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Cable Detection and Manipulation for DLO-in-Hole
Assembly Tasks

Kevin Galassi, Alessio Caporali, Gianluca Palli

Abstract—This paper describes a cyber-physical system for the
manipulation of Deformable Linear Objects (DLOs) addressing
the DLO-in-hole insertion problem targeting an industrial sce-
nario, the switchgear’s components cabling task. In particular,
the task considered is the insertion of DLOs in the switchgear
components’ holes. This task is very challenging since a precise
knowledge of the DLO tip position and orientation is required
for a successful operation. We tackled the DLO-in-hole problem
from the computer vision perspective constraining our setup on
employing just simple 2D images and by using the mobility of
the robotic arm for achieving the full 3D knowledge of the DLOs.
Then, the DLO tip is detected from two different image planes
and the robot’s trajectory corrected accordingly before insertion.
To prove the effectiveness of the proposed solution, an example
scenario is prepared and the method validated experimentally
attempting the insertion of several DLOs in a sample switchgear
component, obtaining an overall insertion success rate of 82.5%.

Index Terms—Robotic Manipulation, Deformable Objects,
Cyber-Physical System, Industrial Manufacturing.

I. INTRODUCTION

In recent years, the increase of automatic machines and elec-
tronic devices has highlighted the problem of the production
and the manufacturing of switchgears and cable harnesses,
nowadays still subject to human labor. The application of
robotics for the manipulation of these objects is indeed very
limited, and this condition is shared among all the class De-
formable Linear Objects (DLOs), comprising not only cables
and harnesses but also ropes, suture threads, wires, etc.

Unsurprisingly, the major adversity when dealing with
DLOs is their property of being deformable, meaning that
their properties change during the time as consequence of
the manipulation. In addition, also the visual perception is
challenging due to the limited features that can be exploited
for their detection. Another problem to overcome is the
environment in which these materials have to be manipulated.
As a matter of fact, for the large range of applications where
DLOs are involved, the workspace is characterized by narrow
spaces and a large presence of obstacles, an example can be
the production of control boxes where the cables have to be
manipulated inside the control box’s ducts.

Kevin Galassi, Alessio Caporali and Gianluca Palli are with DEI - De-
partment of Electrical, Electronic and Information Engineering, University of
Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

This work was supported by the European Commission’s Horizon 2020
Framework Programme with the project REMODEL - Robotic technologies
for the manipulation of complex deformable linear objects - under grant
agreement No 870133.

Corresponding author: kevin.galassi2@unibo.it

(a) DLO grasp from warehouse. (b) Tip correction.

(c) Initial insertion. (d) Insertion completed.

Fig. 1: Snapshots of the insertion task sequence. The robot
uses a novel 2D-based shape estimation to locate and grasp
the cable (a), then moves the cable to the second camera (b)
to perform the correction of the trajectories (c) and allow the
insertion (d) of the DLO inside a component of a control panel.

The task of peg insertion, named as peg-in-hole, is a
representative robotic task which requires the insertion of an
object of a known shape inside an orifice. In the literature,
common approaches to this problem are the usage of external
force measuring systems placed between the robot and the
end-effector link or, as alternative, a compliance-based system
[1], to estimate the interaction force between the object and the
desired hole. In this scenario, however, the deformability of the
material precludes the usage of a force-based interaction. This
situation can be viewed as a novel class of problems defined
as DLO-in-Hole and new approaches for solving them need
to be proposed. Fig. 1 provides an example scenario in which
the DLO-in-Hole tasks may find applicability.

Ideally, a precise knowledge of the DLO’s tip position and
orientation in the workspace needs to be available before
performing the insertion. However, DLOs’ lack in relevant
features and missing characteristics make them hard to be
detected and processed by commonly used 3D devices [2] in
robotic application. Indeed, DLOs such as the one threaded
in this work, consisting of cables and wires of just few mil-
limeters of diameter, are properly perceived only by high-end
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Fig. 2: Experimental Setup. A 2D camera is mounted on the
robot end effector to detect and estimate a 3D model of the
wire inside the grasp area (Warehouse). The side camera and
the gripper camera are used to correct the tip position and
orientation after the grasp and before the insertion (Correction
Area). The insertion is executed in the Insertion Area.

