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Abstract

Heart failure (HF) is a chronic and progressive disease that often progresses to an

advanced stage where conventional therapy is insufficient to relieve patients’ symp-

toms. Despite the availability of advanced therapies such as mechanical circulatory

support or heart transplantation, the complexity of defining advanced HF, which

requires multiple parameters and multimodality assessment, often leads to delays in

referral to dedicated specialistswith the result of aworsening prognosis. In this review,

we aim to explore the role of cardiac magnetic resonance (CMR) in advanced HF by

showing how CMR is useful at every step in managing these patients: from diagnosis

to prognostic stratification, hemodynamic evaluation, follow-up and advanced thera-

pies such as heart transplantation. The technical challenges of scanning advanced HF

patients, which often require troubleshooting of intracardiac devices and dedicated

scans, will be also discussed.
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1 INTRODUCTION

Heart failure (HF) is a cardiovascular disease with one of the highest

burdens on the worldwide population.1 It is defined by the European

Society of Cardiology (ESC), the American Heart Association (AHA),

and the American College of Cardiology (ACC) guidelines HF as a clini-

cal syndromewhere both signs and symptomsmust be present, caused

by structural or functional abnormality of the heart leading to impaired

ventricular filling or ejection of blood.1,2

The AHA/ACC guidelines also recognize different stages of HF pro-

gression: Stage A is defined as “at risk” of HF, stage B is defined as

“pre-HF,” stage C as “symptomatic HF,” and stage D as “advanced HF.”2

Up to 10% of the general population with HF progress to stage D.3

In the United States, it is estimated that by 2030, more than 8 million

people will be affected by advancedHF.4,5

Scientific societies like ESC, AHA, and ACC agree that the defini-

tion of advanced HF relies on the presence of invalidating symptoms

and recurrent hospitalizations despite conventional treatments, like

guideline-directed medical therapy (GDMT), devices, and surgery, to

the point that advanced therapies, such as cardiac transplantation,

mechanic circulatory support (MCS), or palliation, are needed. More-

over, there must be evidence of severe functional impairment, that

can be assessed by six-minute walking test (6MWT) < 300mt, peak

VO2 < 12−14 mL/kg/min or <50% of predicted value, and severe car-

diac dysfunction defined by severely reduced ejection fraction (EF)

(<30%), presence of high filling left ventricular (LV) pressures at right

heart catheterization or echocardiography, or isolated right ventri-

cle (RV) failure. To be noted is that according to those guidelines, a

reduced LVEF is common but not mandatory to consider the diagnosis

of advanced HF.6 The RV also plays a crucial role in the physiopathol-

ogy of HF, and therefore, an isolated RV failure could lead to advanced

HF diagnosis.

Moreover, in the event of HF with LV dysfunction, a compromised

RV can indicative of amore advanced LV illness and, therefore, a worse

prognosis.

AdvancedHF is a rapidly evolving subset of HF, and an early referral

to dedicated specialists is the key to improving prognosis. At the same

time, there is still some complexity in the definition and classification of

advanced HF that may lead to a late referral.7

In this regard, cardiac imaging plays a key role: it helps recognizing

the sliding of HF stageC to stageD, it guides the timing andmodality of

advanced treatments, and eventually it assesses their efficacy.

In this review, we aim to tackle the role of cardiac magnetic res-

onance (CMR) in managing advanced HF patients. Specifically, CMR

capability in volume and function assessment, pressure and flow

measurements, tissue characterization, and the latest advancement

to overcome previous limitations to such techniques as its use in

implantable devices will be addressed.

2 VOLUMES AND FUNCTION

Left ventricular ejection fraction (LVEF) is a critical parameter in

describing patients with advanced HF since it is used in many risk

scores for advanced HF.8 To be noted, not all patients with advanced

HF have cardiac dysfunction in terms of a low LVEF.

Indeed, in a retrospective study on a cohort of 936 adult

patients from the Rochester Epidemiology Program in Minnesota,

among patients with advanced HF there was a similar distribu-

tion of patients between heart failure with reduced ejection frac-

tion (HFrEF) (42% of the cohort) and heart failure with preserved

ejection fraction (HFpEF) (43%). Moreover, there was no significant

difference in survival according to the EF subtype, even though

patients with HFpEF had lower cardiovascular mortality than HFrEF

patients.6

It is widely known that different methods of LVEF and volume

assessment have different performances.9 LVEF analysis in CMR is

based on Simpson’s disk summationmethod (Figure 1). First, a series of

short-axis imagesovermultiplephasesof the cardiac cycle areacquired

to obtain a “cine” image. Once “cine” images are available, left ven-

tricular end-diastolic and end-systolic areas are traced (manually or

automatically, depending on each software) and multiplicated to the

distance among each slice, obtaining the volume of every disk. There-

fore, the ventricle volume in both systole and diastole is obtained

without using any geometrical assumption that can lead to the wrong

estimation of the EF.

