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Q-PPG: Energy-Efficient PPG-based Heart Rate
Monitoring on Wearable Devices

Alessio Burrello, Daniele Jahier Pagliari, Matteo Risso, Simone Benatti, Enrico Macii, Luca Benini,
Massimo Poncino

Abstract—Hearth Rate (HR) monitoring is increasingly per-
formed in wrist-worn devices using low-cost photoplethysmog-
raphy (PPG) sensors. However, Motion Artifacts (MAs) caused
by movements of the subject’s arm affect the performance of
PPG-based HR tracking. This is typically addressed coupling
the PPG signal with acceleration measurements from an inertial
sensor. Unfortunately, most standard approaches of this kind
rely on hand-tuned parameters, which impair their generalization
capabilities and their applicability to real data in the field. In
contrast, methods based on deep learning, despite their better
generalization, are considered to be too complex to deploy on
wearable devices.

In this work, we tackle these limitations, proposing a design
space exploration methodology to automatically generate a rich
family of deep Temporal Convolutional Networks (TCNs) for
HR monitoring, all derived from a single “seed” model. Our flow
involves a cascade of two Neural Architecture Search (NAS) tools
and a hardware-friendly quantizer, whose combination yields
both highly accurate and extremely lightweight models. When
tested on the PPG-Dalia dataset, our most accurate model sets
a new state-of-the-art in Mean Absolute Error. Furthermore,
we deploy our TCNs on an embedded platform featuring a
STM32WB55 microcontroller, demonstrating their suitability
for real-time execution. Our most accurate quantized network
achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error
(MAE), with an energy consumption of 47.65 mJ and a memory
footprint of 412 kB. At the same time, the smallest network that
obtains a MAE < 8 BPM, among those generated by our flow,
has a memory footprint of 1.9 kB and consumes just 1.79 mJ per
inference.

Index Terms—Hearth Rate Monitoring, Photoplethysmogra-
phy, Deep Neural Networks, Quantization, Embedded Systems,
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Wearable Devices, Healthcare.

I. INTRODUCTION

Modern wrist-worn devices include increasingly heteroge-
neous sensor sets, monitoring movements and vital parameters
such as electrodermal activity and heart rate (HR). HR mon-
itoring, in particular, is important for clinical purposes and
precise activity tracking. Early wrist-worn HR tracking devices
were connected to a separate chest band, equipped with
a simple 1-3 leads Electrocardiogram (ECG) sensor. While
accurate, this solution was expensive and created discomfort
for users in daily life usage. Therefore, in recent years, ECG
chest bands have been progressively replaced by cost-effective
and more comfortable photoplethysmography (PPG) sensors,
which enable the measurement of HR and blood oxygenation
(SpO2) directly from wrist-worn devices [1]. Examples of
commercial devices that include this type of sensor are the
Apple Watch [2] and some Fitbit models [3].

PPG sensors consist of one or more Light-Emitting Diodes
(LEDs) that periodically emit light onto the skin and a
photodetector (i.e., a photodiode) that measures the variations
of light intensity caused by blood flow [4], [5]. More specif-
ically, the larger the blood volume variation, the greater the
attenuation of the light emitted by the LED, resulting in a
lower current output on the photodiode. Therefore, in an ideal
PPG signal, peaks can be associated with the HR [6].

A major source of inaccuracy in PPG sensors is constituted
by motion artifacts (MA), i.e., signal artifacts caused by
movements of the user arm and hand, which in turn produce
variability in the sensor pressure on the skin or ambient light
leaking into the gap between the photodiode and the wrist.
Several studies compared ECG chest straps with PPG-based
HR tracking systems [7], [8], showing that the former typically
obtain better accuracy, especially in the presence of MAs.
As a result, the ECG-based solutions are still considered the
reference benchmark for wearable HR tracking [9].

To overcome this gap, researchers have recently focused
on sensor-fusion approaches that integrate PPG with inertial
data from accelerometers in order to detect and mitigate the
effect of MAs [6], [10]. Most of these approaches are based
on classical signal processing algorithms such as Independent
Component Analysis (ICA), Wiener Filters, and Spectral Peak
Detection [11], [12], [13], [14]. TROIKA [6] and its evolution,
JOSS [15] are the seminal works in this field. They estimate
the noise caused by MAs via adaptive filtering and then apply
spectral peak tracking on the PPG signal to detect the heartbeat
frequency. A significant shortcoming of these algorithms is
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that they rely heavily on hand-tuned parameters, leading to a
lack of generalization when evaluated on different datasets.

Deep Learning (DL) is relatively less explored for this task,
mainly for two reasons. First, the deployment of DL models
on the resource-constrained computational platforms available
on wrist-worn devices, typically based on Microcontrollers
(MCUs) is far from trivial [16]. The primary limiting re-
source is memory, since highly accurate DL models typically
involve millions of parameters, which exceed the memory
available in most MCUs. Second, DL solutions necessitate
large amounts of training data, which were not available for
this task until recently. Things improved with the introduction
of PPG-Dalia [10], a large dataset for PPG-based HR tracking
in the presence of MAs, which includes recordings from
15 subjects performing different daily activities. Indeed, the
authors of [10] also introduced the first DL solution for this
task, based on Convolutional Neural Networks (CNNs), which
was shown to outperform state-of-the-art algorithms on the
new and more challenging dataset. Following their example,
other researchers have then proposed different DL models for
this task, such as CorNET [17] and Binary CorNET [18],
which combine convolutional and recurrent layers. All these
approaches are based on hand-designed Neural Network (NN)
architectures, which may be sub-optimal in terms of accuracy
versus complexity trade-off. Moreover, they also have limited
flexibility from the point of view of deployment, since a fixed
architecture cannot be easily adapted to hardware targets with
different memory, latency or energy constraints.

In this paper, which extends [19], we propose the first
systematic flow to optimize DL models for PPG-based HR
tracking. We focus in particular on Temporal Convolutional
Networks (TCNs), a family of DL models that are both HW-
friendly and accurate for time-series processing. Our proposed
methodology generates a rich set of Pareto-optimal TCNs in
the accuracy versus memory (or n. of operations) design plane,
among which designers can then select a particular model
based on the constraints of their hardware target. In detail,
the following are the main novel contributions of this work:

• We leverage Neural Architecture Search (NAS) to obtain
Pareto-optimal TCN architectures that predict a user’s
HR based on raw PPG and acceleration data. All TCNs
are automatically derived from a single seed architec-
ture [20]. With respect to [19], which only optimized the
number of feature maps in each TCN layer, in this work,
we extend the search also to consider the dilation param-
eter of convolutional layers, which effectively reduces the
model complexity with a limited impact on accuracy.

• After optimizing the model architectures, we perform a
further search step to select the best data representation
format for the networks’ parameters and intermediate
input/outputs. This hardware-friendly quantization en-
ables further model size reductions, thus enriching and
improving the Pareto frontier.

• We deploy the models resulting from our search on a real
embedded platform with a smartwatch form-factor [21].
The platform includes a STM32WB55 MCU from ST
Microelectronics, based on an ARM Cortex-M4 MCU,
and the MAX30101 PPG sensor. Furthermore, we also

discuss how the results of our flow would change for
other, more memory-constrained targets.

