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Simple Summary: Extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) have
recently been described in human and veterinary medicine and great interest is directed toward them
for their therapeutic potential. EVs are vesicles produced and secreted by Mesenchymal Stem Cells
(MSCs) that possess the same anti-inflammatory and regenerative properties as the cells themselves
but seem safer for clinical applications because of lower immunogenicity and lower size. MSCs that
produce EVs can be derived from adult tissues such as bone marrow or adipose tissue or from fetal
adnexa such as amniotic membrane and Wharton’s jelly. This manuscript gives a summary of the
current description of composition, characteristics, sources, and function of EVs, focusing especially
on their therapeutic applications in veterinary medicine to date. Knowledge of these features and the
steps taken to date will help researchers and veterinary practitioners discover new approaches to
regenerative medicine that are ever closer to being achievable.

Abstract: Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal
stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are
nano-sized particles containing biological components commonly found in other biological materials.
For that reason, EV isolation and characterization are critical to draw precise conclusions during
their investigation. Research on EVs within veterinary medicine is still considered in its early phases,
yet numerous papers were published in recent years. The conventional adult tissues for deriving
MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial
fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amni-
otic membrane/fluid, umbilical cord and Wharton’s jelly. Cells derived from fetal adnexa exhibit
an intermediate state between embryonic and adult cells, demonstrating higher proliferative and
differentiative potential and longer telomeres compared to cells from adult tissues. Summarized
here are the principal and recent preclinical and clinical studies performed in domestic animals
such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue
of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the
future to treat infections in domestic animals. A number of concerns, including large-scale produc-
tion with standardization of EV separation and characterization techniques, must be resolved for
clinical application.

Keywords: extracellular vesicles; exosomes; conditioned medium; microvesicles; mesenchymal stem
cells; clinical application; fetal adnexa; adult tissues

1. Introduction

The study and application of mesenchymal stem cells (MSCs) has exponentially
increased over the past decade since their versatility, safety and great potential exhibit
a strong attraction for researchers [1]. In particular, MSCs are studied extensively for
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their application in regenerative medicine and tissue engineering [2] and they can be
isolated from adult or fetal tissues [3,4]. In fact, there are a great number of in vitro
and clinical studies on humans, and laboratory studies on small and large animals. The
key to MSCs therapeutic potential is their ability to migrate to sites of tissue injury or
inflammation, perceive hypoxia and tissue damage [5], stimulate endogenous repair of
injured tissues [6], and modulate immune responses [7–10]. MSCs abilities are due to the
fact they release many factors (composing the secretoma) into the environment (in vivo)
or into the culture medium (in vitro) forming, in the latter case, the conditioned medium
(CM). The secretoma is composed of small soluble factors (chemokines, cytokines, and
hormones) and extracellular vesicles (EVs) that provide a vehicle for the transfer of lipids,
proteins, and nuclear acids from one cell to another [11,12].

EVs are secreted from many cell types and differ with respect to their origin within
the cell, size, and contents [13–15]. Since they are not only secreted by MSCs, the biologi-
cal significance of EVs has for many years been largely overlooked, with them regarded
like apoptotic bodies, as merely cellular fragments or debris [13–15]. By the most recent
definitions [16,17] there are two main classes of EVs: exosomes, derived from budding of
endosomal membranes and ranging in size from 40 to 100 nm, and microvesicles (MVs),
which originate from outward budding and fission of the plasma membrane and which
range from 50 nm to 1 µm in size. The diversity of proteins, lipids, and nucleic acids
contained in EVs depends on their cell of origin and may be influenced by physiological
stress or other conditions [14,18–20]. EVs have an important role in intercellular com-
munication and are able to modify the activity of target cells through interactions with
surface receptors and the transfer of proteins, mRNAs, and miRNAs [14]. EVs are respon-
sible for the paracrine action of MSCs, exerting an effective mediating role that directly
activates target cells, transferring information to damaged cells or stimulating adjacent
cells to secrete other factors [16,21]. In particular, first, EVs may stimulate target cells
directly by surface-expressed ligands, acting as signaling complexes [22]. Second, EVs
may transfer surface receptors from one cell to another, deliver proteins, mRNA, bioactive
lipids and even whole organelles (e.g., mitochondria) into target cells [22]. As an editorial
noted, this fascinating EVs-mediated cell–cell communication system developed very early
in evolution and served as a model for further development of intercellular interaction
mechanisms involving soluble bioactive mediators and precision ligand–receptor inter-
actions [22]. The earliest descriptions of EVs were performed in the early 1980s and EVs
were initially thought to represent a mechanism for the elimination of proteins and other
undesirable molecules [13,23]. Since the exact route that MSC-EVs follow from donor
cells to recipient cells is still unknown, previous research has shown several important
features [24]. EVs’ surface molecules have the ability to both direct them to recipient cells
and prevent the inside components from deteriorating [24–26]. EVs can enter cells by a
variety of routes once they are connected to a target cell, such as receptor–ligand contact,
internalization through phagocytosis and/or endocytosis, or direct fusion with the plasma
membrane [25,26]. Nevertheless, EVs have the capacity to interact with recipient cells by
delivering a particular cargo directly into the cytoplasm [24–26].