A CMR substudy of the CHRISTMAS trial demonstrated in the early

2000 that measurements of LVEF obtained with different techniques

are not interchangeable and, therefore, not universal. Bellenger et al.

analyzed the LVEF of 52 patients with HF with transthoracic echocar-

diography (TTE), both Teicholz and Simpson biplane method, CMR and

radionuclide ventriculography and found out significant differences

in the mean LVEF among the techniques.10 More recently, a retro-

spective study by Clark et al. compared LVEF assessment through

two-dimensional TTE and CMR in 767 patients. Significant concor-

dance between the two techniques was observed for patients with

normal LVEF (TTE assessment confirmed by CMR in 90.6% patients)

while their concordance for reduced LVEF patients was reduced to

64.6%.11

On the contrary, recent evidence derived from the United Kingdom

(UK) biobank confirmed excellent inter and intraobserver variability

for CMR LVEF and volume assessment, although there is evidence that

there can be variability between different software systems in LVEF

and volumes.12,13

These discrepancies have a relevant clinical impact. Indeed, in 52

patients considered for implantable cardioverter defibrillator (ICD)

implantation who underwent both CMR and TTE, with a threshold for

ICD indication set at LVEF ≤35%, CMR led to reclassification in 21%

of patients in the ICD indication group. It also showed that CMR was

more reproducible both in terms of intra and interobserver variability

than echocardiography.14

Regarding ICD implantation for primary prevention, data from

the Cardiac Magnetic Resonance for Prophylactic Implantable

Cardioverter Defibrillator Therapy in Ischemic Cardiomyopathy

(DERIVATE-ICM) registry shows that the measurement of LVEF on

CMR may have an additional prognostic advantage over the mea-

surement of LVEF at TTE in predicting major adverse cardiac events
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F IGURE 1 CMR short axis stacks of cine images for ejection fraction calculation. Left: diastolic contours (RV: yellow, LV epicardium: green; LV
endocardium: red). Middle: all short axis slices. Right: systolic contours. In Simpson’s disc summationmethod, this process is repeated for each slice
to obtain the volume. CMR: cardiac magnetic resonance; RV: right ventricle; LV left ventricle.

(MACE), both when used alone and in a combined model with late

gadolinium enhancement (LGE).

Moreover, when CMR-derived LVEF is used in a combined score

with LGE, it allows the identification of a subset of patients not reach-

ing the criteria for ICD implantation due to TTE-derived LVEF ≥35%,

but who are actually at increased risk ofMACE.15–17

In patients with ischemic cardiomyopathy (ICM), CMR LVEF mea-

surement is known to be related to MACE, but also CMR right

ventricular ejection fraction (RVEF) has been demonstrated as an inde-

pendent predictor of adverse events, highlighting the central role of

CMR in themeasurement of volumes and ejection fraction.18

In the context of the right ventricle, the assessment of volume and

function through 2D echocardiography encounters limitations due to

its reliance on measurements derived from the apical 4-chamber view,

which offers a restricted perspective of the RV. In contrast, CMR pro-

vides a more comprehensive evaluation by measuring right ventricle

volumes in the short axis, thereby encompassing the entirety of the RV.

