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Abstract: Actor–event data are common in sociological settings, whereby
one registers the pattern of attendance of a group of social actors to a
number of events. We focus on 79 members of the Noordin Top terrorist
network, who were monitored attending 45 events. The attendance or non-
attendance of the terrorist to events defines the social fabric, such as group
coherence and social communities. The aim of the analysis of such data is to
learn about the affiliation structure. Actor–event data is often transformed
to actor–actor data in order to be further analysed by network models, such
as stochastic block models. This transformation and such analyses lead to a
natural loss of information, particularly when one is interested in identify-
ing, possibly overlapping, subgroups or communities of actors on the basis of
their attendances to events. In this paper we propose an actor–event model
for overlapping communities of terrorists, which simplifies interpretation of
the network. We propose a mixture model with overlapping clusters for the
analysis of the binary actor–event network data, called manet, and develop
a Bayesian procedure for inference. After a simulation study, we show how
this analysis of the terrorist network has clear interpretative advantages
over the more traditional approaches of affiliation network analysis.

Keywords and phrases: Bayesian modeling, mixture models, MCMC
algorithm, network, overlapping clusters.
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1. Introduction

Networks are an intuitive and a powerful way to describe interactions among
individuals in many fields of application. In social sciences, for example, network
structures describe concisely the observed relationships among people, tribes, so-
cial media accounts and so forth. A recent review about statistical methods and
models used in this research area can be found in Kolaczyk (2009). Most of the
literature on modelling network data can be grouped into three main branches,
with some natural overlapping between the categories: stochastic block models,
exponential random graph models, latent space models. Stochastic Block Models
(SBMs) date back to the work of Holland, Laskey and Leinhardt (1983), where
the idea of modeling partitions of the network, called blocks or communities,
was first introduced. Since then, numerous extensions, such as mixed mem-
berships and dynamic networks, have been proposed (Wang and Wong, 1987;
Nowicki and Snijders, 2001; Airoldi et al., 2008; Xing et al., 2010). Another way
to summarize a network structure is to model the amount of sub-structures, in
a graphical and topological sense, comprising the network itself. This approach
has been formulated as the exponential random graph model in the early work of
Frank and Strauss (1986); see also Wasserman and Pattison (1996) and Robins
et al. (2007) for a review of some recent developments. Finally, the last frame-
work deals with individuals in the network and their relations by projecting
them into a latent space, where the probability of interaction between units
is modeled based on their distance in this non-observable representation (Hoff,
Raftery and Handcock, 2002). Recent extensions of this model allow incorporat-
ing more complex features of the data, such as clustering and dynamic evolution
(Handcock, Raftery and Tantrum, 2007; Raftery et al., 2012; Durante and Dun-
son, 2014; Sewell et al., 2017). A thorough survey on some of the most frequently
used statistical network models is provided in Goldenberg et al. (2010).

The approaches mentioned above are mostly developed on network data
where all nodes, or actors, are of the same nature. Some network data, however,
are provided in the form of attendances of individuals, actors, to events. These
data are also called two-mode networks, bipartite graphs or affiliation networks
(Wasserman and Faust, 1994, Chapter 8). Examples of these networks include:
people visiting movies, nations belonging to alliances and co-sponsorships of
legislative bills; see Doreian, Batagelj and Ferligoj (2004) for references. There
are only few models that deal directly with this actor–event organization of
affiliation networks. In Skvoretz and Faust (1999), the authors cast the prob-
lem of analyzing two-mode networks in the framework of logistic regression,
whereas in Wang et al. (2009), affiliation network analysis with exponential
random graph models is discussed. In most cases, transformation procedures
are used to change actor–event data to actor–actor data. A recent example is
Signorelli and Wit (2018), who provide a penalized approach for network data
representing co-sponsorships of legislative bills in the Italian Parliament.

Transforming the data has the inherent drawbacks of information loss (Neal,
2014). In addition, in many situations, it is of prime interest to identify clusters,
or communities, of individuals within the network according to their prefer-
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ences to attend specific events instead of being based on how they interact with
each other. Parallel to SBMs for actor–actor data, there is then the need of a
clustering model for actor–event data, whereby an actor (unit) is allocated into
a community (cluster) based on their probability of attendance to the various
events. One recent contribution is provided by Aitkin, Vu and Francis (2017),
who propose a Rasch model approach for clustering actor–event data. Differ-
ently to their work, we expect the communities to potentially overlap with each
other and we thus propose a model that allows for this. Our model is defined
and parameterised in such a way that the overlap between clusters has a specific
meaning, leading to parsimony and to a clear interpretation of the results. In
this sense, we also depart from the literature on mixed-membership SBMs for
actor–actor data (Airoldi et al., 2008), where the SBM is extended by allowing
a degree of membership for each unit to all the communities in the network.

To summarize the contribution of our work, this paper proposes a mixture
model formulation that can be applied directly to actor–event data in order to
find communities of actors on the basis of their patterns of attendance to events.
Our model accommodates for the possibility of potentially overlapping groups,
and has a parsimonious formulation in terms of the number of parameters needed
to represent cluster-specific probabilities of attendances to events. In particular,
the parameters of the overlapping clusters are linked to the parameters of the
originating clusters via a chosen function, leading to a clearer interpretation of
belonging - in a ‘hard’ clustering sense - to more than one group simultaneously.

