Article

## Isatin bis-imidathiazole hybrids identified as FtsZ inhibitors with on-target activity against *Staphylococcus aureus*

## Rita Morigi <sup>1</sup>, Daniele Esposito <sup>1</sup>, Matteo Calvaresi <sup>2,3</sup>, Tainah Dorina Marforio <sup>2,3</sup>, Giovanna Angela Gentilomi <sup>4,5</sup>, Francesca Bonvicini <sup>4,\*</sup> and Alessandra Locatelli <sup>1</sup>

- <sup>1</sup> Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; rita.morigi@unibo.it (R.M.); daniele.esposito6@unibo.it (D.E.); alessandra.locatelli@unibo.it (A.L.)
- <sup>2</sup> Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Selmi 2, Bologna, 40126, Italy; matteo.calvaresi3@unibo.it (M.C.); tainah.marforio2@unibo.it (T.M.)
- <sup>3</sup> IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,matteo.calvaresi3@unibo.it (M.C.); tainah.marforio2@unibo.it (T.M.)
- <sup>4</sup> Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; giovanna.gentilomi@unibo.it (G.G.)
- <sup>5</sup> Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; giovanna.gentilomi@unibo.it (G.G.)
- \* Correspondence: francesca.bonvicini4@unibo.it (F.B.)

## **Contents:**

| Figure S1: 1H NMR and 13C NMR spectra                                                          | pag. 3-20  |
|------------------------------------------------------------------------------------------------|------------|
| Figure S2: FtsZ multiple alignment and superposition of 3D structures                          | pag. 21    |
| Table S1: Percentage values of the hemolytic activity of derivative 11 on hRBCs                | pag. 22    |
| <b>Table S2</b> : Antibiotic-resistance profile of the clinical isolates of S. aureus          | pag. 22    |
| Figure S3. Post-processing analysis of MD trajectory of derivative 11 in the interdomain cleft | pag. 23    |
| Table S3. Inter-molecular hydrogen bond analysis of MD trajectory of derivative 11             |            |
| in the interdomain cleft                                                                       | pag. 24    |
| Figure S4. Post-processing analysis of MD trajectory of derivative 11 in the GTP-binding       |            |
| pocket                                                                                         | pag. 25    |
| Table S4. Inter-molecular hydrogen bond analysis of MD trajectory of derivative 11             |            |
| in the GTP-binding pocket                                                                      | pag. 26    |
| Figure S5. Post-processing analysis of MD trajectory of apo-FtsZ dimer                         | pag. 27    |
| Table S5. Intra-molecular (monomer 1) hydrogen bond analysis of MD trajectory of               |            |
| apo-FtsZ dimer                                                                                 | pag. 27-29 |
| Table S6. Intra-molecular (monomer 2) hydrogen bond analysis of MD trajectory of               |            |

| apo-FtsZ dimer                                                                                             | pag. 29-31 |
|------------------------------------------------------------------------------------------------------------|------------|
| Table S7. Inter-molecular (monomer 1-2) hydrogen bond analysis of MD trajectory of                         |            |
| apo-FtsZ dimer                                                                                             | pag. 31    |
| Figure S6. Post-processing analysis of MD trajectory of FtsZ dimer in presence of GTP and Ca <sup>2+</sup> | pag. 32    |
| Table S8. Intra-molecular (monomer 1) hydrogen bond analysis of MD trajectory of                           |            |
| FtsZ dimer in presence of GTP and Ca <sup>2+</sup>                                                         | pag. 32-34 |
| Table S9. Intra-molecular (monomer 2) hydrogen bond analysis of MD trajectory of                           |            |
| FtsZ dimer in presence of GTP and Ca <sup>2+</sup>                                                         | pag. 34-36 |
| Table S10. Inter-molecular (monomer 1-2) hydrogen bond analysis of MD trajectory                           |            |
| of FtsZ dimer in presence of GTP and Ca <sup>2+</sup>                                                      | pag. 36    |
| Figure S7. Post-processing analysis of MD trajectory of FtsZ dimer in presence of                          |            |
| GTP, Ca <sup>2+</sup> and compound <b>11</b>                                                               | pag. 37    |
| Table S11. Intra-molecular (monomer 1) hydrogen bond analysis of MD trajectory                             |            |
| of FtsZ dimer in presence of GTP, Ca2+ and compound 11                                                     | pag. 37-39 |
| Table S12. Intra-molecular (monomer 2) hydrogen bond analysis of MD trajectory                             |            |
| of FtsZ dimer in presence of GTP, Ca <sup>2+</sup> and compound <b>11</b>                                  | pag. 39-41 |
| Table S13. Inter-molecular (monomer 1-2) hydrogen bond analysis of MD trajectory                           |            |
| of FtsZ dimer in presence of GTP, Ca <sup>2+</sup> and compound <b>11</b>                                  | pag. 41    |







































**Figure S2**. A) Multiple sequence alignment (obtained with Chimera, using the Match-Align tool) of the primary sequences of PDBs 6LL6 (from *E. coli*), 3VOB (from *S. aureus*), 8GZV (from *K. pneumoniae*), 2VAW (from *P. aeruginosa*), AF-B0VNZ4-F1 (predicted for *A. baumannii*) and AF-A0A0A5PLG7-F1 (predicted for *E. hormaechei*). B) Superimposition of 3D structures of PDBs 6LL6, 3VOB, 8GZV, 2VAW, AF-B0VNZ4-F1 and AF-A0A0A5PLG7-F1 in blue, red, yellow, green, magenta and cyan, respectively.

