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Abstract

We revisit the spatial duopoly model à la Hotelling (1929), to show that, pro-

vided the parameter scaling marginal cost is su¢ ciently high, quadratic production

costs guarantee equilibrium existence in presence of linear transportation costs and

a uniform distribution, with minimum product di¤erentiation and no undercut-

ting. We also discuss the conditions under which partial coverage arises. Finally,

we extend the duopoly game to generalise the condition for the existence of the

pure-strategy equilibrium to a class of convex production cost functions.
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1 Introduction

As is well known, the original version of the Hotelling model (1929) describing horizontal

di¤erentiation along a linear city, which can be interpreted either in a literally geograph-

ical sense or as a representation of consumers�preference space, is a¤ected by a lack of

concavity (and continuity) due to Hotelling�s assumption of a linear disutility of trans-

portation. This fact jeopardises the existence of a subgame perfect equilibrium in pure

strategies. After the remedy proposed by d�Aspremont et al. (1979), the ensuing litera-

ture has extended the discussion to a few other aspects, including the minimum amount

of convexity of transportation costs needed to restore equilibrium existence (Economides,

1986), the simultaneous presence of linear and quadratic components in the transporta-

tion costs function (Anderson, 1988) and the role of several consumer density functions

di¤ering from the uniform one characterising the early literature (Neven, 1986; Caplin

and Nalebu¤, 1991; Anderson et al., 1997). In particular, Anderson et al. (1997) have

shown the existence of symmetric equilibria with linear transportation costs, provided

the distribution of consumers is not �too concave�.

The problem with the non-existence of the pure-strategy equilibrium has called for the

solution in mixed strategies, characterised by Dasgupta and Maskin (1986) and Osborne

and Pitchik (1987). Then, a more recent strand of literature, including Baye and Morgan

(1999, 2002) and Kaplan and Wettstein (2000) and culminating in Xefteris (2013) has

shown the existence of a subgame perfect price equilibrium in the original formulation of

the model, with linear consumer preferences and linear production costs.

We connect ourselves to this debate exploring another route, namely, the possibility

that (i) �rms operate at decreasing returns to scale with a cost function containing a con-

vex component and, for this reason, (ii) they may set undercutting prices to appropriate

either a portion of the rival�s demand or all of it. After showing that partial undercutting

is never pro�table, we prove that the same holds for undercutting to monopoly if mar-

ginal production cost is su¢ ciently steep. This result can be reformulated to illustrate

that undercutting is unpro�table if the mark-up is low enough. If so, then the subgame

perfect pure-strategy equilibrium exists, although the demand e¤ect still dominates the

strategic e¤ect and therefore �rms supply the product variety preferred by the median

consumer.
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Then, as in Economides (1984), Hinloopen and van Marrewijk (1999) and Chirco et

al. (2003), we deal with the possibility for �rms to become independent monopolists for

low levels of consumers�gross surplus, and then we characterise the regime prevailing

for intermediate levels of the same magnitude, in which full coverage obtains with �rms

located at one quarter and three quarters of the linear city and playing prices driving to

zero the net surplus of consumers at the city boundaries and at the city centre.

Having carried out the bulk of the analysis under quadratic production costs, we

come to a close with an extension of the model in the vein of Economides (1986), by

generalising the game to admit a class of convex costs, of which parabolic ones are a

special case. This last case is investigated under full coverage only, to illustrate a more

general condition for the existence of equilibrium.

The remainder of the note is structured as follows. Section 2 contains the basic layout

based on a linear-quadratic cost function and the analysis of the two-stage game. Un-

dercutting strategies are investigated in section 3. The arising of partial market coverage

and separated monopolies, as well as the �touching�or �kink�regime with full coverage ex-

isting between separate monopolies and proper duopolistic competition are investigated

in section 4. The generalization of the duopoly game to a class of convex production cost

functions is in section 5. Brief concluding remarks are in section 6.

2 The model

We examine the following version of the Hotelling (1929) model. Two single-product

�rms, labelled as 1 and 2, operate along the linear city of length L, being located at

xi 2 [0; L] ; i = 1; 2; with x2 � x1. Consumers are uniformly distributed along the

city, with a constant density d, in such a way that their total mass is M = dL. Firm i

chooses location xi and price pi to maximise its pro�ts, in a two-stage game (the �rst for

locations, the second for prices) taking place under complete and symmetric information.

Moreover, information is imperfect at each stage but perfect between stages, so that

locations are public domain before price competition takes place.

The net utility of a generic consumer located at x 2 [0; L] is the same as in Hotelling,
U = s�pi�t jx� xij ; where s > 0 is the gross surplus from consumption and t > 0 is the
unit transportation rate. For the moment, we assume that the market is fully covered,
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with each consumer buying one unit of the di¤erentiated good. The indi¤erent consumer

is at ex = p2 � p1 + t (x1 + x2)
2t

(1)

which de�nes the demand for product 1, y1 = dex; and therefore y2 = d (L� ex).
We depart from the original setup by assuming, for the moment, that each �rm

bears quadratic production costs Ci = cy2i . The more general case in which the convex

component is not necessarily quadratic will be treated later. With this speci�cation of

the cost function, the individual pro�t function is

�i = (pi � cyi) yi (2)

Keeping in mind that, if products become homogeneous at x1 = x2 = L=2; consumers may

distribute themselves randomly across the two �rms, we stipulate that if x1 = x2 = L=2;

then y1 = y2 = dL=2 and therefore �rm i�s pro�ts are

�i =

�
pi � c

dL

2

�
dL

2
if x1 = x2 = L=2 (3)

as in Baye and Morgan (1999). The solution of the game, as usual, is carried out by

backward induction, starting from the market stage.

