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A staggered multiphysics framework for salt crystallization-induced

damage in porous building materials
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Abstract

In this paper, a staggered multiphysics framework is proposed for the numerical simulation

of salt crystallization-induced damage in porous building materials, such as masonry. This

staggered framework is based upon a multiphase model to account for salt transport and

crystallization within the porous material and a plastic-damage model to account for the

nonlinear mechanical behavior of the material. The staggered structure is composed of a

two-way data exchange between the multiphase and the mechanical models. Firstly, crystal-

lization pressure information is passed to the mechanical model to analyze the mechanical

response of the material. Secondly, the mechanical outcomes (e.g. damage distribution)

are used to update some multiphase model properties (e.g. tortuosity) allowing simulations

also beyond the onset of damage. Few simple geometry-based relationships are discussed

to update multiphase model properties along with damage. Numerical examples are used

to show the capability of the proposed staggered framework for simulating complex inter-

actions among salt transport, salt crystallization, and damage within the porous material,

highlighting the possibilities of this modeling approach to conduct simulations also beyond

the onset of damage.
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1. Introduction1

Environmental actions, which are likely to get worse in the future according to climate2

change predictions [1], can give rise to degradation processes and aging in historic building3

materials, such as masonry [2]. One of the main threats to degradation of porous building4

materials is salt crystallization [3, 4]. Indeed, salt crystallization-induced damage in porous5

building materials can affect the structural performance of existing buildings [5] and the6

effectiveness of strengthening systems applied on them [6], [7].7

In the last decades, a large amount of experimental and theoretical research was dedicated8

to study the transport of dissolved salt in porous materials [8, 9, 10, 11], salt phase change9

[12, 13, 14], and pore pressure which results from salt crystallization [12, 15, 16, 17].10

Differently from laboratory tests which can typically deal with small-scale specimen and rel-11

atively short-terms weathering conditions (whose representativeness of in situ environment12

is still object of debate [18]), numerical strategies can potentially simulate long-term real-life13

conditions also on large- and full-scale structures. To this aim, several numerical models14

have been developed in the last years. In [19], a chemo-hydro-thermo-mechanical model for15

salt transport and crystallization in porous building materials has been presented consider-16

ing a linear elastic response of the material matrix. An extension of this model to damage17

has been discussed in [20], where the spalling in masonry due to salt crystallization has been18

investigated up to the onset of damage. Derluyn et al. [21] developed a coupled model for19

heat and mass transport, salt crystallization, deformation and damage able to identify crack20

nucleation by comparing the effective stress and the tensile strength. Additionally, part of21

the Authors developed in [22], [23], [24] a coupled multiphase model for the hygro-thermal22

analysis of masonry structures and prediction of stress induced by salt crystallization. Par-23

ticularly, this model allowed the simulation of an aging test conducted on a masonry wall24

exposed to long-term weathering conditions. Such model has been successively extended25

in [25], where a multi-scale approach for the analysis of mechanical effects induced by salt26

crystallization in porous media has been developed through the real 3D micro geometry of27

the porous material and using a linear elastic material mechanical behavior. Lately, Choo &28
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Sun [26] developed a coupled multiphase and phase-field model to investigate cracking and29

damage from crystallization in pores. This coupled strategy enables simulation of complex30

fractures in the porous material without explicitly tracking their geometry, allowing the31

simulation up to the onset of cracking and damage from in-pore crystallization of minerals.32

A common drawback of this state-of-the-art resides in the limitation of the numerical sim-33

ulations up to the onset of damage, as many assumptions in the constitutive models break34

down upon damaging of the material.35

In this paper, a staggered multiphysics framework is proposed for the numerical simula-36

tion of salt crystallization-induced damage in porous building materials, such as masonry.37

This staggered framework is based upon a multiphase model to account for salt transport38

and crystallization within a porous material [22] and a plastic-damage model to account for39

the nonlinear mechanical behavior of the material [27].40

A two-way staggered framework allows for the data exchange between the multiphase and41

the mechanical models: pore pressure information is passed to the mechanical model to ana-42

lyze the mechanical response of the material; subsequently, the damage distribution obtained43

from the mechanical response is used to update some multiphase model properties allowing44

simulations also beyond the onset of damage. Few simple geometry-based relationships are45

discussed to update multiphase model properties along with damage.46

The paper is organized as follows. Section 2 highlights the main aspect of the staggered47

multiphysics framework herein presented. The multiphase model for salt transport, diffusion48

and crystallization is briefly recalled in Section 3. Section 4 presents the main aspect of the49

mechanical model. Section 5 illustrates the strategy for the updating of the multiphase50

model properties within the staggered framework. Section 6 shows the structure of the51

staggered framework. Numerical results are presented and discussed in Section 7. Section 852

discusses the conclusions of this research work.53
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2. Multiphysics staggered framework54

In this paper, the multiphase model (MPM) presented in [22] for the salt and crystalliza-55

tion is coupled with a mechanical model (MM) through a staggered multiphysics framework56

to account for the damage induced by salt crystallization. The structure of the coupled57

problem is sketched in Figure 1: at a generic step, the distributions of the crystallization58

pressure and of the saturation degree of crystallized salt, predicted by the multiphase model,59

are used as input data for the nonlinear mechanical model. This, gives in turn the distribu-60

tion of the damage in the solid matrix of the porous material as output. Finally, the damage61

variable is used to update some of the multiphase model parameters. In this regards, in the

Multiphase Model

(MPM)

crystallization

pressure

Mechanical Model

(MM)

mechanical

damage

1

2

3

4

Figure 1: Sketch of the coupled multiphysics model.