The great attraction for the therapeutic use of EVs is derived from the reduced risks as-
sociated with MSCs grafting, from possible immune reactions against MSCs, and especially
from the opportunity to load or modify the content of bioactive factors to address specific
therapeutic needs [15]. Indeed, MSC-EVs have the same therapeutic potential as MSCs,
which includes stimulating angiogenesis, encouraging cell migration and proliferation,
inhibiting apoptosis, and reducing inflammation [24]. Furthermore, the quick development
of EV-based treatment has been spurred by recent advances in nanotechnology. Because
MSC-EVs are naturally biocompatible, biodegradable, and non-immunogenic, they are a
promising class of nanomaterials for drug delivery applications [27].

These properties make MSC-EVs a viable method for EV-based therapies and they
have been discovered to be relevant in a lot of fields. In human medicine, the main areas
of application of EVs in preclinical studies conducted in laboratory animals have been
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cardiovascular disease [28–30], kidney [31–33], liver [34,35], lung injury and diseases [36,37],
wound healing [38–40], tumor growth [41–43] ophthalmology [44,45], immune-related
diseases [46–50], neurological diseases [51–53] and musculoskeletal system [54–56].

The present review will provide an overview of clinical–therapeutic applications of
MSCs-EVs in veterinary medicine. First of all, the characterization of EVs derived from
adult tissues and fetal adnexa is presented. Preclinical research carried out in sheep, pigs,
and rodents will be mentioned in addition to the therapeutic applicability in vitro and
in vivo for the main domestic animals. Furthermore, the future perspectives of the clinical
application will be discussed to highlighting the importance of the challenges that need to
be addressed and solved to make routine MSCs-EV therapy possible in domestica animals.

To conduct the present study, relevant information was sourced from databases such as
Medline and Science Direct, Google Scholar, Pubmed, Scopus and CAB Abstracts. Multiple
search queries were employed to find all related articles. Full-text reports in the form of
reviews or research articles written in English language were included, while conference or
congress contributions were excluded.

2. Characterization and Sources

EVs are nano-sized particles containing biological components commonly found in
other biological materials [57]. For that reason, EV isolation and characterization are critical
to draw precise conclusions during their investigation. In this context, the International
Society for Extracellular Vesicles (ISEV) identified the minimal experimental requirements
for the definition of EVs and their functions (MISEV 2014) [57]. Initially, they proposed
this thorough documentation of the origin of materials and methods used for isolation,
emphasizing their influence on the ability to replicate findings. Secondly, they advocated
for a comprehensive assessment of the protein composition, including quantifying proteins
anticipated to be concentrated in extracellular EVs. Moreover, they insisted on employing
two complementary methods for characterizing individual particles. Lastly, the functional
analysis should encompass appropriate control samples.

The initial suggestions underwent revision in 2018 [17]. MISEV2018 is presently
regarded as the fundamental set of information to be disclosed when presenting findings
involving EVs. The guidelines were enhanced by urging the provision of more detailed data
concerning sample collection, as well as cell-culture specifics for EV gathering and storage.
The reporting of isolation and concentration methods was emphasized, and no specific
purification protocol was recommended. The catalog of methods for EV characterization
was extensively updated to include recent advancements in single-particle techniques.
Quantification of fundamental components like lipids, proteins, and RNA, along with
their ratios (e.g., particle-to-protein ratio), was highlighted as crucial for assessing EV
enrichment [17]. It was suggested that dose–response studies should be performed using
EV preparations normalized to particle count or another approach of quantifying the
biological cargo of the EVs, and to use multiple control samples, including distinct fractions
of the enrichment protocol, in light of the significantly expanded list of specific protein
markers [17]. Although EV research in veterinary medicine is still in its early phases, several
studies have been published recently. It is strongly advised that specialized EV scientists
and emerging EV-focused veterinary researchers work closely together to minimize biases
and technical issues, provide optimal outcomes, and maximize the potential of group EV
research initiatives [58].

