporated into the closer 
cluster. When the latter is big enough, they probably pass 
undetected as they are dispersed into a heap of other mes-
sages. However, they may contaminate other clusters when 
the affected group has a comparable size, as in the case of 
second and third patterns in cluster 2.

Table 2   GGUS pre-validation

Summary of the cross-check between clusters and incidents reported in GGUS. Most of the groups discov-
ered are linked to reported issues, with only 3 false positives and 1 false negative

N. clusters ASW WSSE Perfect match Fuzzy match Partial match False positives False negatives

15 0.89 17107 7 3 2 3 1



	 Computing and Software for Big Science            (2022) 6:16 

1 3

   16   Page 12 of 15

Quantitative Assessment: GGUS Tickets

The drawback of unsupervised techniques lies in the inherent 
difficulty of the evaluation phase, as no ground truth is avail-
able for comparison [38]. A first assessment may come from 
the similarity measures computed on the resulting clusters 
(see Table 2). The ASW value is around 0.9, which is close 
to the optimal value of 1 for such indicator. Hence the clus-
tering stage does a decent job in discovering groups that are 
internally compact and well separated. However, this met-
ric does not measure directly the content similarity between 
messages. In fact, the ASW treats the strings as points dis-
entangled from their meaning, and we would have the same 
score by randomly shuffling the text associated to points 
in the embedded representation. This means that the ASW 
makes sense only if the word2vec embedding is appropriate, 
which is difficult to check. To overcome this limitation, we 
have conducted extensive testing using incidents reported in 
GGUS as a benchmark. In this way, we attempt to provide a 
quantitative assessment of the pipeline performances and a 
more direct measure of its potential impact when applied in 
practice. In particular, we explore the overlapping between 
discovered clusters and the reported issues in two directions 
expressing alternative perspectives to the problem. On one 
side, we evaluate the usefulness of our approach for the 
operators, i.e. how clusters explain failures/tickets (direct 
association). On the other, we study the overall capacity of 
the pipeline to discover and highlight issues—i.e. how many 
failures/tickets are reflected in the clusters (inverse associa-
tion). In the first case, the objective is to limit the effort of 
the operators by suggesting as few potential failures as pos-
sible, meanwhile still highlighting the major concerns for the 
infrastructure. Thus, the focus is on limiting false positives 
at the expense of neglecting minor issues. On the contrary, 
the second point of view requires a more comprehensive 
search aimed at isolating all the ongoing malfunctions, irre-
spectively of their current priority. Hence, this time the focus 
is on maximizing true positives. Table 2 reports a summary 
of the evaluation according to both perspectives.

Concerning the first angle, we consider GGUS issues 
reported in a skewed time window of 17 days (01-01 to 
01-18) around the day of the analysis for a total of 20 
tickets related to data transfer failures. Adopting this fil-
tering strategy is convenient since it considers both previ-
ously known issues and delayed detections. The former is 
necessary because standard practice in current operations 
requests not to open new incident reports when related 
investigations are already ongoing. Hence, consider-
ing only tickets opened on the analysis day may lead to 
incorrect conclusions. Instead, the latter is convenient 
to account for a “grace period” if the operators do not 
promptly spot failures that are really happening during the 
analysis. Overall, a good level of agreement is observed 

between the 15 discovered clusters and the 20 tickets. 
Specifically, the 7 perfect matches indicate cases whereby 
the reported message and the affected site coincide with 
the ones highlighted by the clusters. The 3 fuzzy matches, 
instead, refer to occasions whereby the agreement is less 
obvious, meaning that the cluster has evident connections 
with more than one ticket. Similarly, the 2 partial matches 
describe cases whereby either the message or the site coin-
cide. The previous three statistics reveal that 12 out of the 
15 suggested failures have led to fruitful investigations, 
thus implying a precision between 0.46 and 0.8 depend-
ing on the degree of nuisance one is willing to tolerate. 
Besides the above matches, 3 clusters highlight issues not 
reported on GGUS in the considered time window. These 
false positives indeed entail a futile effort for the operators 
and should be avoided, e.g. thwarting in-depth investiga-
tions if the temporal pattern is not escalating and/or the 
number of errors is not a concern. Nevertheless, in our 
case, posterior checks on the 3 false positives showed hints 
for real problems that went undetected or unreported by 
the operators, i.e. the error pattern seemed similar to other 
incidents opened to different sites.