On PPGDalia, the best performing model obtained with
our flow, coupled with a simple smoothing post-processing,
achieves a Mean Absolute Error (MAE) of 4.36 BPM, and
includes ≈ 269k trainable parameters. With an additional
fine-tuning step, the MAE is further reduced to 3.61 BPM.
After quantization and deployment on the STM32WB55, the
smallest model with a MAE < 8 BPM and the most accurate
one consume 1.79 mJ and 47.65 mJ per inference, with a
latency of 71.6 ms, and 1.9 s, and an error of 7.73 BPM and
4.41 BPM, respectively. These two models are respectively
32154.3-145.63× smaller and require 3711.1-19.6× fewer
operations per inference compared to the previous state-of-
the-art DL solution [10], while also significantly improving
the HR tracking accuracy.

The rest of the paper is organized as follows. Section II
provides an overview of the existing PPG-based HR estimation
algorithms. Section III provides the required background.
Section IV describes the proposed optimization methodology,
while Section V presents the experimental results and their
discussion. Lastly, Section VI concludes the paper.

II. RELATED WORK

The study of HR monitoring solutions based on wearable
devices equipped with PPG sensors has attracted significant
research efforts from academia and industry in recent years.
While tracking the HR is a relatively easy and already solved
problem for steady subjects, movements usually impair the
task’s performance, adding noise to the PPG signal. The main
challenge is therefore trying to keep a sufficiently high ac-
curacy, typically measured as the MAE between the predicted
HRpred and ground truth HRtrue, where MAE = |HRtrue−
HRpred|, also during activities with strong movements. This
has to be done under the tight memory, latency and energy
constraints of battery-operated wrist-worn devices. The latter
usually have operating frequencies in the order of 10s of MHz
and a power envelope lower than 100 mW, thus requiring very
low-complexity algorithms for real-time execution.

Recent algorithms can be split into two main categories. One
group includes classical model-driven approaches, based on
either time- or frequency-domain extracted features, followed
by a series of filtering and peak detection/position-refinement
steps. The other group consists of data-driven algorithms,
mostly based on deep learning. Fewer works are included in
this group, since differently from other fields, where it has
become the de facto standard, DL is still relatively unexplored
for PPG-based HR monitoring. Table I provides an overview
of the main solutions proposed in the literature.

Starting from classical approaches, the seminal work of [6]
paved the way to the algorithmic exploration in this field,
introducing the first public PPG dataset called SPC Cup
2015 (SPC hereinafter). The paper also proposed a three-stage
pipeline called TROIKA, comprising i) a signal decompo-
sition step, ii) spectrum estimation, and iii) a final spectral
peak tracking. Tested on SPC, TROIKA achieves a MAE of
2.34 Beats Per Minute (BPM). The same authors improved
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TABLE I
STATE-OF-THE-ART COMPARISON TABLE. DIFFERENT MAE RESULTS CORRESPOND TO DIFFERENT DATASETS. ABBREVIATIONS: F.T. = FINE-TUNING.

BOLD TEXT POINTS TO ACCURACY ON THE TARGET DATASET, PPG-DALIA.

Work Dataset Activities Sign. Pre-Processing Algorithm Post-Proc. MAE
Classical methods

TROIKA, 2014 [6] SPC, 12 subj. Rest, Running PPG,
Acc.

0.5-4 Hz filtering,
Downsampling

Signal decomp.,
reconstruct.,

peak tracking

th.,
hist. track. 2.34 BPM

JOSS, 2015 [15] SPC, 12 subj. Rest, Running PPG,
Acc.

0.5-4 Hz filtering,
Downsampling

MMV,
spectral subtraction

th.,
hist. track. 1.28 BPM

IMAT, 2015 [22] SPC, 12 subj. Rest, Running PPG,
Acc. 0.5-4 Hz filtering MA cancellation

by SVD, IMAT
peak sel.,

th. 1.25 BPM

SpaMa, 2016 [14]

SPC, 12 subj.
SPC, 23 subj.

Chon Lab, 10 subj.
Dalia, 15 subj.

Rest, Running,
Rehab. ex.,

Rest, Running
8 daily activities

PPG,
Acc.

0.5-3 Hz filtering,
Downsampling

spectral filtering
based on PSD

hist. track.,
spline interp.

0.89 BPM
3.36 BPM
1.38 BPM

11.06 BPM

WFPV, 2017 [11] SPC, 12 subj.
SPC, 23 subj.

Rest, Running,
Rehab. ex.

PPG,
Acc.

0.5-4 Hz filtering,
z-score scaling,
Downsampling

Wiener filtering,
phase vocoder

th.,
hist. track.

1.02 BPM
1.97 BPM

Schack2017 [12] SPC, 12 subj.
Dalia, 15 subj.

Rest, Running,
8 daily activities

PPG,
Acc.

0.5-6 Hz filtering,
Downsampling

Corr.-based Freq.
indicating func.,

FFT
th. 1.32 BPM

20.5 BPM

FSM, 2018 [13] SPC, 23 subj. Rest, Running,
Rehab. ex.

PPG,
Acc.

0.5-4 Hz filtering,
z-score scaling,
Downsampling

Winer filtering FSM 0.99 BPM

CurToSS, 2020 [23]
SPC, 12 subj.
SPC, 23 subj.
Dalia, 15 subj.

Rest, Running,
Rehab. ex.,

8 daily activities

PPG,
Acc. 0.5-4 Hz filtering SSR

Curve tracking N/A
2.2 BPM
4.5 BPM
5.0 BPM

TAPIR, 2020 [24]
SPC, 12 subj.
SPC, 23 subj.
Dalia, 15 subj.

Rest, Running,
Rehab. ex.,

8 daily activities

PPG,
Acc. 0.5-4 Hz filtering

Adaptive filter
Peak detection

Linear Transform.
Notch filter

2.5 BPM
5.9 BPM
4.6 BPM

Deep Learning

DeepPPG, 2019 [10] SPC, 12 subj.
Dalia, 15 subj.

Rest, Running,
8 daily activities

PPG,
Acc.

STFT,
0-4 Hz filtering CNN N/A 4 BPM

7.65 BPM

CorNET, 2019 [17] SPC, 12 subj.
SPC, 23 subj.

Rest, Running,
Rehab. ex. PPG 0.4-18 Hz filtering,

z-score scaling CNN+LSTM N/A 4.67 BPM
5.55 BPM

Binary CorNET, 2020 [18] SPC, 12 subj.
SPC, 23 subj.

Rest, Running,
Rehab. ex. PPG 0.4-18 Hz filtering,

z-score scaling Bin. CNN+LSTM N/A 6.78 BPM
7.32 BPM

NAS-PPG, 2021 [25] Dalia, 15 subj. 8 daily activities PPG FFT,
0.6-3.6 Hz filtering CNN+LSTM N/A 6.02 BPM

Our Work Dalia, 15 subj. 8 daily activities PPG,
Acc. 0.5-4 Hz filtering TCN th,

finetuning
4.36 BPM

+f.t: 3.61 BPM

their own algorithm in [15], proposing JOSS, a JOint Sparse
Spectrum reconstruction approach, where spectral difference
is used to remove motion artifacts from the PPG spectrum,
further reducing the MAE to just 1.28 BPM. Similar to this
approach, in [22], the authors propose to suppress motion
artifacts using Singular Value Decomposition (SVD), coupled
with an Iterative Method with Adaptive Thresholding (IMAT),
and a final peak selection step. This work slightly improves
the performance on the SPC dataset, obtaining a MAE of 1.25
BPM. Other model-driven approaches [11], [12], [13] use FFT
and Wiener filtering to remove motion artifacts from noisy
PPG signals, further improving the performance on SPC to
0.99 BPM of MAE. Until now, the best MAE result on the
SPC dataset (0.89 BPM) has been achieved by SpaMa [14], a
complex five-step pipeline that combines spectral filtering and
spline interpolation.