2.1 The price stage

In correspondence of a generic location pair, the system of �rst order conditions (FOCs)

at the market stage

@�1
@p1

=
d

2t

�
p2 (cd+ t)� p1 (cd+ 2t) + t (cd+ t) (x1 + x2)

t

�
= 0 (4)

@�2
@p2

=
d

2t

�
p1 (cd+ t)� p2 (cd+ 2t) + t (cd+ t) (2L� x1 � x2)

t

�
= 0 (5)

is solved by the single pair

p�1 =
(cd+ t) [2cdL+ t (2L+ x1 + x2)]

2cd+ 3t

p�2 =
(cd+ t) [2cdL+ t (4L� x1 � x2)]

2cd+ 3t

(6)
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For future reference, we may now characterise the mark-ups of the two �rms, mui �
(pi �mci) =mci; where C 0i = 2cyi is the marginal cost of �rm i :

C 01 =
cd [p2 � p1 + t (x1 + x2)]

t

C 02 =
cd [p1 � p2 + t (2L� x1 � x2)]

t

(7)

At the candidate equilibrium prices (6), mu�i = t= (cd) because

C 0�1 =
cd [2cdL+ t (2L+ x1 + x2)]

2cd+ 3t
; C 0�2 =

cd [2cdL+ t (4L� x1 � x2)]
2cd+ 3t

(8)

in such a way that the mark-up is increasing in the unit transportation rate and de-

creasing in consumer density and the parameter scaling marginal production cost. More

importantly, the mark-up is indeed independent of the degree of product di¤erentia-

tion because p�i and C
0�
i are proportional, with p

�
i = (cd+ t)C 0�i = (cd). This, combined

with the fact that marginal cost is increasing in output, will play a relevant role in the

remainder.

Substituting (6) back into pro�t functions, the latter simplify as follows:

��1 =
d (cd+ 2t) [2cdL+ t (2L+ x1 + x2)]

2

4 (2cd+ 3t)2

��2 =
d (cd+ 2t) [2cdL+ t (4L� x1 � x2)]2

4 (2cd+ 3t)2

(9)

which are the relevant objective functions at the �rst stage.

2.2 The location stage

The inspection of the partial derivatives of pro�ts (9) at the �rst stage,

@�1
@x1

=
dt (cd+ 2t) [2cdL+ t (2L+ x1 + x2)]

2 (2cd+ 3t)2
(10)

@�2
@x2

= �dt (cd+ 2t) [2cdL+ t (4L� x1 � x2)]
2 (2cd+ 3t)2

(11)

reveals that @�1=@x1 > 0 and @�2=@x2 < 0 for all xi 2 [0; L]. Therefore, as in Hotelling
(1929), the presence of linear transportation costs entails that the demand incentive

prevails on the strategic incentive and �rms run to the midpoint of the linear city attracted

by the median consumer. Once x1 = x2 = L=2; prices (6) become p� = L (cd+ t) ; while
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quantities and pro�ts are y� = dL=2 and �� = dL2 (cd+ 2t) =4. However, marginal cost is

C 0 = 2cy� = cdL, and p� > C 0or, equivalently, the mark-up is positive. This fact calls for

the analysis of the undercutting incentive (which, in the original model - see d�Aspremont

et al. (1979) - is appealing well before �rms sit in front of the median consumer), and

this is where the convexity of production costs kicks in.

3 Undercutting prices

Since the cost function has a quadratic component, it is not a priori obvious that a �rm�s

undercutting price should be designed so as to capture the whole market share of the

rival, because doing so would bring about a sharp increase in marginal cost. Hence,

we shall also investigate the scenario in which undercutting is aimed at stealing just a

portion of the rival�s demand.

3.1 Partial undercutting

We take the standpoint of �rm 1, for a generic location pair (x1; x2) along the linear

city. To begin with, take the standpoint of �rm 1 and suppose there is a consumer

located at xu1 2 (L=2; x2) which �rm 1 targets when choosing its unilateral undercutting

price pu1 = p�2 � t (xu1 � x1) � "; where " is positive and arbitrarily small and therefore
negligible. If �rm 1 adopts this price, her demand is yu1 = dbx1 2 (xu1 ; x2) ; leaving some
positive demand to the rival. That is, any discount on transportation costs apparently

tailored onto a consumer u to the left of x2 makes product 1 appealing also to other

individuals located between that consumer and �rm 2. In particular, neglecting "; bx1
solves

s� pu1 � t (bx1 � x1) = s� p�2 � t (x2 � bx1) (12)

where bx1 = (x2 + xu1) =2; i.e., bx1 is the midpoint between xu1 and x2.
An analogous procedure applies for �rm 2, targeting a consumer at xu2 2 (x1; L=2)

through its undercutting price pu2 = p
�
1� t (x2 � xu2)� ". Doing so, �rm 2 will attract any

consumers from bx2 = (x1 + xu2) =2; attaining a demand equal to yu2 = d (L� bx2). That
is, bx1 = (x1 + xu2) =2 solves

s� pu2 � t (x2 � bx2) = s� p�1 � t (bx2 � x1) (13)
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The resulting unilateral undercutting prices simplify as follows:

pu1 =
2c2d2L+ t2 (4L+ 2x1 � x2 � 3xu1) + cdt (6L+ x1 � x2 � 2xu1)