62

following the attention is focused only on the tortuosity, for simplicity. However, it is worth63

to note that the list of the parameters of the multiphase model to be updated can be easily64

enriched without substantially altering the proposed framework.65

The tortuosity τ is defined as the ratio of the effective length Le to the direct length L66

of a path that connects two points A and B of a porous material. It is considered to vary67

during an evolutive analysis not only due to the change in porosity, ϕ, resulting from the68

crystallized salt, but also due to the evolution of mechanical damage, as sketched in Figure69

2. In particular, as illustrated in Figure 2b, precipitated salt crystals change the porosity70

(ϕ1 < ϕ0) and the pore geometry resulting in an increase of effective length (Le1 > Le0) and,71

hence, in an increase of the tortuosity (τ1 > τ0). Moreover, as illustrated in Figure 2c, if the72
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(c) Porous material damaged by crys-

tallization pressure Le2, ϕ1, τ2.

Figure 2: Salt crystallization-induced evolution of porosiy and tortuosity of the porous material.

damage of the porous material is activated by the crystallization pressure, a further change73

may occur in the effective length and, therefore, in the tortuosity.74

Obviously, in addition to the coupling between the two models, inside each model some75

of the parameters are updated during the analysis. Inside the MPM, some parameters are76

function of internal variables of the model itself (e.g. the porosity is updated according to77

the saturation degree of crystallized salt). Analogously, some parameters of the mechanical78

model are updated during the analysis as a function of internal variables of the mechanical79

model itself (e.g. the elastic properties are updated according to the level of damage).80

From a phenomenological point of view, the above-mentioned phenomena (i.e. crystal-81

lization process and damaging process) possess different time scale: the first has a slow82

evolution characterized by long time units (days, months, years); the latter has a fast evo-83

lution, characterized by short time units (seconds, minutes, hours).84

This is certainly one of the main motivations of using a staggered solution scheme which85

allows to exchange the data periodically, at defined time intervals ∆t. In this regards,86

here we propose a special staggered framework to solve the coupled problem and track87

the salt crystallization-induced damage within the porous material, whose organization is88

sketched in Figure 3. In particular, the proposed staggered solution has been implemented89

in two versions to foster comparisons: one-way coupling (Figure 3a), and two-way coupling90
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Figure 3: Staggered scheme. One-way coupling (a); two-way coupling (b).

(Figure 3b). In the first case, the multiphase model is solved at time t (step 1); then, pore91

pressure information is passed to the mechanical model (step 2); the mechanical response92

of the material is solved (step 3). In the second case, a further step is performed and the93

mechanical damage distribution is used to update the tortuosity τ (step 4).94

Another motivation to adopt a staggered resolution scheme is related to its computa-95

tional convenience and convergence. Indeed, the separate solution of each problem appears96

particularly convenient in terms of computational cost and more robust with respect to the97

case of a monolithic scheme of such a nonlinear problem [28].98

3. Multiphase model for salt transport and crystallization99

In this section, the multiphase model for salt transport and crystallization developed in100

[22] is briefly recalled. The porous material is considered as a multiphase medium, which101

consists of the skeleton and voids, that may be partly filled with moist air, salt dissolved in102

solution and/or salt crystals, see Figure 4. We apply here a macroscopic formulation that103

makes use of a representative elementary volume (REV) of a porous medium, large enough104

to include all the phases present. Moreover, the region is assumed to be of sufficient size105
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that the average values that characterize a phase are independent of that size [29].106

Mass exchange between different phases might arise (i.e. water evaporation, salt crystalliza-107

tion/dissolution), as well as the interaction between the fluid phases and the skeleton.108

gaseous phase (g)
precipitated salt (s)

liquid phase (l) skeleton (s) skeleton
liquid water

precipitated salt

gaseous phase
dissolved salt

Figure 4: Porous medium: Representative Elementary Volume (REV) of a four-phase mixture composed of

the solid matrix (s), liquid solution(l), gas (g), and precipitated salt (s).