To overcome this problem, emerging methodologies like 3D echocar-

diography analysis exhibit enhanced efficacy relative to traditional 2D

approaches, particularly when compared to CMR, for Ejection Fraction

(EF) measurements.19–21

The automation of CMR LVEF analysis with deep learning methods

is an established tool that showed precision and reproducibility.22,23

Also, machine learning analysis is showing promising results, making

the CMR evenmore trustworthy.24

Regarding volume assessment, left atrial volume indexed for body

surface area (LAVi) is proven to be an independent predictor ofmortal-

ity in patients undergoing CMR for all causes,25 and there is evidence

that LAVi measured by TTEis prognosis-related in patients with HF.26

3 FLOWS, 4D FLOW AND HAEMODYNAMIC

The gold standard in evaluating valvular heart disease is echocardiog-

raphy, that has a better depiction of valvular anatomy and mechanism

of dysfunction. Nevertheless, CMR often plays a pivotal role in this

field. Through phase contrast (PC) sequences it can provide accurate

data about flow estimation, such as direction and velocity and regur-

gitant volume can be assessed with both direct and indirect methods

allowing also the detection of indirect signs of severity like chamber

remodeling or reduction in ejection fraction.27–30

Uretsky et al compared the American Society of Echocardiography

(ASE) algorithm for the quantification of primary degenerative mitral

regurgitation (MR) with CMR and reverse remodeling after mitral

repair surgery, they found out that the ASE algorithm and CMR values

were often discordant and that only CMR-assessed severe MR was an

independent predictor for reverse remodeling after surgery, meaning

that, even though echocardiography is the gold standard in choosing

the timing of surgical intervention in mitral valve regurgitation, CMR

can be important in the decision-making process.31 Further studies

are needed to better characterize this conflicting data and introduce

CMR into the daily clinical practice of managing valvular heart disease

patients and selecting surgical timing.

Secondary mitral regurgitation (MR) has a high prevalence among

patientswith advancedHF: latest research on percutaneous treatment

of secondaryMR led to some conflicting evidence, turning the spotlight

on the dysfunctional ventricle rather than the valve pathology “per

se” giving birth to the concept of “proportionate” or “disproportion-

ate” mitral regurgitation. Regarding that, Cavalcante et al.32 studied

the association between the severity of secondaryMR in patients with

ischemic heart disease and the myocardial infarct size measured as

the percentage of the whole LV mass interested by LGE. They found

that the estimated hazard ratio for ischemic MR was higher for larger

myocardial infarct size, suggesting that MR assessment should be

performed from awider point of view including scar size.

In the diagnostic algorithm of HF, hemodynamic impairment eval-

uation is also crucial. Pulmonary transit time (PTT) corresponds to

the time for a contrast bolus to pass from the right- to the left-

sided circulation. Theoretically, thismeasurement can give information

about the functional status of both ventricles and lung congestion.

PTT can be measured by either noninvasive imaging, such as contrast-

enhanced echocardiography, radionuclide imaging, cardiac computer
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tomography, and CMR, or by direct heart catheterization. Recently,

a study published by Houard33 et al. evaluated the performance of

PTT by first-pass perfusion CMR in patients with HFrEF and compared

its ability to predict mortality and HF hospitalization against other

well-known prognostic indicators in HF. PTT by CMRwas significantly

longer in HFrEF and showed high correlation with New York Heart

Association (NYHA) class, LV and RV volumes and EF, and with global

longitudinal strain (GLS). PTT was also an independent predictor of

long-term mortality and HF hospitalization. Its prognostic value was

more pronounced in comparison to RV and LV strain and EF on CMR.

As a result, PPTmight serve as a useful parameter to stratify prognosis

in HF patients, with the advantage of being simple and quick to obtain

from any CMR routine examwith first-pass perfusion scans.33

Since pulmonary hypertension (PH) can be associated with HF and

usually leads to pulmonary artery (PA) dilatation, the ratio between PA

and aorta (PA:Ao ratio) diameter has proven, when higher than 0,83, to

correlate to a worse prognosis in patients with HFpEF, representing an

easily CMR-derived parameter to assess the presence of PH.34

Anemerging technology is the analysis of 4D flowbyCMR. Themain

novelty of 4D flow is the ability to encode velocity in three directions

and over time,35,36 through a 3D phase contrast sequence, allowing

the measurement of flow at any chosen point of a 3D volume and at

any chosen time. This interesting technique leads to the possibility of

studying wall shear stress, flow, and vortex and has potential appli-

cations in the evaluation of diastolic dysfunction37 and valvular heart

diseases.38

4D flow is particularly useful in solving some of the problems

encountered with the 2D measurement of flow through atrioven-

tricular (AV) valves. Indeed, the latter has shown to be less precise

compared to indirect evaluation based on volumes of the ventricle

and flow measurement across the pulmonary or aortic valve, mostly

because the complexdynamics of the annulus through the cardiac cycle

makes it difficult to choose the right plane for the analysis of 2D flow.38

Nevertheless, indirect quantification can also be of limited precision,

especially when dealing with multivalvular disease. 4D flow has shown

to be reliable and reproducible when compared to echocardiography

in the assessment of tricuspid regurgitation (TR) in healthy subjects

and patients with congenital heart disease and in evaluating aortic

regurgitation.39–41 This reliability in grading the severity of valvular

regurgitation, together with the accuracy of CMR in measuring left

ventricular volumes, could be extremely useful in choosing the right

timing of surgery, but further studies correlating surgical timing with

CMR 4D flow parameters are needed.