2cd+ 3t
(14)

pu2 =
2c2d2L+ t2 (4L+ x1 � x2 + 2xu2) + cdt (2L+ x1 � 2x2 + 3xu2)

2cd+ 3t
(15)

The resulting individual partial undercutting pro�ts are �ui = (p
u
i � cyui ) yui ; i = 1; 2,

and partial undercutting is not pro�table i¤�ui � ��i for both �rms, where the expressions
of ��i are the same as in (9). Now note that �

u
i is a function of xi; xj and x

u
i ; and therefore

to ascertain whether �ui S ��i , it su¢ ces to check that the maximum of �ui w.r.t. x
u
i is

indeed at most equal to ��i for any admissible xi and xj. The system

@�u1
@xu1

=
d (cd+ 2t) [2cd (L� x2 � xu1) + t (2L+ x1 � 2x2 � 3xu1)]

2 (2cd+ 3t)
= 0

@�u2
@xu2

=
d (cd+ 2t) [2cd (L� x1 � xu2) + t (2L� 2x1 + x2 � 3xu2)]

2 (2cd+ 3t)
= 0

(16)

delivers the unique pair of solutions

xui =
2cd (L� xj) + t (2L+ xi � 2xj)

2cd+ 3t
; i; j = 1; 2; i 6= j (17)

with second order conditions being satis�ed since @2�ui =@ (x
u
1)
2 = �d (cd+ 2t) =2 < 0

always. It is then easily checked that �ui
�
xui ; x

u
j

�
= ��i for all admissible xi and xj.

This amounts to saying that neither �rm will unilaterally deviate from its candidate

equilibrium price p�i to the partial undercutting price p
u
i as the latter delivers at most

(but in general less than) the same pro�t as p�i .

This exercise implies the following

Lemma 1 In presence of linear transportation costs and quadratic production costs, par-

tial undercutting is unpro�table.

Having proved this, we are left with the case of undercutting to monopoly.

3.2 Undercutting to monopoly

As in d�Aspremont et al. (1979), the undercutting price pui = p
�
j � t jxj � xij � ", makes

�rm i a monopolist, with pro�ts

�ui = (p
u
i � cdL) dL (18)
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Once again, the analysis is carried out for a generic location pair. The unilateral incentive

for either �rm to undercut the rival exists if the following expressions are positive:

�u1 � ��1 = � [4Lt (2cd+ 3t) (cd (x1 + 3 (L� x2)) + 2t (x1 + 2 (L� x2))) �

(cd+ 2t) (2cdL+ t (2L+ x1 + x2))
2� (19)

�u2 � ��2 = � [4Lt (2cd+ 3t) (cd (L+ 3x1 � x2) + 2t (L+ 2x1� x2)) �

(cd+ 2t) (2cdL+ t (4L� x1 � x2))2
�

(20)

where � � d=
�
4 (2cd+ 3t)2

�
> 0. Expression (19) is positive for all

x1 >
2L (c2d2 + 4t2) + cdt (8L� x2)� 2

h
(2cd+ 3t)

p
2Lt (cd+ 2t) (L� x2) + t2x2

i
t (cd+ 2t)

� xu1 (x2)

(21)

while (20) is positive for all

x2 <
�2L (c2d2 + 4t2)� cdt (8L� x2) + 2

h
(2cd+ 3t)

p
2Lt (cd+ 2t)x1 � t2x1

i
t (cd+ 2t)

� xu2 (x1)

(22)

Solving the system xi�xui (xj) = 0 w.r.t. locations (x1; x2), one �nds that expressions
(19-20) are simultaneously positive for all

x1; x2 2
�
L (cd+ 2t)

8t
; L� L (cd+ 2t)

8t

�
(23)

This range obviously collapses to (1=4; 3=4) if L = 1 and c = 0; in which case the model

coincides with the original Hotelling (1929) setup. Looking at the undercutting range

in (23), one notes two relevant features. The �rst is that it shrinks as c and d increase,

while it expands as t increases. The second is that it has measure zero i¤

L (cd+ 2t)

8t
=
L

2
(24)

and this happens for all c � 2t=d � c. That is, if production costs become steeper,

or consumer density increases, the range of product di¤erentiation degrees at which

undercutting is pro�table becomes smaller because either (i) serving the whole demand in

a single plant operating at decreasing returns implies an excessively high marginal cost or

(ii) the number of consumers at each point along the city is su¢ ciently high to reduce the
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gravitational attraction exerted by the median consumer. If the parameter determining

the curvature of production costs is su¢ ciently high, the incentive to undercut disappears

altogether. Indeed, the critical threshold of c ensuring this result tends to zero as d tends

to in�nity (and conversely). In principle, the e¤ect of d on c might seem ambiguous,

because higher density levels could increase undercutting incentives on the basis of a

demand e¤ect, while any output expansion implies a higher marginal cost, which makes

undercutting less appealing. Indeed, the balance between the demand and cost e¤ects,

whereby @c=@d < 0 and limd!1 c = 0, reveals that cost considerations prevail in shaping

�rms�incentives as the market becomes progressively denser.