The content of each component is described by the concentration cπα, defined as the mass109

of α in π-phase per unit volume of porous material, or by the corresponding saturation110

degree Sπ
α, defined as the pore volume occupied by α in π-phase. The concentration cπα and111

the corresponding saturation degree Sπ
α are related as cπα = (ϕ0 · Sπ

α) · ρπα, where ρπα is the112

mass density of α in π-phase.113

Assuming isothermal conditions, the independent variables assumed to describe the phe-114

nomenon are the pore relative humidity h (the vapor pressure divided by the vapor pressure115

at saturation) and the mass fraction of dissolved salt ω:116

ω =
cls

clw + cls
(1)

being cls the concentration of salt in liquid phase and clw the liquid water concentration.117

These independent variables are supplemented by the internal variable css (concentration of118

crystallized salt).119
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3.1. Balance equation120

With reference to the REV illustrated in Figure 4, the mass balance equations of moisture121

and salt can be written as:122

∂cw
∂t

+∇ · jw = −µls
w (2)

123

∂cls
∂t

+∇ · jls +
∂css
∂t

= 0 (3)

where cw is the concentration of moisture (defined as the sum of liquid water concentration124

clw and the vapor water concentration cgw), jw the moisture flux (defined as the sum of water125

vapor and liquid water flux: jw = jgw + jgw), and µls
w the rate of liquid water trapped in126

hydrated salt crystals. The fluxes of liquid water and dissolved salt can be expressed in127

terms of ω as:128

jlw = (1− ω)jlws − jls,diff

jls = ωjlws + jls,diff

(4)

where jlws is the flux of the liquid phase and jls,diff is the diffusive flux of dissolved salt.129

3.2. Constitutive equations130

The constitutive equations can be written as:131

jgw = − Dv

RvT
∇pv (5)

jlws = −gω(ω)Dl

(
Sl
w

)nl ∇pc (6)

jls,diff = −ρlws

Ds

τ
fs

(
Sl
w

)
∇ω (7)

where pv the vapor pressure, pc the capillary pressure, ρlws the mass density of the liquid132

phase, Rv is the gas constant of water vapor and Dv the vapor permeability coefficient.133

The exponent nl ranges from 1 to 6 as suggested by [19] and Dl is the liquid conductivity134

of pure water [30]:135

Dl =

[
3.8

(
A

ϕ0ρlw

)2

103(S
l
w−1)

]
∂cw
∂h

(8)

being A the water adsorption coefficient, ρlw the mass density of liquid water and Sl
w the136

degree of saturation of the solution. Moreover, in agreement with [31] the expression gω =137
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ρlws

ρlw
(1− 0.03m) is assumed, being m the molality.138

For the salt diffusion part, Ds is the diffusion coefficient for pure water and fs = (Sl
w)

ns is a139

correction factor that takes into account the actual cross section available for diffusion, and140

ns is the saturation exponent, here set equal to one.141

As anticipated in Section 2, when the salt precipitates the porosity tends to decrease due142

to the voids occupied by the salt. This phenomenon is taken into account in the model by143

introducing the effective porosity:144

ϕeff = ϕ0(1− Ss
s) (9)

where Ss
s is the crystallized salt saturation degree. Moreover, as described in Section 2,145

the porosity change due to salt crystallization can alter also the tortuosity and, hence, the146

salt diffusion. Several expressions which relate tortuosity and porosity can be found in the147

literature [32, 33, 34, 35, 36, 37, 38, 39]. Here, we refer to the relationship provided in148

[33, 37, 40]:149

τ = 1− p ln (ϕeff ) (10)

Varying coefficient p, the above expression can be applied to a bed of uniform spheres as150

well as to overlapping, non-uniform spheres, see Figure 5.151

In this model, the instantaneous equilibrium between liquid and vapour water is assumed.152

Accordingly, the moisture content at a certain temperature can be expressed as a function153

of the relative humidity. This relation, known as sorption/desorption isotherm, can be154

considered as a material property and can be obtained by experimental testing, see for155

instance [41] and the reference therein. The sorption isotherm is commonly determined for156

pure water, but it is influenced by the dissolved salt due to of the changing contact angle157

and the surface tension of the solution [42], and can be conveniently expressed in terms of158

saturation degree of the solution Sl
ws as a function of the equivalent relative humidity. In159

particular, the analytical expression for sorption/desorption curves proposed in [30] is here160

adopted:161

Sl
w =

ψ − 1

ψ − h
h (11)

9
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Figure 5: Effect of effective porosity variation on tortuosity for different values of p

where ψ is the sorption isotherm parameter. Then, the relation for sorption curves takes162

into account for the presence of precipitated salt inside the pores and, indirectly, the effect163

of the presence of dissolved salt, see also [22][43] for further details.164

3.3. Crystallization and dissolution equations165

The salt crystallization or dissolution depends on the supersaturation ratio which is166

defined by the ratio ω/ωsat, being ωsat the dissolved salt concentration at saturation.167