2.1. Adult Tissues

The conventional adult tissues for deriving MSCs include adipose tissue and bone
marrow. Nonetheless, alternative sources such as synovial fluid [59], endometrium [60],
gingiva [61], and milk [62] have also been intermittently used. MSC-derived EVs have
undergone purification and investigation across various domestic animal species including
pig [63–90], horse [59,60,91–104], dog [61,105–117], cat [118–122], cow [62], and sheep [123].
While not all studies have comprehensively characterized EVs [58], most have involved
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isolation, purification, and characterization procedures focusing on size, morphology, and
protein composition. Some studies have delved into nucleic acid content, whereas lipid
quantification has been performed in only two studies focusing on Lyosecretome [98,112].
Tetraspanins (CD9, CD63, CD81) are commonly employed as identifying markers for EVs,
although other biomarkers such as CD29, CD73, CD40, TSG101, β-catenin, and β1-integrins
have also been utilized. The collective characterization of MSCs-EVs sourced from adult
tissues in domestic animals is illustrated in Figure 1.
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2.2. Fetal Adnexa

Cells derived from fetal adnexa exhibit an intermediate state between embryonic and
adult cells [124–127], demonstrating higher proliferative and differentiative potential and
longer telomeres compared to cells from adult tissues [128–130]. These characteristics are
related to the early embryological origin of MSCs derived from fetal adnexa. Following
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blastocyst implantation, the inner cell mass undergoes morphological changes, leading
to the formation of the bilaminar embryonic disc, which consists of the epiblast and the
hypoblast. Some cells from the hypoblast migrate along the outer edges of the extraem-
bryonic reticulum to form a connective tissue known as the extraembryonic mesoderm,
which surrounds the yolk sac and amniotic cavity, later forming the amniotic mesoderm
and chorionic mesoderm [131]. These cells, derived from extraembryonic mesoderm,
are fundamental for maintaining feto–maternal tolerance during pregnancy, having im-
portant immunomodulatory characteristics and low immunogenicity [131,132]. Despite
these important attributes of MSCs from fetal adnexa, MSCs-EVs have been purified and
investigated only in equine and canine species [3,133–142].

In equine species, only Iacono et al. [3] noticed the presence of complex extracellular
vesicles measuring 500 nM–1 µM, observed in MSCs from Wharton’s jelly (WJ) using TEM.
In contrast, the research group of Lange-Consiglio reported in various studies [133–135] that
amniotic membrane (AM)-MSCs produce EVs ranging in size from 100 nm to 1000 nm, with
a predominance of vesicles between 100 and 200 nm, which they considered as shedding
vesicles. In 2018, Lange-Consiglio et al. [135] performed miRNA sequencing of EVs derived
from AM-MSCs for the first time, finding that EVs contain a lower percentage of miRNAs
than AM-MSCs and that several miRNAs are enriched hundreds or thousands of times
in EVs, while others remain at the same level as in AM-MSCs. Moreover, the authors
reported that many of the miRNAs enriched in EVs regulate the inflammatory response,
such as the overexpression of miR-146, which decreases the expression of the inflammatory
cytokine IL-6 in lipopolysaccharide (LPS)-stimulated macrophage cells, and MiR-223,
which negatively regulates the expression of many inflammatory genes in macrophage
cells. The same research group supported these observations using AM-MSCs-EVs, in an
in vitro model, to counteract the stress induced by LPS in endometrial, lung, and tendon
cells [133,134,136]. In all cases, the authors observed the incorporation of EVs within
cells and the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6),
IL-1β, matrix metalloproteinase-1 (MMP-1), and MMP-13 genes. Most recently, the same
research group evaluated the surface glycosylation pattern of AM-MSCs-EVs released in
conditioned medium, using a microarray procedure [137]. The signal intensity detected
by microarray scanner indicated a high simultaneous presence of Galβ1,3GalNAc, α2,3
sialic acid, and high-mannose N-linked glycans, which the authors suggest may constitute
markers of AM-MSCs-EVs in equine species.