For the second assessment, we investigate the relationship 
between clusters and tickets in the opposite direction, i.e. by 
looking at how many reported issues our approach captures. 
In this case, we consider a different baseline that provides a 
fairer detection performance evaluation. Indeed, it is reason-
able to think that the failures observed during the analysis 
may be correlated to earlier tickets, thus justifying the adop-
tion of a wide time window for the direct association.

However, the same rationale does not necessarily apply 
when we reverse our perspective. In fact, there is no prior 
guarantee that a past ticket will generate new failures at a 
given moment in the future. Hence, considering all tickets 
undergoing investigations would potentially bias our meas-
urement since specific past failures may not produce new 
malfunctions during the day of the analysis, thus resulting in 
untruthful false negatives. For this reason, in the case of the 
inverse association we limit our baseline to consider solely 
the tickets for which failures were really observed during 
the day of the analysis, thus reducing the initial 20 reports 
to only 9. Given this reference framework, the clusters suc-
cessfully identify 8 out of 9 tickets, thus overlooking only 
a single issue.

To summarize, the previous results show that the 
approach presents promising perspectives given the com-
plexity of the task and the completely unsupervised approach 
embraced. Although conducting an indisputable quantita-
tive assessment is challenging—if not impossible with the 
available data—, the considerations expressed above fur-
nish a reasonable proxy of the potential of our approach. Of 
course, a trade-off between the two perspectives is desirable 
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in practice, for which more tuning is necessary with the help 
of operators and site experts.

Discussion

The huge scale of modern computing infrastructures has 
made automatic management solutions essential for a proper 
exploitation of such resources. This is particularly true for 
WLCG and the LHC experiments, whereby the upcoming 
upgrade will deliver ten times the current volumes at a flat 
budget for infrastructure management.

This work proposes a pipeline to support DDM opera-
tions by suggesting potential transfer failures to investigate 
more in depth. The approach has already undergone some 
pre-production integration and testing. In particular, the 
implementation is already compatible—at least to some 
extent—with the production systems as it natively interacts 
with the raw data streams, and it complies with the timely 
execution requirements for online processing. In fact, the 
pipeline takes around 2.5/3 h for one day of data, which 
is compatible with one or two applications per 8-h shifts. 
This runtime is almost equally divided among the cluster-
ing stage—with a grid search for the optimization of k as 
described in Sect. 2.3—and the post-processing/pre-aggre-
gation needed for the visualization. Furthermore, no spe-
cific effort to optimize such runtimes was attempted, which 
suggests that some space for improvement is probably still 
available.

In terms of performance, our pipeline delivers promis-
ing results. The output clusters show an evident ability to 
capture both structural and semantic similarity between 
messages, as discussed in Sect. 3.1. This result is achieved 
despite applying minimal hard-coded feature engineering 
during pre-processing and exploiting simple models for 
vectorization and clustering. Interestingly, incorporating 
additional auxiliary information related to the source and 
destination hostnames seems to help unravel higher-level 
interactions between the nature of the issues and where they 
occur. This, in turn, provides a finer detail when spotting 
problems that may aid the human operators to restore the 
proper functioning of the infrastructure faster.

The previous considerations are also corroborated by a 
quantitative assessment of the pipeline’s potential impact 
when applied to daily workflows. This is done by compar-
ing the outputs of our approach to the incidents reported in 
GGUS in a reasonable time window around the day of the 
analysis. In terms of the direct association between clusters 
and tickets, the performance varies from average to decent 
depending on how much nuisance one is willing to tolerate 
in the output. Regarding the inverse relationship, instead, the 

approach is highly accurate since it highlights 8 out of the 9 
incidents observable on the day of the analysis.