Moreover, different studies confirmed how 4D flow CMR is use-

ful for estimating right catheterization (RHC) derived parameters such

as mean pulmonary arterial pressure (mPAP) or pulmonary artery

wedge pressure (PAWP). In patients with various type of pulmonary

hypertension, RHC-measured mPAP has shown better correlation

with the persistency of 4D flow-derived vortices in the pulmonary

artery across the cardiac cycle rather than echocardiography-derived

mPAP.42,43 PAWP was proven to be correlated with left atrial peak

inflow acceleration.44

Despite the potential usefulness of these techniques further studies

are needed in the specific context of advanced HF.

4 TISSUE TRACKING

Measurement of myocardial deformation analysis by CMR is evolv-

ing in recent years. At first, the myocardial tagging technique used to

be performed: a single breath-hold ECG-gated spoiled gradient echo

(GRE) sequences “saturates” (nulls) the myocardium in a “grid” pattern

allowing the observer to follow the “saturation/desaturation” bands

through the cardiac cycle and visualize how the myocardium deforms

through systole and diastole. However, this technique is very time-

consuming, difficult to standardize, andneedsdedicated sequences in a

CMR exam. Therefore, myocardial tagging lost its attractiveness as the

newer technology of feature tracking (FT) spread (Figure 2).45

Differently from the speckle tracking (STE) technique on TTE, FT

CMR does not rely on intramyocardial features but tracks the border

between blood and endocardium,46 thus it can be applied to standard

“cine” sequences during postprocessing.

In an interesting study by Lange, Shuster et al.,47 LV-GLS and left

atrium strain by FT CMR were found to correlate with MACE, with

the latest being an independent predictor of mortality in ischemic

cardiomyopathy.

Interesting evidence is emerging from the analysis of RV strain via

FT CMR, as it showed promising results in predicting the risk of MACE

in patients with nonischemic dilated cardiomyopathy (NICM) and in a

subset of patients with NICM andHF stage C or D.48,49

Regarding the right ventricle important data is available for early

detection of cardiomyopathies50 such as phospolamban (PLN) car-

diomyopathy and arrythmogenic right ventricular cardiomyopathy.51

These studies suggest the power of abnormal STE (like apical post

systolic shortening in PLN cardiomyopathy or abnormal deformation

in the subtricuspidal region for arrhythmogenic right ventricular car-

diomyopathy (ARVC)) as a parameter to detect early asymptomatic

onset of the disease in mutation carriers or as a prognostic marker for

ventricular arrythmias and progression of the disease that often leads

to advancedHF.51,52

In this peculiar subset of patients FT CMR strain was deeply

analyzed: CMR FT RV GLS and RV circumferential strain showed

reduced value in patient with arrhythmic complications, but it did not

demonstrate any additional valuewhen adjusted for RVEF and LVEF.53

Unfortunately, as previously shown for STE,54 there is poor cor-

relation between different software vendors and it is not advisable

to compare absolute results for RV strain when obtained from differ-

ent software. In particular, a study comparing four different vendors

in ARVC patients showed that each software was able to distinguish

between preclinical status and overt disease status of the disease,

which is promising for the methodology per se, but there was poor

correlation between the different labels.55

Moreover, CMR FT on the right ventricle shows some dis-

advantages in terms of reproducibility among different software
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F IGURE 2 CMR example of the feature trackingmodule. Left: Long axis LV contours with longitudinal strain displayedwith colors. Middle:
Longitudinal strain curve. Left: Radial strain curve. (CMR: cardiacmagnetic resonance; LV: left ventricle).

vendors and among different scanners, field strength a types of “cine”

