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A B S T R A C T

The Intentional Analytics Model (IAM) has been devised to couple OLAP and analytics by (i) letting users
express their analysis intentions on multidimensional data cubes and (ii) returning enhanced cubes, i.e.,
multidimensional data annotated with knowledge insights in the form of models (e.g., correlations). Five
intention operators were proposed to this end; of these, describe and assess have been investigated in previous
papers. In this work we enrich the IAM picture by focusing on the explain operator, whose goal is to provide
an answer to the user asking ‘‘why does measure 𝑚 show these values?’’; specifically, we consider models that
explain 𝑚 in terms of one or more other measures. We propose a syntax for the operator and discuss how
enhanced cubes are built by (i) finding the relationship between 𝑚 and the other cube measures via regression
analysis and cross-correlation, and (ii) highlighting the most interesting one. Finally, we test the operator
implementation in terms of efficiency and effectiveness.
1. Introduction

Despite the OLAP (On-Line Analytical Processing) paradigm’s enor-
mous success in helping decision makers analyze multidimensional
cubes, it is now obvious that this paradigm cannot, by itself, satisfy
the sophisticated needs of new-generation users. The Intentional Ana-
lytics Model (IAM) suggests pairing OLAP with analytics as one of the
approaches adopted by research to improve OLAP [1]. The two basic
tenets of the IAM are: (i) users explore the data space by expressing
their analysis intentions, and (ii) they obtain multidimensional data
as well as knowledge insights in the form of models as a result. To
achieve (i) five intention operators were proposed, namely, describe
(describes one or more cube measures at some aggregation level,
possibly focused on some level members), assess (judges one or more
cube measures with reference to some benchmark), explain (reveals
the reason behind the values of a measure, for instance by correlating
it with other measures), predict (shows data not in the original cubes,
derived for instance with regression), and suggest (shows data similar
to those the current user, or similar users, have been interested in).
As to (ii), first-class citizens of the IAM are enhanced cubes, defined as
multidimensional cubes coupled with highlights, i.e., interesting com-
ponents of models automatically extracted from cubes. An overview of
the approach is shown in Fig. 1. Noticeably, having different models
automatically computed and evaluated in terms of their interest relieves
the user from the time-wasting effort of trying different possibilities.

Among the five intention operators, describe and assess have been
investigated in previous papers [2–4]. In this paper we enrich the
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IAM picture by focusing on the explain operator. An explanation is
essentially a description of causation for an observed phenomenon;
in practice, it answers the why? question for that phenomenon by
providing a causal model for it [5]. In our context, we concentrate on
providing explanation models for a measure the user is observing (target
measure); thus, the goal of the explain operator will be to provide an
answer to the user asking ‘‘why does measure 𝑚 show these values?’’.

As envisioned in [1], several types of models can be used to this
end, for instance:

• use regression analysis to correlate the values taken by 𝑚 with
those taken by one or more other measures 𝑚′, 𝑚′′, etc. (e.g., sales
revenues are roughly proportional to the quantity sold);

• use cross-correlation to match a time series of 𝑚 with one of
another measure 𝑚′, by also considering that there may be a delay
between the two (e.g., the trend of deaths for a disease follows the
one of infections with a 2-weeks delay);

• establish an analogy between the values of 𝑚 at different aggre-
gation levels (e.g., the trend of sales revenues for beer closely
reflects the one of revenues for drinks);

• find recurrent patterns that relate 𝑚 to members and/or other
measures [6] (e.g., the sales of panettone are always high in
December);

• find the cube facts that give the highest contributions to 𝑚 [7].

In this work we focus on models that explain 𝑚 in terms of one or more
other measures (candidate measures). While in a previous paper [8] we
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Fig. 1. The IAM approach.

have only considered models that establish a polynomial relationship1

between 𝑚 and another measure 𝑚′, here we extend our approach by
also including multivariable linear regression and cross-correlation.

Example 1. Let a SALES cube be given, whose schema is shown in
Fig. 2, and let the user’s intention be

𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 𝖻𝗒 𝗍𝗒𝗉𝖾 𝖿𝗈𝗋 𝗒𝖾𝖺𝗋 = ‘2022’

where netRevenue is the target measure and all the other measures of
SALES (namely, quantity, unitPrice, grossRevenue, and discount)
are candidate to be used for explanation). Fig. 1 shows the result
of this intention, evaluated as follows. First, the subset of facts for
2022 (for clause) are selected from the SALES cube (with clause) and
aggregated by product type (by clause; in OLAP terms, a slice-and-
dice and a roll-up operator are applied). Then, regression analysis is
used to compare the netRevenue measure with the candidate measures
and find a set of components corresponding to (i) polynomials that
best approximates the relationship of netRevenue with each candi-
date measure, (ii) the linear combination that best approximates the
relationship of netRevenue with all candidate measures, and (iii) the
best cross-correlation of netRevenue with each candidate measure.
Finally, a measure of interest that expresses how well the values of
netRevenue are replicated by each component is computed for all the
components obtained, and the most interesting one (i.e., the highlight)
is shown to the user. In the SALES cube, measure netRevenue is
actually calculated as 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍; thus, not surprisingly, in
Fig. 1 the highlight shows that netRevenue is a linear combination of
grossRevenue and discount. □

The original contributions we give in this paper compared to [8]
are listed below:

1. Besides polynomial univariable regression, we also consider
models based on multivariable linear regression and cross-
correlation.

1 Since the term correlation in statistics is mainly used to denote linear rela-
tionships, to avoid misunderstandings we will use the general term relationship
instead.
2

2. For each model type, we give a definition of interest.
3. We formalize a join operator between cubes (in the same direc-

tion of the drill-across OLAP operator), aimed at making more
candidate measures available for explanation and creating more
precise models.