In particular:168  ω
ωsat

> α0 ⇒ crystallization

ω
ωsat

< 1 ⇒ dissolution
(12)

where α0 is the crystallization threshold (α0 > 1 for first crystallization, α0 = 1 for further169

crystallization). In general, the threshold of supersaturation ratio for primary crystallization170

relies on the properties of the porous material and on the type of salt. The evolution equation171

which describes the salt precipitation/dissolution kinetics, i.e. quantifies the amount of salt172

which precipitates, can be written as:173

∂css
∂t

= πr2pρ
s
s

n

Vtot
Kc

∣∣∣∣ ωωsat

− 1

∣∣∣∣P (13)
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where a constant amount of salt nuclei n in the solution, as well as an isotropic distribution174

of cylindrical pores and cylindrical nuclei of the same radius of the pores (rp), is assumed.175

In Equation (13), ρss is the density of the crystallized salt, Kc is the growth rate coefficient,176

Vtot the pore volume and P is the crystallization process order that relies on the properties177

of the porous material and on the type of salt. As noted in [44] in the case of nitrates, the178

crystallization-dissolution process could be described using an improved model incorporating179

Pitzer’s equations.180

3.4. Crystallization pressure181

When the salt crystallizes inside the pores it exerts a pressure on the solid matrix that182

can be evaluated with the well-known relation introduced by Steiger in [13]:183

ps =
vRT

Vs

(
ln

ω

ωsat

+ ln
γ

γsat

)
(14)

in which v is the total number of ions released due to complete dissociation of salt, R is the184

ideal gas constant, T is the temperature, Vs is the molar volume of precipitated salt, γ is185

the mean activity coefficient of the dissolved salt and γsat is the mean activity coefficient of186

the dissolved salt at saturation. As noted in [45], when the porous material is characterized187

by high values of pore size (e.g. in natural stones), Eq. (14) could be extended to account188

for the influence of pore size on the solution properties.189

4. Mechanical model190

As for the mechanical model, a continuum body is considered. The compatibility equa-191

tion is written as:192

ε =
1

2
(∇uT +∇u) (15)

being u the displacement vector and ε the strain tensor. Given the small velocities of the193

phases, the equilibrium reads:194

div(σ) + F = 0 (16)
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where σ is the stress tensor and F the vector of volume forces, which, if no external195

distributed loads are prescribed, can be written as:196

F = gρeff (17)

being g the gravitational acceleration vector and ρeff the effective mass density defined as:197

ρeff = ρm + cgw + clw + cls + css (18)

being ρm the mass de5nsity of the solid matrix.198

Isotropic material behavior based on the plastic-damage model developed by Lee and Fenves199

[27] is considered. Particularly, this constitutive law aims to phenomenologically represent200

the mechanical response of quasi-brittle materials, such as brick. In this framework, the201

constitutive relationship is expressed as:202

σ = (1−D)C(ε− εp)− σs (19)

whereD is the scalar degradation damage variable, C is the initial undamaged elastic stiffness203

tensor, εp is the plastic part of the strain tensor and σs accounts for the stress induced by204

salt crystallization.205

To account for the different behavior of the quasi-brittle material in tension and compression206

(i.e. cracking in tension and crushing in compression) within a plastic-damage framework,207

two independent scalar damage variables (0 ≤ dt < 1 for tensile regime and 0 ≤ dc < 1208

for compressive regime) are considered in the constitutive model. Indeed, it should be209

herein highlighted that a combination of cracking/crushing failure modes can be expected210

also due to the stress induced by salt crystallization. Accordingly, the damage state of a211

single material point can be overall represented by the single degradation damage variable212

D expressed as:213

D = 1− (1− dt)(1− dc) (20)

which combines tensile and compressive damage states.214

It can be easily verified thatD in (20) fulfills the condition 0 ≤ D < 1 and is equal to either dt215
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when dc = 0 (tensile case) or dc when dt = 0 (compressive case). This constitutive law adopts216

the concepts of isotropic degradation damage, strain decomposition and effective stress, i.e.217

from both damage mechanics and plasticity theories, see Eq. (21). A nonassociative flow218

rule, obtained by a Drucker-Prager type plastic potential is considered, is considered to219

govern the dilatancy and to define the plastic strain rate. The flow rule is controlled by220

the dilatancy angle ψ, generally assumed equal to 10°in agreement with physical evidence221

and previous computational approaches, and a smoothing constant ϵ typically assumed222

equal to 0.1. Furthermore, a multiple-hardening Drucker-Prager type surface is adopted223

as yield surface. This surface is governed by the ratio fb0/fc0 between the biaxial initial224

compressive strength fb0 and the uniaxial initial compressive strength fc0 and a constant ρ,225

which represents the ratio of the second stress invariant on the tensile meridian to that on226

the compressive meridian at initial yield. Generally, fb0/fc0 = 1.16 and ρ = 2/3 for quasi-227

brittle materials, such as brick. The general parameters adopted for brick are collected in228