sequences.54,56

Final comparison study inARVCpatients betweenSTERVstrain and

FT CMR RV strain did not show agreement between the two methods

and failed to find a “conversion factor.”57

Regarding the main issue of comparing different types of software

in myocardial deformation index, extensive work has been done by

Bogaert et al., they analyzed CMR FT LV-GLS and GRS in a wide

range of patients (comprehending patients with severely reduced

EF, ICM and dilated cardiomyopathy (DCM) patients) showing that

the different software showed poor agreement with manual con-

touring measurement and that also GRS and GLS values are not

interchangeable among vendors even though every vendor’s software

showed good reproducibility inter observer and intra observer.58,59

Beyond cardiomyopathies and prediction of progression of the dis-

ease,CMRFTRVstrainwas studiedas amarkerof pulmonarypressure,

for example, Rolf et al. utilized RV strain by FT CMR as a surro-

gate of RV-LV interactions in patients with chronic thromboembolic

pulmonary hypertension [CTEPH] they found out that RV global lon-

gitudinal strain and global circumferential strain (GCS) correlate with

effective arterial elastance (Eea) when measured by RHC as the ratio

between mPAP and right ventricular stroke volume index, resulting as

an indicator of afterload rather than contractility.60

Furthermore, atrial function can be assessed through FT CMR. The

left atrium deformation curve is divided into three phases: the reser-

voir phase reflecting the atrial relaxation and enlargement during ven-

tricular systole, the conduit phase reflecting the passive filling of the

atrium and the booster phase reflecting the atrial kick. Among these

different phases, an interesting study showed how, in patients with

DCM and HF, the left atrial conduit strain had a stronger prognostic

value than LVEF, LAVi, or LV-GLS.61

Moreover, in patients with HFpEF, with diastolic dysfunction being

the main pathological substrate, atrial strain by FT CMR has shown to

be an independent predictor of the risk of incident HF admission or

death.62

Eventually, it is commonly acknowledged that RV-free wall strain

(RV FWS) by STE echocardiography is an independent predictor of RV

dysfunction after left ventricular assisted device (LVAD) placement.

Further studies are needed to understand if RV FWS by FT CMR has

the same prognostic value.63

5 TISSUE CHARACTERIZATION

CMR has the unique feature of tissue characterization by using late

gadolinium enhancement (LGE) sequences and parametric mapping

techniques.

Gadolinium (Gd) is a paramagnetic contrast agent, and its washout

time is longer in tissues with an increase in extracellular space, such as

with fibrosis or edema (Figure 3).

Moreover, Gd has the property to shorten the T1 relaxation time of

the protons surrounding it. Therefore, the fibrotic/edematous tissue,

where Gd tends to accumulate, has a reduced T1 time.

LGE sequences are acquired 10 min after contrast injection and

consist of T1-weighted GRE or steady-state free precession (SSFP)

sequences with a nonselective 180◦ inversion recovery (IR) pulse that

allowsnullingof the signal fromhealthymyocardium.The time fromthe

IR pulse to the moment when the healthy myocardium signal is nulled

is called inversion time and is patient-specific.45,64

Parametric mapping is a technique that allows the building of a cus-

tomizable color-coded map of the native T1 or T2 relaxation time of

the myocardium in each voxel. Among the several ways to obtained

it, the modified Look–Locker technique (MOLLI) is the most efficient

(Figure 4). Parametric mapping, both for T1 and T2maps, is a powerful

technique that gives information about the composition of themyocar-

dial tissue. High T1 mapping values usually reflect an increase of the

fibrotic or oedematous component, while the elevation of T2 mapping

values depends on a higher water concentration of the tissue. With T1

mapping afterGd administration, the extracellular volume (ECV) is also

measurable.45
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F IGURE 3 Possible complications in advanced heart failure. CMR images of an advanced heart failure patient with ischemic cardiomyopathy
due to a transmural posterior myocardial infarction andwith evidence of thrombus in the posterior apex of the LV (white arrow). Left: Cine
three-chambers view.Middle: LGE three-chambers view, with evidence of transmural myocardial infarction to the posterior wall. Right: LGE apical
short-axis slice. (CMR: cardiac magnetic resonance, LGE: late gadolinium enhancement; LV left ventricle).

F IGURE 4 CMR images of an advanced heart failure patient with biopsy-proven giant cell myocarditis andmild pericardial effusion adjacent to
the lateral wall of the LV. Left: Short axis basal slice, LGE visible at the anterior septum, RV and anterior wall. Middle: Basal slice T1map showing
high T1 values in the anterior septum, RV and anterior wall of the LV. Right: Basal slice T2map showing high T2 values in the same region. (CMR:
cardiac magnetic resonance; LGE: late gadolinium enhancement; LV: left ventricle; RV: right ventricle).

