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Supplementary Notes
Datasets. The distribution of polarons in the training databases for different VO and Nb-doping concen-
trations are collected in Supplementary Table 1 and Supplementary Table 2, respectively.

cVO
# Configurations TiAS0 TiBS0 TiAS1 TiBS1 TiAS2 TiBS2 min(ĒDFT

pol ) max(ĒDFT
pol )

5.5% 52 6 0 97 1 0 0 -0.3 -0.12
11.1% 86 99 0 229 13 3 0 -0.37 -0.04
16.7% 116 214 0 462 18 2 0 -0.41 -0.29
22.2% 61 192 0 239 39 18 0 -0.44 -0.36
27.8% 27 125 0 108 28 9 0 -0.43 -0.36
33.3% 11 44 16 56 16 0 0 -0.43 -0.38
38.9% 19 98 56 95 11 6 0 -0.39 -0.35
44.4% 46 219 170 261 57 9 20 -0.35 -0.28
50% 74 450 383 338 97 64 0 -0.37 -0.32
total 492 1447 625 1885 280 111 20 -0.44 -0.04

Supplementary Table 1: FPMD dataset of configurations in rutile TiO2(110). Number of inequivalent po-
laronic configurations generated in FPMD for every defect concentration, and corresponding site-dependent
polaron occupation (number of times the site is occupied by a polaron). The last columns display the
ranges of mean polaronic energies in eV at each concentration (a characterization of the energy distribution
generated via the ML model can be found in Supplementary Figure 9)

Number of possible configurations. We briefly discuss the number of possible configurations in the
TiO2 super cell. In our setup, consisting of a 9 × 2 large unit-cell with two of the five stochiometric
layers fixed to bulk positions (see Methods in the main text), the TiO2 slab contains 108 Ti sites that can
possibly host polarons (36 sites per S0, S1 and S2 layer). In the simplest case of one oxygen vacancy
and two excess electrons in the slab (cVO

= 5.5%), the number of possible polaronic configurations (with no
symmetry applied) is given by the binomial coefficient,

(
108
2

)
= 5778. At higher concentration, the number of
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cNb # Configurations TiS0 TiS1 TiS2 min(ĒDFT
pol ) max(ĒDFT

pol )

3.3% 95 146 174 60 -0.39 -0.26
4.2% 79 153 73 169 -0.38 -0.2
5.0% 42 102 50 100 -0.4 -0.26
5.8% 74 178 185 155 -0.43 -0.27
6.7% 89 254 236 222 -0.43 -0.33
total 379 833 718 706 -0.43 -0.2

Supplementary Table 2: Randomly generated dataset of configurations in SrTiO3(001). Number of inequiv-
alent polaronic configurations generated for every defect concentration, and corresponding site-dependent
polaron occupation (number of times the site is occupied by a polaron). The last columns display the ranges
of mean polaronic energies in eV at each concentration.

configurations explodes, e.g., for 4 oxygen vacancies we obtain
(
108
8

)
≈ 3 · 1011 polaronic configurations. We

note that, especially at high defect concentration, exploiting symmetry operations to simplify the problem
does not bring any considerable advantage.
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Supplementary Methods
Occupation matrices. We used the Occupation Matrix Control scheme as developed by Allen et al.
(2014) to localize polarons at specific sites in a two step protocol. In the first step, occupation matrices
of chosen Ti sites are fixed in order to ensure polaron localization at the specified sites. The second step
consists of an unrestricted relaxation, which starts from the previously determined distorted structure. The
second step is crucial to obtain reliable self-consistent results of the polaron trapping.

In the following, we list the spin-resolved density matrices used in the first step of the relaxation procedure.
In the case of rutile TiO2(110) we employed specific occupation matrices for every site type (TiAS0, Ti

A
S1, Ti

B
S1,

TiBS0), here listed with the corresponding spin-channel ↑ and ↓ arrows. All occupation matrices have been
extracted from a single polaron configuration at cVO=38.9%. Polarons at TiAS0, Ti

A
S1, and TiBS1 showed well

defined orbital characters, while the unstable TiBS0 polarons varied in their specific orbital character. Below,
the used input occupation matrices are listed:

TiAS0, ↑=


0.32 −0.01 −0.03 −0.01 0.01
−0.01 0.57 −0.06 −0.38 −0.19
−0.03 −0.06 0.19 0.04 −0.01
−0.01 −0.38 0.04 0.40 0.15
0.01 −0.19 −0.01 0.15 0.15

 TiAS0, ↓=


0.30 −0.00 −0.03 −0.00 0.01
−0.00 0.06 −0.00 0.02 0.00
−0.03 −0.00 0.18 −0.00 −0.03
−0.00 0.02 −0.00 0.08 −0.00
0.01 0.00 −0.03 −0.00 0.08



TiAS1, ↑=


0.09 0.00 −0.02 −0.00 0.01
0.00 0.09 −0.00 −0.00 −0.00
−0.02 −0.00 0.76 0.00 −0.23
−0.00 −0.00 0.00 0.28 −0.00
0.01 −0.00 −0.23 −0.00 0.43

 TiAS1, ↓=


0.08 0.00 −0.00 −0.00 −0.00
0.00 0.08 −0.00 −0.00 −0.00
−0.00 −0.00 0.10 −0.00 0.09
−0.00 −0.00 −0.00 0.26 0.00
−0.00 −0.00 0.09 0.00 0.24



TiBS1, ↑=


0.29 −0.00 −0.00 0.00 −0.01
−0.00 0.08 −0.00 0.00 −0.01
−0.00 −0.00 0.29 0.00 0.06
0.00 0.00 0.00 0.09 −0.02
−0.01 −0.01 0.06 −0.02 0.88

 TiBS1, ↓=


0.28 −0.00 −0.00 0.00 0.00
−0.00 0.07 −0.00 0.00 0.00
−0.00 −0.00 0.26 0.00 −0.02
0.00 0.00 0.00 0.08 −0.00
0.00 0.00 −0.02 −0.00 0.06



TiBS0, ↑=


0.11 −0.00 −0.05 0.03 0.05
−0.00 0.10 −0.01 0.00 0.03
−0.05 −0.01 0.58 −0.21 −0.24
0.03 0.00 −0.21 0.35 0.09
0.05 0.03 −0.24 0.09 0.49

 TiBS0, ↓=


0.09 −0.01 0.01 0.00 0.01
−0.01 0.08 0.00 −0.00 0.01
0.01 0.00 0.11 0.01 0.08
0.00 −0.00 0.01 0.24 −0.06
0.01 0.01 0.08 −0.06 0.25



TiBS0, ↑=


0.54 0.41 0.03 0.00 0.02
0.41 0.48 0.03 0.00 0.02
0.03 0.03 0.13 −0.03 0.03
0.00 0.00 −0.03 0.32 −0.06
0.02 0.02 0.03 −0.06 0.24

 TiBS0, ↓=


0.07 −0.02 −0.00 −0.00 −0.01
−0.02 0.06 −0.00 0.00 −0.01
−0.00 −0.00 0.10 −0.01 0.05
−0.00 0.00 −0.01 0.26 −0.08
−0.01 −0.01 0.05 −0.08 0.21


For SrTiO3(001), we employed the same occupation matrix for all localization sites in both the generation

of the reference database and in the exhaustive search:

Ti, ↑=


0.28 −0.00 −0.02 0.00 −0.07
−0.00 0.41 −0.00 −0.40 0.00
−0.02 −0.00 0.24 0.00 0.00
0.00 −0.40 0.00 0.59 −0.00
−0.07 0.00 0.00 −0.00 0.12

 Ti, ↓=


0.27 0.00 −0.02 0.00 −0.07
0.00 0.07 −0.00 0.01 −0.00
−0.02 −0.00 0.23 −0.00 0.00
0.00 0.01 −0.00 0.06 0.00
−0.07 −0.00 0.00 0.00 0.11
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Descriptors. In this section we briefly describe the most important concepts employed for constructing
our descriptor.