| RMSD: ca                                                         | 1                                                  | 11                       | 21                                 | 31                                         | B |                                       |   |
|------------------------------------------------------------------|----------------------------------------------------|--------------------------|------------------------------------|--------------------------------------------|---|---------------------------------------|---|
| a-paumannii-AFv4.pdb, chain A<br>enterobacter-Av4.pdb, chain A   | 1                                                  | MFEPME                   | LT                                 | Q                                          |   |                                       |   |
| p-aeruginosa-2vaw.pdb, chain A                                   | 1                                                  |                          | MFELVDNI                           | AQT                                        |   |                                       |   |
| Svob, chain A                                                    | 9                                                  |                          |                                    |                                            |   |                                       |   |
| DMCDuse                                                          | 41                                                 | 51                       | 61                                 | 71                                         |   |                                       |   |
| a-baumannii-AFv4.pdb, chain A                                    | 18 . ARFTVFGVG                                     | GGGGNAVOHM               | VOSDIQGVKF                         | VCANTDKQAL                                 |   |                                       |   |
| k-pneumoniae-8gzv.pdb, chain A                                   | 11 . AVIKVIGVG                                     | GGGGNAVEHM               | VRERIEGVEF                         | FAVNTDAQAL                                 |   |                                       |   |
| 6ll6, chain A                                                    | 11 . AVIKVIGVG                                     | GGGGNAVEHM               | VRERIEGVEF                         | FAVNTDAQAL                                 |   |                                       |   |
| SVOD, Chain A                                                    | 81                                                 | 91                       | 101                                | 111                                        |   |                                       |   |
| RMSD: ca<br>a-baumannii-AFv4.pdb, chain A                        | 57 DCMNAPFKIQ                                      | LGEQSTRGLG               | Ā                                  | ANPEVGQVAA                                 |   |                                       |   |
| enterobacter-Av4.pdb, chain A<br>k-pneumoniae-8gzv.pdb, chain A  | 50 R K T A V G Q T I Q                             | IGGGITKGLG               | A                                  | ANPEVGRNAA<br>ANPEVGRNAA                   |   |                                       |   |
| p-aeruginosa-2vaw.pdb, chain A                                   | 51 KNIAARTVLQ                                      | LGPGVTKGLG               | AGITKGIGAG                         | ANPEVGRQAA                                 |   |                                       |   |
| 3vob, chain A                                                    | 51 NLSKAESKIQ                                      | IGEKLTRGLG               | A                                  | ANPEIGKKAA                                 |   |                                       |   |
| RMSD: ca                                                         | 121                                                | 131                      | 141                                | 151                                        |   |                                       |   |
| a-baumannii-AFv4.pdb, chain A<br>enterobacter-Av4.pdb, chain A   | 89 EESREIIRQH<br>82 EEDREALRAA                     | LEGTDMVFVT               | AGMGGGTGTG<br>AGMGGGTGTG           | AAPVVAEVAK                                 |   |                                       |   |
| k-pneumoniae-8gzv.pdb, chain A<br>p-aeruginosa-2vaw.pdb, chain A | 82 DEDREALRAA<br>83 LEDRERISEV                     | LDGADMVFIA<br>LEGADMVFIT | AGMGGGTGTG<br>TGMGGGTGTG           | AAPVVAEVAK<br>AAPIIAEVAK                   |   |                                       |   |
| 6116, chain A<br>3vob, chain A                                   | 82 DEDRDALRAA<br>83 EESREQIEDA                     | LEGADMVFIA<br>IQGADMVFVT | AGMGGGTGTG<br>SGMGGGTGTG           | A A P V V A E V A K<br>A A P V V A K I A K |   |                                       |   |
| 21402                                                            | 161                                                | 171                      | 181                                | 191                                        | • | 🚳 🥁                                   |   |
| a-baumannii-AFv4.pdb, chain A                                    | 129 EMGILTVGVV                                     | TTPFNFEGRR               | RQKSAERGIE                         | ALEAHVDSLI                                 |   |                                       |   |
| enterobacter-Av4.pdb, chain A<br>k-pneumoniae-8gzv.pdb, chain A  | 122 D L G I L T V A V V<br>122 D L G I L T V A V V | TKPFNFEGKK               | RMAFAEQGIT                         | ELSKHVDSLI                                 |   | · · · · · · · · · · · · · · · · · · · |   |
| p-aeruginosa-2vaw.pdb, chain A<br>6ll6, chain A                  | 123 E MG I L T V A V V<br>122 D L G I L T V A V V  | TRPFPFEGRK<br>TKPFNFEGKK | RMQ I ADEG I R<br>RMA F A E QG I T | ALAESVDSLI<br>ELSKHVDSLI                   |   | <b>(</b>                              |   |
| 3vob, chain A                                                    | 123 E MG A L T V G V V                             | TRPFSFEGRK               | RQTQAAAGVE                         | AMKAAVDTLI<br>221                          |   | <u>&gt;</u>                           |   |
| RMSD: ca                                                         | 100                                                |                          |                                    |                                            |   |                                       |   |
| enterobacter-Av4.pdb, chain A                                    | 162 T I PNDKLLKV                                   | LG.RG.ISLL               | DAFG. AANDV                        | LKGAVQGIAE                                 |   |                                       |   |
| p-aeruginosa-2vaw.pdb, chain A                                   | 163 T I PNEKLLTI                                   | LGKD.AS.LL               | AAFA. KADDV                        |                                            |   | MV N                                  |   |
| Slib, chain A<br>Svob, chain A                                   | 162 VIPNDRLLDI                                     | V.DKS.TP                 | M. MEAFKEA                         | D.NVLRQGVQ                                 |   | ~~~~                                  |   |
| RMSD: ca                                                         | 241                                                | 251                      | 261                                | 271                                        |   |                                       | 9 |
| a-baumannii-AFv4.pdb, chain A                                    | 205 L V V N RG .                                   | H. INLDFADL              | KTAMSTRGYA                         | MM. GAGLGRG                                |   |                                       |   |
| k-pneumoniae-8gzv.pdb, chain A                                   | 199 L I T R P G .                                  | L. MNVDFADV              | RTVMSEMGYA                         | MM. GSGVASG                                |   |                                       |   |
| 6ll6, chain A                                                    | 199 L I T R PG .                                   | L.MNVDFADV               | RTVMSEMGYA                         | MM. GSGVASG                                |   |                                       |   |
| ovob, cildin A                                                   | 281                                                | 291                      | 301                                | 311                                        |   |                                       |   |
| RMSD: ca<br>a-baumannii-AFv4.pdb. chain A                        | 239 EDRARQAAEO                                     | ATRSP. DD                |                                    | KGVLINITGG                                 |   |                                       |   |
| enterobacter-Av4.pdb, chain A                                    |                                                    | AISSP.L.L                | ED. IDLSGA                         | RGVLVNITAG<br>BGVLVNITAG                   |   |                                       |   |
| p-aeruginosa-2vaw.pdb, chain A                                   | 234 PNRAREATEA                                     | AIRNP.L.L                | ED VNLQGA                          | RGILVNITAG                                 |   |                                       |   |
| Svob, chain A                                                    | 234 ENRAVEAAKK                                     | AISSPLLETS               |                                    | QGVLMNI.T.                                 |   |                                       |   |
| RMSD: ca                                                         | 321                                                | 331                      | 341                                | 351                                        |   |                                       |   |
| a-baumannii-AFv4.pdb, chain A                                    | 274 D D I T L .<br>268 F D L B L .                 | DEFE                     | DVVNQIV.DL<br>NTIBAFA SD           | DE.GEIFYG.                                 |   |                                       |   |
| k-pneumoniae-8gzv.pdb, chain A                                   | 268 F D . L R L                                    | DEFE. TVG                | NTIRA.F.AS                         | DNATVVIG.                                  |   |                                       |   |
| 6ll6, chain A                                                    | 268 F D L R L D .                                  | EFE. TVG                 | NTIRAFA.SD                         | . N . ATVVIG.                              |   |                                       |   |
| orob, onani A                                                    | 361                                                | 371                      | 381                                | 391                                        |   |                                       |   |
| RMSD: ca<br>a-baumannii-AFv4.pdb, chain A                        | 303 TVFDPDARD.                                     |                          | RVTVIATGUT                         | RNAADAE.                                   |   |                                       |   |
| enterobacter-Av4.pdb, chain A<br>k-pneumoniae-8gzv.pdb, chain A  | 296 T S L D P E M N D .<br>296 T S L D P D M . N . | E . L                    | RVTVVATGIG<br>RVTVVATGIG           | MD K . R P                                 |   |                                       |   |
| p-aeruginosa-2vaw.pdb, chain A<br>6ll6, chain A                  | 297 T V I D A D M R D .<br>296 T S L D P D M N D . |                          | HVTVVATGL.<br>RVTVVATGIG           |                                            |   |                                       |   |
| 3vob, chain A                                                    | 297 V I                                            | NPELQDE.IV               | .VTVIATGF.                         |                                            |   |                                       |   |

| Compound 11  | Percentage values <sup>§</sup> |
|--------------|--------------------------------|
| 100 µM       | $1.1 \pm 0.4$                  |
| $50 \ \mu M$ | $0.7 \pm 1.5$                  |
| 25 μΜ        | $1.8 \pm 1.5$                  |
| 12.5 μM      | $2.2 \pm 0.5$                  |
| 6.25 μM      | $2.3 \pm 0.2$                  |
| 3.125 μM     | $1.1 \pm 1.2$                  |
| 1.56 μΜ      | $0.9 \pm 1.8$                  |

**Table S1.** Hemolytic activity of derivative **11** on hRBCs (range concentration:  $100 - 1.56 \mu$ M). Data are the mean percentage values and standard deviations of the hemoglobin content measured at 405 nm in the supernatants of the treated cells.

<sup>§</sup> data are relative to untreated hRBCs (incubated with PBS) and hRBCs incubated with 1% Triton X-100.

| Clinical isolate    | Antibiotic-resistance profile                                                                                                                                                       |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRSA 1 <sup>§</sup> | GEN <sup>s</sup> , LVX <sup>R</sup> , <b>OX</b> <sup>R</sup> , <b>P</b> <sup>R</sup> , TE <sup>s</sup> , TEC <sup>s</sup> , SXT <sup>s</sup> , VA <sup>s</sup>                      |
| MRSA 2 <sup>§</sup> | GEN <sup>s</sup> , LVX <sup>R</sup> , <b>OX</b> <sup>R</sup> , <b>P</b> <sup>R</sup> , TE <sup>s</sup> , TEC <sup>s</sup> , SXT <sup>s</sup> , VA <sup>s</sup>                      |
| MRSA 3 <sup>§</sup> | CM <sup>R</sup> , E <sup>R</sup> , GEN <sup>S</sup> , LVX <sup>R</sup> , OX <sup>R</sup> , P <sup>R</sup> , TEC <sup>S</sup> , TE <sup>S</sup> , SXT <sup>S</sup> , VA <sup>S</sup> |
| MRSA 4 <sup>§</sup> | CM <sup>s</sup> , E <sup>s</sup> , GEN <sup>s</sup> , LVX <sup>R</sup> , OX <sup>R</sup> , P <sup>R</sup> , TE <sup>s</sup> , TEC <sup>s</sup> , SXT <sup>s</sup> , VA <sup>s</sup> |
| MRSA 5§             | CM <sup>s</sup> , E <sup>s</sup> , GEN <sup>s</sup> , LVX <sup>R</sup> , OX <sup>R</sup> , P <sup>R</sup> , TE <sup>s</sup> , TEC <sup>s</sup> , SXT <sup>s</sup> , VA <sup>s</sup> |

CM = Clindamicyn; E = Erythromycin; GEN = Gentamicin; P = Penicillin; LVX = Levofloxacin; OX = Oxacillin; TE = Tetracycline; TEC = Teicoplanin; SXT = Trimethoprim/Sulfamethoxazole; VA = Vancomycin R = Resistant; S = Susceptible; I = Intermediate, as defined following the EUCAST guidelines *\$Staphylococcus* species resistant to oxacillin were declared, by convention, methicillin-resistant.