With regard to HF patients, LGE and parametric mapping are rele-

vant players in assessing the etiology ofHFbut also in risk stratification

and prognosis assessment.65

Especially in ICM, LVEF and LGE via CMR provide valuable patient-

specific information translating into a better assessment of prognosis

and the risk of MACE compared to only LVEF.14–16 The NICM-SCAR

study prospectively analyzed 1020 patients with NICM (average EF

33%, with around 35% of patients with NYHA class > II) with CMR

and found out that CMR-derived LVEF and scar were both indepen-

dent predictors of death for all causes, death for cardiovascular causes

and HF hospitalization. Nevertheless, scar assessment outperformed

LVEF in the three endpoints and had an incremental prognostic value

for sudden cardiac death.66 As a matter of fact, the DANISH trial

outlined the scarce benefits in terms of long-term mortality for all

causes with primary prevention ICD implantation based on the solely

LVEF in patients with HFrEF but without coronary artery disease.67

In addition, results from a large multicenter study confirmed that

the presence of LGE in NICM is associated with augmented risk for

all causes mortality, sudden cardiac death, and a need for advanced

HF therapies like heart transplantation or LVAD placement.68 Also,

a meta-analysis demonstrated that LGE is an independent predic-

tor of all causes of mortality and major arrhythmic events in NICM

patients.69

Therefore, primary prevention ICD implantation indications are

about to move from an “LVEF only” strategy to a more comprehensive

assessment of the patient, giving amore important role to the presence

or absence of LGE.

Halliday et al. deepened the relationship between LGE and NICM,

correlating not only the presence of LGE but also its extent and loca-

tion with prognosis. Their investigation revealed that even minimal

amounts of LGE markedly elevate the risk of all-cause mortality, with

marginal incremental risk associated with greater LGE volumes. As for
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LGE localization, patients with LGE distribution exclusively at the free

LV wall had similar mortality risk to those without LGE while patients

with septal LGE showed to be at higher risk compared to the former.

Among all, the highest risk was conferred by the presence of both LV

free wall and septal LGE.70

Nonetheless, the study may contain possible biases. First, the sep-

tal LGE should rise more awareness since it can more frequently lead

to clinical consequences due to the crucial interaction between LV and

RV during contraction. Second, the population of the studymight come

with inhomogeneity as 30% of the included patients have a postmy-

ocarditis DCMwith a different arrhythmogenic risk profile. Therefore,

further studies are needed to understand the consequences of LGE

location.

Convincing evidence in NICM is also coming from parametric map-

ping. Interestingly, in patientswithNICMbutwithout LGE, T1mapping

and ECV fraction are emerging as prognostic indicators.71 Besides,

ECV alone is an independent predictor of arrhythmic burden72 and

HF development73 in these patients. The analysis of parametric map-

ping, mostly native T1 relaxation time, can undercover the presence

of diffuse myocardial fibrosis that cannot be highlighted by LGE and,

therefore, it can add prognostic value when dealing with cardiomyo-

pathic patient (like amyloidosis) or with HF patients.74 Moreover, in

patient with HF and light chain cardiac amyloidosis the ECV mapping

in myocardium and also in the liver and in the spleen can perform as an

index of response to hematologic therapy, with baseline level of ECV

in liver and in the myocardium, as well as the change after 6 months of

therapy, being predictors for mortality.75

6 CMR IN HEART TRANSPLANT PATIENTS

Heart transplantation (HTx) is the gold standard of care for advanced

HF patients when no contraindications are present.1 The median sur-

vival after HTx is 12 years, with one-year survival being around 90%.

It is well-known that the first few months after HTx are crucial in

determining the long-term outcome.76 In this delicate period the main

threats are acute primary graft dysfunction and acute cardiac allograft

rejection.77 After this time, the main complications are related to car-

diac allograft vasculopathy (CAV) leading to allograft failure, infectious

diseases,malignancy and renal failure. CMRcan have a potential role in

managing these patients.

The gold standard for the diagnosis of acute cardiac allograft rejec-

tion (ACAR) is still endomyocardial biopsy (EBM),78 but emerging data

support CMR as a noninvasive surrogate of EMB. A promising study

from St Vincent Hospital in Sydney randomized 40 patients to CMR

or EBM for the diagnosis of ACAR and found that CMR-based surveil-

lance with T1, T2 mapping and ECV, in the first-year post-transplant

is noninferior to the standard of care with EMB. Moreover, only 6%

of patients in the CMR arm requested a confirmative EBM due to

unclear reports or logistic reasons, meaning that 94% of EBM could be

avoided.79 Considering that EBM could lead to a false negative due to

sampling errors80 or to complications,81 CMR is a feasible alternative

in this tricky phase after HTx.