2. Motivating example: Noordin Top terrorist network

In this paper we consider the Noordin Top terrorist network dataset, which
contains information about 79 terrorists and their activities in Indonesia and
nearby areas, covering the period from 2001 to 2010 (Everton, 2012; Aitkin,
Vu and Francis, 2017). The network revolved around Noordin Mohammad Top,
also known as ‘Moneyman’, his main collaborator Azahari Husin, and their
affiliates. Data were periodically collected by the International Crisis Group
(2009) in an exhaustive qualitative format. Information was later summarized
by Everton (2012) into relationships between terrorists, attendances to events
and individual data on each terrorist, such as level of education, nationality,
etc. The two-mode actor–event network focuses on the recorded attendances of
the 79 terrorists to the 45 events. These events are meetings of various type. In
particular, they have been classified into: eight organizational meeting (ORG),
five operations, i.e. bombings (OPER), eleven training events (TRAIN ), two
financial meetings (FIN ), seven logistics meetings (LOGST ) and twelve events
generically categorized as ‘meetings’ (MEET ).

One salient feature of the network is its sparse structure, with not so many
attendances recorded with respect to the total number of terrorists and events,
as can be seen in Figure 1a. Figure 1b shows how there are some terrorists and
events capitalizing most of the connections.

It is believed that a network of terrorists often operates by communities
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within the networks itself, whereby the individual terrorists are organized ac-
cording to their role and contribution to the different activities of the whole
group. More importantly, it is likely that individuals do not belong to a single
community, but to more than one sub-structure in the network. The aim of this
paper is to develop a model which can identify such structures (communities)
among terrorists (actors) based on their patterns of attendances to the meetings
(events). The proposed model can be applied to any actor–event network, such
as people visiting movies, nations belonging to alliances and co-sponsorships of
legislative bills, when community detection on the basis of participation to the
events is of interest.

3. Model formulation

The driving idea is to use a model-based clustering approach to identify clusters
of terrorists (actors) within the network, based on their attendances to events of
different nature (bombings, trainings, financial meetings and so forth), by allow-
ing for these communities to be potentially overlapped. We name the proposed
model multiple allocation model for network data (manet).

3.1. Traditional model-based clustering with finite mixture model

Data are organized in an n × d matrix of observations yij , pertaining to n
individuals and their attendances to d events. Each element yij is a binary
random variable, with yij = 1 if subject i attends event j. We assume there exist
K sub-populations of individuals with cluster proportions α = (α1, . . . , αK). In
the traditional setting, where clusters are mutually exclusive, this vector satisfies
the conditions (i) αk ≥ 0, for each k, and (ii)

∑K
k=1 αk = 1 (Aitkin, Vu and

Francis, 2017). The task is to group together units sharing the same preferential
attendance to the d events. Given the binary nature of response variables yij
and assuming independence, the marginal density of an observed attendance
profile can be represented by yi|(α,π,K) ∼

∑K
k=1 αk

∏d
j=1 Ber

(
yij ;πkj

)
, with

yi = (yi1, yi2, . . . , yij , . . . , yid) the attendance profile of the i-th individual to
the d events and cluster specific parameters for the probability of attendance,
πkj , collected in π. A hierarchical representation is available after introducing a
unit-specific latent variable zi = (zi1, . . . , ziK): if unit i belongs to cluster k, the
vector is full of zeros except for the k-th element zik = 1, so P(zik = 1) = αk and∑K

k=1 zik = 1, leading to the equivalent hierarchical conditional representation

zi|α ∼ Multinom
(
α1, . . . , αK

)
, yi|(zi,πk) ∼

d∏
j=1

P
(
yij |zik = 1,πk:zik=1

)
.

For each individual i, the model assumes the attendances to events j and j′ to
be independent from one another, for all j, j′ = 1, . . . , d and j 6= j′.
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3.2. Multiple allocation model for network data (manet)

In many cases, one is interested in groups that are not mutually exclusive, al-
lowing an actor to be allocated simultaneously to potentially more than a single
cluster of the mixture model. This problem has been addressed in the statisti-
cal literature by mixture models with overlapping clusters (Ranciati, Viroli and
Wit, 2017). In order to cluster actor–event data by allowing possible overlaps,
we relax conditions (ii) on the proportions α and the condition regarding the

allocation vector,
∑K

k=1 zik = 1 for each i. Each individual will be allowed to
belong to any number of the K classes. Thus, the number of all possible group
membership configurations is equal to K? = 2K .

Instead of working with the latent variables zi, we define a newK?-dimensional

allocation vector z?i that satisfies
∑K?

h=1 z
?
ih = 1. We can establish a 1-to-1 cor-

respondence between zi and z?i , by introducing a K?×K binary matrix U , with
z?ih = 1[uh=zi], with uh denoting the h-th row of U . For example, when K = 2,
individual i may be assigned to the first cluster, zi = (1, 0), the second cluster
zi = (0, 1), both of them zi = (1, 1) or none zi = (0, 0) and we have

U =


0 0
1 0
0 1
1 1

 .

We can now switch from a mixture model with K overlapping parent clusters
to a finite mixture of K? non-overlapping heir clusters. Given our new assump-
tions on the proportions of the parent mixture model, the model formulation
changes to

yi|(α?,π?,K) ∼
K?∑
h=1

α?
h

d∏
j=1

Ber
(
yij ;π

?
hj

)
,

where now P(z?h = 1) = α?
h and π?

h are the attendance probabilities for the
d events for units whose distribution function is given by the non-overlapping
cluster h. We specify a conjugate Dirichlet distribution for the proportions α?,
that is P(α?|a) = Dir(a1, . . . , aK?). From α? we can always compute back the

overlapping proportions α with αk =
∑K?

h=1 α
?
huhk.