**Figure S3.** A) Root of mean squared deviation (RMSD), B) Root of mean squared fluctuation RMSF, C) Gyration Radius (RG) and D) Solvent Accessible Surface Area (SASA) and  $\Delta$ SASA ([SASA<sub>protein</sub>+SASA<sub>compound11</sub>]-SASA<sub>complex</sub>) obtained by CPPTRAJ post-processing analysis of 100ns MD simulation of compound **11** in the interdomain cleft. All the analysis are carried out on 5000 snapshots obtained from the simulation.



**Table S3.** Inter-molecular hydrogen bond analysis carried out on the MD simulation of compound **11** in the interdomain cleft.



| Acceptor    | DonorH       | Donor       | %    | Avg Distance | Avg Angle |
|-------------|--------------|-------------|------|--------------|-----------|
| GLN_181@O   | C11_305@H8   | C11_305@N1  | 36,2 | 2,8          | 156,1     |
| GLY_185@O   | C11_305@H8   | C11_305@N1  | 30,2 | 2,8          | 150,8     |
| GLN_181@OE1 | C11_305@H8   | C11_305@N1  | 13,1 | 2,8          | 156,1     |
| C11_305@N3  | SER_193@HG   | SER_193@OG  | 1,3  | 2,9          | 161,9     |
| C11_305@O2  | GLN_184@HE22 | GLN_184@NE2 | 1,0  | 2,9          | 160,7     |
| C11_305@N5  | THR_298@HG1  | THR_298@OG1 | 0,5  | 2,9          | 154,9     |
| ASP_188@OD2 | C11_305@H8   | C11_305@N1  | 0,3  | 2,8          | 163,7     |
| C11_305@O2  | GLN_184@HE21 | GLN_184@NE2 | 0,2  | 2,9          | 155,4     |
| C11_305@N3  | ASN_252@HD22 | ASN_252@ND2 | 0,2  | 2,9          | 148,9     |
| C11_305@O2  | GLN_181@HE21 | GLN_181@NE2 | 0,1  | 2,9          | 161,1     |
| C11_305@O2  | GLN_181@HE22 | GLN_181@NE2 | 0,1  | 2,8          | 155,7     |
| ASP_188@OD1 | C11_305@H8   | C11_305@N1  | 0,1  | 2,8          | 154,3     |

**Figure S4.** A) Root of mean squared deviation (RMSD), B) Root of mean squared fluctuation RMSF, C) Gyration Radius (RG) and D) Solvent Accessible Surface Area (SASA) obtained by CPPTRAJ post-processing analysis of 100ns MD simulation of compound **11** in the GPT-binding pocket. All the analysis are carried out on 5000 snapshots obtained from the simulation.



**Table S4.** Inter-molecular hydrogen bond analysis carried out on the MD simulation of compound **11** in the GTP-binding pocket.



| Acceptor    | DonorH       | Donor       | %    | Avg Distance | Avg Angle |
|-------------|--------------|-------------|------|--------------|-----------|
| C11_305@N5  | ASN_14@HD22  | ASN_14@ND2  | 14,2 | 2,9          | 159,1     |
| C11_305@N5  | GLY_11@H     | GLY_11@N    | 6,2  | 2,9          | 159,9     |
| ASP_176@OD1 | C11_305@H8   | C11_305@N1  | 5,2  | 2,8          | 164,3     |
| ASP_176@OD2 | C11_305@H8   | C11_305@N1  | 2,4  | 2,8          | 164,0     |
| C11_305@N3  | ASN_155@HD21 | ASN_155@ND2 | 2,2  | 2,9          | 152,3     |
| ASN_14@OD1  | C11_305@H8   | C11_305@N1  | 0,7  | 2,8          | 147,7     |
| C11_305@O2  | ARG_18@HH12  | ARG_18@NH1  | 0,3  | 2,8          | 147,8     |
| C11_305@N3  | THR_122@HG1  | THR_122@OG1 | 0,3  | 2,9          | 147,3     |
| PHE_172@O   | C11_305@H8   | C11_305@N1  | 0,1  | 2,9          | 141,4     |

**Figure S5.** A) Root of mean squared deviation (RMSD), B) Root of mean squared fluctuation RMSF, C) Gyration Radius (RG) and D) Solvent Accessible Surface Area (SASA) obtained by CPPTRAJ post-processing analysis of 100ns MD simulation of apo-FtsZ. All the analysis are carried out on 5000 snapshots obtained from the simulation.



**Table S5.** Intra-molecular hydrogen bond analysis carried out on monomer 1 of the MD simulation of apo-FtsZ dimer. Only occurrences higher than 50% are reported.

| Acceptor  | DonorH      | Donor       | %    |
|-----------|-------------|-------------|------|
| ALA_201@O | THR_205@HG1 | THR_205@OG1 | 89,6 |
| ILE_300@O | LEU_250@H   | LEU_250@N   | 85,5 |
| PHE_89@O  | ILE_6@H     | ILE_6@N     | 85,0 |
| PHE_200@O | LYS_204@H   | LYS_204@N   | 83,5 |
| THR_117@O | ASP_148@H   | ASP_148@N   | 82,8 |
| VAL_120@O | THR_91@HG1  | THR_91@OG1  | 82,1 |
| ILE_253@O | THR_285@HG1 | THR_285@OG1 | 81,7 |
| GLY_119@O | ILE_151@H   | ILE_151@N   | 81,4 |
| VAL_8@O   | SER_92@HG   | SER_92@OG   | 79,0 |
| VAL_118@O | VAL_90@H    | VAL_90@N    | 76,3 |
| LEU_116@O | VAL_88@H    | VAL_88@N    | 73,9 |
| ARG_130@O | THR_134@HG1 | THR_134@OG1 | 73,7 |
| ILE_66@O  | ALA_70@H    | ALA_70@N    | 72,8 |

| VAL_88@O    | VAL_118@H    | VAL_118@N   | 72,8 |
|-------------|--------------|-------------|------|
| ASP_163@O   | THR_166@HG1  | THR_166@OG1 | 72,6 |
| GLY_218@O   | VAL_297@H    | VAL_297@N   | 72,4 |
| ILE_32@O    | GLY_9@H      | GLY_9@N     | 71,6 |
| ALA_115@O   | THR_117@HG1  | THR_117@OG1 | 70,8 |
| LEU_250@O   | ILE_300@H    | ILE_300@N   | 70,4 |
| ILE_30@O    | GLY_7@H      | GLY_7@N     | 70,2 |
| ALA_70@O    | SER_74@HG    | SER_74@OG   | 69,6 |
| GLU_28@O    | VAL_5@H      | VAL_5@N     | 69,6 |
| ASN_17@OD1  | LYS_43@H     | LYS_43@N    | 69,5 |
| VAL_286@O   | THR_254@HG1  | THR_254@OG1 | 69,0 |
| ASN_177@O   | GLN_181@H    | GLN_181@N   | 68,3 |
| GLY_211@O   | LEU_150@H    | LEU_150@N   | 68,0 |
| VAL_121@O   | ILE_153@H    | ILE_153@N   | 67,8 |
| ASP_176@OD1 | ARG_18@HE    | ARG_18@NE   | 67,4 |
| ASP_293@O   | ARG_225@HH11 | ARG_225@NH1 | 67,4 |
| GLY_9@O     | ASN_13@H     | ASN_13@N    | 67,2 |
| THR_34@OG1  | THR_98@HG1   | THR_98@OG1  | 66,6 |
| VAL_297@O   | GLY_218@H    | GLY_218@N   | 65,6 |
| THR_149@O   | GLY_119@H    | GLY_119@N   | 64,9 |
| ALA_136@O   | VAL_140@H    | VAL_140@N   | 64,5 |
| ARG_130@O   | THR_134@H    | THR_134@N   | 64,4 |
| GLY_139@O   | MET_143@H    | MET_143@N   | 64,0 |
| VAL_140@O   | LYS_144@H    | LYS_144@N   | 63,2 |
| VAL_296@O   | THR_254@H    | THR_254@N   | 62,7 |
| ILE_6@O     | THR_91@H     | THR_91@N    | 62,6 |
| GLY_248@O   | THR_302@H    | THR_302@N   | 61,6 |
| THR_91@O    | VAL_8@H      | VAL_8@N     | 61,3 |
| PRO_64@O    | LYS_68@H     | LYS_68@N    | 61,0 |
| VAL_249@O   | ILE_282@H    | ILE_282@N   | 60,8 |
| GLU_277@O   | VAL_279@H    | VAL_279@N   | 60,7 |
| ASN_252@O   | THR_298@H    | THR_298@N   | 60,6 |
| ALA_107@O   | LYS_111@H    | LYS_111@N   | 60,4 |
| LYS_4@O     | PHE_89@H     | PHE_89@N    | 59,9 |
| ARG_180@O   | GLN_184@H    | GLN_184@N   | 59,6 |
| GLY_99@O    | ALA_103@H    | ALA_103@N   | 59,4 |
| GLY_255@O   | ASN_288@H    | ASN_288@N   | 59,0 |
| ASP_176@O   | ARG_180@H    | ARG_180@N   | 59,0 |
| LYS_108@O   | GLU_112@H    | GLU_112@N   | 59,0 |
| ILE_32@O    | ASN_13@HD21  | ASN_13@ND2  | 58,8 |
| THR_302@O   | GLN_247@H    | GLN_247@N   | 58,1 |
| GLN_181@O   | GLY_185@H    | GLY_185@N   | 57,8 |
| ALA_301@O   | LEU_214@H    | LEU_214@N   | 57,5 |
| VAL_90@O    | VAL_120@H    | VAL_120@N   | 56,6 |
| THR_254@O   | VAL_296@H    | VAL_296@N   | 56,5 |
| LYS_131@O   | GLN_135@H    | GLN_135@N   | 56,2 |
| SER_220@O   | ILE_295@H    | ILE_295@N   | 56,1 |
| GLY_216@O   | VAL_299@H    | VAL_299@N   | 55,5 |
| GLY_51@O    | THR_55@H     | THR_55@N    | 55,4 |