Table 1.229

ϵ ψ fb0/fc0 ρ

0.1 10° 1.16 2/3

Table 1: General parameters for the brick plastic response

As regards the stress induced by salt crystallization, collected in σs, it should be noted230

that, basing on the so called Law of Partial Pressures [46], σs can be evaluated as:231

σs = Iσs = IbSs
sps (21)

where b is the Biot’s coefficient and I is the identity operator.232

5. Updating of multiphase model parameters233

We now specify how the damage induced by the salt crystallization affects the multi-234

phase model parameters. In particular, as anticipated in Section 2, the attention is herein235

focused on the tortuosity which is herein assumed to be dependent on the actual mechanical236
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damage D. Accordingly, Equation (7) is updated along with the current state of damage,237

leading to an updating of the multiphase model. For the tortuosity update, we assume a238

law analogous to that used for lithium-ion battery electrodes, where the underlying micro-239

structural tortuosity controls the macroscopic charge capacity, average lithium-ion diffusiv-240

ity, and macroscopic resistivity of the cell [47]. Then, the Equation (7) is updated by means241

of the following definition of the effective tortuosity parameter:242

τeff (D) = τ · βτ (D) (22)

where βτ is the tortuosity damage function that describes how tortuosity evolves along with243

damage in the porous structure.244

In order to infer the βτ function, we suppose here the porous material as a bed of spheres245

(Figure 6). If we consider that for a specific region of interest (see Figure 6a), we reach246

a level of crystallization pressure capable to induce damage, then, we can assume a local247

change of τ according to the evolution of the simplified pore structure. With this in mind,248

we consider the scenario illustrated in Figures 6a-6d: for increasing damage, βτ increases249

until the damage reaches a certain thershold value D∗ (βτ = βτ,1 for D = D∗) and then250

decreases till specific value βτ,2 defined by the evolution of the particle size.251

A possible evolution of βτ , along with the damage variable D, is described in Figure 6(e):252

we use the smooth-stepping function to modulate the value of βτ along the variation of the253

damage variable D with reference to the damage threshold level D∗:254

βτ (βτ,1, βτ,2, D,D
∗) =

 1 + (βτ,1 − 1)( D
D∗ )

2(3− 2D
D∗ ), for D = [0, D∗]

βτ,1 − (D−D∗

1−D∗ )
2(3− 2(D−D∗

1−D∗ ))(βτ,1 − βτ,2), for D = [D∗, 1]
(23)

In general, we can consider that βτ,2 could be precomputed in order to fulfill the following255

constrain:256

τeff = τβτ = 1 if D = 1 (24)

6. Computational method for the staggered solution257

We now detail the implementation of the staggered framework sketched in Figure 3 for258

the solution of the coupled multiphysics problem.259
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(e) evolution of βτ function

Figure 6: Tortuosity update due to mechanical damage.

6.1. Space discretization260

In order to implement the model, the domain is discretized in space using the finite261

element method for the salt transport and crystallization problem and for the mechanical262

problem. The proposed staggered procedure allows for the use of different meshes when263

exchanging informations between MPM and MM.264

6.2. Fields transfer operation strategy265

According to the pseudo-code reported in Algorithm 1 and illustrated in Figure 3 (steps266

1, 2, 3, and 4 of Figure 3 are highlighted in Algorithm 1 too), the proposed staggered267

technique could admit some variants depending on the different use of the Fields Transfer268

Operation (FTO) between the two sets of field equations. These operations (namely step 2269

and step 4 of the algorithm 1) can be run at every time step in each field, or can be opti-270

mized based on the different evolution times of MPM and MM. In particular, the effect of271
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Algorithm 1: Pseudo-code of the required steps to run the staggered solution

Input: ϕ0, τ0, ωsat, ∆t, D
∗, D and set n = 1

Output: css, S
s
s , σ, D, ϕeff , τeff

1 MPM - Compute/Update ϕeff , τeff (ϕeff , D), ps

if t = n∆t then
n = n+ 1

2 FTO → from MPM to MM

σs = Iσs = IbSs
sps

3 MM

Compute/Update D

4 FTO → from MM to MPM

Compute/Update βτ (βτ,1, βτ,2, D,D
∗)

else
t = t+ 1

end

Repeat Steps 1 to 4, till t = tfinal

the choice of the time interval ∆t between two FTO has been investigated, see Appendix A.2.272

273

7. Numerical examples274

The multiphase model is applied to evaluate the effects of the mechanical coupling on the275

salt transport and crystallization processes in a benchmark consisting in a fired clay masonry276

panel exposed to specific boundary conditions, inspired by the benchmark analyzed in [20].277

To this aim, we analyze a portion of the panel representative for a generic region of interest,278

as illustrated in Figure 7: we consider a generic transverse section of the panel (see cutting279

plane Π0) and focus the attention on a small portion of it depicted in Figure 7.280

In the following, we use the same mesh to solve the fields variables of both models but281

with finite elements of different order: the primary variables of the multiphase model, h282

and ω, are interpolated based on Lagrangian shape functions adopting standard 9-node283
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Figure 7: Illustration of the boundary conditions over a region of interest on the cutting plane Π0: DC and