Canine MSCs are of interest for both veterinary and comparative models of disease;
however, in this species, as well as in humans, there are difficulties in acquiring adult
tissues and there are ethical implications. For these reasons, in recent years, researchers’
attention has been directed towards identifying innovative sources of MSCs and EVs from
easily accessible materials. In 2019, Crain et al. [138] reported that canine WJ-MSCs produce
EVs of 125 nm in diameter. In this preliminary study on the mechanism of immune EVs
modulation in canines, the authors observed that EVs inhibited CD4 T cell proliferation in
a dose-dependent manner, hypothesizing a mechanism regulated by a TGF-βRI antagonist,
neutralizing antibodies to TGF-β, or the A2A adenosine receptor blockade. Most recently,
Wright et al. [139] characterized EVs derived from umbilical cord (UC) cells in canines,
following MISEV guidelines. Canine UC-MSCS-EVs were found to be within the size range
of exosomes (50–150 nm) with a median protein concentration of 3 g/mL. Isolated EVs
were positively stained for CD9, CD63, CD81, ALIX protein, and CD142 (TF: Tissue Factor),
similar to canine UC-MSCs. These findings indicate that EVs potentially share TF expression
and potential pro-coagulant activity with MSCs of origin, which must be considered when
using them as therapeutic agents. Regarding EVs derived from canine AM-MSCs, Karam
et al. compared their morphological aspects at different culture passages, finding that, while
the EV size did not differ between culture passages, their number decreased from passage
0 to passage 2 of in vitro culture [140]. Based on these observations, the authors suggest
that cell–cell communication is greater in the early phase, making this the optimal phase for
clinical EV application. These results were confirmed by Scassiotti et al. [141]. In line with
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the findings reported in human amniotic fluid and membranes, Pastore et al. [142] isolated
EVs of different sizes enriched for Alix (ALG-2 interacting protein X), CD81 (Tetraspanin-28),
and TSG101 (Tumor susceptibility gene 101) after sequential centrifugations. Since CD59
seems to be involved in regulating the immunomodulation of feto–maternal interaction
during pregnancy, the authors investigated the expression of this cluster by AM-MSCs-EVs
in canines. All isolated EVs fractions expressed CD59, indicating that EVs derived from
the amnion carry a complement inhibitor and play a crucial role in promoting immune
tolerance to embryo–fetal antigens and reducing the risk of abortion in dogs.

3. Clinical Application of EVs

The therapeutic potential of MSCs-EVs has been increasingly studied over the
past decade.

3.1. Preclinical Studies

In pigs and sheep there has been less research than that on rodents, but it is all
quite recent. Application areas in sheep include the musculoskeletal system, neurological
system, and sepsis/pneumonia, while in pigs the respiratory and circulatory systems and
renal/liver injury are currently being utilized. The main clinical studies conducted on these
species are summarized in Table 1.

Table 1. Application of MSCs-derived EVs in pig and sheep. p = porcine; h = human;
BM = bone marrow; AT = adipose tissue; UC = umbilical cord.

Animal Source of EVs District Application Mode of Administration Reference

Pig

pBM-MSCs Respiratory Influenza virus Intratracheal [70]

pAT-MSCs Cardiovascular Myocardial infarction

Intraoperative insertion of
EVs combined with

biocompatible cardiac
scaffolds

[81]

pBM-MSCs Cardiovascular Myocardial infarction Intraoperative insertion of
EV collagen patch [90]

pAT-MSCs Urinary
Model of metabolic syndrome

and renal artery stenosis in
cardiovascular complications

Intrarenal injection [67,68,75,77–
80,82,83]

pAT-MSCs Vertebral
column Inducted spinal cord injury Intrathecal injection [89]

pAT-MSCs Hepatic

Inducted liver injury
(hemi-hepatectomy and

hepatic ischemia-
reperfusion injury)

Intravenous [87,88]

Sheep

hBM-MSCs Neurological Hypoxic ischemic
encephalopathy (HIE) Intravenous [143]

hUC-MSCs Musculoskeletal Ligament injury Application onto a type
1 collagen sponge [144]

hBM-MSCs Systemic Pneumonia/sepsis Intravenous [145]

Only recently, some studies have characterized MSCs-EVs in the equine and canine
species [101,141]. More recently, domestic animals, such as horse, dog, and cat have also
been used in preclinical and clinical studies. Table 2 summarizes the main preclinical
studies carried out in domestic animals. Regarding preclinical studies, EVs derived from
adult and fetal tissues have been applied to cultures of tenocytes, chondrocytes, fibroblasts,
and endometrial cells, during in vitro embryo production, and to alveolar macrophages,
microglial cells and mesenchymal stem cells.
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Table 2. Preclinical studies in domestic animals with the use of EV/CM in culture.
AM = amniotic membrane; BM = bone marrow; AT = adipose tissue; Syn Fluid = synovial fluid;
WJ = Wharton’s jelly; e = equine; b = bovine; c = canine; f = feline.