| VAL_5@O     | ILE_30@H     | ILE_30@N    | 55,0 |
|-------------|--------------|-------------|------|
| VAL_203@O   | MET_207@H    | MET_207@N   | 54,8 |
| MET_215@O   | SER_235@HG   | SER_235@OG  | 54,7 |
| LYS_204@O   | SER_208@HG   | SER_208@OG  | 54,4 |
| ILE_153@O   | ARG_123@H    | ARG_123@N   | 54,2 |
| ILE_282@O   | MET_251@H    | MET_251@N   | 52,3 |
| VAL_105@O   | ILE_109@H    | ILE_109@N   | 52,1 |
| ASN_224@O   | GLU_228@H    | GLU_228@N   | 51,1 |
| ASP_86@O    | LEU_116@H    | LEU_116@N   | 50,6 |
| ARG_225@O   | ALA_229@H    | ALA_229@N   | 50,4 |
| ARG_75@O    | GLU_79@H     | GLU_79@N    | 50,2 |
| GLU_263@OE2 | ARG_225@HH21 | ARG_225@NH2 | 50,1 |

**Table S6.** Intra-molecular hydrogen bond analysis carried out on monomer 2 of the MD simulation of apo-FtsZ dimer. Only occurrences higher than 50% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number ( $ASP_467 = ASP_163$ ).

| Acceptor    | DonorH       | Doron       | %    |
|-------------|--------------|-------------|------|
| ASP_467@O   | THR_470@HG1  | THR_470@OG1 | 94,5 |
| VAL_424@O   | THR_395@HG1  | THR_395@OG1 | 88,1 |
| THR_421@O   | ASP_452@H    | ASP_452@N   | 85,3 |
| LEU_554@O   | ILE_604@H    | ILE_604@N   | 85,1 |
| LYS_477@O   | ARG_484@HH12 | ARG_484@NH1 | 84,2 |
| ILE_604@O   | LEU_554@H    | LEU_554@N   | 83,8 |
| PHE_393@O   | ILE_310@H    | ILE_310@N   | 83,6 |
| ILE_370@O   | ALA_374@H    | ALA_374@N   | 83,5 |
| GLY_423@O   | ILE_455@H    | ILE_455@N   | 82,9 |
| GLY_559@O   | ASN_592@H    | ASN_592@N   | 81,6 |
| GLY_313@O   | ASN_317@H    | ASN_317@N   | 81,3 |
| ALA_505@O   | THR_509@HG1  | THR_509@OG1 | 80,5 |
| THR_558@O   | VAL_600@H    | VAL_600@N   | 79,4 |
| PHE_504@O   | LYS_508@H    | LYS_508@N   | 78,6 |
| GLY_522@O   | VAL_601@H    | VAL_601@N   | 78,6 |
| LEU_420@O   | VAL_392@H    | VAL_392@N   | 78,4 |
| GLY_588@O   | THR_589@HG1  | THR_589@OG1 | 75,6 |
| ILE_336@O   | GLY_313@H    | GLY_313@N   | 75,6 |
| VAL_590@O   | THR_558@HG1  | THR_558@OG1 | 75,5 |
| VAL_425@O   | ILE_457@H    | ILE_457@N   | 74,2 |
| GLU_332@O   | VAL_309@H    | VAL_309@N   | 74,0 |
| VAL_603@O   | GLY_520@H    | GLY_520@N   | 73,9 |
| GLY_520@O   | VAL_603@H    | VAL_603@N   | 73,5 |
| GLN_488@O   | ASP_492@H    | ASP_492@N   | 73,1 |
| ALA_374@O   | SER_378@HG   | SER_378@OG  | 72,8 |
| ALA_419@O   | THR_421@HG1  | THR_421@OG1 | 71,6 |
| VAL_312@O   | SER_396@HG   | SER_396@OG  | 70,8 |
| LYS_308@O   | PHE_393@H    | PHE_393@N   | 70,6 |
| ASN_321@OD1 | LYS_347@H    | LYS_347@N   | 69,9 |
| VAL_422@O   | VAL_394@H    | VAL_394@N   | 69,4 |

| THR_453@O   | GLY_423@H    | GLY_423@N   | 69,3 |
|-------------|--------------|-------------|------|
| GLY_403@O   | ALA_407@H    | ALA_407@N   | 68,0 |
| GLY_552@O   | THR_606@H    | THR_606@N   | 67,3 |
| THR_589@O   | GLU_499@H    | GLU_499@N   | 67,1 |
| VAL_392@O   | VAL_422@H    | VAL_422@N   | 67,1 |
| ILE_334@O   | GLY_311@H    | GLY_311@N   | 66,8 |
| ALA_605@O   | LEU_518@H    | LEU_518@N   | 66,7 |
| PRO_368@O   | LYS_372@H    | LYS_372@N   | 66,5 |
| PRO_471@O   | ALA_475@H    | ALA_475@N   | 66,1 |
| LEU_518@O   | ALA_605@H    | ALA_605@N   | 65,4 |
| THR_606@O   | GLN_551@H    | GLN_551@N   | 64,4 |
| ALA_411@O   | LYS_415@H    | LYS_415@N   | 64,0 |
| SER_491@O   | ALA_495@H    | ALA_495@N   | 63,7 |
| LYS_535@O   | SER_539@HG   | SER_539@OG  | 62,8 |
| ILE_457@O   | ARG_427@H    | ARG_427@N   | 62,2 |
| VAL_531@O   | LYS_535@H    | LYS_535@N   | 62,1 |
| ASN_317@O   | ASN_321@H    | ASN_321@N   | 61,7 |
| ARG_379@O   | GLU_383@H    | GLU_383@N   | 61,2 |
| THR_395@O   | VAL_312@H    | VAL_312@N   | 61,0 |
| SER_524@O   | ILE_599@H    | ILE_599@N   | 60,7 |
| THR_602@O   | ASN_556@H    | ASN_556@N   | 60,3 |
| GLY_355@O   | THR_359@HG1  | THR_359@OG1 | 60,2 |
| GLU_567@OE1 | ARG_529@HH21 | ARG_529@NH2 | 60,2 |
| ASP_480@OD2 | ARG_322@HH21 | ARG_322@NH2 | 59,1 |
| VAL_487@O   | SER_491@H    | SER_491@N   | 58,5 |
| ARG_436@O   | ALA_440@H    | ALA_440@N   | 58,0 |
| LEU_483@O   | VAL_487@H    | VAL_487@N   | 57,8 |
| GLU_581@O   | VAL_583@H    | VAL_583@N   | 57,2 |
| VAL_444@O   | LYS_448@H    | LYS_448@N   | 57,1 |
| ILE_336@O   | ASN_317@HD21 | ASN_317@ND2 | 56,9 |
| LEU_565@O   | GLN_569@H    | GLN_569@N   | 56,3 |
| GLY_515@O   | LEU_454@H    | LEU_454@N   | 56,2 |
| ALA_533@O   | ALA_537@H    | ALA_537@N   | 56,1 |
| GLU_567@OE2 | ARG_529@HE   | ARG_529@NE  | 55,3 |
| ARG_529@O   | ALA_533@H    | ALA_533@N   | 54,9 |
| LEU_462@O   | VAL_466@H    | VAL_466@N   | 54,9 |
| ILE_310@O   | THR_395@H    | THR_395@N   | 54,9 |
| VAL_600@O   | THR_558@H    | THR_558@N   | 54,7 |
| VAL_309@O   | ILE_334@H    | ILE_334@N   | 54,5 |
| ILE_510@O   | GLN_514@HE22 | GLN_514@NE2 | 54,3 |
| GLU_474@O   | GLU_478@H    | GLU_478@N   | 53,6 |
| ASN_528@O   | GLU_532@H    | GLU_532@N   | 53,6 |
| VAL_409@O   | ILE_413@H    | ILE_413@N   | 53,0 |
| ASP_597@O   | ARG_529@HH11 | ARG_529@NH1 | 53,0 |
| ARG_484@O   | GLN_488@H    | GLN_488@N   | 52,5 |
| LYS_412@O   | GLU_416@H    | GLU_416@N   | 52,3 |
| PRO_408@O   | LYS_412@H    | LYS_412@N   | 52,2 |
| ASN_481@O   | GLN_485@H    | GLN_485@N   | 51,9 |
| GLY_355@O   | THR_359@H    |             | 51,9 |

| LYS_373@O | GLU_377@H    | GLU_377@N   | 51,2 |
|-----------|--------------|-------------|------|
| VAL_482@O | GLY_486@H    | GLY_486@N   | 51,2 |
| ASN_556@O | THR_602@H    | THR_602@N   | 51,1 |
| THR_338@O | GLN_353@HE22 | GLN_353@NE2 | 50,8 |
| PHE_429@O | GLU_432@H    | GLU_432@N   | 50,1 |
| GLU_432@O | ARG_436@H    | ARG_436@N   | 50,1 |