Supplementary Figure 1: (left) Four of the possible 60 interaction categories in a rutile TiO2(110) polaron
configuration at cVO= 11.1% are shown. For clarity, O-atoms are hidden and the locations of oxygen vacancies
are marked. Possible polaron hosting sites are shown in blue and polarons are represented by charge densities
taken from a DFT-calculation. The starting point of arrows indicates the polaron, whose descriptor ought to
be calculated and the arrow indicates interactions with polarons/defects at specific sites (vectors connecting
the considered sites are not necessarily the shortest distance in the periodic cell, although in practice the
minimum image convention was used to construct descriptors). (right) Simlilarly to the left hand side, some
examples of interaction categories in SrTiO3(001) are depicted. Again, O- and Sr-atoms have been omitted
for clarity, but Nb-dopants are displayed.

Interaction Categories. To ensure consistent representations of the polaron environment we structure the
2-body-interaction terms used to construct the descriptor via interaction categories. An interaction category
depends on the type of polaron-hosting site, and on the nature of interaction (whether with another polaron
of with a donor defect). Supplementary Figure 1 collects examples of interaction categories for the two
materials of our study. The arrows in the left side of Supplementary Figure 1 show four interaction categories
for rutile TiO2(110): polaron-polaron on the same-row (TiAS1-Ti

A
S1), non-stacked on different layers (TiAS0-

TiA
′

S1), non-stacked on same layer (TiAS1-Ti
A′

S1), and polaron-defect (TiAS1-VO). The right panel similarly shows
four possible interaction categories in SrTiO3: polaron-polaron on the same layer (TiS0-TiS0), polaron-defect
on the same (TiS0-NbS0) and different (TiS1-NbS0, TiS2-NbS1) layers. A full list of possible interaction
categories for TiO2(110) and SrTiO3(001) is provided in Supplementary Table 3 and Supplementary Table
4, respectively.
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Layers Interaction type Trapping site
Ti−Ti or Ti−VO TiAS0 TiBS0 TiAS1 TiBS1 TiAS2 TiBS2

Sl− S0
A−A/B− B (stacked) TiAS0-TiAS0 TiBS0-TiBS0 TiAS1-TiAS0 TiBS1-TiBS0 TiAS2-TiAS0 TiBS2-TiBS0
A−A′/B− B′ (non-stacked) TiAS0-TiA

′
S0 TiBS0-TiB

′
S0 TiAS1-TiA

′
S0 TiBS1-TiB

′
S0 TiAS2-TiA

′
S0 TiBS2-TiB

′
S0

A-B (different coordination) TiAS0-TiBS0 TiBS0-TiAS0 TiAS1-TiBS0 TiBS1-TiAS0 TiAS2-TiBS0 TiBS2-TiAS0

Sl− S1
A-A/B-B TiAS0-TiAS1 TiBS0-TiBS1 TiAS1-TiAS1 TiBS1-TiBS1 TiAS2-TiAS1 TiBS2-TiBS1
A-A’/B-B’ TiAS0-TiA

′
S1 TiBS0-TiB

′
S1 TiAS1-TiA

′
S1 TiBS1-TiB

′
S1 TiAS2-TiA

′
S1 TiBS2-TiB

′
S1

A-B TiAS0-TiBS1 TiBS0-TiAS1 TiAS1-TiBS1 TiBS1-TiAS1 TiAS2-TiBS1 TiBS2-TiAS1

Sl− S2
A-A/B-B TiAS0-TiAS2 TiBS0-TiBS2 TiAS1-TiAS2 TiBS1-TiBS2 TiAS2-TiAS2 TiBS2-TiBS2
A-A’/B-B’ TiAS0-TiA

′
S2 TiBS0-TiB

′
S2 TiAS1-TiA

′
S2 TiBS1-TiB

′
S2 TiAS2-TiA

′
S2 TiBS2-TiB

′
S2

A-B TiAS0-TiBS2 TiBS0-TiAS2 TiAS1-TiBS2 TiBS1-TiAS2 TiAS2-TiBS2 TiBS2-TiAS2
Sl− S0 A/B−VO TiAS0-VO TiBS0-VO TiAS1-VO TiBS1-VO TiAS2-VO TiBS2-VO

Supplementary Table 3: Labeling scheme for the descriptors adopted in the ML model for rutile TiO2(110).
Each column reports the interaction categories for a polaron localized at a specific trapping site. Rows show
the trapping sites of the interacting polaron or defect (VO), including a differentiation between stacked,
non-stacked, and differently coordinated (e.g., A-A, A-A′, A-B, respectively) interacting sites.