Nonetheless, some adjustment and tuning would be help-
ful prior to full integration into production. First, the ana-
lyzed clusters show indications that additional tuning may be 
needed to guarantee a more suitable level of granularity. This 
task is highly application-specific and requires the direct 
involvement of operators and site experts. A second concern 
is related to the limited number of errors shown. Ideally, the 
perfect output for our use case would be one error pattern—
or even a more human-readable description directly pointing 
to the source of the problem—per cluster, for a small number 
of clusters (e.g. ≤ 6 ). In practice, however, the magnitude 
of the problem still refers to the actual number of failures. 
Even reducing it to the minimum, this is still bounded by the 
number of combinations between unique strings/patterns and 
source/destination locations, which is clearly overwhelming 
to handle for human operators. Therefore, the desired out-
put is hardly deliverable as there is a trade-off between the 
clusters’ internal homogeneity (number of patterns) and their 
number. For this reason, we reach a compromise by setting 
a higher value of k and displaying just a fixed, customiz-
able portion of each cluster (three patterns in the current 
implementation). However, limiting the visualized patterns 
potentially hinders serious faults of medium and small sizes. 
Moreover, the necessity to mask message parameters to get 
more informative and abstract descriptions prevents using 
their values for troubleshooting—e.g. when the failures are 
due to specific parameter values. To comply with the above 
requirements, a possible solution is the implementation of 
a flexible and efficient user interface that allows the opera-
tors to adjust the number of displayed patterns and enables 
interactive drill-down to investigate more closely the effect 
of parametric values. Nevertheless, guaranteeing a good bal-
ance constitutes an intrinsic challenge of our use case, and 
its resolution again requires a direct tuning by experts.

Furthermore, although it makes sense to cross-check clus-
tering results with GGUS tickets for a quantitative evalua-
tion, this comparison has drawbacks. On one side, GGUS 
incidents force to focus solely on reported failures, thus pre-
venting the study of undetected issues and masking some 
omission policies due to external factors— e.g. the site is in 
downtime or blacklisted, or the fault is known to be transient 
and therefore not reported. On the other side, the procedure 
is sensitive to the choice of the time window. Indeed the 
issues may have no match because they are reported before 
the selected period or due to delays in their discovery and 
reporting. All in all, the assessment may be biased because 
of these factors, thus limiting the reaches of the conclusions 
drawn. A better solution would be directly measuring the 
impact on workloads, which requires the involvement of 
operators and/or site experts for better tuning and use in 
production. For this reason, the idea behind our work is to 
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showcase a possible approach and hopefully stimulate fur-
ther developments.

Finally, a potential issue may arise if the the error mes-
sages suddenly change in content or structure. However, this 
is not likely to happen inadvertently and should therefore 
be a minor concern. Moreover, a simple re-training of the 
vectorization stage should suffice in such circumstance, so 
that the updated embedding correctly represents the new 
message structure and semantic.

Future Work

All of the previous adjustments demand additional in-depth 
studies, each requiring a lengthy manual review of the results 
due to the unsupervised approach. Also, most of the above 
solicit direct participation of system experts to guarantee the 
soundness of the results and proper tuning. Considering the 
several appointed investigations and the conspicuous num-
ber of alternative combinations, it becomes clear how the 
requested effort is not sustainable and does not scale to the 
comparison of adversarial approaches. A possible solution 
we envision for future developments is represented by the 
collection of a reference dataset in which to store labels 
for error categories, root causes, incident priority and solv-
ing actions. In this way, the evaluation of new experiments 
would become immediate and systematic (e.g. [27]). Also, 
this would make the investigation of novel techniques sus-
tainable, enlarging the plethora of applicable approaches 
to supervised methods and enabling a coherent compari-
son of alternative algorithms. Perhaps more importantly, 
the derived measure of performance would be linked to the 
actual goal of the analysis, thus allowing a direct optimiza-
tion of the models for the specific task of interest.

Remaining in the unsupervised learning domain, sev-
eral alternative approaches can be explored both regarding 
the vectorization stage [9, 15, 34] and for clustering [2, 19, 
29, 33, 41]. Another interesting research line would be to 
explore end-to-end solutions that address both vectorization 
and clustering stages together. For example, one could try to 
directly optimize the learned embedding for the following 
clustering stage [40]. Alternatively, one can tap into topic 
modeling literature to jointly compute the vector representa-
tion of the messages and the derived topics (error categories 
in our use case) [8, 11, 23, 32].

Finally, a crucial contribution may come from the stand-
ardization of the error messages at source so to make them 
more consistent and explanatory. This would be helpful in 
two ways. On one side, more structured error templates 
would be easier to parse during the abstraction mechanism, 
thus improving the visualization of the results. On the other 
side, it would facilitate the analysis of the messages, perhaps 

allowing the adoption of simple heuristics for parsing them 
and questioning the need of an intelligent approach in the 
first place.
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