Animal Source of EVs Application Culture Effects Reference

Horse

eAM-MSCs Endometrial cells

reduced the apoptosis rate, increased cell
proliferation values, downregulated

pro-inflammatory gene expression, and decreased
the secretion of pro-inflammatory cytokines

[134]

eAM-MSCs Tenocytes induced a down-regulation of MMP1, MMP9,
MMP13 and TNFα expression [130]

eBM-MSCs eAT-MSCs
ad Syn Fluid Chondrocytes reduced inflammation [59]

eBM-MSCs Chondrocytes

increased the articular chondrocyte collagen
protein amounts, mRNA levels of Prg4, and

enhanced the proliferation and migratory
capacities of chondrocytes

[99]

eBM-MSCs
(autologous) Chondrocytes

anti-inflammatory effects on gene expression
following chondrocyte exposure to tumor necrosis

factor α and Interleukin 1β
[97]

eBM-MSCs Chondrocytes

induced a greater increase in equine articular
chondrocyte-neosynthesized hyaline-like matrix by
modulating collagen levels, increasing PCNA, and

decreasing Htra1 synthesis

[104]

eAM-MSCs Alveolar macrophages Modulatory-effect release of TGF-alfa and β and
possibly IL-6 [133]

Bovine

bAM-MSCs Blastocysts

addition of EVs during in vitro embryo production
seemed to influence the developmental capacity
and implantation potential of the embryos and
regulate the expression of specific miRNAs that

regulated blastocyst development

[146]

bAM-MSCs (CM) Mammary epithelial
cells

could attenuate bacterial growth, as evaluated by
the number of CFUs. After 24 h of culture with S.

aureus, 89.67% of mammary epithelial cells treated
were still alive, whereas all cells cultured and not

treated were dead

[147]

Dog

cWJ-MSCs Fibroblasts suppressed the proliferation of cell T CD4+ using
TGF-β and adenosin [138]

cBM-MSCs Murine microglia cells decreased inflammation (decrease IL-1β) [113]

cAT-MSCs
(Lyosecretoma)

Tenocytes,
chondrocytes and

AT-MSCs

induced proliferation of cells in dose-dependent
manner and showed anti-elastase activity [98]

cAM-MSCs
Coculture with
AM-MSCs and

AT-MSCs
15–20% increased expansion rate [141]

cAT-MSCs Semen during
cryopreservation

initiated damaged-sperm repair (higher motility,
live sperm percentage, membrane and acrosome

integrity; higher expression of genes related to the
repair of plasma membrane and chromatin

material) and decreased reactive oxygen
species production

[106]

Cat fAT-MSCs and
fibroblasts

Human THP-1
Macrophages

MSCs-EVs had lower levels of pro-inflammatory
cytokines (IL-1β, TNF-α) and higher level of IL-10.
MSCs-EVs played a crucial role in immune defense

compared with EVs–fibroblasts

[118]
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3.2. Clinical Studies/Applications

Table 3 summarizes the main clinical studies involving the in vivo application of
EV-MSCs in veterinary medicine.

Table 3. Application of EVs/CM (culture medium)-derived MSCs in veterinary medicine. e = equine;
b = bovine; c = canine; f = feline; AT = adipose tissue; AM = amniotic membrane; BM = bone marrow;
UC = umbilical cord.

Animal Source of EVs District Application Mode of Administration Reference

Horse

eAT-MSCs Musculoskeletal Ligament injury Ultrasound-guided
injection at the injury site [96]

eAT-MSCs Musculoskeletal Osteoarthritis Intra-articular injection [101]

eAM-MSCs Reproductive Chronic endometritis Intrauterine [148]

eBM-MSCs Reproductive Chronic endometritis Intrauterine [103]

eAM-MSCs
(CM) Reproductive

Persistent
post-breeding-induced

endometritis
Intrauterine [149]

Cattle

bAM-MSCs Reproductive Blastocyst development In vitro during embryo
production [146]

bAM-MSCs
(CM) Mammary gland Acute and chronic mastitis Intramammarily [147]

Dog

cBM-MSCs Skin Inducted skin wound Subcutaneous injection [105]

cAT-MSCs
(Lyosectetoma) Musculoskeletal Osteoarthritis Intra-articular injection [98]

cAT-MSCs Urinary Renal ischemia-reperfusion
injury Renal cortex injection [116]

Cat fAT-MSCs Urinary Post-renal acute kidney
injury (PR-AKI) Intravenous [122]