In 2019, Reiss et al. [10] released a new dataset for PPG-
based HR monitoring called PPG-Dalia (Dalia hereinafter),
with a higher number of subjects (15) and more activities
per subject (8 in total), including daily-life tasks such as
driving, sitting or walking. The most recent model-driven
algorithms [23], [24] are optimized on this new dataset. The
first, CurToSS [23], improves JOSS by using sparse signal

reconstruction for both acceleration and PPG signals, obtaining
5.0 BPM of MAE. The second, TAPIR [24], relies on linear
temporal transformations, strongly reducing the computational
complexity while achieving a MAE of 4.6 BPM. Noteworthy,
all these model-based algorithms include many free param-
eters, which leads to over-fitting the dataset used for hand-
tuning them. Therefore, using model-driven algorithms could
strongly impair generalization, leading to badly performing
solutions in real-life situations, represented in table I by
the challenging DALIA dataset. Moreover, to the best of
our knowledge, none of the aforementioned algorithms has
been deployed on wearable devices, probably due to the high
complexity of some of the algorithms.

In recent years, motivated by the increasing success of deep
learning in other bio-signal applications (e.g., gesture recog-
nition [20], seizure detection [26], [27] and brain-computer
interfaces [28]), some researchers have started exploring deep
NNs, in particular Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), for PPG-based HR
tracking. The seminal work in this group is [10], which in
conjunction with the publication of Dalia, introduced different
CNN variants coupled with a short-time Fourier transform,
which outperformed the best model-driven methods [14], [12]



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JANUARY XXXX 4

on the new dataset. CorNET [17] and its variant for highly
constrained devices, BinaryCorNET [18] have been introduced
to reduce model complexity, achieving comparable results
to model-driven methods on the SPC dataset using a deep
architecture with a CNN front-end and a long-short term
memory (LSTM) RNN to combine multiple time samples.
Finally, a Neural Architecture Search (NAS) approach has
been recently applied to the HR tracking problem in [25],
finding a CNN+LSTM network that achieves 6.02 BPM of
MAE on Dalia, while also reducing the complexity of the
algorithm compared to [10], but being still too large for
MCU deployment (800k floating-point parameters). Indeed,
deep NN models typically have large memory footprints and
high computational complexity. Therefore, their deployment
on memory-constrained MCUs, with low energy consumption
and respecting real-time latency constraints is not trivial. In
our work, we tackle precisely these challenges. To the best of
our knowledge, we are the first to i) explicitly create a Pareto
frontier of NNs in the MAE versus memory (or number of
operations) space, from which different models can be selected
based on the hardware target’s constraints and ii) investigate
the embedding of these models into an actual edge device.
Furthermore, we achieve the leading accuracy on the DALIA
dataset, outperforming all previous state-of-the-art models.

III. BACKGROUND

A. Temporal Convolutional Network

Temporal Convolutional Networks (TCNs) are a sub-class
of 1D-Convolutional Neural Networks (CNNs) specialized for
time-series processing. Recently, TCNs have been shown to
outperform RNNs on several tasks, obtaining higher accuracy
for the same number of parameters [29]. The peculiarity of
TCNs with respect to standard 1D-CNNs is the use of causal
and dilated convolutions [29], [30]. Causality constrains the
convolution output yt to depend only on inputs xt̃ with t̃ ≤ t.
In other words, outputs are computed looking only at past or
present (but not future) inputs. Dilation inserts a fixed gap
d between the input time-steps processed by convolutional
kernels (i.e., filters). Dilated convolution is beneficial as it
permits an increase of the receptive field of the filters on
the time axis, without increasing the number of trainable
parameters. In summary, the function implemented by a TCN
convolutional layer is:

ym
t =

K−1∑
i=0

Cin−1∑
l=0

xl
t s−d i ·W

l,m
i (1)

which is repeated ∀m ∈ [0, Cout − 1] and ∀t ∈ [0, T − 1]. In
the formula, x ∈ RCin×T and y ∈ RCout×T/s are the input
and output activations, respectively composed by Cin and
Cout channels or features; T is the output length on the time
axis, W ∈RCout×Cin×K the multidimensional array of filter
weights, d the dilation factor, s the stride, and K the filter size.
Originally, TCNs have been proposed as fully-convolutional
architectures that stacked multiple layers each implementing
(1) [29]. However, more recent implementations also include
other elements, such as pooling and fully-connected (FC)

Fig. 1. Wrist-worn form factor board presented in [21] used in our experi-
ments and its simplified block diagram.

TABLE II
BOARD COMPONENTS POWER PROFILE.

Component State Current (I) Power Consumption
Microcontroller
STM32 Active 7.59 mA 25 mW
STM32 Idle 4.15 mA 13.7 mW
STM32 Stop 2.45 µA 8.1 µW
STM32 BLE∗ 30 µA 99 µW
STM32 BLE./ 2.1 mA 6.9 mW
Sensors
MAX30101 Active 1100 µA 5.5 mW
MAX30101 Shutdown 0.7 µA 3.5 µW
LSM6DS Active 9 µA 30 µW
LSM6DS Shutdown 3 µA 10 µW
∗ STM32 BLE current advertising (0 dBm; 1 s; 31 B).
./ STM32 BLE connected master (200 B; 100 ms)

layers, which are analogous to those commonly found in
standard CNNs [20], [31]. In our experiments, we consider
TCN architectures that include all these types of layers.

B. Hardware setup

We deployed TCNs on the embedded system described
in [21], whose main board is designed with a wrist-worn form
factor. Its picture together with a simplified block diagram of
the system is shown in Fig. 1, where only the components
needed for PPG-based HR monitoring are shown. The board
includes a STM32WB55RGV6 System-on-Chip (SoC) from
ST Microelectronics [32], referred to simply as STM32WB
hereafter. The SoC architecture includes two fully independent
cores, an Arm® Cortex®-M4 core running at 64 MHz (appli-
cation processor) and an Arm® Cortex®-M0+ core at 32 MHz
(network processor), optimized for real-time and low-power
execution. Moreover, the SoC also includes a Radio-Frequency
(RF) transceiver with a radio stack compliant with Bluetooth
Low Energy 5.0 (BLE) standard, including Bluetooth SIG,
Mesh profile, and an HCI for proprietary custom solutions.
Developed with the same technology of the ultra-low-power
STM32L4 MCUs, the STM32WB series provide similar dig-
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ital and analog peripherals, suitable for applications requiring
both extended battery life and high computational capability.

The power supply sub-system of the board exploits a
TPS63031 from Texas Instruments, a buck-boost DC/DC
converter specifically designed to provide stable output voltage
also with impulsive and non-reliable power sources, such as
energy harvesters and solar panels. The converter reaches 90%
efficiency during sensor acquisition and processing modes.
The local energy buffer exploits a Li-Ion 370 mAh battery
used by the TPS63031 as the primary source of power.