In order for the overlapping mixture model to have any use and purpose, the
original parent cluster parameters should affect the heir cluster parameters. In
particular, the probability π?

hj for heir cluster h of attending event j should
depend on the parameters {πkj | uhk = 1} of the parent clusters involved in
the formation of heir cluster h. This can be done in a number of ways, which is
described more in detail in the next paragraph.

Linking parent and heir cluster parameters

We define the probability to attend event j when belonging to heir cluster h
through a function ψ

(
πj ,uh

)
: RK × {0, 1}K → R, so that we can compute

imsart-generic ver. 2014/10/16 file: RanciatiVinciottiWit_terror.tex date: May 28, 2020



Ranciati, S., Vinciotti, V., Wit, E.C./Overlapping mixture model for terrorists network 6

π?
hj by looking at which parent clusters originated h, through the vector uh,

and combining their corresponding probabilities (π1j , . . . , πKj). By changing
the definition of ψ one can alter the interpretation of the multiple allocation
clusters. We argue that in many real world scenarios the minimum operator,
defined by

π?
hj = ψ

(
πj ,uh

)
=

{
min {πkj | uhk = 1} if

∑
k uhk > 0

0 if
∑

k uhk = 0

is particularly sensible. Real world two-mode data, such as the Noordin Top
network discussed in this paper (Section 5) and the Southern Women Missis-
sippi two-mode network (see Supplementary Material, Ranciati, Vinciotti and
Wit, 2020), are often characterized by a sparse attendance structure and multi-
ple allocation clusters are most naturally defined as groups of individuals that
attend only those events attended by all the associated primary clusters. For the
simple case that K = 2, an individual i belonging to both clusters, zi = (1, 1),
deciding whether to attend an event j or not, will do so by following the low-
est ‘preference’ for that specific event, that is ψ(π1j , π2j) = min(π1j , π2j). The
multiple allocation cluster will tend to attract units that have generally a low
probability of attendance to many events but a high attendance probability to
a small number of events that are jointly attended by units in both primary
clusters. From a Venn diagram perspective, this can be viewed as an ‘intersec-
tion’ of parent clusters. In the less common scenario of dense two-mode data, it
is more sensible to choose the maximum ψ = max{·} as the operator. This will
tend to allocate units with a high number of attendances into multiple allocation
clusters, loosely corresponding to a union of parent clusters.

As well as giving a clear meaning to the overlapping clusters and thus pro-
viding a more natural interpretation of the results, the main purpose of the link
function is to reduce the number of parameters in the model. Indeed, while we
pay the price of increasing the number of proportions from K to K?, the new
quantities π? are not additional parameters and they can be computed from the
parent parameters π without increasing the parameter space’s dimensionality.
This is key to the proposed model and distinguishes it from those presented in
the literature, with the closest competitor being the mixed-membership SBM
(Airoldi et al., 2008) for actor–actor data. Indeed, mixed-membership SBM al-
lows allocation to multiple clusters but there are some main differences. Firstly,
the current implementation is not suited to analyzing affiliation networks (bipar-
tite graphs). Second, mixed-membership SBM provides a form of ‘soft cluster-
ing’, where the degree of membership reflects how strongly a unit resembles the
others in the cluster: the degrees for each unit have to sum up to 1, which means
that a unit cannot ‘strongly’ – i.e., with a high probability – belong to more than
one cluster. In our approach instead, we work with an underlying ‘hard clus-
tering’, thus incorporating situations not contemplated by mixed-membership
SBM. In terms of number of parameters, mixed-membership SBM requires a
number of parameters proportional to K? = 2K , on par with a conventional
(non-overlapping) mixture of Bernoulli distributions. Our model instead allows
for the overlap to be reflected in the parameter estimation, with the introduction
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of the ψ(·) function that links the parameters of the K? heir clusters to those
of the K parent clusters, resulting in a number of parameters proportional to
K. This not only leads to more parsimonious models but also leads to a clearer
interpretation of the resulting clusters.

3.3. Bayesian inference

In this section, we discuss the estimation of the parameters in our model, namely
the prior membership probabilities α and the probabilities of attendance to
events π. The updated hierarchical formulation of non-overlapping mixture of
the parent clusters is given by

P(α?|a) = Dir(a1, . . . , aK?), P(π|b1, b2) =

K∏
k=1

d∏
j=1

Beta(πkj ; b1kj , b2kj)

P(z?i |α?) =

K?∏
h=1

(
α?
h

)z?
ih , P(yi|z?i ,π) =

K?∏
h=1

d∏
j=1

[
Ber
(
yij ;π

?
hj

)]z?
ih

.

Following this structure, the joint complete data likelihood of the non-overlapping
clusters model is

L(α?,π;y, z?) =

n∏
i=1

{K?∏
h=1

[
α?
h

d∏
j=1

Ber(yij ;π
?
hj)

]z?
ih
}

=

K?∏
h=1

(
α?
h

)n?
h K?∏
h=1

∏
i:z?

i =h

d∏
j=1

Ber(yij ;π
?
hj)

= Lz?(α?)Ly,z?(π),

where n?h =
∑n

i=1 z
?
ih and the product

∏
i:z?