**Table S7.** Inter-molecular hydrogen bond analysis carried out on monomer 1-2 of the MD simulation of apo-FtsZ dimer. Only occurrences higher than 20% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number (ASP\_467 = ASP\_163).

| Acceptor    | Donor        | DonorH      | %    |
|-------------|--------------|-------------|------|
| LEU_259@O   | MET_472@H    | MET_472@N   | 80,9 |
| GLU_195@OE1 | ARG_322@HH12 | ARG_322@NH1 | 44,1 |
| THR_470@O   | LEU_261@H    | LEU_261@N   | 28,7 |
| GLU_195@OE2 | ARG_322@HH22 | ARG_322@NH2 | 22,0 |
| GLU_195@OE2 | ARG_322@HH12 | ARG_322@NH1 | 20,2 |

**Figure S6.** A) Root of mean squared deviation (RMSD), B) Root of mean squared fluctuation RMSF, C) Gyration Radius (RG) and D) Solvent Accessible Surface Area (SASA) obtained by CPPTRAJ post-processing analysis of 100ns MD simulation of FtsZ dimer in presence of GTP and Ca<sup>2+</sup>. All the analysis are carried out on 5000 snapshots obtained from the simulation.



**Table S8.** Intra-molecular hydrogen bond analysis carried out on monomer 1 of the MD simulation of FtsZ dimer in presence of GTP and Ca<sup>2+</sup>. Only occurrences higher than 50% are reported.

| Acceptor    | DonorH       | Donor       | %    |
|-------------|--------------|-------------|------|
| ASP_176@OD2 | ARG_18@HH21  | ARG_18@NH2  | 91,4 |
| VAL_120@O   | THR_91@HG1   | THR_91@OG1  | 89,8 |
| ALA_201@O   | THR_205@HG1  | THR_205@OG1 | 89,6 |
| PHE_89@O    | ILE_6@H      | ILE_6@N     | 85,1 |
| GLY_9@O     | ASN_13@H     | ASN_13@N    | 85,0 |
| ILE_300@O   | LEU_250@H    | LEU_250@N   | 84,9 |
| GLU_28@O    | VAL_5@H      | VAL_5@N     | 84,5 |
| GLY_284@O   | THR_285@HG1  | THR_285@OG1 | 84,4 |
| VAL_296@O   | THR_254@H    | THR_254@N   | 81,5 |
| GLY_255@O   | ASN_288@H    | ASN_288@N   | 80,6 |
| PHE_200@O   | LYS_204@H    | LYS_204@N   | 80,1 |
| GLU_263@OE2 | ARG_225@HH21 | ARG_225@NH2 | 78,7 |
| THR_117@O   | ASP_148@H    | ASP_148@N   | 77,9 |
| GLU_263@OE1 | ARG_225@HE   | ARG_225@NE  | 77,5 |
| VAL_118@O   | VAL_90@H     | VAL_90@N    | 76,5 |

| THR_254@O   | VAL_296@H    | VAL_296@N   | 76,3          |
|-------------|--------------|-------------|---------------|
| GLY_218@O   | VAL_297@H    | VAL_297@N   | 75,0          |
| ILE_253@O   | VAL_286@H    | VAL_286@N   | 73,6          |
| LEU_116@O   | VAL_88@H     | VAL_88@N    | 72,4          |
| ALA_301@O   | LEU_214@H    | LEU_214@N   | 72,4          |
| ILE_66@O    | ALA_70@H     | ALA_70@N    | 72,2          |
| LEU_250@O   | ILE_300@H    | ILE_300@N   | 71,6          |
| VAL_121@O   | ILE_153@H    | ILE_153@N   | 70,6          |
| LYS_4@O     | PHE_89@H     | PHE_89@N    | 70,1          |
| ILE_30@O    | GLY_7@H      | GLY_7@N     | 70,0          |
| ASP_293@O   | ARG_225@HH11 | ARG_225@NH1 | 69,6          |
| ASN_13@OD1  | ASN_33@HD22  | ASN_33@ND2  | 69,5          |
| ASP_163@O   | THR_166@HG1  | THR_166@OG1 | 69,0          |
| ALA_70@O    | SER_74@HG    | SER_74@OG   | 68,0          |
| VAL_140@O   | LYS_144@H    | LYS_144@N   | 67,6          |
| ASN_17@OD1  | LYS_43@H     | LYS_43@N    | 67,1          |
| PRO_64@O    | LYS_68@H     | LYS_68@N    | 67,0          |
| VAL_8@O     | SER_92@HG    | SER_92@OG   | 66,2          |
| ASN_252@O   | THR_298@H    | THR_298@N   | 65,2          |
| GLY_139@O   | MET_143@H    | MET_143@N   | 64,9          |
| ARG_180@O   | GLN_184@H    | GLN_184@N   | 64,4          |
| VAL_5@O     | ILE_30@H     | ILE_30@N    | 64,0          |
| ILE_6@O     | THR_91@H     | THR_91@N    | 63,2          |
| SER_220@O   | ILE_295@H    | ILE_295@N   | 62,9          |
| THR_98@O    | ALA_102@H    | ALA_102@N   | 62,8          |
| THR_122@O   | MET_94@H     | MET_94@N    | 62,8          |
| THR_91@O    | VAL_8@H      | VAL_8@N     | 62,4          |
| ILE_32@O    | GLY_9@H      | GLY_9@N     | 62,3          |
| VAL_297@O   | GLY_218@H    | GLY_218@N   | 61,9          |
| VAL_227@O   | LYS_231@H    | LYS_231@N   | 61,8          |
| VAL_88@O    | VAL_118@H    | VAL_118@N   | 61,1          |
| ARG_130@O   | THR_134@H    | THR_134@N   | 60,9          |
| GLU_277@O   | VAL_279@H    | VAL_279@N   | 60,0          |
| GLY_10@O    | ASN_14@H     | ASN_14@N    | 59,5          |
| ASP_188@OD1 | THR_298@HG1  | THR_298@OG1 | 59 <i>,</i> 5 |
| GLY_248@O   | THR_302@H    | THR_302@N   | 59,4          |
| LEU_214@O   | ALA_301@H    | ALA_301@N   | 59,4          |
| GLY_119@O   | ILE_151@H    | ILE_151@N   | 59,1          |
| ALA_115@O   | THR_117@HG1  | THR_117@OG1 | 58,6          |
| THR_149@O   | GLY_119@H    | GLY_119@N   | 58,6          |
| ALA_107@O   | LYS_111@H    | LYS_111@N   | 58,6          |
| GLN_181@O   | GLY_185@H    | GLY_185@N   | 58,1          |
| ASP_176@OD2 | ARG_18@HE    | ARG_18@NE   | 56,8          |
| GLY_216@O   | VAL_299@H    | VAL_299@N   | 56,7          |
| ALA_136@O   | VAL_140@H    | VAL_140@N   | 56,7          |
| ARG_130@O   | THR_134@HG1  | THR_134@OG1 | 56,6          |
| VAL_105@O   | ILE_109@H    | ILE_109@N   | 56,3          |
| VAL_249@O   | ILE_282@H    | ILE_282@N   | 55,9          |
| ALA_102@O   | VAL_106@H    | VAL_106@N   | 55,6          |