The above condition on the steepness of the cost function can be reinterpreted in

terms of the mark-up mu�i = t= (cd), noting that c � 2t=d is equivalent to t= (cd) � 1=2,
which says that the undercutting incentive vanishes if the mark-up is at most equal to

50%.

Summing up, we may formulate the following:

Proposition 2 In presence of linear transportation costs and quadratic production costs,

if the latter are steep enough to keep the mark-up below 1/2, then there exists a unique

subgame perfect pure-strategy equilibrium with �rms locating at the midpoint of the linear

city and pricing above marginal cost.

That is, the minimum di¤erentiation principle dating back to Hotelling (1929) may

be restored under su¢ ciently decreasing returns to scale. Recalling the fact that mark-up

is constant, as emerged in section 1.2, one may interpret the above Proposition as the

consequence of the interplay between a mark-up independent of product di¤erentiation

and a marginal cost increasing in the volume of production: as di¤erentiation decreases

due to �rms�pro�t incentives at the location stage, either �rm is tempted to undercut

the rival�s price but refrains from doing so because of decreasing returns to scale.

Having shown that the model admits a subgame perfect equilibrium in pure strategies

with minimum di¤erentiation, there remain to stress that this is subject to ful�ll the

initial assumption of full market coverage. This holds true if and only if consumers at

the endpoints of the linear city are able to pay the mill price p� = L (cd+ t) and bear

the transportation cost tL=2, which requires s � L (2cd+ 3t) =2 � bs. Hence, there arises
the need of investigating what happens for all s 2 (0; bs) ; i.e., in the range wherein the
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gross surplus is not high enough to allow �rms to enter the duopolistic regime illustrated

thus far.

4 Partial market coverage

As anticipated in the introduction, the emergence of partial market coverage in hori-

zontal di¤erentiation models has often received attention in the established literature.

Economides (1984) and Hinloopen and van Marrewijk (1999) investigate the matter in

the original Hotelling (1929) setup with linear disutility of transportation, Chirco et al.

(2003) in the d�Aspremont et al. (1979) version with quadratic disutility, and Econo-

mides (1989) does so in a circular model as in Salop (1979). Since we are dealing with a

variation on the theme of the linear city model, we may con�ne ourselves to summaris-

ing the basic results of Economides (1984) and Hinloopen and van Marrewijk (1999) as

follows:

� for su¢ ciently low levels of the reservation price (i.e., gross surplus s), �rms are
independent monopolies. Their locations are undetermined, and equilibrium prices

are linearly increasing in s;

� for intermediate levels of s, �rms compete while covering the whole market, and
the extent of di¤erentiation is at least a quarter and at most half the market size.

Again, equilibrium prices increase linearly in s;

� if s is su¢ ciently high to allow for price competition to take place over the whole
market, the problem of the absence of equilibrium appears.

In both papers, however, the possibility of �touching�and competitive equilibria aris-

ing under partial coverage, with �rms pricing out consumers towards both city boundaries

while serving an interval of consumers symmetrically de�ned around the median one is

explicitly considered (see, e.g., Economides, 1986, pp. 353-54, and Hinloopen and van

Marrewijk, 1999, pp. 739-42). A partially analogous problem solved in presence of

quadratic transportation costs (Chirco et al., 2003), admitting the possibility of partial

coverage only under independent monopolies while looking at optimal pricing under full

coverage as soon as the demand basins of formerly independent monopolies collapse into
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a �touching�equilibrium with full coverage. This analysis yields analogous results for low

and high levels of s (except, of course that the pure-strategy equilibrium exists), and de-

livers a �kink�equilibrium in prices at the market stage,1 mimicking collusion, with �rms

locating at the �rst and third quartile of the linear city and prices linearly increasing in

s.

In the present setting, we set out by characterising the regime where the two �rms

do not interact and play the optimal price, behaving as local monopolists. We approach

the problem by taking the same angle as in Chirco et al. (2003), i.e., considering partial

coverage as the initial situation associated with separate monopolies. The �rst step,

which indeed replicates what appears in Chirco et al. (2003, pp. 562-63) consists in

proving that, if �rms are independent monopolists, then each of them locates itself in

such a way that demand will be symmetric to the left and right of its location.