i =h involves only units allocated

to cluster h. The second term, Ly,z?(π), is a function of the parameters π
through the computed quantities π?. In order to devise a Gibbs sampler for π,
we consider the equivalent representation for the overlapping-clusters mixture,
as a function of the original parent parameters, that is L(α?,π;y, z). The first
term is equivalent in both parametrization thanks to the 1-to-1 correspondence
between z and z?, and the computability of α from α?. We focus now on the
second term of the factorization, Ly,z(π), as it is not immediately straightfor-

ward to define an equivalence. We introduce a new quantity s(zi,π) = s
(j)
i ,

whereby s
(j)
i = zi if

∑K
k=1 zik = 1, whereas, if

∑K
k=1 zik > 1 and if we use the

minimum operator, i.e. ψ = min( · ), then s
(j)
i is a K-dimensional vector of

zeros except for sikmin,j = 1, with kmin,j denoting the cluster with the lowest
value among all the parameters πk for a fixed event j. In other words, if a unit i
belongs to only one cluster (let us say, k) it will fully contribute to the posterior
of the corresponding πkj ; but, if the unit i is allocated into more than one group
its contribution will be given only to the lowest parameter πkmin,j

among all the
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relevant attendance probabilities {πkj | uh(i)k = 1} for that j-th event. This
definition is compatible with the minimum operator ψ. For other operators, one
needs to consider other solutions.

This leads to a convenient factorization of the complete data likelihood of
the mixture in the K space:

L(π, s;y, z) =

K∏
k=1

d∏
j=1

π
∑n

i=1 yijs
(j)
ik

kj (1− πkj)
∑n

i=1 s
(j)
ik −

∑n
i=1 yijs

(j)
ik .

A sketch of our sampling scheme is the following. For each unit i and heir
cluster h, we compute the posterior probabilities of allocation conditional on
the observations and other parameters, according to

P(z?i = h|y,α?,π) =
α?
h

∏d
j=1 Ber(yij ;π

?
hj)∑K?

h′=1 α
?
h′
∏d

j=1 Ber(yij ;π?
h′j)

,

and we sample new latent allocation values for z?i . The proportions α? are
updated through the corresponding full conditional distribution, α? ∼ Dir

(
n?1 +

a1, . . . , n
?
K? + aK?

)
. Thanks to the prior-likelihood conjugacy, each of the πkj

are updated via a Gibbs sampler with

πkj ∼ Beta

( n∑
i=1

yijs
(j)
ik + b1kj ;

n∑
i=1

s
(j)
ik −

n∑
i=1

yijs
(j)
ik + b2kj

)
.

We implement all the samplers in an MCMC algorithm. The latter is also part
of the R package manet, available on CRAN.

3.4. Selecting the number of clusters and criterion to allocate units

We select the Deviance Information Criterion (Spiegelhalter et al., 2002, DIC) as
the model selection criterion. This criterion has the property of being the large
sample (robust) version of the AIC (Claeskens et al., 2008, Ch. 3.5). In the DIC,
two quantities are balanced, namely the goodness-of-fit and the complexity of
the model. In this paper, we rely on the version DIC3 proposed in Celeux et al.
(2006), as the original version does not deal properly with latent variables:

DIC(K) = −4Eα?,π[log P(y|α?,π)] + 2 log P̂(y),

where both terms can be computed starting from the values sampled at each
iteration t = 1, . . . , T of the MCMC algorithm. In particular,

Eα?,π[log P(y|α?,π)] =
1

T

T∑
t=1

n∑
i=1

log

{K?∑
h=1

α?(t)

h

d∏
j=1

Ber
(
yij ;π

?(t)

hj

)}
,

and

P̂(y) =

n∏
i=1

P̂(yi), where P̂(yi) =
1

T

T∑
t=1

{K?∑
h=1

α?(t)

h

d∏
j=1

Ber
(
yij ;π

?(t)

hj

)}
.
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In a set of competing models, differing from one another only by K, we select
the one with the lowest associated DIC(K) value.

After the choice of K and, implicitly, K?, units are allocated into clusters
according to their average posterior probabilities and using the Maximum-A-
Posteriori (MAP) rule. That is, individual i will be assigned to cluster h showing

the highest value for P̄(z?i = h|y,α,π) = T−1
∑T

t=1 P(z?i = h|y,α?(t)

π(t)),
computed after the initial burn-in window.

3.5. Quantifying clustering uncertainty

As a measure of uncertainty about the clustering provided by the algorithm, we
define a quantity called Posterior Confusion Matrix (PCM), whose entry PCMhk

stands for the average number of actors with maximum posterior allocation for
cluster h that will be allocated to cluster k. The PCM is a non-symmetrical
K? × K? matrix and is computed as follows. For each MCMC iteration t =
1, . . . , T and summed across all units i = 1, . . . , n, we do the following steps:

1. Order the posterior probabilities P(z?i = h|y,α?(t)

π(t)) from highest to

lowest, and collect them in a vector τ
(t)
i ;

2. Define r
(t)
i as the vector of cluster labels associated to τ

(t)
i , so that r

(t)
i,1 is

the label of the cluster with highest posterior probability (which is τ
(t)
i,1 )

for unit i at iteration t among all the K? possible ones;

3. Add posterior probability τ
(t)
i,1 to the PCM at position (r

(t)
i,1 , r

(t)
i,1), so that

the diagonal element of the matrix account for the first choice of allocation
of unit i at iteration t;

4. While keeping row r
(t)
i,1 fixed as a pivotal quantity of this step, add the

remaining probabilities τ
(t)
i,2 , τ

(t)
i,3 , . . . , τ

(t)
i,K? to the corresponding positions

in the PCM matrix (r
(t)
i,1 , r

(t)
i,2), (r

(t)
i,1 , r

(t)
i,3), . . . , (r

(t)
i,1 , r

(t)
i,K?).