CMR is also important in long-term prognostication and manage-

ment ofCAV. In a study conductedbyMinnesotaMedical Center, stress

CMRwith Regadenoson has proven to be safe and effective in stratify-

ing the risk of CAV.82 Besides perfusion, the presence of LGE was also

associated with CAV. Moreover, a study by Shenoy et al. reported that

the presenceof LGE inHTxpatientswas independently associatedwith

death for all causes orMACE. In addition, the extent was also of impor-

tance: every 1 % increase in LGE was associated with a 6% increase in

risk of all causes of death andMACE.83

Independent predictors of death andMACE after HTx are also CMR

FT, LV-GLS (even if adjusted for LGE),84 while T1 mapping and CMR-

derived ECV are independent predictors of cardiac and noncardiac

outcomes.85

7 CMR IN LVAD PATIENTS

LVAD is a pillar in the therapy of advanced HF and lately some major

technological improvements led to a significant increase in the number

of patients implanted with LVAD as destination therapy.86

CMR in LVAD patients is contraindicated, nevertheless, there are

some aspects that are worth mentioning. In a case report of three

patients who underwent an LVAD explantation a CMR analysis after

the explantation reported an area of apical dyskinesia and fibrosis

where the inflow cannula was placed allowing a more comprehensive

study of the status of the heart after the explant.87

Moreover, it is known that non pulsatile blood flow can cause

hemocompatibility-related advers events like stroke or nonsurgical

bleeding88 and also that continuous flow-related shear forces in the

aorta can promote aortic root dilatation and aortic valve cusps fusion

with the chronic increase in aortic transvalvular gradient leading to

aortic regurgitation in this patient.89,90

In this area, the CMR feature of 4D flow offers some interesting

perspectives: Benk et al, from the University of Frieburg in Germany,

created an aortic phantom (replicating the elastic properties of the aor-

tic vessel with a special resin) into which they placed an LVAD outflow

graft, simulating different possible grafting techniques and different

possible LVAD flows, and found that an outflow cannula with a larger

anastomosis orifice to the ascending aorta, togetherwith a lower LVAD

speed, reduced adverse flow patterns in the aortic root, showing the

promise of being able to find the best way to prevent hemocompatibil-

ity related adverse events.90 In addition, a study from theUniversity of

Minnesota was able to use PC-MRI to study aortic flow and simulate

the best position for an outflow cannula to avoid transporting embolic

particles to the brain.91

8 SCANNING PATIENTS WITH CARDIAC
IMPLANTABLE ELECTRONIC DEVICES

Patients with advanced HF can often have cardiac implantable elec-

tronic devices (CIEDS) or other extracardiac elements for device-based

therapy. The Food and Drug Administration approved a classification
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F IGURE 5 Ferromagnetic artifact during CMR acquisition. CMR images of an advanced heart failure patient with ischemic cardiomyopathy
due to a previous posterior-lateral myocardial infarction with susceptibility artifact mimicking hyperintensity in the anterior wall on T1mapping
images and LGE images. Left: Mapping image.Middle: bSSFP cine image. Right: LGE image. (CMR: cardiacmagnetic resonance, LGE: late
gadolinium enhancement).