To this purpose, we may look at �rm 1 and suppose that x1 is close enough to the

left boundary of the linear city to ensure that p1 drives to zero the surplus of a single

consumer at x0 2 (x1; L=2) ; i.e., p1 = s � t (x1 � x0). This regime, and the de�nition
of the associated demand function, is admissible as long as x1 2 [0; x0=2]. Accordingly,
demand is y1 = dx0 and the �rm must choose x0 to maximise

�1 = d [s� t (x1 � x0)]x0 � cd2x20 (25)

This happens at

xAM0 =
s+ tx1
2 (cd+ t)

(26)

where superscript AM stands for asymmetric monopoly. The corresponding levels of

price, demand and pro�ts are

pAM =
(2cd+ t) (s+ tx1)

2 (cd+ t)
; yAM = dxAM0 ; �AM =

d (s+ tx1)
2

4 (cd+ t)
(27)

Clearly, pAM ; yAM and �AM are monotonically increasing in x1, with pro�ts increasing

faster than price and output as x1 moves to the right in the direction of L=4. Conse-

quently, the �rm will move rightwards, increasing its pro�ts while doing so. Moreover,

this will also increase the portion of demand located along the left hinterland of �rm 1,

1The arising of �kink�equilibria dates back at least to Beckmann (1972) and is also discussed in detail

in Salop (1979).
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measured by dx1. At some point, x1 has to become large enough to have a symmetric

demand on both sides, with marginal consumers at 0 and xAM enjoying zero surplus.

Labelling the net surplus of the consumer at 0 as U0, this happens when

U0 = s� pAM � tx1 = 0 (28)

i.e., at

x1 =
s

4cd+ 3t
� L

4
8 s � L (4cd+ 3t)

4
� s (29)

and at s = s we also have, intuitively, that xAM0 = 2x1.

Now we may look at the alternative regime in which �rm 1 is su¢ ciently far from

the left city boundary to enjoy a symmetric demand to the left and right of x1; while

possibly s isn�t yet large enough to allow consumers at 0 and L=2 to buy from �rm 1.

In this case, demand is y1 = 2d (x0 � x1) with x0 = (s� p1 � tx1) =2 driving to zero the
net surplus of the two marginal consumers. Pro�t maximisation requires

@�1
@p1

=
2d [4cd (s� p1)� t (2p1 � s)]

t2
= 0) pSM =

s (4cd+ t)

2 (2cd+ t)
(30)

with superscript SM standing for symmetric monopoly. In correspondence of pSM , de-

mand and pro�ts amount to

ySM =
ds

2cd+ t
; �SM =

ds2

4cd+ 2t
(31)

with both equilibrium magnitudes being independent of �rm 1�s location, as it clears

out when one simpli�es the relevant expressions. However, the position of the marginal

consumer does depend on x1 :

xSM =
s+ 2x1 (2cd+ t)

2 (2cd+ t)
(32)

This is increasing in x1 as well as in s, and obviously coincides with x1 i¤ s = 0. The SM

regime is admissible, from s = 0 to s = L (2cd+ t) =2 � s, for all x1 2 (0; L=4] and any
x2 2 [3L=4; 1). At s = s, the demand basins of the two �rms located at L=4 and 3L=4
are exactly large enough to cover the whole market at the margin, with ySM = dL=2

and xSM = L=2, showing that in this speci�c condition �rms are entering in reciprocal

contact and fully appropriate the surplus of consumers located at 0, L=2 and L.

12



Then, regime SM can be compared to regime AM to ascertain that

�SM > �AM 8x1 2 (0; x�] ; (33)

x� � s

t
�
p
2 (cd+ t)�

p
(cd+ t) (2cd+ t)p

(cd+ t) (2cd+ t)
(34)

and conversely outside this range. The last step consists in carrying out some elementary

algebra to show that x� > x1over the whole admissible parameter range, and s � s =
Lt=4 > 0 for all L; t > 0. This implies that �SM > �AM ; 8x1 2 (0; x1].
We may consequently draw the following conclusion:2

Lemma 3 In the parameter range wherein it is admissible, the monopoly regime with

asymmetric demand basins is strictly dominated by the alternative monopoly regime with

symmetric demand basins.

The above Lemma immediately implies

Proposition 4 For all s 2 (0; s) ; �rms may choose arbitrary locations (not necessarily
symmetric around L=2) and behave as separated monopolists. The only requirement they

have to ful�l is to pick their respective locations x1 2 (0; L=4) and x2 2 (3L=4; L) ensuring
symmetric demands. In correspondence of s = s, the separated monopoly regime collapses

to full market coverage and is observationally equivalent to a cartel supplying two varieties

at x1 = L=4 and x2 = 3L=4:

There remains to investigate the optimal behaviour of �rms for all s 2 (s; bs). In this
range, the duopolistic competition investigated in sections 2-3 cannot be performed as

the level of the gross surplus is too low. In principle, �rms may adopt three di¤erent

pricing strategies, each paired with a speci�c location pattern. They may, alternatively,

(i) remain at x1 = L=4 and x2 = 3L=4 and adopt prices increasing linearly in s to keep

mimicking the behaviour of a cartel, as in the above Proposition, until s becomes

large enough to allow for proper duopolistic competition to take place;

2Of course, this holds as well if transportation costs are linear and c = 0 (see Hinloopen and van

Marrewijk, 1999, p. 739). The analogous result in the Hotelling duopoly with quadratic transportation

costs and constant average production costs is in Lemma 1 in Chirco et al. (2003, p. 562).
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(ii) extract the full surplus of consumers at the city boundaries and relocate inside

the central quartiles. This regime is de�ned for all x1 2 (L=4; L=2) and x2 2
(L=2; 3L=4);

(iii) extract the full surplus of the median consumer and relocate outside the central

quartiles. This regime is de�ned for all x1 2 [0; L=4) and x2 2 (3L=4; L].