To average the cumulative sums at each position of the matrix, we divide the
PCM by the total number of MCMC iterations T . The non-rescaled version of
the matrix has row sums equal to the number of units in each corresponding
cluster. When rescaled by these row sums, the benchmark matrix for compar-
ison is the identity matrix of order K?, corresponding to a situation with no
uncertainty in the classification.

A well-known issue of mixture models in the Bayesian paradigm is the so-
called “label switching” problem: that is, the likelihood of a mixture model is
symmetrical with respect to permutation of the clusters’ labels. This trait is
inherited by the posterior distribution, unless specific constraint are applied to
the prior, for example, in order to break the symmetry, but in general the result-
ing posterior density will have K! different modes. Although a sampler should
be encouraged to visit all the potential high-density regions of the posterior, in
practice the MCMC chains could jump unpredictably between the modes and
thus hindering the computation of summaries such as posterior means and pos-
terior standard deviations. Many authors, in the literature, have studied this
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specific issue: for a review of some techniques to deal with label switching, we
refer the reader to Stephens (2000).

4. Simulation study

In this section, we perform a simulation study where we compare the fol-
lowing algorithms: (i) the proposed model, manet, which uses a finite mix-
ture of Bernoulli distributions with overlapping components (as implemented
in the package manet); (ii) a finite mixture model of Bernoulli distribution
with K = K? non-overlapping components, named mixtbern, (iii) a variational
method implementing the MixNet model of Daudin, Picard and Robin (2008),
implemented in the R package mixer, which is a special case of the binary SBM
proposed by Nowicki and Snijders (2001) and (iv) blockmodels, proposed by
Leger (2015).

To measure the performance of the four models we apply the MAP rule to the
estimated probabilities of allocation and we cluster units accordingly. After the
classification is performed, we compute the average misclassification error rate
and the adjusted Rand index (Rand, 1971) for each of the four models across
the independently replicated datasets. The misclassification error rate measures
the fraction of units wrongly allocated with respect to the true allocations used
to generated the data, whereas the adjusted Rand index (ARI) is a measure
between 0 and 1 representing similarity between two different clustering, where
we take one of the two to be the true allocation in the data.

4.1. Synthetic data generated from manet

For the scenarios considered in this section, we generate data according to our
model with varying values for the number of actors n and the number of events
d. We consider K = 3 (i.e. K? = 8) and set the components weights to be α? =
(0.1, 0.25, 0.20, 0.1, 0.15, 0.1, 0.05, 0.05). We set the probabilities of attendances
for the first event equal to π·1 = (0.2, 0.5, 0.9) and we define the remaining
vectors to be all the possible (K! − 1) permutations of the values in π·1, by
stacking the same values a number of times depending on the value of d chosen.

Since blockmodels and mixer only work on actor–actor data, for these two
methods we transform the data to this structure by calculating the number of
events attended by any two actors. This is sufficient for blockmodels, which
accounts for weighted edges. Since mixer requires a binary input, we further
dichotomize the network by setting a cutoff on the number of events. For this,
we select the threshold that leads to the best results for each of the methods.

4.1.1. Classification performance

For this simulation, we set n = 300 and consider three possible values for the
number of events, namely d = {6, 18, 38}. For each of the three values of d,
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we generate 25 independent datasets. We then run the algorithm by setting the
true number of clusters, i.e. K = 3 for our model or K? = 8 for the competitors.
Table 1 reports the results of this simulation in terms of the ability of allocating
the actors into the 8 heir clusters. In each sub-group defined by the value of d,
our model achieves simultaneously lower (better) average misclassification error
rate and higher (better) average adjusted Rand index with respect to the other
competitors. The closest in terms of performance is mixtbern, which however
exhibits less stability. It is worth noticing that as the number of events, d,
increases so does the performance improvement in the classification task: this
is true for all the models with the exception of mixer. The loss of performance
for models blockmodels and mixer is partially expected due to the loss of
information after transformation of the data into a one-mode network.

Misclassification error rate (in %)

Num. of events
actor–actor actor–event

mixtbern manet mixer blockmodels

d = 6 42.67 (5.96) 35.05 (3.99) 52.16 (2.23) 55.49 (3.11)

d = 18 20.89 (2.97) 15.33 (2.42) 46.89 (5.87) 43.07 (4.49)

d = 36 13.67 (4.14) 6.91 (1.53) 54.32 (7.32) 30.28 (4.76)

Adjusted Rand index (ARImax = 1)

Num. of events
actor–actor actor–event

mixtbern manet mixer blockmodels

d = 6 0.34 (0.08) 0.45 (0.06) 0.15 (0.03) 0.22 (0.04)

d = 18 0.73 (0.05) 0.79 (0.04) 0.31 (0.08) 0.40 (0.06)

d = 36 0.85 (0.05) 0.93 (0.02) 0.27 (0.08) 0.60 (0.06)

Table 1
Misclassification error rate and adjusted Rand index, averaged over 25 replicated datasets,
for three values of d = {6, 18, 36} and four competing models; standard errors are reported
between brackets. Models are categorized on the type of structure they analyze (actor–actor

or actor–event); best results are highlighted in bold.