3D active cameras like Zivid and Photoneo ones [2]. However,
such devices are hard to mount on the robot end-effector due
to their size, weight and bulkiness. Considering also their
intrinsic limitation on the field of view and range, they are
usually constrained on fixed setups limiting their applicability.
These considerations led to our previous work [3] where we
introduced a triangulation-based 3D estimation algorithm that
employs the mobility of a robotic arm and a calibrated 2D
eye-in-hand camera to achieve the 3D knowledge of the DLO
from multiple images.

In this paper, some preliminary results concerning the DLO-
in-Hole assembly task are presented. An algorithm called
ARIADNE+ [4] is used to detect the DLOs from each input
camera image through deep-learning based segmentation and
providing a B-Spline representation of the DLO in pixel
coordinates. Then, by collecting the estimated 2D splines
provided by different points of views, an evolution of the
method first presented in [3] estimates the 3D shape of the
DLO described by means of a spline in the 3D Cartesian space.
The main contribution of this paper is in showing how with
just 2D cameras and proper trajectories of the robotic arm it
is possible to achieve successful results in the DLO-in-Hole
task, starting from the DLO 3D estimation and grasp, its tip
point correction and finally insertion.

The paper is organized as follows: in Sec. II the relevant
literature related to this problem is presented. Then, the task
proposed is presented in Sec. III and explained in details in
Secs. IV-V. Finally, in Sec. VI the method is experimentally
evaluated and the conclusions are reported in Sec. VII.

II. RELATED WORKS

The DLO-in-Hole problem is a relevant research topic
that has been studied along the years proposing alternative
solutions to this challenging task. In [5] the authors propose to
control the trajectories by estimating the shape of the object, in
that work the target was a deformable beam which is definitely
easier to model and estimate compared to a long wire. Another
approach to fulfill the insertion is from estimation of the
deformation starting from the study of the potential energy
as seen in [6] and using the over mentioned approach in [7]
the author use the robot to manually bend the plastic material
to shape the cable. A more recent work proposes the usage
of tactile sensors mounted on the fingers’ tip to estimate the
deformability of the wire to permit the insertion in a hollow
cylinder [8] or in a control box component [9]. From the
opposite perspective, other research aimed at the insertion of
rigid object inside a flexible material [10], [11].

From the DLOs perception point of view, although it is an
active research topic [12], the detection and segmentation of
DLOs has been commonly addressed in simple setting, such
as marker-based [13], background color removal [14]–[16],
Frangi filter [17], Ridge filter [18] or ELSD algorithm [19].
In [20], the authors proposed an algorithm called ARIADNE
where the individual DLOs are segmented from complex
backgrounds starting from their endpoints, which are detected
by a CNN. Additionally, each segmented DLO is modeled
with a B-spline curve to ease further manipulations. The
segmentation of DLOs (specifically wires) via learning-based
methods has been attempted in [21] where a dataset consisting
of electric wires is made publicly available. Instead of vision-
based approaches, some works have focused the attention on
tactile sensors placed on the fingers of the robot gripper.
This approach is better suited in case of occlusions and
space limitation, and these sensors can provide important
information in manipulation tasks [22]. Additionally, vision
and tactile data can also be combined [23] to overcome the
limitation of both solutions.

III. SETUP AND TASK DESCRIPTION

The task proposed in this paper consists in the DLO-in-Hole
problem, where a DLO needs to be inserted by a robot into
an electromechanical component connection socket.

In Fig. 2 the setup used for the experimental evaluation
of the approach presented in this paper is shown. The setup
reproduces the problem of wire insertion in a know position,
for example in the switchgear cabling scenario, simulating
the extraction of the cable from a warehouse that collects
the wires and the following insertion in a component where
a second robot or a human operator can secure the cable
by means of a screwdriver. Concerning the sensors, a low-
cost 2D camera (ELP-USB8MP02G-L75) camera is placed in
an eye-in-hand configuration and calibrated both intrinsically
and extrinsically. This camera is addressed in the following
as gripper camera and it is shown also in Fig. 1a on the
robot end-effector. The gripper camera is calibrated utilizing,
for the extrinsic parameters, an initial guess obtained from
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Fig. 3: System execution pipeline. The robot estimates the precise DLO shape using multiple images collected from a 2D
camera. After, the grasping is performed. From the images coming from the gripper camera and a fixed second side camera the
correction of the tip pose is performed. The sequence is terminated with the DLO insertion. The correction of the orientation
can be enabled or disabled (more in the experimental section), thus the if condition.