The other two relevant components of the system of [21] for
our target applications are two sensors: the MAX30101 [33]
and the LSM6DSM [34]. The former is a low-power pulse
oximeter and PPG module, while the latter is a 6-axes Inertial
Measurement Unit (IMU). The two sensors are connected
with the MCU using respectively I2C and SPI digital busses.
The hardware power consumption of the different components
in all the respective working states, measured through a
source/measurement unit Keysight B2900A, is reported in
Table II. The MAX30101 sensor requires a dedicated 5 V
for internal LEDs, generated using a step-up converter, with
an efficiency of 80%.

IV. Q-PPG EXPLORATION FLOW

The main contribution of this work is a design space
exploration flow able to generate a rich set of HR tracking
models, offering diverse trade-offs in terms of MAE and
computational cost, where the latter is measured in terms of
number of trainable parameters, or number of operations per
inference. We select TCNs as target model type, due to their
good performance on time-series processing, and in particular
on similar bio-signal processing tasks [20].

The inputs of our flow are a training dataset, containing
PPG and inertial data associated with the corresponding HR
label, and a so-called seed TCN, i.e., a sort of “template”
from which all output models are generated. The flow is then
composed of two main phases:

1) Architecture Optimization: in this phase, we leverage
Neural Architecture Search (NAS) tools to explore some
of the most important hyper-parameters of the seed TCN
to trade-off computational cost and performance.

2) Precision Optimization: in this phase, we further enrich
and improve the Pareto curve by applying different types
of quantization [35] to the weights and activations of the
TCNs produced in phase 1.

At runtime, a low-cost post-processing step is applied to the
TCNs produced by phase 2, to further improve their HR
tracking accuracy. A high-level diagram of the entire flow is
shown in Figure 2. Since its final output is a set of quantized
TCNs, we name our methodology Quantized-PPG (Q-PPG).

Importantly, the lowermost part of the picture shows that
the Q-PPG exploration has to be performed only once for a
given dataset and seed model. After that, deploying to a given
hardware target reduces to selecting one of the models from
the cost versus error Pareto frontier. Specifically, the target
platform imposes constraints on the design space, e.g., limiting
the maximum number of parameters based on the available

memory space. Then, the most accurate Q-PPG model that
meets those constraints is selected and deployed. Therefore,
generating an entire family of models, rather than a single
one makes our methodology efficient and flexible, enabling
the deployment of optimized HR tracking solutions not only
on the platform described in Section III-B, but also on other
similar wearable-class systems.

In the rest of this section, we describe in detail the Q-
PPG inputs in Section IV-A, the two exploration phases in
Sections IV-B (phase 1) and IV-C (phase 2), and the post-
processing in Section IV-D.

A. Input Data and Seed Network

The Q-PPG exploration phase and the training of the final
TCNs use the same input dataset, which is composed of raw
sensor data gathered from the PPG-sensor and from a tri-
axial accelerometer. Training samples passed to the NNs are
obtained forming sliding windows of length T on the four
signals. Therefore, our TCNs take as input a 2-dimensional
array of size (T, 4). The target output for training is the ground
truth HR estimate, expressed as a scalar real number in BPM.
HR tracking then reduces to a regression problem, where the
objective of the TCNs training is to approximate this ground
truth value. More details on the specific characteristic of the
dataset used for our experiments are provided in Section V-A.
In all training runs, we use the LogCosh loss function to
measure the error between the real and predicted HR. LogCosh
has been shown to outperform both RMSE and MAE [36] as
a loss function, favoring the convergence near the minimum,
thanks to its smoother behavior around that point.

Besides training data, the other input of our flow is the seed
network. As better detailed in Section IV-B, all Q-PPG outputs
are obtained starting from the seed, varying its structure (or
data precision) to trade-off computational cost and HR tracking
error. In particular, the Architecture Optimization phase of Q-
PPG tries to reduce/simplify the seed, while maintaining the
MAE as low as possible. Therefore, in order for our flow
to cover the entire design space, the starting point should
be a relatively large and accurate TCN. In this work, the
seed network is an adapted version of TEMPONet [20], a
TCN which shows impressive results on another bio-signal
processing task, i.e., EMG-based gesture recognition. With
respect to the original paper, the structure of TEMPONet
is slightly modified, i) to make it compatible with the HR
tracking task and ii) to widen the space explored by Q-PPG.

A first modification for compatibility with the task consists
in changing the first layer to match the input array size. In
particular, while 1D convolutional networks can deal with
arbitrary input lengths on the time axis, the number of input
channels of the first layer must match the one of the dataset
(4 in our case). Similarly, the last FC layer of TEMPONet
has also been modified, changing the number of units to 1, as
required when performing a scalar regression task. Lastly, the
dilation parameters of all convolutional layers in TEMPONet
has been set to d = 1, while the filter size K has been
increased to match the original receptive field. This has been
done because one of the network simplifications performed
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Fig. 2. Proposed Q-PPG design space exploration flow.

during the Architecture Optimization consists of increasing
the dilation of convolutional layers. Thus, setting d = 1
everywhere in the seed gives maximum freedom to the search
algorithm to explore this parameter.

Apart from these modifications, our seed network is iden-
tical to the original TEMPONet of [20], and consists of
a modular feature extractor, composed of 3 convolutional
blocks, followed by a classifier with 3 FC layers. In turn, each
convolutional block contains 3 1D-convolutional layers, where
the last layer of each block uses a progressively increasing
stride of 1, 2, and 4. Moreover, an average pooling layer is
inserted at the end of each block to reduce the output length
on the time axis. The number of channels in each block is
constant, and it equals 32, 64 and 128 for the 1st, 2nd and 3rd
block respectively. All layers use ReLU activations and batch
normalization [37].

B. Architecture Optimization

This section describes the methodology used to generate
different TCN architectures for HR tracking in the accuracy vs.
complexity space. As shown at the top of Figure 2, we leverage
a cascade of two different Neural Architecture Search (NAS)
tools, called MorphNet [38] and Pruning-In-Time (PIT) [39]
for this exploration.

NAS tools automatically generate novel NN architectures
for a given task, optimizing hyper-parameters such as the
depth and the width of the network, the type of layers
included, the connections between layers, etc [40], [41], [42].
Most of these tools target complex computer vision tasks,
leading to large and computationally-intensive networks, and
requiring an enormous number of training iterations. Only
recently, researchers have started investigating light-weight
NAS approaches called DmaskingNAS [38], [43], which search
for an optimized architecture in a time comparable to that
of a single training. Both MorphNet and PIT belong to this

category. The efficiency of DmaskingNAS tools comes at the
cost of a reduction of the search space, namely in terms of
the type of hyper-parameters that are explored. Specifically,
all generated models are modified versions of a single seed
network, as anticipated in Section IV-A.

A high-level view of the functionality of the two tools used
in our work is shown in Figure 3. Before starting the search,
the layers of the seed network are modified adding a new set
of additional trainable parameters called masks (αi and βi in
the figure), each of which multiplies a subset of the layer’s
weights. In our case, we add masks to convolutional layers
of the modified TEMPONet. Moreover, αi masks (Figure 3a)
are also applied to FC layers except the last one. βi masks
cannot be applied to FC layers, as explained below. These
masks are then trained together with the normal parameters
of the network, encouraging the training algorithm to reduce
their magnitude.
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Fig. 3. High-level scheme of the functionality of the two NAS algorithms
used for architecture optimization. Pooling and other layers are not shown for
simplicity.