4.1.2. Convergence of parameters’ posterior distributions

For this simulation, we focus on the convergence behavior of the posterior dis-
tributions of the attendance probabilities πkj to the true values of the data
generating model. In particular, we use a fixed setting with K = 3, d = 18,
letting the sample size vary as n = {100, 250, 500}. We set the true values for
the {πkj} as described in Section 4.1. For each sample size, we simulate 25 repli-
cated datasets and we collect all posterior samples (after burn-in) of the same n
from each MCMC into one single chain. While this inevitably introduces some
additional Monte Carlo error, the increased amount of available information
should dampen this aggregation effect. Results are visualized in Figure 2. Rows
of the plot correspond to events (specifically, we are reporting j = {1, 9, 18}) and
columns to the attendance probabilities of those events for the three different
primary clusters. As expected, with increasing sample size (from n = 100, red
curve, to n = 500, blue curve), the posterior distribution exhibits less variabil-
ity, contracting around the true value, i.e., the vertical dashed line, used for the
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simulations. The same behavior is observed for the posterior distributions of the
other πkj and the posterior distribution of α?, the proportions of the mixture
model (not shown).

4.1.3. Accuracy of model selection criterion

To show the behaviour of the DIC selection criterion discussed in Section 3.4,
we simulate 25 replicated datasets with the following configuration: Ktrue = 3,
d = 18, increasing sample sizes n = {25, 75, 150, 300}. For each dataset, we run
the algorithm and provide three different values of K = {2, 3, 4}. We compute
the corresponding DIC values and select the value of K that achieves the lowest
one. When n = 25, we select K̂ = Ktrue = 3 in 80% of the replicated datasets;
for the remaining sample sizes (n = {75, 150, 300}), the DIC achieves its lowest
value with K̂ = Ktrue = 3 in all the datasets.

4.2. Synthetic data generated from a misspecified model

The previous section showed simulations on data generated by our proposed
model. For the scenarios considered in this section, we consider misspecified
cases. In particular, we simulate attendances for n = 300 units to d events,
where d = {6, 18, 36}, from a mixture of independent Bernoulli distributions
(mixtbern) with K = 8 non-overlapping components. The weights for the mix-
ture are set to α = (0.1, 0.25, 0.20, 0.1, 0.15, 0.1, 0.05, 0.05), while the probabili-
ties of attendances {πkj} are defined as follows:

• π1· = (0.9, 0.8, 0.7, 0.6, 0.5, 0.1);
• π2· = (0.3, 0.2, 0.1, 0.9, 0.3, 0.2);
• π3· = (0.7, 0.6, 0.5, 0.9, 0.3, 0.2);
• π4· = (0.2, 0.1, 0.7, 0.6, 0.3, 0.1);
• π5· = (0.2, 0.1, 0.9, 0.8, 0.3, 0.6);
• π6· = (0.4, 0.5, 0.5, 0.7, 0.3, 0.1);
• π7· = (0.3, 0.2, 0.1, 0.9, 0.8, 0.7);
• π8· = (0.4, 0.5, 0.6, 0.7, 0.8, 0.1).

The results, in terms of misclassification error rate (MCR) and Adjusted Rand
Index (ARI), are visualized in Figure 3.

The figure is separated into three blocks, corresponding to the number of
events (d = {6, 18, 36}). The plots are vertically separated according to the
two measures of performance, MCR and ARI, respectively, which are computed
on 25 replicated datasets and for five competing models: blockmodels, mixer,
mixtbern, and manet with K = 3 → K? = 8 and K = 4 → K? = 16 clusters.
When d = 6 all models exhibit poor performance, which is due to the difficult
clustering task posed by the small number of events. For d = 18, the true
model mixtbern and manet (both K = 3 and K = 4) show lower error rates
for the classification and a better agreement with the true cluster labels. In
the scenario where d = 36, manet with K = 3 clusters performs worse than
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mixtbern. However, if we fit manet with K = 4, the model has enough flexibility
to accommodate 8 non-empty clusters, while being (more) parsimonious in the
number of estimated parameters than mixtbern, and thus allowing it to perform
on par with – if not slightly better than – mixtbern.

4.3. Computational times and storage

At the current stage of the implementation of our proposed method in the R

package manet, the algorithm requires to store: (i) posterior probabilities of allo-
cation p(z|y, . . . ) at each MCMC iteration in an n×K? matrix; (ii) components’
weights in a vector of length K?; (iii) sampled probabilities of attendances πkj
in K vectors of length d. Among these quantities, only (i) and (ii) scale with
K?. As far as execution times are concerned, the computational burden scales
exponentially in the number of parent clusters K only for the sampling of the
components weights, whereas it is linear in terms of K and d because of the
parsimonious formulation of the model. Nevertheless, we generally expect the
number of overlapping cluster K to be rather small in most applications, imply-
ing no need to run manet with large K and thus longer CPU times. To provide a
numerical comparison, Table 2 reports the computational times for the scenar-
ios explored in the simulation studies (Section 4.2) as milliseconds per iteration
(mpi), that is the execution time in seconds divided by the number of MCMC
iterations.

sample size n # clusters K # of events d
execution times

total elapsed time mpi

300

3
6 5.33 64
18 15.42 185
36 32.63 391

4
6 9.72 116
18 31.95 383
36 56.13 674

Table 2
Computational times: total elapsed times are reported in minutes, while the cost per

iteration is measured in milliseconds per iteration (mpi).

5. Noordin Top terrorist network analysis

We analyze the terrorist dataset with information pertaining to n = 79 terrorists
(actors) and their attendance behavior to d = 45 events of various nature, such
as trainings, operations, bombings, financial and logistics meetings, together
with their affiliations to a number of organizations, associated with the leader
of the Indonesian terrorist network Noordin Top (Everton, 2012). Rather than
leaving out the five lone wolf terrorists, we include them into the analysis.