3.2.1. Orthopedic Field

Two studies have been conducted in the orthopedic field: one study involved one horse
with ligament injury [96], and three dogs with spontaneous osteoarthritis [98]. In the
ligament injury, the injection of 25 µg/mL EVs increased angiogenesis and elasticity in the
ligament injury and also promoted lesion filling without adverse reaction [96]. The study
conducted in the dog used a product called Lyosecretome (freeze-dried secretome), which
has previously created by the same research group using MSCs obtained from human
adipose tissue [150]. In order to concentrate and purify the MSC-derived secretome, this
procedure included an ultrafiltration phase. After that, the secretome was freeze-dried to
provide a powdered dosage form with improved long-term stability [98]. Dogs suffering
osteoarthritis received 20 mg, or 2 × 106 cell equivalents, resuspended in hyaluronic acid
for application [98]. Allogeneic Lyosecretome injected intra-articularly is safe and does not
cause a clinically relevant systemic or local adverse response [98].

3.2.2. Reproductive Field

In the reproductive field, two studies have been conducted on mares with chronic
endometritis [103,149]. A case report was conducted on an 11-year-old Friesian mare with
a history of failed pregnancies despite numerous insemination attempts [150]. Two treat-
ments with 20 billion EVs diluted in 50 mL of NaCl 0.9% were performed, followed by an
uterine biopsy. The success of the intrauterine administration of EVs is demonstrated by an
improvement in the classification of endometritis and in a successful artificial insemination
with implantation of an embryo, as detected at day 14, and with a pregnancy that is still
ongoing [149]. Day-8 equine embryos are thought to release EVs that transfer early preg-
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nancy factors including HSP10 and miRNA, hence modulating the function of the oviductal
epithelium [151]. The endometrial epithelium also secretes EVs, which target cellular
pathways important for embryo implantation [152]. Pro-inflammatory cytokines, growth
factors, and chemokines operate on fibroblasts and other cells in the physiopathological
mechanisms of equine endometriosis, as well as in other inflamed tissues, influencing
extra-cellular matrix deposition and tissue fibrosis [153].

In the second study of chronic endometritis, 14 mares were included and were di-
vided into control and endometritis groups [103]. During the first and second ovulation,
EVs were injected twice, separated by 21 days; 400µg/mL of EVs was added to the ster-
ile carboxymethylcellulose (CMC) at a concentration of 22 mg/mL. Each mL of the gel
contained 200µg EVs. The CMC gel with MSCs-EVs is preserved by lyophilization, and
lyophilized EV solution was administered intrauterinely. Doppler and hormonal analysis
were performed in addition to uterine biopsy [103]. After the second EV treatment, the
histological evaluation revealed the regression of fibrous tissue and restoration of healthy
endometrial glands with normal epithelium. In all treated mares, on the ninth day after
insemination, an embryonic vesicle, and thus a pregnancy, was identified. The activity
of EVs and the miRNAs contained in them triggered tissue regeneration, resulting in a
restoration to the original histological features and thus, normal endometrial function. This
probably restored the conditions needed for the appropriate implantation and development
of maternal–embryonic paracrine communication [103].

The third study concerns the persistent post-breeding-induced endometritis, which is
considered a major cause of subfertility in mares. Authors identified an optimal concentra-
tion of 400 × 106 EVs with 10 × 106 spermatozoa/mL: at this concentration, sperm mobility
parameters were not negatively affected [149]. Semen alone or semen enhanced with EVs
was used for insemination of sixteen susceptible mares. The supplementation resulted in
a decrease in intrauterine fluid accumulation and polymorphonuclear neutrophil infiltra-
tion, along with a noteworthy decrease in intrauterine TNF-α and IL-6 and an increase in
anti-inflammatory IL-10 in mares in the EV group, indicating effective regulation of the
post-insemination inflammatory response [149].

Comparing these studies is challenging because of the limited sample size, and the
substantial difference between the two considered diseases with a distinct etiology, as well
as the different sources of EVs used (AM and BM). Despite this, the results are encouraging,
although the different authors also measured and evaluated different molecules in addition
to the common result represented by the positive diagnosis of pregnancy. A large clinical
trial should be conducted on the problem-mares with persistent post-breeding-induced
endometritis and chronic endometritis by standardizing the amount of EVs and the protocol
of administration. Results should be supported by a histologic examination, in addition to
a positive pregnancy diagnosis.