The principle of this approach is that weights multiplied
with a small magnitude mask have a negligible impact on the
output of a layer (see Eq. 1), and can be removed from the
network without increasing significantly its output error. Thus,
after training, optimized architectures are obtained by simply
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eliminating all layer portions corresponding to low magnitude
masks. As shown in Figure 3 masks are forced to small values
during training by adding to the normal loss function Ltask (i.e.,
LogCosh for HR tracking) an additional regularization term
Lcost. The latter computes the expected cost of all the layers
of the architecture (e.g., memory occupation or number of
operations) as a function of the mask values. Different Pareto
points in the complexity versus HR tracking error are obtained
changing the relative importance of the two loss terms, through
the regularization constant λ.

The two tools used in our work differ mainly in the masking
mechanism. As shown in Figure 3, MorphNet [38] masks
all weights relative to the same convolution output channel
with one αi. Therefore, this tool can be used to automatically
optimize the number of output channels (or features) Cout

in each convolutional layer. In contrast, PIT [39] masks all
weights corresponding to the same time-step (and to all
output channels) with one βi, with the effect of inserting
“holes” in the convolution filters. So, this tool can be used to
automatically search for the optimal dilation parameter d of a
TCN. To clarify the masking process, all weights multiplied
with α1 and β1 are coloured in red in Figure 3a and 3b
respectively. As shown, α1 is multiplied with all the weights of
filter W1 (i.e., the filter that comprises weights used to derive
output channel C1), while β1 is multiplied with the 1-indexed
columns of all filters, assuming that the latter are stored in
channel-major order.

In the above description, several important details are
skipped for sake of space. For instance, MorphNet embeds the
masks in the pre-existing parameters of Batch Normalization
layers, which are typically placed just after convolutions.
Moreover, the training phase aimed at reducing αis is alter-
nated with expansion steps in which the number of channels is
uniformly increased in all layers, to recover from the obvious
performance penalty. PIT, instead, uses a mechanism to ensure
that only regular dilation values are obtained from the search,
i.e., that the gap between convolution inputs is constant, by
imposing relationships among the βis. Further, it binarizes the
βis to prevent the training algorithm from compensating small
mask values with larger weights. For a detailed discussion on
the two tools, readers can refer to the original papers [38],
[39].

1) Search Protocol: We select MorphNet an PIT for our
architecture optimization because both the number of channels
and the dilation are key parameters that influence the accuracy
and complexity of TCNs [29]. However, it has not been
previously analyzed how to combine the exploration of these
two parameters (N. of channels Cout and dilation d). In our
experiments, we found empirically that running MorphNet
first, followed by PIT, yields much better results than the
opposite ordering. Intuitively, this happens because MorphNet
operates in a wider and more fine-grained search space, since
the possible channels combinations are way more than the
possible regular dilation values in a typical convolutional layer.

Given this observation, we use the following search protocol
in our work. First, we apply MorphNet to the seed network,
with different regularization strengths (from λ = 10−6 to
λ = 10−3). This results in a first Pareto frontier, composed of

TCNs with different number of channels and dilation fixed at
1. Then, we select some key points from this frontier, namely
the two extremes of the curve (i.e., the TCN achieving the
minimum HR tracking error on the validation set and the one
with the lowest cost), plus two intermediate solutions. Lastly,
we use each of these 4 networks as seeds for PIT, once again
repeating the training with different regularization strengths
(from λ = 10−9 to λ = 5 · 10−3). Consequently, the output
of the MorphNet + PIT chain includes 4 (in general, n) sets
of TCNs, which are then combined to obtain the final Pareto
front. Each NAS execution is preceded by a warm-up phase
and followed by a fine-tuning, where only the weights of the
seed/optimized TCN are trained. Both these phases have been
shown to significantly improve the search quality [38], [39].

C. Precision Optimization
Starting from the architectures generated by the two cas-

caded NAS tools, we further expand the space of solutions
exploring the per-layer arithmetic precision of our TCNs.
The quantization technique we use is the same presented
in [44], which was shown to maintain high accuracy even
with sub-byte precision, while also being hardware friendly.
In fact, differently from other techniques such as weight
clustering [45], this method allows to replace all floating
point multiply-and-accumulate (MAC) operations required for
inference with integer MACs, resulting in a more efficient
execution and enabling the deployment of the resulting models
on hardware without a Floating Point Unit (FPU). The method
implements a linear quantizer, which transforms each floating
point tensor t (of either weights or activations), with values
in the range [αt, βt) into a N -bit integer tensor t̂ as:

t̂ = round

(
t− αt

εt

)
(2)

where εt = (βt−αt)/(2
N − 1) is the smallest value that can

be represented in the quantized tensor. The entire inference
is then performed using only integer data. Specifically, the
accumulation in (1) is performed with int32 data, so that
no overflows occur, and the final result is then re-quantized as
described in [46]. Batch normalization layers are also stored
and processed with int32 format.

Quantization can be applied to a NN either post-
training [44] or by means of quantization-aware training
(QAT) [35], [47]. The first approach works acceptably well
for int8 data. For instance, in [19] we showed that the
MAE degradation for HR monitoring when moving from a
single-precision floating point format (fp32) to int8 was in
the 1.26-1.44 BPM range. However, using QAT leads to the
recovery of most of the performance loss for int8 precision,
and to a limited error increase also for sub-byte precision. This
comes at an acceptable cost in terms of training time, since
QAT can be applied to an already trained floating point model,
reaching convergence in a few epochs. The basic principle of
QAT is that of simulating the effect of quantization (so-called
fake quantization) during the forward pass of each training
iteration, while maintaining floating point updates during back-
propagation. The details of this technique are out of our scope,
and readers can refer to [35], [47].
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In Q-PPG, we use EdMIPS [47], a tool that allows to simul-
taneously i) perform QAT and ii) search for the optimal trade-
off among the data format of each layer and the final error of
the network. Figure 4 illustrates the functionality of EdMIPS,
which relies on a gradient-based optimization method very
similar to the one used by the two NASes described in
Section IV-B. All convolutional and FC layers in the network
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Fig. 4. EdMIPS flow for arithmetic precision optimization.

are replaced by meta-layers, identical in terms of the executed
operation, but whose weights are obtained as combinations of
fake-quantized tensors with different precision. For instance,
(1) is changed to:

ym
t =

K−1∑
i=0

Cin−1∑
l=0

xl
t s−d i · Ŵ

l,m
i (3)

where:

Ŵ =

P−1∑
p=0

Wqp · γp (4)

and P is the number of different precision formats considered.
Wqp is the tensor of fake-quantized weights using the p-th
precision, and γp is a trainable coefficient associated to it. For
instance, if we consider int2, int4, and int8 formats, then
Ŵ = Wqint2 ·γint2+Wqint4 ·γint4+Wqint8 ·γint8. All
fake-quantized tensors are obtained from the a single, shared,
set of floating point weights Wfp2. A similar transformation
is also applied to the outputs of the layer, in order to search
for the optimal quantization format for activations too. Specifi-
cally, the output of the meta-layer is obtained combining fake-
quantized activations as follows:

y =

P−1∑
p=0

ŷp · δp. (5)

As in the previous NAS approaches, γ and δ coefficients
are then trained together with the network weights, adding
a secondary loss Lcost that takes into account the cost of
each data format, e.g., the total number of bits required to
store the tensor1. The training algorithm then assigns a larger
coefficient to the fake-quantized tensor that offers the best
trade-off between cost and performance. Accordingly, after
training, each layer’s weights and activations are assigned the
data format corresponding to the largest coefficient.