AB no flux, uy = 0; AD prescribed relative humidity h and prescribed mass concentration of dissolved salt

ω and symmetry boundary condition for the displacement field; BC allowed evaporation with prescribed

environmental humidity. The cutting line A−A′ highlighted in red color.

elements; the mechanical primary variable, the displacement, is also interpolated based on284

standard Lagrangian shape functions but adopting 4-node elements. Mesh is constructed285

using Nx = 3 and Ny = 100 elements along the directions x and y, respectively, using a286

0.1 element ratio biasing along the x direction (a mesh sensitivity analysis has been also287

conducted and the main results are collected in Appendix A.1).288

The time slot ∆t, that rules the FTO, has been set equal to ∆t = 6 hours (the sensitivity289

to the FTO time interval has been tested for several ∆t values and the main results are290

collected in Appendix A.2).291

Nodes with multi-phase dofs

Nodes with mechanical dofs

Figure 8: An example mesh illustrating the location of finite element degrees of freedom. Note that linear

element and quadratic element can be employed for modeling the two problems.
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7.1. Benchmarks definition292

Three specific numerical setups are considered and they are organized as follows:293

BM#1 In this case, no tortuosity update is considered [22] (i.e. the tortuosity is set294

constant τ = 1). FTOs are set according to Figure 3(a), using therefore a one-way295

coupling framework.296

BM#2 An extension of the MPM in [22] is used in this case to solve the problem, updating297

the tortuosity as function of the effective porosity with the relation provided for bed298

of spheres defined using p = 0.49 in Equation (10). Hence, the constitutive law in299

Equation (7) is updated in time through the definition of the salt diffusion coefficient:300

an increase of tortuosity will correspond to a drop of the diffusive flux of dissolved salt.301

The results are illustrated tracking in time variables as for BM#1 plus the tortuosity302

variable τ(ϕeff ). FTOs are set according to Figure 3(a), using therefore a one-way303

coupling framework.304

BM#3 This case implements the full coupling of the MPM and MM along the evolution in305

time: the tortuosity is updated along with the effective porosity and the mechanical306

damage using Equations (22) and (23) setting βτ,1 = 2, βτ,2 = 1 and D∗ = 0.2. Results307

are illustrated tracking in time variables as for BM#2. FTOs are set according to308

Figure 3(b), using therefore a two-way coupling framework.309

For each benchmark we consider 96 hours simulations along with the following Environmen-310

tal Boundary Conditions (EBC) aimed at simulating a portion in time of an ideal weathering311

real cycle: constant environmental humidity henv = 50% on BC (see Figure 7), initial porous312

material humidity equal to 50%, on AD prescribed humidity h that rises from 50% to 99,6%313

in few hours and prescribed mass concentration of dissolved salt ω = 0.04 (see Figure 7).314

As regards the MPM, material properties are set according to [48], and sodium chloride315

(NaCl) is chosen as salt present in the saline solution. Summary of the model parameters is316

reported in Table 2. The crystallization process order P appearing in the growth rate law in317
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Equation (13) is set equal to one, as typically used for sodium chloride salt [48]. Neverthe-318

less, a further numerical investigation has been conducted, see Appendix A.3, to test the319

robustness of the proposed procedure in case of different salts with different crystallization320

process order P that rules the growth rate law in Equation (13). Obtained results show a321

significant stability of the proposed method.322

The time discretization is carried out by means of the backward finite difference method.323

A standard iterative strategy based on the Newton–Raphson method is applied to solve the324

MPM non-linear system of equations [49].325

The MM is defined using the following mechanical material parameters for masonry326

E = 1.8GPa and ν = 0.2. Being the model formulated in the context of non-associated327

plasticity [27], the plastic potential is defined by the dilatancy angle ψ, assumed equal to328

10◦ as generally done for masonry, as well as by a smoothing parameter ϵ assumed equal to329

0.1. In addition, the strength domain is specified by the ratio fb0/fc0 between the biaxial330

fb0 and uniaxial fc0 initial compressive strengths, assumed equal to 1.16, and by the shape331

constant ρD, assumed equal to 2/3 [27]. Compressive strength is set equal to fc = 2.0MPa332

and the tensile strength is set equal to ft = 0.12MPa.333

7.2. Results discussion334

The discussion of the results is carried out by a direct comparison of the outcomes for335

benchmarks BM#1, BM#2 and BM#3 in Figure 9 and Figure 10. In these figures, results336

are illustrated tracking in time the following fields variables: humidity h, supersaturation337

ratio ω/ωsat, degree of saturation of crystallized salt Ss
s , tortuosity τ , stress σs and degra-338

dation damage variable D along the cutting line A − A′ (where salt crystallization mainly339

occurs), as described in Figure 7. As expected, the rapid variation of the humidity near the340

evaporating surface (BC boundary in Figure 7), shown in Figure 9(a), leads to an increase341

of the supersaturation ratio, see Figure 9(b). In particular, by inspecting Figure 9(b) it342

is possible to note that, for all the setups, after t = 24 hours, the triggering condition of343