| ARG_225@O   | ALA_229@H  | ALA_229@N  | 55,5 |
|-------------|------------|------------|------|
| ASN_280@O   | VAL_249@H  | VAL_249@N  | 55,4 |
| GLY_7@O     | ILE_32@H   | ILE_32@N   | 55,2 |
| GLY_51@O    | THR_55@H   | THR_55@N   | 55,1 |
| ILE_153@O   | ARG_123@H  | ARG_123@N  | 54,8 |
| LYS_69@O    | GLU_73@H   | GLU_73@N   | 54,7 |
| GLU_65@O    | LYS_69@H   | LYS_69@N   | 54,5 |
| VAL_183@O   | SER_187@HG | SER_187@OG | 54,3 |
| THR_302@O   | GLN_247@H  | GLN_247@N  | 53,8 |
| VAL_178@O   | GLY_182@H  | GLY_182@N  | 53,1 |
| PRO_104@O   | LYS_108@H  | LYS_108@N  | 52,5 |
| GLY_211@O   | LEU_150@H  | LEU_150@N  | 52,4 |
| VAL_90@O    | VAL_120@H  | VAL_120@N  | 52,2 |
| LYS_68@O    | GLU_72@H   | GLU_72@N   | 52,2 |
| ASP_148@OD2 | THR_117@H  | THR_117@N  | 52,1 |
| LYS_204@O   | SER_208@HG | SER_208@OG | 51,7 |
| LYS_108@O   | GLU_112@H  | GLU_112@N  | 51,4 |
| ASP_176@OD1 | ARG_18@HE  | ARG_18@NE  | 51,2 |
| ASN_224@O   | GLU_228@H  | GLU_228@N  | 51,0 |
| ASP_176@O   | ARG_180@H  | ARG_180@N  | 50,7 |
| ALA_275@O   | GLY_245@H  | GLY_245@N  | 50,7 |
| ASN_33@O    | ILE_50@H   | ILE_50@N   | 50,0 |

**Table S9.** Intra-molecular hydrogen bond analysis carried out on monomer 2 of the MD simulation of FtsZ dimer in presence of GTP and Ca<sup>2+</sup>. Only occurrences higher than 50% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number (ASP\_467 = ASP\_163).

| Acceptor  | DonorH      | Donor       | %             |
|-----------|-------------|-------------|---------------|
| ASP_469@O | THR_472@HG1 | THR_472@OG1 | 95,2          |
| VAL_592@O | THR_560@HG1 | THR_560@OG1 | 93,8          |
| ALA_507@O | THR_511@HG1 | THR_511@OG1 | 85,5          |
| GLY_561@O | ASN_594@H   | ASN_594@N   | 81,6          |
| ASP_482@O | ARG_486@H   | ARG_486@N   | 81,2          |
| GLU_334@O | VAL_311@H   | VAL_311@N   | 81,0          |
| VAL_427@O | ILE_459@H   | ILE_459@N   | 79,6          |
| ILE_606@O | LEU_556@H   | LEU_556@N   | 79 <i>,</i> 5 |
| ARG_436@O | THR_440@HG1 | THR_440@OG1 | 78,3          |
| LEU_556@O | ILE_606@H   | ILE_606@N   | 78,3          |
| VAL_314@O | SER_398@HG  | SER_398@OG  | 78,3          |
| GLY_524@O | VAL_603@H   | VAL_603@N   | 78,0          |
| PHE_395@O | ILE_312@H   | ILE_312@N   | 77,7          |
| ILE_312@O | THR_397@H   | THR_397@N   | 77,3          |
| THR_423@O | ASP_454@H   | ASP_454@N   | 76,9          |
| GLY_522@O | VAL_605@H   | VAL_605@N   | 76,9          |
| LEU_422@O | VAL_394@H   | VAL_394@N   | 75,9          |
| ILE_372@O | ALA_376@H   | ALA_376@N   | 75,3          |
| GLY_425@O | ILE_457@H   | ILE_457@N   | 75,3          |
| GLY_315@O | ASN_319@H   | ASN_319@N   | 74,5          |

| VAL_424@O       | VAL_396@H     | VAL_396@N       | 74,1 |
|-----------------|---------------|-----------------|------|
| PHE_506@O       | LYS_510@H     | LYS_510@N       | 73,7 |
| LYS_310@O       | PHE_395@H     | PHE_395@N       | 70,9 |
| THR_604@O       | ASN_558@H     | ASN_558@N       | 70,7 |
| ILE_336@O       | GLY_313@H     | GLY_313@N       | 70,5 |
| THR_455@O       | GLY_425@H     | GLY_425@N       | 70,2 |
| GLY_316@O       | ASN_320@H     | ASN_320@N       | 69,0 |
| ASP_482@OD1     | ARG_324@HH21  | ARG_324@NH2     | 68,6 |
| GLY_554@O       | THR_608@H     | THR_608@N       | 68,3 |
| LYS_437@O       | GLN_441@H     | GLN_441@N       | 68,2 |
| ASN_323@OD1     | LYS_349@H     | LYS_349@N       | 67,5 |
| PRO_370@O       | LYS_374@H     | LYS_374@N       | 66,4 |
| VAL_533@O       | LYS_537@H     | LYS_537@N       | 65,9 |
| ARG 436@O       | THR 440@H     | THR 440@N       | 65,7 |
|                 |               |                 | 64,6 |
| LYS 537@O       | SER 541@HG    | SER 541@OG      | 64,5 |
| GLY 357@O       |               | THR 361@OG1     | 64,3 |
|                 | <br>VAL 602@H |                 | 64,1 |
|                 |               |                 | 63,9 |
|                 |               |                 | 63,3 |
| GLY 517@O       | LEU 456@H     | LEU 456@N       | 63,1 |
| <br>ASP 482@OD2 |               | ARG 324@NE      | 63.0 |
| <br>VAL 489@O   |               |                 | 63,0 |
| ILE 338@O       | GLY 315@H     | GLY 315@N       | 62,9 |
| SER 526@O       | ILE 601@H     | ILE 601@N       | 62.6 |
| MET 557@O       | GLY 590@H     | GLY 590@N       | 62,6 |
| <br>LEU 520@O   |               |                 | 61,4 |
| ALA 413@O       | LYS 417@H     | LYS 417@N       | 61.3 |
|                 |               |                 | 60,4 |
| VAL 605@O       | GLY 522@H     | GLY 522@N       | 60,3 |
| VAL 311@O       | ILE 336@H     | ILE 336@N       | 59,3 |
|                 |               |                 | 59,2 |
|                 |               |                 | 58,6 |
|                 |               | <br>ARG 486@NH1 | 58,4 |
|                 |               |                 | 57,8 |
| ALA_607@O       | LEU_520@H     | LEU_520@N       | 57,2 |
| LEU_485@O       | VAL_489@H     | VAL_489@N       | 56,8 |
| ASP 508@O       | ILE 512@H     | ILE 512@N       | 56,3 |
|                 | GLN 355@HE22  | GLN 355@NE2     | 55,0 |
| VAL 603@O       | GLY 524@H     | GLY 524@N       | 54,9 |
| THR_404@O       | ALA_408@H     | ALA_408@N       | 54,6 |
| LEU_567@O       | GLN_571@H     | GLN_571@N       | 54,5 |
| LYS_374@O       | GLU_378@H     | GLU_378@N       | 54,5 |
| GLN_487@O       | GLY_491@H     | GLY_491@N       | 54,4 |
| ARG_438@O       | ALA_442@H     | ALA_442@N       | 53,7 |
| VAL_322@O       | ILE_326@H     | ILE_326@N       | 53,5 |
| ALA_408@O       | VAL_412@H     | VAL_412@N       | 53,3 |
| ARG_381@O       | GLU_385@H     | GLU_385@N       | 53,1 |
| LYS_414@O       | GLU_418@H     | GLU_418@N       | 52,6 |

| ILE_338@O   | ASN_319@HD21 | ASN_319@ND2 | 52,6 |
|-------------|--------------|-------------|------|
| GLY_405@O   | ALA_409@H    | ALA_409@N   | 52,5 |
| ASN_530@O   | GLU_534@H    | GLU_534@N   | 52,2 |
| GLU_569@OE1 | ARG_531@HH21 | ARG_531@NH2 | 52,1 |
| GLN_490@O   | ASP_494@H    | ASP_494@N   | 52,1 |
| ALA_442@O   | VAL_446@H    | VAL_446@N   | 52,0 |
| ASP_392@O   | LEU_422@H    | LEU_422@N   | 51,4 |
| THR_608@O   | GLN_553@H    | GLN_553@N   | 51,4 |
| ALA_535@O   | ALA_539@H    | ALA_539@N   | 51,2 |
| ALA_337@O   | ILE_354@H    | ILE_354@N   | 51,0 |
| VAL_396@O   | VAL_426@H    | VAL_426@N   | 50,9 |
| VAL_484@O   | GLY_488@H    | GLY_488@N   | 50,8 |
| LEU_456@O   | ALA_519@H    | ALA_519@N   | 50,6 |
| ASN_558@O   | THR_604@H    | THR_604@N   | 50,3 |
| ASN_319@O   | ASN_323@H    | ASN_323@N   | 50,2 |
| ILE_459@O   | ARG_429@H    | ARG_429@N   | 50,1 |
| VAL_446@O   | LYS_450@H    | LYS_450@N   | 50,1 |