1The coefficients are passed through a softmax operation, so that they sum
to 1, in order not to alter the floating point weights distribution.

1) Search Protocol: Within Q-PPG, we apply EdMIPS
with the following strategy. First, we perform a uniform
quantization, i.e., using the same bit-width for all tensors
(P = 1), to the entire set of TCNs obtained in the architecture
optimization phase. We repeat the QAT with different formats,
namely int2, int4, and int8, which are those supported
by the backend TCN inference library available for our target
hardware [44]. Next, we let the tool search the best bit-
width for each tensor, exploring so-called mixed-precision
networks [47]. To this end, we select the two extremes of our
floating-point Pareto curve, plus two intermediate TCNs with
good MAE vs size trade-off, and run EdMIPS with P = 3,
allowing the tool to select among the same three formats
listed above. We repeat this search with different regularization
strengths λ ranging from 10−3 to 10−5 and merge the results
to form the final Pareto front.

D. Post-processing

The last component of our methodology is a post-processing
step applied at runtime to the output of our optimized TCNs.
This step is orthogonal and independent from the design space
exploration described above, and is motivated by the fact that
data-driven models such as TCNs, while very accurate on
average, may sometimes incur large and unpredictable errors,
especially when the processed inputs differ significantly from
those seen in the training phase.

Fortunately, in the particular case of HR tracking tasks,
some of these errors can be easily filtered out, taking into
account the compatibility between TCN estimations and hu-
man physiology. Specifically, the dynamics of the human heart
rate impose an upper bound on the reasonable variation of
the estimate over time, in normal conditions. Therefore, when
performing a continuous HR tracking (e.g., every 2s in the
experiments described in Section V), a single TCN prediction
that differs significantly from all its predecessors is likely due
to an error of the model.

Based on these considerations, our post-processing applies a
simple filtering on the NN outputs. Specifically, the latest TCN
prediction HRn is compared with the average of the previous
N, En,N = E[HRn−1, ...,HRn−N ]. If the difference between
these two values is larger than a threshold Pth, the estimate
is clipped to HRn = En,N ± Pth. In this work, we set N to
10 and Pth = En,N/10, identical for all patients. An example
of the output produced by one of our models before and after
post-processing is shown in Figure 5.

E. Fine-Tuning

In one of our experiments, we also consider partially
personalized per-subject models, instead of population ones.
Specifically, after training the models with data of subjects
not included in the test-set, we apply a further fine-tuning step
with a lower learning rate, using the initial 25% of the data
relative to the subject under test. The MAE is then computed
on the remaining 75% of the data.

The main goal of this experiment is to simulate the effect of
training a population model on a larger dataset. In fact, despite
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before and after post-processing on the subject n.3 of the Dalia dataset.

the fact that PPG-Dalia is the biggest public dataset for PPG-
based HR monitoring, it only contains data relative to < 20
subjects, and the total amount of records is relatively small
for training a deep learning model. Therefore, fine-tuning
simulates the scenario of a much larger dataset, whose training
set contains data that are similar to those seen during testing.
Secondarily, this experiment also aims at understanding if
personalized models could further improve the performance
of PPG-based HR monitoring. Collecting ground truth HR
labels for personalized models is hard in practice, as it requires
dedicated sessions for all subjects, in which both PPG data and
ECG references are collected. However, it is not impossible,
and it could be beneficial for specific medical use-cases where
an extremely accurate model is demanded.

V. RESULTS

In this section, we present experimental results to demon-
strate the effectiveness of our methodology for building ac-
curate yet efficient HR tracking solutions based on TCNs.
Specifically, Section V-A describes our target dataset (PPG-
Dalia) and training protocol. Section V-B shows the results of
the architecture optimization phase of our flow, which is a set
of TCNs with different error and complexity characteristics,
but still using floating point data format. These networks
are then compared with the state-of-the-art in Section V-C,
since all existing algorithms tested on PPG-Dalia use float
data. Next, Section V-D shows how the error and complexity
results change after the precision optimization phase. Lastly,
Section V-E reports the memory footprint, energy consump-
tion and latency obtained deploying some of the final Q-
PPG outputs on the platform described in Section III-B. The
proposed flow and all TCN training code are implemented in
Python 3.6. To deploy TCNs on the target MCU, we use the
open-source Cmix-NN inference library for ARM processors
presented in [44], which supports mixed-precision layers with
int2, int4 and int8 formats for weights and activations.

A. The PPG-Dalia Dataset

We evaluate our models as well as state-of-the-art compar-
isons on the PPG dataset for motion compensation and heart
rate estimation in Daily-Life Activities (PPG-Dalia) [10]. At

the time of writing, PPG-Dalia is, to the best of our knowl-
edge, the largest publicly available dataset for PPG-based HR
estimation. It includes two PPG channels, from green and
red LEDs respectively, (only the former is available in the
public version of the dataset), coupled with 3D acceleration
data and with the reference ECG signal. In order to compare
fairly with previous approaches on this dataset [10], [25], we
employ all publicly available data, i.e. the PPG signal from
the green LED and the 3D acceleration. The ground truth
labels are derived from a chest-worn device with a standard
three-points ECG measurement, using a manually adjusted R-
peak detector. Additional activity labels, indicating the type of
movement performed by the user, are also available. The latter
are not considered in our experiments. Signals are sampled
at 32Hz and organized in sliding windows of 8s (T = 256
samples) with a 6s overlap. The dataset contains a total of 37.5
hours of recording, divided into 15 subjects, eight female and
seven male, with age in the interval 21-55. Two commercial
devices were used to collect data: the RespiBAN [48] for the
reference ECG, and the wrist-worn Empatica E4 [49] for PPG
and acceleration data.

We validate all models following the cross-validation pro-
tocol proposed in [10], denoted as Leave-One-Session-Out
(LOSO) cross-validation, where the 15 subjects are organized
in four randomly picked data folds. Three folds are used as the
training set, while the remaining one is subdivided to form the
test set, composed of a single subject, and the validation set.
15 training iterations are then performed, each with a different
test subject, ensuring that its input data are never used to train
the model tested on it. We compare Q-PPG against both
classic and DL methods that have been tested on the same
dataset, taking their results directly from the original papers.
When analyzing MCU deployments, we consider a real-time
constraint of 2s per inference, equal to the time-shift between
two consecutive samples in the dataset, in accordance with
previous work [10], [24].

B. Architecture Optimization Results

Figure 6 reports the results of the architecture optimization
phase of our flow. Specifically, it shows (in green) the Pareto
frontiers defined by the different TCN variants discovered
by Q-PPG, changing the regularization strength of the two
NAS algorithms. Results are reported in terms of MAE versus
number of trainable parameters and MAE versus number
of operations, and include the effect of the runtime post-
processing described in Section IV-D. Importantly, these mod-
els are still not quantized, and use single-precision floating
point representation for both activations and weights.

Besides the outputs of the complete flow, four other re-
sults are reported for comparison. The black diamond and
triangle correspond respectively to the original TEMPONet,
with the dilation of convolutional layers set as in [20], and
to the TEMPONet variant with all dilations set to 1, which
corresponds to the input seed of Q-PPG. Comparing these
two points with the green curve clearly show that: i) using
a hand-tuned TCN originally designed for another task, such
as TEMPONet, would be suboptimal and ii) the two NAS
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algorithms are able to simultaneously improve the HR tracking
performance of the seed, while also dramatically reducing its
complexity.