the CAD files which is then further refined by using an eye-
in-hand calibration algorithm employing a chessboard pattern
[24], [25]. In addition, a second camera (RealSense D435) is
placed in the designated correction area, and in the reminder
of the paper it is addressed as side camera, shown also in
Fig. 1b. This camera is not calibrated extrinsically with the
robot, instead is taken advantage of the knowledge of the 3D
model of the DLO to convert pixel coordinate into an estimate
in world coordinates. As a remark, the selection of the side
camera is due only to internal availability as only the RGB
image (not the Depth) is used in this work.

The DLO-in-Hole task is challenging mostly due to the
deformability of the object being manipulated, hence the need
to estimate the tip pose precisely before the insertion. To
tackle these challenges, in this work is proposed a strategy
schematized in Fig. 3. The task begins with the robot moving
to the warehouse area where the DLO(s) are stored. After
selecting the target DLO, the robot performs the acquisition
of several images with the gripper camera which are then
processed obtaining a 3D model of the DLO represented as
a sequence of 3D cartesian points interpolated by a spline
curve. Details of this process are provided in Sec. IV. Obtained
the full 3D knowledge of the DLO, the robot performs the
DLO grasp at a pose with a specific distance (specified by
the user) from the detected tip. Now the robot moves to
the area designed for the correction procedure, where the
intrinsic deformability of the DLO and the possible additional
deformations that occurred during the grasp and extraction
from the warehouse are taken into account. In particular, the
position offset between the gripper fingers frame and the DLO
tip is computed. Additionally, also the orientation of the DLO
tip is estimated and the gripper rotated accordingly to align
the DLO’s tip direction with the known hole frame. The tip
correction is executed employing both the gripper camera and
side camera. Details on these two correction procedures are
provided in Sec. V. Finally, the robot moves toward the target
hole and performs the insertion, where the precise location of
the hole is assumed to be known.

IV. DLO SHAPE ESTIMATION

In this section is provided the details about the DLO shape
estimation procedure mentioned in Fig. 3. In particular, we
mostly followed the approach firstly presented in [3], that we
briefly summarized here.

A. 2D Image Processing

Concerning the 2D image processing, we adopt a deep
convolution neural network (DeepLabV3+ [26]) for the back-
ground segmentation. The network is trained on a synthetic
dataset [21] built utilizing a chroma-key based approach which
allows a generation of a large amount of data with minimum
human effort. The dataset features both complex cluttered
backgrounds and more simple ones, aiming at a complete gen-
eralization in all the possible scenarios, including the industrial
one. Given the binary mask of the image, in which background
pixels (black) are separated from the foreground ones (white),
a superpixel segmentation is applied on the latter. The idea
of superpixels is to partition the image into local meaningful
areas making the further processing easier and faster. In
particular, we deploy MaskSlic [27], a modified version of the
more famous Simple Linear Iterative Clustering (SLIC) [28]
algorithm, which uses color and proximity pixel information
in a 5D space for the segmentation only on a region of interest
(i.e. the foreground pixels). Based on the superpixel label
map, a region adjacency graph (RAG) is built. That is, an
undirected and unweighted graph where each superpixel is
represented as a graph node and the edges are computed from
neighbouring relationships between superpixels. Concerning
the cables’ terminals detection, they can be extracted simply
from the graph as the nodes characterized by having only
one neighbor. Finally, fast walks are performed on the graph
aiming at organizing the set of graph nodes as an ordered
sequence from one terminal to another of the DLO considered.
Finally, the obtained walk is used to estimate a 2D spline
representing the DLO in the current image plane, as:

q(u) =

nu∑
i=1

bi(u)qi (1)



(a) Source image (b) Output colored mask

Fig. 4: Example of image processing. The two DLOs are
segmented from the input image into individual instances
(denoted by different color in the output mask).

where u is a free coordinate representing the position along the
DLO starting from an endpoint (u = 0) to the opposite (u = L,
being L the length of the DLO), q(u) = [px(u) py(u)]

T is
the 2D vector of pixel coordinates representing the estimated
spline in the input image, bi(u) is the i-th elements of the
spline polynomial basis used to represent the DLO shape and
qi are nu properly selected coefficients, usually called control
points, used to interpolate the DLO shape through the bi(u)
function basis.