We may set out by looking at case (i), in which the symmetric price is pk = s� tL=4;
where superscript k mnemonics for the �kink equilibrium, and the resulting pro�ts �k =

dL [4s� L (2cd+ t)] =8 are positive for all s > s=2. Then, note that pk = pSM at s = s

and pk = p� at s = L (4cd+ 5t) =4 � es 2 (s; bs). This level of the gross surplus is also the
threshold above which full market coverage is viable under duopoly pricing, with �rms

playing p� at x1 = L=4 and x2 = 3L=4.

One should recall that s 2 (s; bs) may create an incentive for either �rm to unilaterally
undercut pk in order to acquire full monopoly power. It is easily checked that the adoption

of the undercutting price pku = pk � tL=2 = s� 3Lt=4 is not appealing, as the resulting
undercutting pro�ts are �ku = dL

�
pku � cdL

�
> �k for all s > L (6cd+ 5t) =4 > es, which

amounts to saying that undercutting is unpro�table for all levels of the gross surplus such

that pk 2
�
pSM ; p�

�
.

In case (ii), the relevant prices are p01 = s� tx1 and pL2 = s� t (L� x2) ; and we may
look at the �rms�pro�t functions at the upstream stage,

�1 =
d [L� 2 (x1 + x2)] [cd (2 (x1 + x2)� L)� 2 (s� tx1)]

4

�2 =
d [L� 2 (x1 + x2)] [cd (2 (x1 + x2)� L)� 2 (s� tx1)]

4

(35)

which are concave in x1 and x2, respectively, and generate the following FOCs:

@�1
@x1

=
d [t (L� 2 (2x1 + x2)) + 2 [s+ cd (L� 2 (x1 + x2))]]

2
= 0 (36)

@�2
@x2

=
d [t (5L� 2 (x1 + 2x2))� 2 [s� cd (3L� 2 (x1 + x2))]]

2
= 0 (37)

System (36-37) has a unique solution at

x0L1 =
2s� L (2cd+ t)

2t
; x0L2 =

L (2cd+ 3t)� 2s
2t

(38)
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with @x0L1 =@s = 1=t and @x
0L
2 =@s = �1=t and, obviously, x0L2 = L� x0L1 . At

�
x0L1 ; x

0L
2

�
;

the mill price is p0L = L (2cd+ t) =2 and individual pro�ts amount to �0L = dL2 (cd+ t) =4.

Recalling that this regime is relevant for all x1 2 (L=4; L=2) and x2 2 (L=2; 3L=4), we
may observe that x0L1 � L=4 and x0L2 � 3L=4 for all s � s, a range in which we also

have that �k � �0L. The reason is intuitive: in order to keep selling to consumers at the
city boundaries, the price must decrease in order to exactly o¤set the linear increase in

transportation costs, and indeed p0L � pk for all s � s: in correspondence of invariant

and symmetric quantities at y0L = yk = dL=2, this implies that regime (i) dominates

regime (ii) in the entire location range in which the latter is de�ned.

We are left with case (iii), de�ned for all x1 2 [0; L=4) and x2 2 (3L=4; L]. This
scenario can be quickly dealt with, as the relevant prices

p
L=2
1 = s� t

�
L

2
� x1

�
; p

L=2
2 = s� t

�
x2 �

L

2

�
(39)

imply that the pro�t functions at the �rst stage look as follows:

�1 =
dL [2s� cdL+ t (2x1 � L)]

4

�2 =
dL [2s� cdL+ t (L� 2x2)]

4

(40)

with �1 increasing in x1 and �2 decreasing in x2 and consequently lower than or at most

equal to �k for all x1 2 [0; L=4] and x2 2 [3L=4; L].
To complete the spectrum of price-and-location regimes which are admissible at least

in principle, we have to brie�y tackle the scenario in which �rms compete for a full

neighbourhood of L=2 while pricing out in the right neighbourhood of 0 and the left

neighbourhood of L. This case is considered by Economides (1984, �gure 3, p. 354) and

Hinloopen and van Marrewijk (1999, �gure 2, p. 739).

The relevant demand functions are y1 = d
�
L=2� xl

�
and y2 = d (xr � L=2) where

xl = x1 �
s� p1
t

; xr = x2 +
s� p2
t

(41)
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are the locations of marginal consumers to the left (resp., right) of �rm 1 (resp., 2).