Equation (12) will cause salt precipitation near the surface BC. This is confirmed by Figure344

10(a) and (c) showing an increase of the saturation degree Ss
s and of the stress σs in the345
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Quantity Value Units Source

Kc Growth rate coefficient 0.03 µm/s [50][51]

n Nuclei in solution 4× 10−6 (µm3)−1 [52]

ϕ0 Initial porosity 26% − [22]

ωsat Concentration of dissolved salt at saturation 0.264 kg/kg [22][24][53]

Dv Vapor permeability coefficient 0.0039 m2/h [30]

α0 Crystallization threshold 1 − [52]

ρss Salt NaCl density 2160 kg/m3 Literature

rp Mean pore radius 0.700 µm [22]

A Water adsorpition coefficient 0.185 kg/m2/s0.5 [22]

Ks Salt diffusion Coefficient 0.499× 10−9 m2/s [22]

Table 2: Summary of the model parameters used in the numerical tests.

same zone (the stress σs are computed ad a post-process of the MPM results using Equation346

(21)). In particular, for the BM#1 the stress concentrates near x = 1.1918 (highlighted347

through a vertical dotted line in Figures 9 and 10) with a maximum magnitude equal to348

σs = 10.0MPa for t = 60 hours. Furthermore, it is interesting to note that for BM#1 after349

t = 60 hours the Ss
s increases whether, due to the decreasing supersaturation ratio, the σs is350

decreasing too. Moreover, it is worth to note that for BM#1 the single degradation damage351

variable D, shown in Figure 10(d), remains equal to zero during the whole simulated time.352

Differently, the effective description of the tortuosity, introduced for BM#2 and BM#3,353

leads to an update of the various quantities (the stress is now characterized by an increased354

peak value of 16.5MPa and of 18.3MPa at t = 36 hours for the BM#2 and BM#3 setups,355

respectively) but, above all, to the activation of the mechanical damage. In particular,356

inspecting Figure 10(c) and (d), it can be noted that for BM#2 and BM#3 after t = 36357

hours the stress decreases, due to damage activation (in the zone near x = 1.1918, D passes358

from 0.18 at time t = 36 hours to about 0.92 at t = 96 hours). Furthermore, it appears359

worth to note that, for BM#3, the tortuosity drops where the damage variable exceeds the360
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Figure 9: Benchmarks results comparison: illustration of fields variation for t = [24, 36, 60, 96]; humidity h

(a), supersaturation ratio ω/ωsat (b).

threshold D∗ = 0.2, according to the full coupling of the FTO that admits the combined361

evolution of fields. Finally, it should be noted that for time interval between 36 and 96 hours362

the values of the tortuosity firstly increase and then drop to values provided by Equations363

(24) where the damage variable D is close to one, see Figure 10(b). In this regard, is worth364

underlining that some of the curves perfectly overlap in the first part of the simulated time365

due to the time required for the accumulation of salt, stress, damage, etc.366
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Figure 10: Benchmarks results comparison: illustration of fields variation for t = [24, 36, 60, 96]; degree of

saturation Ss
s (a), the tortuosity τ (b), the stress σs (c) and damage variable D (d).
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8. Conclusions367

A staggered multiphysics framework for the numerical simulation of salt crystallization-368

induced damage in porous building materials, such as masonry, was presented and discussed.369

This framework is based upon a multiphase model to account for salt transport and crys-370

tallization within a porous the porous material and a mechanical model to account for the371

mechanical damage of the material. The solution algorithm is composed of a two-way data372

exchange between the multiphase and the mechanical models. Firstly, crystallization pres-373

sure information is passed to the mechanical model to analyze the mechanical response of374

the material. Secondly, the mechanical outcomes (e.g. damage distribution) are used to375

update some multiphase model properties (e.g. tortuosity) allowing simulations also be-376

yond the onset of damage. Few simple geometry-based relationships are discussed to update377

multiphase model properties along with damage.378

Numerical examples are used to show the capability of the proposed staggered framework379

for simulating complex interactions among salt transport, salt crystallization, and damaging380

within the porous material. Numerical results highlight the potential influence of updating381

multiphase model properties along with damage to conduct simulations also beyond the382

onset of damage. Further investigations could be also devoted to the role of the pore size383

since, in general, the maximum tortuosity does not correspond to the minimal porosity.384

Accordingly, the tortuosity would not only be a function of the porosity but also of the pore385

structure of the porous material.386
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Appendix A. Sensitivity analyses390

Appendix A.1. Mesh refinement391

BM#3 is used with uniform mesh refinements in both directions (Nx ×Ny) using Nx =392