**Table S10.** Inter-molecular hydrogen bond analysis carried out on monomers 1-2 of the MD simulation of FtsZ dimer in presence of GTP and Ca<sup>2+</sup>. Only occurrences higher than 20% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number (ASP\_467 = ASP\_163).

| Acceptor    | DonorH       | Donor       | %    |
|-------------|--------------|-------------|------|
| LEU_259@O   | MET_474@H    | MET_474@N   | 68,5 |
| MET_281@O   | ARG_436@H    | ARG_436@N   | 39,3 |
| ASN_197@O   | ARG_438@HH21 | ARG_438@NH2 | 23,8 |
| ASP_202@OD2 | LYS_437@HZ2  | LYS_437@NZ  | 20,2 |
| THR_472@O   | LEU_261@H    | LEU_261@N   | 49,2 |
| LYS_470@O   | SER_260@HG   | SER_260@OG  | 47,6 |
| MET_281@O   | ARG_436@H    | ARG_436@N   | 39,3 |
| ASN_197@O   | ARG_438@HH21 | ARG_438@NH2 | 23,8 |
| ASP_202@OD2 | LYS_437@HZ2  | LYS_437@NZ  | 20,2 |

**Figure S7.** A) Root of mean squared deviation (RMSD), B) Root of mean squared fluctuation RMSF, C) Gyration Radius (RG) and D) Solvent Accessible Surface Area (SASA) obtained by CPPTRAJ post-processing analysis of 100ns MD simulation of FtsZ dimer in presence of GTP, Ca<sup>2+</sup>and compound **11**. All the analysis are carried out on 5000 snapshots obtained from the simulation.



**Table S11.** Intra-molecular hydrogen bond analysis carried out on monomer 1 of the MD simulation of FtsZ dimer in presence of GTP, Ca<sup>2+</sup>and compound **11**. Only occurrences higher than 50% are reported.

| Acceptor    | DonorH      | Donor       | %    |
|-------------|-------------|-------------|------|
| ASP_176@OD2 | ARG_18@HH21 | ARG_18@NH2  | 96,4 |
| ALA_201@O   | THR_205@HG1 | THR_205@OG1 | 91,9 |
| VAL_120@O   | THR_91@HG1  | THR_91@OG1  | 90,8 |
| LEU_58@O    | THR_34@HG1  | THR_34@OG1  | 89,4 |
| LEU_250@O   | ILE_300@H   | ILE_300@N   | 87,3 |
| ILE_300@O   | LEU_250@H   | LEU_250@N   | 83,5 |
| VAL_296@O   | THR_254@H   | THR_254@N   | 83,3 |
| PHE_89@O    | ILE_6@H     | ILE_6@N     | 83,2 |
| GLY_255@O   | ASN_288@H   | ASN_288@N   | 79,9 |
| THR_117@O   | ASP_148@H   | ASP_148@N   | 78,8 |
| GLU_28@O    | VAL_5@H     | VAL_5@N     | 76,0 |
| ALA_301@O   | LEU_214@H   | LEU_214@N   | 76,0 |
| THR_254@O   | VAL_296@H   | VAL_296@N   | 75,1 |

| LEU_116@O   | VAL_88@H     | VAL_88@N    | 74,8 |
|-------------|--------------|-------------|------|
| ILE_66@O    | ALA_70@H     | ALA_70@N    | 73,1 |
| ALA_175@O   | LEU_179@H    | LEU_179@N   | 71,6 |
| ASP_163@O   | THR_166@HG1  | THR_166@OG1 | 71,4 |
| ASP_293@O   | ARG_225@HH11 | ARG_225@NH1 | 70,7 |
| GLY_218@O   | VAL_297@H    | VAL_297@N   | 70,2 |
| GLY_9@O     | ASN_13@H     | ASN_13@N    | 69,5 |
| ILE_6@O     | THR_91@H     | THR_91@N    | 69,5 |
| ILE_253@O   | VAL_286@H    | VAL_286@N   | 68,9 |
| VAL_118@O   | VAL_90@H     | VAL_90@N    | 68,4 |
| ILE_30@O    | GLY_7@H      | GLY_7@N     | 68,2 |
| GLY_119@O   | ILE_151@H    | ILE_151@N   | 68,0 |
| VAL_140@O   | LYS_144@H    | LYS_144@N   | 67,4 |
| PRO_64@O    | LYS_68@H     | LYS_68@N    | 67,4 |
| ASN_17@OD1  | LYS_43@H     | LYS_43@N    | 66,8 |
| ILE_32@O    | GLY_9@H      | GLY_9@N     | 66,5 |
| ASP_148@O   | GLY_211@H    | GLY_211@N   | 66,3 |
| ILE_153@O   | ARG_123@H    | ARG_123@N   | 66,1 |
| GLY_139@O   | MET_143@H    | MET_143@N   | 66,0 |
| VAL_105@O   | ILE_109@H    | ILE_109@N   | 65,9 |
| ALA_70@O    | SER_74@HG    | SER_74@OG   | 65,6 |
| THR_149@O   | GLY_119@H    | GLY_119@N   | 65,0 |
| THR_100@OG1 | GLY_95@H     | GLY_95@N    | 64,0 |
| GLY_284@O   | THR_285@HG1  | THR_285@OG1 | 63,8 |
| PHE_200@O   | LYS_204@H    | LYS_204@N   | 63,7 |
| ARG_130@O   | THR_134@H    | THR_134@N   | 63,2 |
| VAL_227@O   | LYS_231@H    | LYS_231@N   | 62,3 |
| GLY_10@O    | ASN_14@H     | ASN_14@N    | 62,2 |
| ILE_282@O   | MET_251@H    | MET_251@N   | 61,9 |
| ALA_115@O   | THR_117@HG1  | THR_117@OG1 | 61,5 |
| THR_302@O   | GLN_247@H    | GLN_247@N   | 61,3 |
| ASP_176@OD1 | ARG_18@HE    | ARG_18@NE   | 61,2 |
| ARG_75@O    | GLU_79@H     | GLU_79@N    | 60,9 |
| VAL_5@O     | ILE_30@H     | ILE_30@N    | 60,6 |
| VAL_121@O   | ILE_153@H    | ILE_153@N   | 60,2 |
| LYS_4@O     | PHE_89@H     | PHE_89@N    | 60,0 |
| ASN_224@O   | GLU_228@H    | GLU_228@N   | 59,7 |
| ALA_136@O   | VAL_140@H    | VAL_140@N   | 59,7 |
| VAL_8@O     | SER_92@HG    | SER_92@OG   | 59,3 |
| VAL_88@O    | VAL_118@H    | VAL_118@N   | 59,0 |
| ALA_107@O   | LYS_111@H    | LYS_111@N   | 58,5 |
| VAL_90@O    | VAL_120@H    | VAL_120@N   | 57,7 |
| ALA_31@O    | ILE_48@H     | ILE_48@N    | 57,3 |
| ARG_180@O   | GLN_184@H    | GLN_184@N   | 56,7 |
| GLY_96@O    | GLN_135@HE22 | GLN_135@NE2 | 56,3 |
| ALA_102@O   | VAL_106@H    | VAL_106@N   | 55,5 |
| THR_34@O    | GLN_49@HE22  | GLN_49@NE2  | 55,2 |
| SER_220@O   | ILE_295@H    | ILE_295@N   | 54,8 |
| ASN_13@O    | ASN_17@H     | ASN_17@N    | 54,7 |

| VAL_297@O   | GLY_218@H  | GLY_218@N  | 54,7 |
|-------------|------------|------------|------|
| GLY_248@O   | THR_302@H  | THR_302@N  | 54,7 |
| GLU_277@O   | VAL_279@H  | VAL_279@N  | 54,5 |
| THR_91@O    | VAL_8@H    | VAL_8@N    | 53,9 |
| LYS_69@O    | GLU_73@H   | GLU_73@N   | 53,3 |
| VAL_249@O   | ILE_282@H  | ILE_282@N  | 53,2 |
| GLY_99@O    | ALA_103@H  | ALA_103@N  | 53,0 |
| LYS_108@O   | GLU_112@H  | GLU_112@N  | 52,8 |
| GLU_65@O    | LYS_69@H   | LYS_69@N   | 51,9 |
| GLN_184@OE1 | ARG_180@HE | ARG_180@NE | 51,3 |
| GLN_133@O   | ALA_137@H  | ALA_137@N  | 51,1 |
| THR_298@O   | ASN_252@H  | ASN_252@N  | 51,1 |
| LEU_3@O     | GLU_28@H   | GLU_28@N   | 50,8 |