Proceeding by backward induction, the FOCs at the market stage deliver prices

pl1 =
(2cd+ t) [2s+ t (L� 2x1)]

4 (cd+ t)

pr2 =
(2cd+ t) [2s+ t (2x2 � L)]

4 (cd+ t)

(42)

Plugging these prices into the pro�t functions and taking the partial derivatives at the

�rst stage,
@�l1
@x1

= �dt [2s+ t (L� 2x1)]
4 (cd+ t)

< 0

@�r2
@x2

=
dt [2s+ t (2x2 � L)]

4 (cd+ t)
> 0

(43)

we see that such derivatives imply that �rms have incentives to move away from each other

in order to become independent monopolists at the margin with both �rms collapsing

into the �kink�equilibrium with full coverage, as illustrated above. To ascertain this, it

su¢ ces to observe that the net surplus of the median consumer when buying from, say,

�rm 1, becomes nil at

x1 =
L (4cd+ 3t)� 2s
2 (4dc+ 3t)

=
L

2
� s

4dc+ 3t
(44)

which belongs to [L=4; L=2) for all s 2 (0; s] and it can be easily veri�ed that the resulting
pro�ts

�l1 =
d [2s+ t (L� 2x1)]2

16 (cd+ t)
(45)

are lower than or equal to �k for all x1 2 [L=4; L=2).
This discussion permits us to formulate

Proposition 5 Consider s 2 (s; bs). In this range, �rms adopt two pricing regimes,

depending on the level of the gross surplus:

� for all s 2 (s; es) ; they locate at x1 = L=4 and x2 = 3L=4; cover the whole market
and play p1 = p2 = pk; driving to zero the net surplus of consumers at 0, L=2 and

L;
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� for all s 2 [es; bs) ; duopolistic competition operates and, provided the cost function is
su¢ ciently steep, i.e., c � 2t=d � c; �rms play the subgame perfect prices fp�1; p�2g
and move themselves towards the median consumer. The resulting degree of di¤er-

entiation lies between L=2 and zero and decreases monotonically in s.

The second part of the above Proposition can be expanded to say that any s higher

than s but possibly lower than bs may put into question the existence of a pure-strategy
equilibrium in the price stage because of undercutting. If c � c, �rms will just move

inwards as far as consumer�s gross surplus allows them to go, without undercutting.

As soon as s is at least equal to bs; the prediction of the unconstrained duopoly model
materialises and minimum di¤erentiation appears. Conversely, any c 2 (0; c) and s 2
[es; bs) will engender the incentive to undercut as soon as �rms enter the interval in (23).
5 Extension: solving the duopoly game for a class of

convex cost functions

Here we go back to the duopoly case and suppose now that the cost function of �rm i is

Ci = cy
n
i , with n > 1, so that the individual pro�t function is �i =

�
pi � cyn�1i

�
yi: An

analogous approach to a general transportation cost function in combination with linear

production costs is in Economides (1986).

The relevant FOCs at the market stage are

@�1
@p1

=
d

2t
fp2 � 2p1 + t (x1 + x2)

+
cn

2n�1

�
d (p2 � 2p1 + t (x1 + x2))

t

�n�1)
= 0 (46)

@�2
@p2

=
d

2t
fp1 � 2p2 + t (2L� x1 � x2)

+
cn

2n�1

�
p1 � 2p2 + t (2L� x1 � x2)

t

�n�1)
= 0 (47)

Of course, solving (46-47) would require transcendental functions. However, the above

system can be solved invoking symmetry between locations, x2 = L � x1, which also
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allows for symmetry in prices, p2 = p1.3 As a result, we obtain the candidate equilibrium

price:

p� = Lt+ cn

�
dL

2

�n�1
(48)

whereby candidate equilibrium pro�ts are

�� =
c (n� 1) dnLn + 2n�1dL2t

2n
(49)

with y�i = dL=2, with i = 1; 2.

Relying on full symmetry, the issue of partial undercutting can be treated as above

with, say, �rm 1 targeting the consumer at xu 2 (L=2; x2) ; who must be indi¤erent

between �rm 1 and �rm 2 when facing prices pu1 and p
�; in such a way that

s� pu1 � t jbx� x1j = s� Lt� cn�dL2
�n�1

� t jx2 � bxj (50)

with bx = (x2 + xu) =2. The undercutting price solving (50),
pu1 = nc

�
cL

2

�n�1
+ t (L+ x1 � xu) (51)

grants �rm 1 the following pro�ts:

�u1 =
d
�
nc (cL=2)n�1 + t (L+ x1 � xu)

�
(L� x1 + xu)

2
� cd

n (L� x1 + xu)n

2n
(52)

whose properties imply that partial undercutting is never pro�table. To ascertain this

fact, one can proceed as follows. First, note that �u1 = �
� i¤ xu = x1. Secondly, observe

that the partial derivative

@�u1
@xu

= dt (x1 � xu)�
cdnn

2n
�
(L� x1 + xu)n�1 � Ln�1

�
(53)

is nil at xu = x1 and negative for any xu > x1; and therefore also for all xu 2 (L=2; x2).
This rules out partial undercutting for all n > 1.