[50, 100, 200] and Ny = [1, 3, 5]. Figures A.11, illustrates the results obtained for super-393

saturation ratio ω/ωsat, the tortuosity τ , the stress distribution σs and damage variable D394

respectively, using Ny = 1 and Ny = 3. As expected, Figure A.11 shows a variation in time395

for variables depending on the mesh density close to the surface, i.e. where the stress varia-396

tion is severe. Nevertheless, according to these results the solution obtained using Nx = 100397

(independently from the value of Ny) are comparable. This aspect is mainly due to the398

specific definition of the EBC which defines a 1D-like problem.399
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Figure A.11: Benchmark#3 - mesh sensitivity: Damage, Stress and Tortuosity - Mesh 1x50, 1x100, 1x200

and Mesh 3x50, 3x100, 3x200 - Time Slot ∆t = [48, 96] hours, D∗ = 0.2
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Appendix A.2. Time slot staggered sequence400

The sensitivity of the FTO time interval is tested for several ∆t values. Results are401

shown in terms tortuosity τ(ϕeff , D,D
∗), averaged stress σs and the single degradation402

damage variable D plots: along the cutting line A−A′ for t = [48, 96] hours Figure A.12(a),403

and for different sampling at x = 1.1918 Figure A.12(b) for ∆t = [1, 2, 6, 12, 24] hours.404

By inspecting Figure A.12, it is possible to note that the evolution of the averaged stress is405

slightly depending on the definition of the time interval ∆t, on all the solutions are matching406

the reference solution obtained using ∆t = 1.407
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Figure A.12: Staggered time intervals sensitivity - stress field evaluated using FTO time intervals equal to

∆t = [1, 3, 6, 12, 24] along the time evolution at x = 1.1918 (a) and along the A−A′ section for t = [48, 72]

hours (b).

The influence of the choice of time sampling on the effective tortuosity is shown in Figure408

A.13. By inspecting Figure A.13 it is possible to note that the evolution of the tortuosity is409

characterized by quick variation in time. Accordingly, tortuosity tends to rapidly increasing410

as soon as the single degradation damage variable is different from zero, but it also rapidly411

decreases when the single degradation damage variable reaches the damage threshold D∗,412

this rapid variation takes 6-8 hours in total when measured at point x = 1.1918, see Figure413

A.13(a) for ∆t = 1 hours. Therefore, models that are transferring information between fields414
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using ∆t ≥ 6 cannot record this rapid variation. As a matter of fact, solutions obtained with415

∆t = [12, 24] are diverging from the reference solution (∆t = 1) whether solutions obtained416

with ∆t = [3, 6] are matching the reference solution. Similar evidence can be described for417

the resulting damage D in Figure A.14.418
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Figure A.13: Staggered time intervals sensitivity - tortuosity field evaluated using FTO time intervals equal

to ∆t = [1, 3, 6, 12, 24] along the time evolution at x = 1.1918 (a) and along the A−A′ section for t = [48, 72]

hours (b).

27



1.15 1.16 1.17 1.18 1.19 1.2
position along the cutting line A-A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
am

ag
e 

(D
)

t = 1
 
- ( t = 48 )

t = 1
 
- ( t = 96 )

t = 3
 
- ( t = 48 )

t = 3
 
- ( t = 96 )

t = 6
 
- ( t = 48 )

t = 6
 
- ( t = 96 )

t = 12
 
- ( t = 48 )

t = 12
 
- ( t = 96 )

t = 24
 
- ( t = 48 )

t = 24
 
- ( t = 96 )

(a)

0 12 24 36 48 60 72 84 96
time (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
am

ag
e 

(D
)

t = 1
t = 3
t = 6
t = 12
t = 24

(b)

Figure A.14: Staggered time intervals sensitivity - damage field variable evaluated using FTO time intervals

equal to ∆t = [1, 3, 6, 12, 24] along the time evolution at x = 1.1918 (a) and along the A − A′ section for

t = [48, 72] hours (b).
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Appendix A.3. Kinetic law power law exponent419

The power P appearing in the growth rate law in Equation (13), is the crystallization420

process order depending on the properties of the porous material and the salt present in the421

saline solution. We investigated five cases with the process order equal to: P = [0.5, 1.0,422

2.0, 3.0, 5.0] for the BM#3 setup to test the robustness of the procedure, see Figure A.15423

which refers to t = 72 hours. The parameter P depends on the salt type and influences the424

solution properties, crystal volume and crystallization pressure along with the shape and425

magnitude of the damaged area, see Figure A.15. As can be noted, the numerical approach426

appears robust and does not show stability problems by changing P .427
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Figure A.15: Kinetic law power exponent: illustration of fields variation at t = 72 for p =

[0.5, 1.0, 2, 0, 3.0, 5.0]: supersaturation ratio ω/ωsat (a), the stress distribution σs (b), the tortuosity τ (c)

and damage variable D (d) using a mesh formed by Nx = 3 and Ny = 100 elements and ∆t = 6 hours.
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