B. 3D Shape Estimation

To asses the 3D knowledge of the DLO, multiple image
samples are collected from different view points. In particular,
the robot end-effector equipped with the gripper camera is
used to mimic a stereo device. Thus, a trajectory is specified
and parameterized with a user-defined number of poses for the
acquisition of sample images with a known baseline, following
the standard normal stereo setup. For each acquired image, the
detection pipeline described in Sec. IV-A is applied and the
computed spline of the frame under exam is stored together
with the relative pose of the camera. Then, the set of splines
is triangulated point-wise in order to estimate the 3D shape of
the DLO considered. In details, given a generic point in the
cartesian space x, and provided that np distinguished points
of view are available, the estimation x̃ of the unknown point x
can be obtained by looking for the point having the minimum
distance from all the rays vi. By defining the symmetric Vi

matrix
Vi = I − wvi

wvTi (2)

providing the seminorm on the ray distance, the point location
estimate x̃ is provided by nearest point search algorithm, i.e.

x̃ =

(
np∑
i=1

Vi

)−1( np∑
i=1

Vi
wtci

)
(3)

where wtci is the position of the camera frame origin in
world coordinates and wvi is the unit ray in world coordinates
passing through the image reference frame origin and x
expressed as function of pixel coordinates pi of x and the
camera focal distance f .

The aforementioned approach is carried out on a suitable
set of sample point along the DLO spline. Let us call the set
of spline samples pij = pi(uj), j = 1, . . . , ns, i = 1, . . . , np,
where ns is the number of spline samples, np is the number

of points of view, pi(·) is the spline provided for by the i-th
image and uj are the spline sample points.

The vector of control points qv = [q1 · · · qnu
]T of the

3D spline q(u) that optimally approximated the set of point
estimates pij can be defined as

qv = B#x̃v (4)

where # represents the matrix pseudoinverse and

B =


b1(u1) · · · bnu(u1)
b1(u2) · · · bnu

(u2)
...

...
...

b1(uns) · · · bnu(uns)



x̃v =


(∑np

i=1 Vi1

)−1 (∑np

i=1 Vi1
wtci

)(∑np

i=1 Vi2

)−1 (∑np

i=1 Vi2
wtci

)
...(∑np

i=1 Vins

)−1 (∑np

i=1 Vins
wtci

)


being Vij the matrix computed according to eq. (2) for the
j-th sample provided by the i-th image.

V. DLO TIP CORRECTION AND TRAJECTORY PLANNING

Once the gripper has completed the grasp operation, the
DLO is extracted from the warehouse and brought to a
predetermined area, namely correction area, where both the
corrections employing the gripper camera and side camera
are performed. Notice that the target pose Pcorrection for the
gripper is chosen such that the DLO of interest is completely
observable from the 2D camera placed externally.

Let’s focus on the correction performed by the gripper
camera which main idea is schematized in Fig. 5. This
correction is performed on a plane parallel to the xy world
plane, thus the gripper axis zg is assumed to be aligned with
the world axis zw. A sample image is captured and the current
spline model of the grasped DLO obtained via Sec. IV-A. The
tip of the DLO is selected as the endpoint having the minimum
row pixel value. This is a reasonable assumption since the
DLO is assumed to be grasped. The tangent of the spline at
the tip point is evaluated and in this way the tip direction
established. The tip position described in pixel coordinates
is then converted in cartesian coordinates in the gripper frame
assuming a fixed depth of the DLO form the camera, i.e. as the
static distance between the camera and gripper frames, and the
quantities xt and yt are thus obtained. The offset along the xg

and yg axes are then easily computed as dx and dy respectively,
see Fig. 5a, and used to correct the target frame used during the
insertion. Additionally, the direction information can be used
to rotate the gripper around the zg axis and align the DLO tip
to the hole approaching direction, as shown in Fig. 5b.