In cattle, the embryo culture was supplemented with or without 100 × 106 EVs/mL
in Holstein Friesian cows, and this seemed to partially modify the expression of certain
miRNAs involved in successful embryo implantation and prevent the detrimental effects
of in vitro culture [146].

3.2.3. Skin-Wound Field

Regarding skin wounds, El-Tookhy et al. [105] used a dog full-thickness skin defect
model. The wounds were induced using a dermal punch and the wounds were 2.5 cm
apart. The results showed that MSCs-EVs significantly accelerated and increased cutaneous
wound healing, collagen synthesis, and vascularization at wound sites, and showed faster
wound closure. Additionally, it was determined that the application of EVs sped up
the maturity of freshly created capillaries at wound sites, in addition to encouraging the
formation of new ones [105] The amount of EV injected in this study equals the amount
produced by a 2 × 106 MSCs/1 mL/wound [105].

One of the more complex biological processes that may be observed is wound healing,
which requires coordinated action between cells, growth factors, and extracellular matrix
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proteins. Conducting well-designed studies is crucial to compare the literature and obtain
practical insights that might aid clinicians, especially considering the substantial amount of
research that has been carried out on this topic in both human and veterinary medicine.
Dogs provide ideal research models, and studies on wound healing have used them as
translational models for both human and veterinary applications [154].

Induced-wound sizes used in this study were performed considering the critical size
defect for dogs [105]. Future trials should consider different types of wounds, such as those
that have arisen spontaneously and those that are more difficult to heal such as pressure
sores, as performed in other studies in which MSCs have been applied [155–157].

3.2.4. Urinary Tract

Artificial urinary occlusion was used to create the cat models of PR-AKI, which were
subsequently treated with MSCs-EVs [122]. The infusion dose was equivalent to the
amount of EV secreted by 10 million allogenic feline AT-MSCs in 24 h. Treatment with EVs
was found to be effective in restoring plasma phosphorus, urea nitrogen, and creatinine.
A routine blood examination revealed that the PR-AKI cats treated with EVs had faster
return of their leukocytes to the normal physiological range than the control group. The
plasma metabolome profile of PR-AKI cats treated with EVs was shown to be strikingly
comparable to that of normal cats using ultra-high performance liquid chromatography
analysis. Additionally, the examination of plasma demonstrated a strong correlation
between the dynamic process of PR-AKI in cats and six metabolites found in plasma:
carnitine, melibiose, d-glucosamine, cytidine, dihydroorotic acid, and stachyose [122]. The
study demonstrated the efficacy of treatment with MSC-EVs and also discovered new PR-
AKI indicators in addition to six metabolites, which may be potential targets for MSC-EVs
treatment [122].

In the dog, Liu et al. 2023 [116] included 20 dogs as a model of renal ischemia-
reperfusion injury, and the renal cortex of the left kidney was injected with EVs (180 µg/kg)
in the experimental group. The EV treatment group showed reduced mitochondrial damage
and a decrease in mitochondrial number as compared to the renal ischemia-reperfusion
injury model group [116]. Renal ischemia-reperfusion injury resulted in severe histological
abnormalities and significant increases in markers for renal function, inflammation and
apoptosis, which were reduced by the infusion of MSCs-EVs [116].

3.2.5. Mammary Gland

Regarding the application of the mammary gland in cattle, 48 animals were enrolled,
of whom 32 had acute mastitis and 16 had chronic mastitis [147]. After milking, the
treated cows received CM through intramammary application with 3 mL of CM alone or,
in the control group, they received the antibiotic alone, intramammarily, chosen from an
antibiogram test, for three consecutive days. The standard experimental volume of CM
was set at 3 mL since, after lyophilization, CM was concentrated 4-fold, and a uniform
treatment protocol was needed to compare this to the antibiotic treatment [147]. In vitro
results showed that the addition of CM inhibited CFU bacteria and decreased bacterial
growth; in cell culture infected with S. aureus, cells died in 12 h, while with the addition
of CM 60–89% of cells remained viable. Regarding the in vivo application, there was no
difference in the improvement of clinically affected quarters treated with CM compared
to antibiotic treatment, but the rate of relapse was different. There was no statistically
significant difference between the antibiotic group compared to the CM groups but, in
the antibiotic treatment, the mean value of somatic cell count decreased, compared to the
CM treatments. The study showed that treating mastitis with CM would reduce the need
for antibiotics, minimizing antibiotic resistance and preventing the need for costly and
inefficient treatments. The mammary gland appears to be trying to repair itself, and, in
this situation, using CM, which is high in growth factors, could facilitate the regenerative
process [147]. Furthermore, animals with chronic mastitis are frequently culled from the
herd rather than receiving treatment. In the future, this research could help restore milk
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production even in cows who would otherwise be forced to leave the production cycle,
in addition to significantly reducing the use of antibiotics. The successful recovery of
glandular tissue and the prevention of antibiotic residues in milk could be two additional
financial benefits of using MSCs-CM [147].