Layers Interaction type Trapping site
Ti−Ti or Ti−Nb TiS0 TiS1 TiS2

Sl− S0
Ti-Ti TiS0-TiS0 TiS1-TiS0 TiS2-TiS0
Ti-Nb TiS0-NbS0 TiS1-NbS0 TiS2-NbS0

Sl− S1
Ti-Ti TiS0-TiS1 TiS1-TiS1 TiS2-TiS1
Ti-Nb TiS0-NbS1 TiS1-NbS1 TiS2-NbS1

Sl− S2 Ti-Ti TiS0-TiS2 TiS1-TiS2 TiS2-TiS2

Supplementary Table 4: Labeling scheme for the descriptors adopted in the ML model for SrTiO3(001).
Each column reports the interaction categories for a polaron localized at a specific trapping site. Rows show
the trapping sites of the interacting polaron or defect (Nb).

Workflow. Supplementary Figure 2 shows the workflow for determining a polaron descriptor, considering
a specific polaron configuration on TiO2(110). First, we recall the structural unit of rutile TiO2(110) and
the corresponding labeling in Supplementary Figure 2(a-b). Supplementary Figure 2(c) shows a polaron
configuration and all active interaction categories for the central polaron located at a TiAS1-site. In Supple-
mentary Figure 2(d), the corresponding 2-body-interactions are determined and structured according to the
interaction categories. After rescaling (Supplementary Figure 2(e)) the array is flattened (Supplementary
Figure 2(f)) into a vector for further computations.
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Supplementary Figure 2: (a-b) Side and top view of the rutile TiO2(110) structure with labeling of
differently coordinated sites, distances and layers. Titanium sites are shown in blue and oxygen atoms in
red. A dotted red circle shows the location of a VO. (c-f) The process of calculating the descriptor vector of
a TiAS1-polaron in a configuration with four polarons and two VO (cVO

=11.1%). (c) Isosurfaces of the polaron
charge (yellow). Each subpanel shows a different interaction category (see labels upper right) where the
target distances are indicated by an arrow. (d) 10× 3 array indicating the interacting polaron-polaron and
polaron-VO pairs for a TiAS1 polaron according to the interactions shown in panel (c). For each interaction
the polaron-polaron and polaron-VO distance d between the target and paired polaron/VO is indicated (in Å,
also displayed with a color gradient as defined in the lateral color bar.) For each interaction category only
the three shortest distances (labeled d1, d2, and d3) within a cutoff radius Rc = 15 Å are considered. If too
few distances are available (generally the case for low concentrations, i.e., few polarons), the distances are
padded with a value greater than Rc (here ∞). (e) Illustration of the action of the rescaling function fc(d)
(Equation 1 in the main text) applied to the array of distances. (f) Finally, the array is flattened into the
descriptor vector D of the considered polaron, used as input in our machine learning model.
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Training. We recorded the adapted loss (see Equation 3 in the main text) at an interval of 100 stochastic
optimization epochs for the training and validation phases, using a randomized split of the databases and
observed the convergence of the mean absolute error (MAE)in dependence of the number of training samples
for both materials.

Supplementary Figure 3: The adapted loss function is shown for rutile TiO2 (a) and SrTiO3 (b) in
dependence of the number of trained epochs in the stochastic parameter optimization. Panel (c) shows the
convergence of the MAE of the mean polaronic energy as a function of the number of training samples.
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Hyperparameter optimization. We determined optimal hyperparameters of the model (kernel param-
eter γ, cutoff-radius Rc and number of elements per interaction category) by optimizing the validation
accuracy. The results of this procedure are displayed for rutile TiO2(110) in Supplementary Figure 4.

(a) Loss of train and validation data obtained after 5000
epochs, usging Rc = 15 Å and various values γ of the
Laplacian kernel.

(b) Loss of train and validation data obtained after
10000 epochs, using γ = 0.5 and various Rc.

(c) Loss of train and validation data obtained after
5000 epochs for γ = 0.5, by varying the number of
shortest distances included in each interaction category.
While different interaction categories could be tuned
separately to further optimize the descriptor, here we
limited the optimization to an equal number of features
per interaction category.