The other curves reported in Figure 6 show the results
of the isolated application of the two NAS algorithms. The
blue points refer to the application of MorphNet (MN) to
TEMPONet with hand-tuned dilation, and correspond to the
results of [19]. Orange points, instead, correspond to the
application of PIT alone, using the TEMPONet variant with
d = 1 as seed. Comparing these two curves with the green one
clearly shows that combining the two NAS tools is almost
always superior with respect to applying them individually,
especially when considering MAE versus model size. In fact,
the global Pareto frontier (gray dashed line) is almost always
overlapped with the Q-PPG output. This result is motivated
by the fact that MorphNet alone can explore a wide space
of solutions, by tuning the number of channels in each layer,
but is forced to use sub-optimal hand-tuned dilation values.
In contrast, being unable to alter the number of channels, PIT
can only explore a limited portion of the design space.

Overall, our automatic design space exploration technique
is able to span more than two orders of magnitude, both in
terms of TCN parameters (3.5k-269k) and OPs (0.1M-17.5M),
despite starting from a single seed TCN. The most accurate
model obtained by our automatic design space exploration,
before quantization, achieves a MAE of just 4.36 BPM while
requiring around 269k parameters and 17.5M OPs. On the
other hand, by only using MN, as presented in [19], the
best MAE obtained was 4.88 BPM, with similar number of

parameters (230k) and operations (12M). Noteworthy, increas-
ing the number of parameters from 3.5k up to 30k leads
to improving the MAE from 6.5 BPM to 4.55 BPM. In
comparison, a relatively small improvement of the MAE of
0.19 BPM is obtained by increasing the network dimension of
one additional order of magnitude. This could be an indication
that, even with relatively few parameters, our NAS-based flow
is able to find near-optimal models, that closely approach the
best overall performance obtainable with a TCN on this dataset
without altering it, e.g., through data augmentation.

C. State-of-the-art comparison

Figure 7 compares our models (in green) with state-of-
the-art algorithms, including both classical and deep learning
solutions (blue and red points respectively), in the MAE versus
number of operations space. For Q-PPG, we report the entire
Pareto frontier of TCN architectures, i.e., the same points
plotted in the lowermost graph of Figure 6. As anticipated, we
compare with the state-of-the-art considering non-quantized
models, since all previous work use floating point data. The
details of the cross-validated MAE results for each of the
15 PPG-Dalia subjects are reported in Table III. For works
proposing multiple models (ours and DeepPPG [10]), the table
reports the results of the most accurate one. Q-PPG results are
reported both with and without post-processing.
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Fig. 7. Comparison with state-of-the-art algorithms in the MAE versus
number of operations space.

As shown, Q-PPG significantly outperforms all previous
solutions based on deep learning. With respect to DeepPPG,
we achieve a better MAE even with our simplest model
(6.07 vs 7.65 BPM), despite a striking 7572× reduction in
complexity. With respect to the recent NAS-PPG, the same
Q-PPG model obtains comparable MAE (6.07 vs 6.02 BPM)
with 88.4× fewer operations. Moreover, the best Q-PPG model
obtains a MAE that outperforms the previous state-of-the-art
method for this dataset, TAPIR [24], although at the cost of
higher complexity, achieving an average error of just 4.36 (vs
4.57) BPM. TAPIR is not dominated in the Pareto sense due
to its very low theoretical complexity. However, it is essential
to note that this method has a few shortcomings. First, it
has never been deployed on an embedded device, and the
optimization of its custom filtering operations for an MCU is
far from trivial. Furthermore, the original implementation of
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TABLE III
COMPARISON WITH STATE-OF-THE-ART PPG-BASED HR MONITORING ALGORITHMS.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean
Classical Models
Schack2017 [12] 33.1 27.8 18.5 28.8 12.6 8.7 20.65 21.8 22.3 12.6 21.1 22.8 27.7 12.1 16.4 20.5
SpaMaPlus [14] 8.86 9.67 6.40 14.10 24.06 11.34 6.31 11.25 16.04 6.17 15.15 12.03 8.50 7.76 8.29 11.06
TAPIR [24] 4.50 4.50 3.20 6.00 5.00 3.40 2.80 6.30 8.00 2.90 5.10 4.70 3.10 5.00 4.10 4.57
CurToSS [23] 5.40 4.30 3.00 8.00 2.20 2.80 3.30 8.50 12.60 3.60 3.60 6.10 3.00 5.50 3.70 5.04
Deep Learning Models
DeepPPG [10] 7.73 6.74 4.03 5.90 18.51 12.88 3.91 10.87 8.79 4.03 9.22 9.35 4.29 4.37 4.17 7.65
NAS-PPG [25] 5.46 5.01 3.74 6.48 12.68 10.52 3.31 8.07 7.91 3.29 7.05 6.76 3.84 4.85 3.57 6.02
OurWork, Best MAE 4.29 3.62 2.44 5.73 10.33 5.26 2.00 7.09 8.60 3.09 4.99 6.25 1.92 3.02 3.55 4.81
+ Post-Processing 3.78 3.36 2.33 4.84 9.95 4.38 2.20 5.88 7.59 2.74 4.55 5.20 2.14 2.99 3.47 4.36
+ Fine-Tuning 3.25 2.55 2.66 4.21 5.41 4.11 2.06 5.07 7.15 3.04 3.07 3.39 2.13 3.13 2.96 3.61

TAPIR uses floating-point data, and the effect of integer/fixed-
point approximation is not studied. Therefore, even if the target
device is equipped with a floating-point unit (which is not
always the case for MCUs), the lower number of operations
might not actually translate into efficiency benefits with respect
to our quantized networks. Second, TAPIR performs poorly
with slight parameters modifications, as shown in the original
paper. Therefore, as for many other classical methods, the
hand-tuning of its parameters is critical and might hamper
generality.

Looking at Table III, it is evident that our best TCN
performance is strongly impaired by subject 5. This is due to
the fact that this subject’s record contain very high HR values,
rarely encountered in training data, which are therefore badly
predicted by data-driven approaches. In fact, if we apply the
additional fine-tuning step described in Sec. IV-E, the MAE
of the best Q-PPG model further reduces to just 3.61 BPM.
For instance, for subject 5, we reduce the MAE from 9.95 to
5.41 BPM. Overall, fine-tuning improves the performance of
our model on 11 out of 15 subjects. This demonstrates that
our method could achieve potentially even better performance,
given the availability of a larger and more varied dataset.

D. Precision Optimization

Figure 8 shows how the MAE versus model size results
change when applying different types of quantization to Q-
PPG models. Note that the x-axis of the curve now reports the
model size in bytes, rather than number of parameters, and the
dark green curve corresponds to the one in the topmost graph
of Figure 6. The graph then reports also the results of uniform
and mixed-precision quantization, applied with the methods
and hardware-friendly formats described in Section IV-C.

A first important observation is that uniform int8 quanti-
zation incurs very little MAE degradation, as shown by the
similar shapes of the dark green and blue curves, despite a
reduction of a factor of 4 in model size. Furthermore, both sub-
byte uniform quantization (int4 and int2) and mixed-precision
results fall on the global Pareto frontier, demonstrating that
all formats are useful to obtain different MAE versus model
size trade-offs. Overall, thanks to quantization, the range of
model sizes obtained with our methodology reaches a span of
3 orders of magnitude, from around 1MB (largest float TCN)

MKV42F128VLF16 STM32WB55RG6STM32L031F4

M
A

E 
[B

P
M

]

Memory constraint fp32 int8 int4 int2 mixed

Fig. 8. MAE versus memory occupation of Q-PPG TCNs quantized with
different data formats.

to less than 1kB (smallest int2-quantized TCN), with MAE
values ranging from 4.36 to ≈20 BPM.