3.3. Future Perspectives and Challenges in Clinical Applications

Compared with MSC therapy, the use of MSCs-EVs offers more advantages. In fact,
MSCs-EVs are highly stable, suitable for long-term storage, and can induce intercellular
communication by directly transferring functional proteins and miRNAs [158]. Further-
more, allogeneic administration of EVs does not result in an immune response, and their
ability to avoid the possible carcinogenicity of MSCs is a major benefit [158].

Treatment of infectious disorders is another clinical area where potential EV therapy
is growing, according to recent studies. Infectious diseases that were thought to be under
control are becoming more severe and new ones are emerging [159]. The effectiveness
of antibiotic treatment of these diseases is threatened by antibiotic resistance. In fact,
worldwide, one of the most significant problems endangering the health of humans and
animals is antibiotic resistance (AMR) [160]. Alternative therapeutic approaches to treat
infections are becoming increasingly essential, as a result of the failure of regularly used
treatment approaches and an increase in the number of outbreaks of serious infectious
diseases [159]. Nowadays, the majority of research on infectious diseases has been con-
ducted on rodents, including studies on sepsis, lung infections, wound infections, urinary
tract infections and intestinal infections. Regenerative tissue, direct antibacterial effects,
and immunomodulation are the therapeutic mechanisms [159]. Given the importance
of reducing antibiotic therapy in order to decrease antibiotic resistance for public health,
it is certain that numerous studies on domestic animals will also be carried out in the
coming years.

Despite the encouraging results of preclinical and clinical studies of the application of
MSCs-EVs in domestic animals, there are several challenges to overcome in order to achieve
routine clinical application, such as large-scale production and precise isolation methods,
taking into account and reducing factors that affect EV quality and quantity, finding
rapid and accurate characterization of EVs, the precise content of the EV cargo, and the
safety profile.

3.4. Large-Scale Production, Isolation Methods and Factors That Affect EV Quality/Quantity

Although MSCs are relatively easy to expand using conventional tissue flasks and
bioreactors, their growth in culture is finite and their biological properties may become
altered with repeated passage. There is an urgent need for development of methods for
reliable expansion of MSCs to mass-produce EVs for clinical use. In fact, current methods of
expansion of MSCs are labor-intensive and involve several procedures. In order to facilitate
large-scale MSC-EV production, new batches of MSCs will have to be periodically derived,
with significant impact on the costs [161]. To overcome this limitation different methods
could be used, such as immortalization by natural selection or by genetic modification
or clonal isolation [162,163]. A recent study in human medicine showed that hUC-MSC
culture in scalable three-dimensional cultures resulted in a twenty-fold greater yield of
EV than two-dimensional cultures [164]. In human medicine, several research groups
have demonstrated that EVs isolated from MSCs culture by ultrafiltration followed by
size-exclusion chromatography results in a higher yield while preserving EVs’ biophysical
and functional properties [165–168].

The production of MSCs-EVs can be influenced by a number of factors, including
cellular confluence, early vs. later cell passages, oxygen concentration, cytokines, and
medium serum content [169]. A recent standard protocol for Good Manufacturing Prac-
tices (GMPs) offers a solution to produce MSCs and MSC-EVs on a large scale [170]. A
similar procedure could be carried out with MSCs-EVs derived from horse and dog in
veterinary medicine.
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3.5. Safety Profile

Establishing a safety profile is another fundamental condition for clinical application.
The greatest apprehension about the in vivo therapeutic use of cells is the differentiation of
the transplanted MSCs and the potential of MSCs to suppress anti-tumor immune responses
and to act as a progenitor for blood vessels, which potentially promote tumor growth and
metastasis [171].

4. Conclusions

In the present review, we have summarized what EVs are, and that they can be readily
isolated from MSCs derived from adult and fetal tissues. MSCs-EVs are known to have
therapeutic benefits in different animal disease models and have theoretical advantages
over intact MSCs as a therapeutic product, and in the future may be preferred over whole
cells in the regenerative medicine field. For clinical application, several issues need to
be addressed, such as large-scale production with standardization of EV isolation and
characterization protocols.
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