We run our manet algorithm for 30,000 iterations with a generous burn-in
window of 15,000, to ensure convergence. Raftery and Lewis’ diagnostic check
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from the R package coda (Plummer et al., 2006) supports this choice, by return-
ing a suggested number of MCMC iterations ranging from 3500 to 8000. Con-
vergence is further investigated and supported by the MCMC traceplots and via
the Heidelberg and Welch’s stationary test (with p-values above 0.50 for all the
chains). Posterior quantities are computed on the samples after burn-in. These
were not affected by label-switching and thus did not need any post-processing.
The lowest computed DIC value for three possible values of K = {2, 3, 4} cor-
responds to DIC(2) = 1822.93, and we therefore select K = 2 parent clusters,
corresponding to K? = 4 heir clusters.

The results are reported in Table 4. The first heir cluster, identifying units
belonging to no parent cluster, contains 5 units who are the ‘lone wolves’, i.e.
the terrorists attending no event and who were discarded from the analysis of
Aitkin, Vu and Francis (2017). Only two units are allocated into the second heir
cluster: these two individuals are Noordin Top and Azhari Husin, the leader
and his main collaborator of the terrorists network, respectively. They form
a separate cluster because of their peculiar behavior of participating to most
of the 45 events, having the highest raw number of attendances, respectively
23 and 17, and being involved in many of the logistic, financial, and decision-
making meetings. The third heir cluster is formed by 6 individuals sharing the
same pattern of attendances and, in particular, being terrorists affiliated to a
specific sub-group called ‘KOMPAK’. Finally, in the fourth heir cluster we find
the rest of the terrorists such as trainees, henchmen, and religious leaders, who
attend the 45 events with a pattern that is an overlap between the two parent
clusters. These results are found using a uniform prior allocation to clusters.
The same allocation is robustly found also with a Dirichlet prior specification
that discourages units to belong to too many clusters, i.e. by setting a?h = K?

if
∑

h uh = 1, and a?h = 1 otherwise.
Figure 4 visualizes the two-mode (actor–event) Noordin Top network: red

square vertexes are the events, with corresponding labeling; round vertexes are
the terrorists, with a color scheme representation based on the clustering ob-
tained with manet, and labelled with progressive numbers. Figure 5 provides
a graphical representation of the posterior probabilities averaged across the
MCMC iterations (after burn-in). Each dot represents one of the 79 terror-
ists (the ‘lone wolves’ are removed for visualization purposes): lower – from left
to right – axis of the ternary plot depicts the posterior probability to be allo-
cated into a multiple allocation cluster zi = (1, 1); similarly, the other two axes
(left and right) measure the posterior probability to be allocated into cluster
zi = (0, 1) – top to bottom – or cluster zi = (1, 0) – bottom to top. We can
see almost all units bear no uncertainty about their membership to the clusters,
except for two terrorists, row 25 and 55 of the matrix. In order to report the un-
certainty of the classification for all the groups, we provide the (PCM) in Table
3. As we see from the table, the results are close to a situation with no confu-
sion in the classification except for cluster zi = (0, 0). This is partially expected
because the data matrix is very rarefied and units in the multiple allocation
cluster zi = (1, 1) attend very few events. This means that the attendance pro-
file, and the cluster-specific vector of event probabilities πh, for cluster h = 1
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and h = 4 are indeed very similar, pushing the algorithm to distinguish less
the two groups. However, as we saw in Table 4, the ‘lone wolves’ are classified
into cluster zi = (0, 0), without any additional unit attending a low number of
events.

Rescaled PCM with K = 2 (K? = 4)
Cluster z = (0, 0) z = (0, 1) z = (1, 0) z = (1, 1)
z = (0, 0) 0.66 0.00 0.00 0.34
z = (0, 1) 0.00 1.00 0.00 0.00
z = (1, 0) 0.00 0.00 0.94 0.06
z = (1, 1) 0.01 0.00 0.01 0.98

Table 3
Rescaled posterior confusion matrix of the classification for 79 terrorists; the benchmark for

comparison (best case scenario) is the identity matrix of order 4.

For comparison, we explore results from our direct competitor mixtbern and
consider both the case of K = 4 and K = 8 non-overlapping clusters. In both
models, only three clusters are non-empty and the partitioning of the units into
these mutually exclusive groups allocates Noordin Top and his main collaborator
(Azhari Husin) into two separate singletons, whereas all the remaining terrorists
are allocated into one of the other clusters. Table 5 reports the number of
allocated units in each cluster, and the corresponding PCM, for the case K = 4
(similar results for K = 8 are reported in Supplementary Material, Ranciati,
Vinciotti and Wit, 2020). The results suggest that allowing for and modelling
the potential overlaps of the terrorists groups in attending events, as is done in
manet, helps in better identifying the subgroups in the network. In addition, we
can find similarities and differences with the analysis in Aitkin, Vu and Francis
(2017). Firstly, in both analyses, aside from the ‘lone wolves’, data seem to point
towards a 3-groups structure. Secondly, while the ‘lone wolves’ are removed in
the analysis of Aitkin, Vu and Francis (2017), we are able to naturally account
for terrorists belonging to the network but showing no attendances to the events
considered. Finally, Azhari Husin and Noordin Top are allocated together into a
two-units group in both analyses, but terrorists’ memberships to the other two
remaining clusters are more confused in Aitkin, Vu and Francis (2017) than with
our model in terms of posterior allocations (see Figure 10 of their manuscript).