To show the flexibility of our flow, the figure also reports,
in the form of vertical dashed lines, the constraints imposed
by the Flash memory available in 3 different commercial
MCUs. The rightmost line corresponds to our target platform
(the STM32WB, with 1MB of Flash), whereas the other two
correspond, from right to left, to a MKV4 MCU from NXP,
based on a Cortex-M4 with 128kB of Flash [50] and to
the STM32L031F4, equipped with a Cortex-M0+ and 16kB
of Flash [51]. Typically, a MCU installed on a wearable
device has to store in Flash the code and data for multiple
applications. Since the precise application set varies from
product to product, here we assumed that 50% of the total
Flash can be devoted to storing the TCN. While the actual
constraint may differ in practice, this is just an example for
sake of demonstrating a principle that is valid in general. Once
the constraint is defined, picking best Q-PPG model for a given
hardware simply reduces to finding the most accurate Pareto
point left of the corresponding vertical line. In particular, our
target STM32WB can fit the most accurate quantized model
overall, which requires ≈412 kB of memory, and achieves a
MAE of 4.41 BPM. In contrast, the largest model fitting the
memory of the MKV4 is a mixed-precision TCN requiring just
11.3kB, and achieving an average error of 4.64 BPM. Lastly,
for the STM32L0, the most accurate TCN fitting in memory is
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quantized at 4bit and occupies 7.15 kB, with a MAE of 5.40
BPM.

E. Deployment Results

In this section, we discuss the results obtained deploy-
ing three representative TCNs obtained with Q-PPG on the
wearable device described in Section III-B. Specifically, we
deployed the smallest networks with less than 8 BPM and 5
BPM of MAE, (Q-PPG-S and Q-PP-M respectively), as well
as the most accurate of all quantized networks (Q-PPG-L).
All deployments have been performed using the Cmix-NN
layers library [44], which has been adapted to support 1D
convolutions with dilation.

The memory occupation, latency and energy consumption of
the three networks for a single inference are reported in Table
IV, which also shows the type of quantization used by each
of them. As expected, smaller models are associated with a
larger MAE. However, Q-PPG-M achieves better latency and
energy results with respect to Q-PPG-S. This is due to the
fact that Q-PPG-M also includes int8 layers, which have
higher performance than int4 in Cmix-NN, since the latter
require more complex packing/unpacking operations to match
the bit-width of Cortex-M vector ALUs. Interestingly, Q-PPG-
M trades-off just 0.23 BPM of MAE for a 36.2× (34.2×)
memory (energy) reduction compared to Q-PPG-L.

TABLE IV
DEPLOYMENT OF DIFFERENT Q-PPG NETWORKS ON THE STM32WB55

USING CMIX-NN LAYERS [44].

Model Memory [B] Latency Energy MAE
Q-PPG-S (int4) 1866 71.6 ms 1.79 mJ 7.73 BPM
Q-PPG-M (mixed) 11388 55.7 ms 1.39 mJ 4.64 BPM
Q-PPG-L (int8) 411997 1.90 s 47.65 mJ 4.41 BPM

STM32WB

11 mJ

2.22 mJ
0.06 mJ

0.06 mJ
0.06 mJ

11 mJ

11 mJ

1.83 mJ

48.0 mJ

MAX30101 LSM6DSM

Q-PPG-S Q-PPG-M Q-PPG-L

Fig. 9. Break-down of the energy consumed in the 2s between two successive
HR estimations, including data communication, algorithm execution and
waiting time for new data.

In order to compute the power consumption of the entire
wearable platform, we then characterized the two sensors (PPG
and accelerometer) and the MCU during data gathering, data
communication, and inference, as shown in Table V. The
two sensors i) gather the raw data, ii) store them in internal

TABLE V
ENERGY CONSUMPTION OF THE THREE MAIN COMPONENTS OF THE

SYSTEM DURING IN PHASES.

MAX30101
[mW]

LSM6DSM
[mW]

STM32WB
[mW]

Inference 5.5 [18.0%] 0.03 [0.1%] 25.0 [81.9%]
Data Comm. 5.5 [28.6%] 0.03 [0.2%] 13.7 [71.2%]
Data Gath. 5.5 [99.3%] 0.03 [0.5%] 0.008 [0.2%]

FIFOs, and iii) send them through I2C/SPI, always consuming
a constant on-power of 5.5mW and 0.03mW respectively The
STM32WB stays in Stop mode (0.008mW power) between
the end of the computation and the moment in which the next
window of data is ready to be acquired (gathering phase).
After that, it goes in Idle mode (13.7mW power) during the
data communication phase, enabling only the DMA and the
SPI/I2C peripherals. Lastly, it goes in Active mode (25.0mW
power) only to perform inference. Note that during the data
gathering phase, the power consumption is strongly dominated
by the MAX30101 power. However, in this work, we do not
focus on power-saving techniques for the system’s sensing
parts, which are set in a default configuration to achieve the
sampling rate required by our experiments.

Figure 9 reports the energy break-down of the system in a
2s window (the interval between two HR predictions) obtained
with the three networks of Table IV. SPI/I2C data acquisi-
tion and DMA transfers from peripherals to main memory
require 15.4ms for both the PPG signal and the acceleration
(considering a sampling rate of 32Hz), leading to a stable
energy consumption of 11 mJ and 0.06 mJ, respectively.
Conversely, the execution time for inference ranges from 71.6
ms to 1.9 s, always meeting the real-time constraint of 2s. In
particular, using the Q-PPG-L network as predictor results in
an energy consumption of 48.0 mJ, which is 81.3% of the total
consumption of the system. On the other hand, trading-off a
bit of performance for a lighter network, using the Q-PPG-M
network, we can reduce the energy consumption for inference
to just 1.83 mJ, which is only 14.1% of the total, with positive
effects on battery life, which is critical for embedded and
wearable devices.

VI. CONCLUSIONS

Executing PPG-based HR tracking on wearable devices
is increasingly important in both clinical contexts and daily
lives. However, most research on this task focuses only on
maximizing performance, through hand-tuned and often com-
plex algorithms. To the best of our knowledge, there are no
algorithms deployed on wearable-class devices that reach good
performance on a large dataset. In this work, we have tackled
this limitation introducing Q-PPG, a new set of quantized deep
learning models that span 3 orders of magnitude in memory
occupation, with MAEs ranging from a state-of-the-art 4.36
BPM to ≈ 20 BPM, on the largest publicly available dataset
for this task. All models are derived from a single seed network
through the application of a cascade of automatic tools, which
progressively either i) improve the performance of tracking
or ii) shrink the model complexity and memory footprint.
We have deployed some of our models on a wearable MCU-
based device, demonstrating that they achieve real-time HR
tracking with low error, while only contributing to 14.1% of
the total energy consumption of the system, when considering
also sensing and communication.

Our development chain is released as open-source at
https://github.com/EmbeddedML-EDAGroup/Q-PPG.

https://github.com/EmbeddedML-EDAGroup/Q-PPG
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