Supplementary Figure 4: Examples of the hyperparameter optimization based of results from oxygen defective
rutile TiO2(110).
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Supplementary Discussion
Omitted defect concentrations. Considering that the goal of this work is the efficient exploration of the
polaron configurational space, the ML-model must be robust and guarantee accurate predictions for samples
not visited in the training phase. Usually, the application of ML-models for extrapolation problems results
in unreliable predictions, and careful tests are required. To this aim, we adopted a validation scheme, the
“omitted defect concentrations” presented in the main text. Supplementary Figure 5 shows the results at
every defect concentration for both the SrTiO3 and TiO2 systems. Furthermore, in Supplementary Table 5
and Supplementary Table 6, we report the mean squared error of the target quantity Ēpol as obtained in the
training (including all concentrations in the database except the omitted one) and the test phase (omitted
concentration only). The results show the good level of accuracy of the proposed ML model in addressing
previously unknown polaron configurations. The error obtained for the omitted concentration is indeed
slightly larger than the value obtained for the standard test on randomly split training-vs-test databases (see
last line in the Tables).

cVO
Train Test

5.5% 1.11 · 10−4 2.61 · 10−3

11.1% 1.21 · 10−4 1.72 · 10−3

16.7% 1.64 · 10−4 4.85 · 10−4

22.2% 2.06 · 10−4 2.65 · 10−4

27.8% 2.43 · 10−4 5.86 · 10−4

33.3% 1.71 · 10−4 1.45 · 10−3

38.9% 1.97 · 10−4 5.32 · 10−4

44.4% 2.07 · 10−4 5.27 · 10−4

50% 1.74 · 10−4 3.04 · 10−3

Randomized 1.16 · 10−4 1.31 · 10−4

Supplementary Table 5: The mean squared error of the mean polaronic energy for different test cases in
the MD-dataset, reported for the training and test sets. The training was performed on configurations from
eight defect concentrations, and the testing on the remaining one (labeled in column cVO). The last line
shows results from a randomized split of the data from all defect concentrations.

cNb Train Test
3.3% 3.01 · 10−5 2.19 · 10−4

4.2% 4.26 · 10−5 1.64 · 10−4

5.0% 3.25 · 10−5 3.79 · 10−4

5.8% 3.64 · 10−5 1.75 · 10−4

6.7% 2.92 · 10−5 4.07 · 10−4

Randomized 5.75 · 10−5 9.35 · 10−5

Supplementary Table 6: The mean squared error of the mean polaronic energy for different test cases in the
randomized dataset, reported for the training and test sets. The training was performed on configurations
from 4 defect concentrations, and the testing on the remaining one (labeled in column cNb). The last line
shows results from a randomized split of the data from all defect concentrations.
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Supplementary Figure 5: The results of the validation of interpolation to omitted defect concentrations
are shown for SrTiO3 and TiO2. Each panel displays only the results of the testing data from the omitted
defect concentration, while the model was trained on data of all remaining defect concentrations. The color
of the points encodes the defect concentration of the corresponding data.
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Exhaustive Search. Supplementary Figure 6 and Supplementary Figure 7 collect the most-stable po-
laronic configuration as found by the machine-learning exhaustive search for every defect concentration in
TiO2 and SrTiO3, respectively. These ground-state configurations were individuated by the ML algorithm
among a pool of ∼ 4 and ∼ 2 million polaron patterns, respectively. We note that searches based purely
on DFT calculations are limited to smaller datasets due to the higher computational costs: The character-
ization of just ∼ 500 distinct polaronic configurations in TiO2 (i.e., calculations including MD simulations
plus ionic relaxations for the calculation of EDFT

pol ) required us ∼ 2 · 106 core hours on our high-performance
computing facility (HPC); similarly, the ∼ 400 configurations analyzed for SrTiO3 via the random sampling
approach were calculated in ∼ 0.3 · 106 HPC-core hours. The exhaustive ML-search on a configuration space
of millions of polaron pattern requires instead a handful of hours (11 and 2 hours for TiO2 and SrTiO3,
respectively) on a single core of standard personal computers. The bottleneck of the ML-based strategy is
the training data generation, which relies on DFT databases; however, our results for SrTiO3 show that the
ML model can be efficiently trained by performing a random sampling of the configuration space, relying on
few hundreds of polaron energies calculated via DFT. The machine learning workflow proposed in this work
is indeed able to overcome the practical limitations of approaches based purely on DFT and on physical
intuition. We conclude with a statistical analysis on the polaron patterns explored during the exhaustive
search for TiO2 and SrTiO3 at low defect concentrations, as shown in Supplementary Figure 8. By consid-
ering only favorable configurations (i.e., configurations with EML