Undercutting to monopoly, again by �rm 1, requires setting pu1 = p
�
1 � t jx2 � x1j �

"; yielding pro�ts �u1 =
�
pu1 � c (dL)

n�1� dL; provided " is negligible. Undercutting is
3To this regard, we should also add that the explicit use of symmetry across locations and prices,

which we adopt here for the �rst time in order to solve the price stage and investigate equilibrium

existence, implies that we cannot analyse the �rst stage of the game to characterise location choices.
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pro�table i¤ �ui > �
�
i ; this being true for all

x1; x2 2
�
L [c (2n � n� 1) dn�1Ln�2 + 2n�1t]

2n+1t
; L� L [c (2

n � n� 1) dn�1Ln�2 + 2n�1t]
2n+1t

�
(54)

which coincides with (23) if n = 2. The critical level of c beyond which the convex

component of the cost function is so steep that xu1 � L=2 is

c (n) =
2n�1Lt

(2n � n� 1) dn�1Ln�1 > 0 for all n > 1 (55)

with c (n)jn=2 = 2t=d and @c (n) =@n < 0; @2c (n) =@n2 > 0; i.e., c (n) is monotonically

decreasing and convex in n. The limn!1 c (n) is positive and can be arbitrarily low

(while, for instance, if L = 2; t = 1 and d = 1=2, it is equal to one). Once again,

this argument can be reformulated by saying that the existence of equilibrium requires a

condition on the mark-up, which here is

mu�i (n) =
2n�1Lt

cndn�1Ln�1
(56)

and therefore the incentive to undercut vanishes for all

mu�i (n) � mu (n) �
2n � n� 1

n
(57)

with the expression on the r.h.s. of (57) collapsing to 1/2 at n = 2.

On the basis of the foregoing discussion, we may formulate the following, which

includes Proposition 2 as a special case:

Proposition 6 In presence of linear transportation costs and convex production costs,

if the latter are steep enough to keep the mark-up at mu (n) or below, then there exists

a unique subgame perfect pure-strategy equilibrium with �rms locating at the midpoint of

the linear city and pricing above marginal cost.

A few additional words are in order. The shape of c (n) illustrates the presence

of a tradeo¤ along the frontier of the parameter region in which the price equilibrium

exists in pure strategies: considering only the convex component of production costs, it

is apparent that its curvature (or steepness) is determined by both c and n, and (55)

says that if n is very large, then even a touch of convex costs, i.e., a very low value of

c, may ensure the absence of undercutting incentives and therefore the existence of the
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pure-strategy price equilibrium at the second stage. Addressing the same issue from the

opposite angle, one may note that (55) is a convex curve in the space (c; n) identifying the

minimum value of the exponent of the cost function, say n (c),4 such that any n � n (c)
ensures the existence of the pure-strategy equilibrium. Seen under this light, (55) conveys

much the same message as the condition identi�ed by Economides (1986) concerning the

degree of convexity of transportation costs. Hence, both settings assuming alternatively

one cost function being linear and the other convex, we come away of this analysis and

Economides�s (1986) with a bottom line establishing that convexifying enough either one

will indeed warrant equilibrium existence.

6 Concluding remarks

We have proposed a modi�ed version of the Hotelling (1929) model in which linear

transportation costs and uniform consumer distribution are accompanied by quadratic

production costs, to show that, if the production cost function is are su¢ ciently steep

(or the mark-up is su¢ ciently low), the minimum di¤erentiation principle is restored,

undercutting being unattractive. In a nutshell, this version of the Hotelling duopoly

shows that, departing from a model lacking concavity because both production and

transportation cost functions are linear, one may alternatively ensure the existence of a

pure-strategy equilibrium by convexifying enough either one (with the additional proviso

that production costs must be steep enough). However, the equilibrium con�gurations

emerging from the two scenarios will substantively di¤er in that a convex disutility of

transportation fosters product di¤erentiation while a convex production cost restores the

minimum di¤erentiation principle.

The analysis of the unconstrained duopoly game has been complemented by a few

extensions. We have singled out the parameter range in which partial coverage arises,

with �rms behaving as separate monopolists, as well as that in which they cover the whole

market at the margin, producing a �kink�equilibrium. The last step of our analysis has

consisted in extending the proof of no undercutting to monopoly to a more general setting

in which quadratic costs are substituted by a generic convex function.

4The expression of n (c) obtains by inverting c (n), or, equivalently, solving c = c (n) w.r.t. n. This

requires the Lambert W function, also known as omega function or product logarithm.
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All of the above has been done in the duopoly case. We may formulate one last

remarks concerning the case of three or more �rms (as in Cremer et al., 1991; and

Brenner, 2005) with convex production cost functions. The �rst is that, if production

costs are quadratic, the presence of a third �rm su¢ ces to create undercutting incentives

on the part of all �rms alike, whereby the subgame perfect equilibrium ceases to exist in

pure strategies once again.5 If productions costs are strictly convex but not quadratic,

we may not rely on full symmetry to solve �rst order conditions in the price space. This

is already evident in the triopoly case, which becomes unmanageable once the quadratic

case is abandoned. Consequently, we cannot formulate any educated guess about the

arising of undercutting incentives (or the opposite) for a generic degrees of convexity of

production costs and competition.

5This case has been omitted for brevity but it is available from the authors upon request.
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