**Table S12.** Intra-molecular hydrogen bond analysis carried out on monomer 2 of the MD simulation of FtsZ dimer in presence of GTP, Ca<sup>2+</sup>and compound **11**. Only occurrences higher than 50% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number (ASP\_467 = ASP\_163).

| Acceptor    | DonorH       | Donor       | %    |
|-------------|--------------|-------------|------|
| ASP_482@OD2 | ARG_324@HH21 | ARG_324@NH2 | 99,2 |
| VAL_314@O   | SER_398@HG   | SER_398@OG  | 95,8 |
| VAL_426@O   | THR_397@HG1  | THR_397@OG1 | 92,8 |
| GLU_434@OE1 | ARG_438@HH11 | ARG_438@NH1 | 92,2 |
| ALA_507@O   | THR_511@HG1  | THR_511@OG1 | 89,4 |
| ILE_606@O   | LEU_556@H    | LEU_556@N   | 87,9 |
| GLY_425@O   | ILE_457@H    | ILE_457@N   | 87,4 |
| ILE_336@O   | GLY_313@H    | GLY_313@N   | 86,4 |
| THR_397@O   | VAL_314@H    | VAL_314@N   | 86,2 |
| ASP_482@O   | ARG_486@H    | ARG_486@N   | 85,7 |
| THR_423@O   | ASP_454@H    | ASP_454@N   | 84,3 |
| GLY_561@O   | ASN_594@H    | ASN_594@N   | 84,1 |
| ILE_372@O   | ALA_376@H    | ALA_376@N   | 83,4 |
| VAL_427@O   | ILE_459@H    | ILE_459@N   | 82,8 |
| VAL_602@O   | THR_560@H    | THR_560@N   | 81,0 |
| LEU_422@O   | VAL_394@H    | VAL_394@N   | 80,1 |
| ARG_486@O   | GLN_490@H    | GLN_490@N   | 80,1 |
| PHE_395@O   | ILE_312@H    | ILE_312@N   | 79,5 |
| ILE_459@O   | ARG_429@H    | ARG_429@N   | 79,5 |
| VAL_424@O   | VAL_396@H    | VAL_396@N   | 79,3 |
| ALA_607@O   | LEU_520@H    | LEU_520@N   | 79,1 |
| GLY_524@O   | VAL_603@H    | VAL_603@N   | 78,6 |
| ALA_376@O   | SER_380@HG   | SER_380@OG  | 75,3 |
| ALA_442@O   | VAL_446@H    | VAL_446@N   | 74,6 |
| ASP_482@OD1 | ARG_324@HE   | ARG_324@NE  | 73,4 |
| ARG_436@O   | THR_440@HG1  | THR_440@OG1 | 73,3 |
| GLY_445@O   | MET_449@H    | MET_449@N   | 73,1 |

| ILE_312@O   | THR_397@H    | THR_397@N   | 71,5 |
|-------------|--------------|-------------|------|
| THR_560@O   | VAL_602@H    | VAL_602@N   | 71,0 |
| GLU_334@O   | VAL_311@H    | VAL_311@N   | 70,9 |
| SER_398@O   | THR_428@H    | THR_428@N   | 70,6 |
| ASP_469@O   | THR_472@HG1  | THR_472@OG1 | 69,3 |
| PHE_506@O   | LYS_510@H    | LYS_510@N   | 69,1 |
| ALA_421@O   | THR_423@HG1  | THR_423@OG1 | 68,8 |
| ILE_559@O   | VAL_592@H    | VAL_592@N   | 68,8 |
| ALA_321@O   | MET_325@H    | MET_325@N   | 67,7 |
| ARG_381@O   | GLU_385@H    | GLU_385@N   | 67,5 |
| ARG_436@O   | THR_440@H    | THR_440@N   | 67,1 |
| LEU_556@O   | ILE_606@H    | ILE_606@N   | 66,6 |
| GLY_357@O   | THR_361@H    | THR_361@N   | 66,3 |
| GLY_317@O   | ALA_321@H    | ALA_321@N   | 65,8 |
| THR_404@O   | ALA_408@H    | ALA_408@N   | 64,7 |
| THR_404@OG1 | THR_340@HG1  | THR_340@OG1 | 64,6 |
| ILE_338@O   | ASN_319@HD21 | ASN_319@ND2 | 64,2 |
| THR_608@O   | GLN_553@H    | GLN_553@N   | 64,2 |
| ASN_323@OD1 | LYS_349@H    | LYS_349@N   | 63,7 |
| SER_526@O   | ILE_601@H    | ILE_601@N   | 62,9 |
| MET_400@O   | THR_406@HG1  | THR_406@OG1 | 62,8 |
| VAL_502@O   | THR_591@H    | THR_591@N   | 62,6 |
| ASP_508@OD2 | ASP_505@H    | ASP_505@N   | 62,3 |
| GLY_590@O   | THR_591@HG1  | THR_591@OG1 | 62,2 |
| ILE_588@O   | MET_557@H    | MET_557@N   | 62,2 |
| VAL_555@O   | ILE_588@H    | ILE_588@N   | 61,6 |
| ASN_558@O   | THR_604@H    | THR_604@N   | 60,9 |
| THR_455@O   | GLY_425@H    | GLY_425@N   | 60,6 |
| VAL_603@O   | GLY_524@H    | GLY_524@N   | 60,6 |
| VAL_396@O   | VAL_426@H    | VAL_426@N   | 60,3 |
| GLY_522@O   | VAL_605@H    | VAL_605@N   | 60,1 |
| VAL_446@O   | LYS_450@H    | LYS_450@N   | 60,1 |
| VAL_489@O   | SER_493@HG   | SER_493@OG  | 59,9 |
| ASP_392@O   | LEU_422@H    | LEU_422@N   | 58,7 |
| VAL_411@O   | ILE_415@H    | ILE_415@N   | 58,3 |
| GLU_583@O   | VAL_585@H    | VAL_585@N   | 57,4 |
| LEU_485@O   | VAL_489@H    | VAL_489@N   | 57,0 |
| ASN_530@O   | GLU_534@H    | GLU_534@N   | 56,9 |
| ARG_438@O   | ALA_442@H    | ALA_442@N   | 56,6 |
| LEU_520@O   | ALA_607@H    | ALA_607@N   | 56,0 |
| ASP_469@O   | THR_472@H    | THR_472@N   | 55,3 |
| VAL_509@O   | MET_513@H    | MET_513@N   | 55,3 |
| ALA_408@O   | VAL_412@H    | VAL_412@N   | 55,1 |
| VAL_533@O   | LYS_537@H    | LYS_537@N   | 54,9 |
| ALA_413@O   | LYS_417@H    | LYS_417@N   | 54,8 |
| VAL_394@O   | VAL_424@H    | VAL_424@N   | 54,8 |
| LYS_375@O   | GLU_379@H    | GLU_379@N   | 54,8 |
| ASP_599@O   | ARG_531@HH11 | ARG_531@NH1 | 54,3 |
| LYS_310@O   | PHE_395@H    | PHE_395@N   | 53,9 |

| GLU_569@OE1 | ARG_531@HH21 | ARG_531@NH2 | 53,7 |
|-------------|--------------|-------------|------|
| LYS_437@O   | GLN_441@H    | GLN_441@N   | 52,9 |
| LEU_567@O   | GLN_571@H    | GLN_571@N   | 51,9 |
| VAL_311@O   | ILE_336@H    | ILE_336@N   | 51,9 |
| ILE_415@O   | MET_419@H    | MET_419@N   | 51,1 |
| ASN_319@O   | ASN_323@H    | ASN_323@N   | 50,7 |
| ALA_581@O   | GLY_551@H    | GLY_551@N   | 50,6 |
| GLY_313@O   | ILE_338@H    | ILE_338@N   | 50,3 |
| THR_428@O   | MET_400@H    | MET_400@N   | 50,0 |

**Table S13.** Inter-molecular hydrogen bond analysis carried out on monomer 1-2 of the MD simulation of FtsZ dimer in presence of GTP,  $Ca^{2+}$  and compound **11**. Only occurrences higher than 20% are reported. To the residue number in monomer 2, 304 units needs to be subtracted to obtain the original residue number (ASP\_467 = ASP\_163)

| Acceptor    | DonorH       | Donor       | %    |
|-------------|--------------|-------------|------|
| LEU_259@O   | MET_474@H    | MET_474@N   | 86,3 |
| LYS_470@O   | SER_260@HG   | SER_260@OG  | 41,0 |
| GTP_612@O5  | ASN_197@H    | ASN_197@N   | 30,3 |
| GTP_612@O6  | ASN_197@H    | ASN_197@N   | 28,9 |
| GLN_265@OE1 | SER_432@HG   | SER_432@OG  | 27,3 |
| GTP_612@O3  | ASN_197@HD22 | ASN_197@ND2 | 27,0 |