pol at least 80% of the ground state energy),
the frequency distribution of polarons in TiO2 shows a clear tendency towards charge trapping in TiAS1 sites
close to the VO at the lowest low defect concentration (Supplementary Figure 8 (a)), correctly capturing the
underlying symmetries of the supercell. With increasing defect concentration (see Supplementary Figure 8
(b)), polarons tend to distribute more evenly across all TiAS1 sites compared to the lower concentration, and
occupation of TiAS0 sites between the two VO becomes more favorable. In the case of an asymmetric defect
pattern, as for SrTiO3, the distribution of favorable sites gets more complicated (see Supplementary Figure
8 (c)). Nevertheless, The ML-aided search identifies sites directly above or below the Nb-dopants in the first
two surface layers as the preferred polaron localization sites.

Supplementary Figure 9 shows a statistical analysis of all possible polaron configurations explored using
the ML-search, considering polaron formation on TiAS0 and TiAS1 sites in the slab with four polarons (2 oxygen
vacancies, cVO

= 11.1%). This results in roughly 53000 total configurations (we have excluded configurations
including all the four polarons on the S0 layer). We have collected the polaron formation energies for all
configurations, and grouped them depending on the number of polarons per layer. Finally, we have calculated
the statistical distribution of the polaron formation energy for every group (including sample mean µ(ĒML

pol )

and standard deviation σ(ĒML
pol ) of the mean polaronic energy, see Supplementary Table 7). As evident from

our results, the polaron formation energy depends strongly on the type of hosting site but deviations from
the average value are large. These deviations are due to the polaron-polaron and polaron-defect interactions,
as we discussed in our recently published study. On top of the primary localization-site dependence of the
polaron energy reported in a previous work Deskins et al. (2011), we find a strong influence of the spatial
distribution of polarons.
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Supplementary Figure 6: Most stable polaron configurations predicted by ML and confirmed at the DFT-
level at each cVO

for rutile TiO2(110). Titanium-sites are shown in blue, polarons are indicated in yellow by
a schematic representation of the charge density, and oxygen vacancies are shown in dotted red. For clarity
oxygen atoms are not shown and only the three surface layers are displayed.
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Supplementary Figure 7: Most stable polaron configurations predicted by ML and confirmed at the DFT-
level at each cNb for SrTiO3(001). Titanium-sites are shown in blue, polarons are indicated in yellow by a
schematic representation of the charge density, and Nb-dopants are shown in green. For clarity oxygen and
strontium atoms are not shown and only three surface layers are displayed.
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Supplementary Figure 8: The relative site occupation frequency within the most favorable, ML-searched
configurations are displayed for the (a,b) rutile TiO2(110) and (c) perovskite SrTiO3(001) surface, respec-
tively. The color encoding and the corresponding lateral colorbars show the percentage of favorable config-
urations containing a polaron at each Ti-site in the supercell. The positions of defects (VO and Nb-dopants,
respectively) are indicated by a white circle.
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Supplementary Figure 9: The mean polaronic energies of various polaron confgurations captured by the
ML-model are displayed for cVO

=11.1%. Polaron configurations are grouped depending on the number of
TiAS0 and TiAS1 polarons (groups are shown in different colours).

TiAS0 TiAS1 µ(ĒML
pol ) (eV) σ(ĒML

pol ) (eV)
0 4 -0.274 0.040
1 3 -0.245 0.040
2 2 -0.229 0.039
3 1 -0.225 0.036

Supplementary Table 7: The mean energies µ(ĒML
pol ) and the corresponding standard deviations σ(ĒML

pol ) of
the energy distribution in Supplementary Figure 9 are displayed for possible polaron configuration at cVO=
11.1%. Again, polaron configurations are grouped depending on the number of TiAS0 and TiAS1 polarons in
each confguration.
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