As a final analysis, given that the events have a natural grouping structure, we
compare the full model with a collapsed version of manet, where columns - events
- are gathered according to their nature (financial meetings, organizations, etc).
In this case, the number of parameters is smaller than the original formulation,
as we only have d̂ = 6 groups of events instead of d = 45. The lowest value for
the DIC is obtained again with K = 2, and it is equal to DIC(2) = 1884.34.
Comparing this with the earlier result (DIC(2) = 1822.93) suggests that the
information about the grouping of the events, based on their category, is only
partly explaining the clustering structure of the terrorists.
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Clusters N. of individuals
Qualitative Description

parent cluster heir cluster
z = (0, 0) h = 1 5 ‘lone wolves’
z = (0, 1) h = 2 2 Noordin Top and Azhari Husin
z = (1, 0) h = 3 6 KOMPAK sub-cell group
z = (1, 1) h = 4 66 trainees and henchmen

79
Table 4

Posterior allocation of the 79 terrorists into K? = 4 heir clusters from our manet model,
according to the MAP rule. First column shows the corresponding latent representation in

the original parametrization.

Clusters N. of individuals Qualitative Description
k = 1 1 Noordin Top
k = 2 1 Azhari Husin
k = 3 77 all other terrorists
k = 4 0 -

79

Rescaled PCM with K = 4
Cluster k = 1 k = 2 k = 3 k = 4
k = 1 1.00 0.00 0.00 0.00
k = 2 0.00 1.00 0.00 0.00
k = 3 0.00 0.00 1.00 0.00
k = 4 0.00 0.00 0.00 1.00

Table 5
Modelling the Noordin Top network using a non-overlapping mixture model (mixtbern) with
K = 4 clusters. ( top) Posterior allocation of the 79 terrorists into the 4 clusters according

to MAP rule, ( bottom) Rescaled posterior confusion matrix of the cluster allocation for the
79 terrorists.

6. Conclusions

In this paper, we have presented a novel finite mixture model and have shown
its applicability to the clustering of actor–event data. We have formulated the
model in a way that the actor–event data can be modeled directly without trans-
forming it to the more traditional actor–actor network data, with the inherent
loss of information. The general formulation of the model, with potentially over-
lapping clusters, allows for actors to belong to multiple communities on the basis
of their pattern of attendances to events. The model itself allows to define the
meaning of overlap, leading to a reduction in the number of parameters as well
as a clearer interpretation of the results.

Using our model on the Noordin Top actor–event network, we discovered
three distinct subgroups out of the 79 terrorists on the basis of their mode of
attendance to 45 meetings: the first group consisted of 5 suicide bombers who
did not attend any meeting, the second group consisted of 6 members of the
KOMPAK terrorist organization and the third group consisted of the 2 leaders,
namely Top and Husin. This view of the terrorist network gives a more layered
understanding of the mode of operation and allegiances within the organization.

We proposed a Bayesian inference procedure for deriving the posterior distri-
bution of the parameters in the model. By selecting appropriate conjugate prior
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distributions, the MCMC sampler is efficient and convergence is typically fast.
The proposed model is currently implemented in the R package manet, available
on CRAN. The package contains the Noordin Top terrorist network used for this
paper, as well as the Southern US Mississippi women dataset and the larger
synthetic dataset discussed in the Supplementary Material (Ranciati, Vinciotti
and Wit, 2020).

The Bayesian formulation of the model lends itself naturally to an extension
of the model to include also individual level covariates, either at the level of
group membership or event attendance probabilities. This would on the one
hand adjust for node degree/hetereogeneity and on the other hand enhance the
interpretability of the resulting clusters. In applications where the second mode
does not have a known grouping structure, as it was the case for the Noordin Top
network and the grouping of events, future work will develop extensions to bi-
clustering with overlap. Finally, possible extensions could consider introducing
dependency among events, thus relaxing the local independence assumption
currently used, and addressing the case of weighted and dynamic networks.
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Fig 1. (a) Visualization of the attendances as black boxes for the 74 terrorists (rows) and the
45 events (columns). A black box depicts a connection between a terrorist and an event, while
a white box indicates a terrorist not attending that event. (b) Visualization of the attendances
as black lines. The width of the left rectangles is proportional to the connections (attendances)
of each terrorist to the 45 events, whereas the width of the right rectangles is proportional to
the number of terrorist attending each event. Terrorists attending no event are not visualized.
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Fig 3. Results for the simulation study on data from a misspecified model and 3 different
values for the total number of events d = {6, 18, 36}. The violin plots report misclassification
error rate ( top) and ARI ( bottom) across the 25 replicated datasets. For each value of d,
the five boxplots in each section refer to (from left to right): mixtbern, manet (K = 3), manet
(K = 4), mixer, blockmodels.
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Fig 4. Bipartite (two-mode) representation of Noordin Top terrorists network dataset. Each
square node is an event, with corresponding label, while each circle node is a terrorist (labelled
with a progressive number). Sizes and grey-shading scheme for circle nodes reflects terrorists
allocation into clusters obtained by our model manet: 2 medium shaded nodes for cluster
z = (0, 1); 6 heavy shaded nodes for cluster z = (1, 0); 66 small sized, light shaded nodes
for multiple allocation cluster z = (1, 1); medium sized, medium shaded unconnected nodes
{75, 76, 77, 78, 79} are the ‘lone wolves’, attending no event.
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Fig 5. Ternary plot for the (average) posterior probabilities of allocation of each terrorist
to each clusters from our manet model, conditioning on not being in cluster z = (0, 0). The
‘lone wolves’ cluster is omitted for ease of visualization.
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