of all cardiac devices into three categories to estimate their risk when

undergoing a CMR scan: CMR safe, conditional or unsafe. Devices

falling into the first category require no precaution during the scan,

the second ones are safe only under the very specific conditions

provided in the labeling, and the third ones represent an absolute

contraindication to a CMR examination.92

The main safety concern with this magnetic field is the pulling and

torquing forces that can be imparted on ferromagnetic objects; there-

fore, scanning in the first six weeks after the implant of a CIED is

contraindicated due to the risk of displacement of the newly implanted

catheters and generator.93

The static magnetic field has been reported to potentially cause a

“power on reset” effect that may, although very infrequently, repro-

gram the CIEDs from an asynchronous mode to an inhibited-pacing

mode (i.e., from VOO to VVI) that may lead oversensing and pacing

inhibition during theMRI scan.94

The radiofrequency (RF) field is a temporary magnetic field that

can induce an electrical current in the lead of the CIED, the so-called

“antenna effect,”95 which can heat the tip of the lead and damage the

surrounding tissues (lead-tip heating phenomenon).96 The heating can

be diminished by blood flow. Therefore, epicardial leads are more dan-

gerous to scan.97 Furthermore, balanced SSFP sequences are themost

dangerous in terms of a lead-tip heating phenomenon because they

often use large flip angles that can lead to higher RF energy deposits

in the patient.98

The gradient magnetic fields are magnetic fields that are continu-

ously switchedon andoff during the scan since they are used for spatial

encoding. Similarly to what happens with RF fields, this temporary

magnetic field can induce an electrical current that stimulates periph-

eral nerves (so-called peripheral nerve stimulation phenomenon) or

interfere with the pacing and sensing functions.99

To perform the scan, following international guidelines on CMR

examination on patients with CIED as well as local protocols is

advisable.98,100 In the event of a life-threatening arrhythmia, it is

important to remember that ICD shock in the scanner area could fail

due to possible interference of the magnetic static field on the ICD

capacitor.101

Although the above-mentioned pitfalls to be aware of, with due

precautions scanning patients with CIED is generally safe and it is

becoming gradually more common in clinical practice. Nowadays, the

main issue with CMR and CIEDs is the efficacy of the exam. Since

CIEDs are composed of ferromagnetic elements, they can induce arti-

facts in the image, making the scan less useful for diagnostic purposes

(Figure 5).

The image artifacts can be grouped into two main categories: the

first one is susceptibility artifacts, derived from the local field inhomo-

geneity due to the presence of ferromagnetic materials, seen generally

as signal void or hyperintensity and image distortion in the inversion

recovery and SSFP sequences like LGE. The second category com-

prehends all the artifacts arising from the deterioration of the RF

pulses.92

There are many strategies to mitigate these effects of CIEDs on

CMR, like increasing the distance between the generator and the heart

by lifting the left arm,102 using deep learning techniques to overcome

the artifacts,103 or using smaller voxels, and smaller echo times with

shorter RF pulses and larger receiver bandwidth in the frequency

encoded direction.98

A technique that showed the best results in correcting the arti-

facts is the use of wideband inversion pulses for IR or satura-

tion recovery (SR) sequences. When applying these sequences, the

CIEDs cause an off-resonance that undermines the presequence

pulse preparation (like IR or SR), making the images very diffi-

cult to read.98 Using a wider spectral bandwidth was proposed by

Rashid et al.104,105 and has been proven to be effective in clinical

practice.105,106

Other devices can be used as therapy in advanced HF, such as

cardiac contractility modulators and interatrial shunt devices.107 The

interatrial shunt devices are mainly used in HFpEF to reduce left atrial

pressures and are marked asMR conditional.108,109 A cardiac contrac-

tility modulator is a transvenous device with a catheter to the right

interventricular septum (IVS) that delivers high voltage impulses in the

RV during the absolute refractory period, improving the calcium han-

dling of themyocytes; this device isMR conditional only at 1,5 T for the

head and the extremities.98,110
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In conclusion, the timing of scans poses challenges when manag-

ing CMR and advanced HF patients. There are instances where HF

patients may find it difficult to tolerate extended periods of supine

positioning or prolonged breath-holding requirements during scanning

procedures. Additionally, adherence to the specific guidelines for MRI

conditional devices often necessitates prolonged scanning durations.

Nevertheless, MRI scanning techniques are evolving, and a novel scan-

ning protocol that is ultrafast and with a single breath-hold has been

developed, even though not yet widely available.111

9 CONCLUSION

In this review, we have highlighted the promising and evolving field

of CMR when used in advanced HF patients. CMR allows careful

and reliable assessment of volume and function, reducing inter- and

intraobserver variability. This may be relevant to the implementation

of risk scores, which are widely used to stratify patients with advanced

HF. In addition, CMR opens a new era with FT analysis, providing addi-

tional information from myocardial deformation measures that may

help in prognostic assessment and guidance of advanced HF thera-

pies. Although echocardiography remains the gold standard in valvular

heart disease, irreplaceable for its unique ability to understand the

mechanism of valvular heart disease and its wide availability, flow

analysis with CMR phase contrast sequences is becoming standard in

clinical routine, also for its ability to add tissue characterization to the

understanding of valvular heart disease 4D flow is an interesting nov-

elty in the field of CMR, which is currently expanding and adding value

to the available research; further studies are needed to introduce 4D

flow into clinical practice. LGE and parametricmapping arewell-known

techniques that have a unique role in assessing the etiology of HF and

stratifying the risk of arrhythmias and HF episodes. In addition, CMR

can be useful in heart transplant patients to assess early graft dysfunc-

tion and is becoming easier and safer to use in patients with CIEDs. For

the monitoring of heart transplant and CIEDs patients, and to advance

the integration of CMR into daily clinical practice, future studies are

required There is still a longway to go for CMR in the field of advanced

HF, but the future of this modality is certainly exciting.
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