Considering instead the correction performed by the side
camera, the procedure followed is similar to what already
described for the gripper camera. The main difference is
that this time the camera is not calibrated. This choice was
made to alleviate the constrains on the setup and evaluate the
effectiveness of the approach with this additional constraint.
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However, the approach can be easily modified to accommodate
a full calibrated setup and comparisons with that scenario are
going to be established as future research. The side camera
is used to perform a correction on the along the zw axis,
since this was not achievable with the gripper camera With
reference to Fig. 6, the DLO tip is now obtained as the DLO
having the minimum column value in the image. The tip
position in the gripper frame is obtained by scaling the pixel
values knowing the length of the DLO between the gripper
frame and its tip. This knowledge comes from the moment of
the grasp where the grasp pose is parametrized to the detected
DLO length from its 3D estimated model. Like before, the
offset dz between zg and zt is computed and used to correct the
last component of the target frame used during the insertion.
Additionally, the direction of the DLO tip computed via the
spline tangent can be used to correct also the target frame
orientation, as shown in Fig. 6b.

Overall, the target frame for the insertion is obtained starting
from the gripper frame as: X

Y
Z

 =

 xg

yg
zg

+

 dx
dy
dz

 (5)

When the orientation correction is considered, the robot
rotates around the tip to align the cable along the insertion
direction. the final direction of the gripper can be obtained as:

R′
g = Rg Rz(α)Ry(β) (6)

where Rz(α) and Ry(β) are the rotation matrix obtained
using the two correction angles obtained respectively from the
gripper camera and the side camera.

VI. EXPERIMENTAL EVALUATION

To validate the proposed approach, a series of insertions of
electrical wires in an electromechanical component connection
socket have been performed. The wires have a diameter of
2 mm wheres the hole diameter is 5 mm. It is important to
remark that the challenge in this experiment, apart from the
DLO deformability and difficulty in the detection in a vision-
based system, resides in the presence of a screw inside the hole
that it is used to secure the connection and that could make
the DLO tip change orientation in case of contact. To make
the experiment resemble more closely a possible application
for a switchgear cabling system, after the insertion of the wire,
a human operator secures the wire using a screwdriver. Then,
the robot pulls away from the hole. The connection is marked
as successful if the wire remains attached to the component
after this pull test. We separately tested the case in which we
perform only a correction in position or both a correction in
position and orientation of the DLO tip. The results after 20
insertions for each case are the following: 17/20 successful
insertion in the position only case; 16/20 successful insertion
in the position plus orientation case.

These results are not surprising. In fact, we observed that
our vision algorithm wasn’t always capable of capturing the tip
location area in the image with enough accuracy, in particular
for what concerns the estimation of the tip direction. Indeed,
in the failure cases, the orientation is erroneous leading to a
wrong approaching to the hole with the wire tip colliding with
the hole contour and blocking its insertion. On the contrary,
possible small errors in the estimation of the tip position in
the image are less harmful from the point of view of the
overall success in the insertion. By pulling the wire after it
has been secured and by measuring the external force acting
on the gripper, it is possible to identify if the wire has been
properly secured and inserted, the result in Fig. 7 offers a
clear view of how the two forces are different in magnitude
and easily separable. As final note, we would like to remark
that, when provided with a reliable orientation estimate, the
insertion operation with the correction in orientation enabled

Fig. 7: Comparison of the end-effector force measurements
along the pull direction, on the left (blue) the case where the
cable is properly connected to the desired components, on the
right (red) the case of failed connections.



(a) Initial pull condition (b) After pull and sliding

Fig. 8: Snapshots of a pull experiment.

would result into a smoother insertion with limited or absent
”jumps” due to undesired tip contacts.

VII. CONCLUSION

In this paper, a vision-based approach for the execution
of DLO-in-Hole insertion tasks has been evaluated. In the
proposed solution, a calibrated gripper camera is exploited to
obtain first the full 3D knowledge of a DLO and then it is
used, in conjunction of a side camera, for correcting the tip
position and orientation after the grasp, aiming at a successful
insertion in a designated hole. The experiments performed
provide useful insight and results, that will be investigated
in future research. The experiments also dispense evidence
of the misalignment problem between the gripper frame and
the DLO, in case of poor grasp operation. This misalignment
is currently not recoverable in our setup. In the future, the
integration of tactile data in the pipeline will be investigated
to account for these errors. Additionally, tactile data can also
be employed for detecting the sliding of the DLO between the
gripper fingers.
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