4. We extend the syntax of explain to cope with the new model
types considered, to operate on two or more cubes, and to
support derived measures, i.e., measures computed from other
measures via algebraic expressions.

5. We define domination rules to cope with overlapping compo-
nents of different models.

6. We present the results of a comprehensive set of experimental
tests aimed to evaluate our approach not only from the point of
view of efficiency, but also from that of effectiveness.

The paper outline is as follows. After introducing a formalism to
manipulate cubes and queries in Section 2, in Section 3 we introduce
models and enhanced cubes. In Section 4 we give the syntax of explain
and illustrate how models of the different types are built. Then, in
Section 5 we explain how enhanced cubes are visualized. Finally, in
Section 6 we test the operator implementation in terms of efficiency
and effectiveness, in Section 7 we discuss the related literature, and in
Section 8 we draw the conclusions.

2. Formalities

To simplify the formalization and without loss of generality,2 we
will restrict to consider linear hierarchies.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a triple ℎ =
(𝐿ℎ,⪰ℎ,≥ℎ) where:

(i) 𝐿ℎ is a set of categorical levels, each coupled with a domain
𝐷𝑜𝑚(𝑙) including a set of members;

(ii) ⪰ℎ is a roll-up total order of 𝐿ℎ; and
(iii) ≥ℎ is a part-of partial order of ⋃𝑙∈𝐿ℎ

𝐷𝑜𝑚(𝑙).

The top level of ⪰ℎ is called dimension. The part-of partial order is such
that, for each couple of levels 𝑙 and 𝑙′ such that 𝑙 ⪰ℎ 𝑙′, for each member
𝑢 ∈ 𝐷𝑜𝑚(𝑙) there is exactly one member 𝑢′ ∈ 𝐷𝑜𝑚(𝑙′) such that 𝑢 ≥ℎ 𝑢′.

Definition 2 (Cube Schema). A cube schema is a couple  = (𝐻,𝑀)
where:

(i) 𝐻 is a set of hierarchies;
(ii) 𝑀 is a set of numerical measures, where each measure 𝑚 ∈ 𝑀

is coupled with one aggregation operator 𝑜𝑝(𝑚) ∈ {𝚜𝚞𝚖, 𝚊𝚟𝚐,…}.

Example 2. For our working example we will use the SALES and
PURCHASE cubes, whose conceptual schemata are depicted in Fig. 2
using the DFM [9]. Formally, it is 𝖲𝖠𝖫𝖤𝖲 = (𝐻,𝑀) with

𝐻 = {ℎ𝖣𝖺𝗍𝖾, ℎ𝖯𝗋𝗈𝖽𝗎𝖼𝗍, ℎ𝖲𝗍𝗈𝗋𝖾};

𝑀 = {𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒, 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾, 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾, 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾};

𝖽𝖺𝗍𝖾 ⪰ 𝗆𝗈𝗇𝗍𝗁 ⪰ 𝗒𝖾𝖺𝗋;

𝗉𝗋𝗈𝖽𝗎𝖼𝗍 ⪰ 𝗍𝗒𝗉𝖾 ⪰ 𝖼𝖺𝗍𝖾𝗀𝗈𝗋𝗒;

𝗌𝗍𝗈𝗋𝖾 ⪰ 𝖼𝗂𝗍𝗒 ⪰ 𝖼𝗈𝗎𝗇𝗍𝗋𝗒

and 𝑜𝑝(𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒) = 𝑜𝑝(𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾) = 𝑜𝑝(𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍) = 𝑜𝑝(𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾) =
𝚜𝚞𝚖, 𝑜𝑝(𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾) = 𝚊𝚟𝚐. In the part-of order of the Product hierarchy

2 The presence of branches and diamonds in the hierarchies only affects the
definition of group-by sets and, consequently, the definition of roll-up partial
order and the computation of cube queries; it has no impact within the scope
of this paper since we focus on models that operate at a fixed group-by set,
the one stated in each intention.
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Fig. 2. Conceptual schemata for the SALES and PURCHASE cubes.
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t is, for instance, Orange ≥𝖯𝗋𝗈𝖽𝗎𝖼𝗍 Fresh Fruit ≥𝖯𝗋𝗈𝖽𝗎𝖼𝗍 Fruit. The
URCHASE cube is similar, except that it has a Supplier hierarchy

instead of Store. □

Aggregation is the basic mechanism to query cubes, and it is cap-
tured by the following definition of group-by set. As normally done
when working with the multidimensional model, if a hierarchy ℎ does
ot appear in a group-by set it is implicitly assumed that a complete
ggregation is done along ℎ.

efinition 3 (Group-by Set and Coordinate). Given cube schema  =
(𝐻,𝑀), a group-by set of  is a set of levels, at most one from each
ierarchy of 𝐻 . The partial order induced on the set of all group-by

sets of  by the roll-up orders of the hierarchies in 𝐻 , is denoted with
⪰𝐻 . A coordinate of group-by set 𝐺 is a tuple of members, one for each
level of 𝐺. Given coordinate 𝛾 of group-by set 𝐺, another group-by set
𝐺′ such that 𝐺 ⪰𝐻 𝐺′, and the coordinate 𝛾 ′ of 𝐺′ whose members
are related to the corresponding members of 𝛾 in the part-of orders, we
will say that 𝛾 roll-ups to 𝛾 ′. Conventionally, each coordinate roll-ups
to itself.

Example 3. Two group-by sets of SALES are 𝐺1 = {𝖽𝖺𝗍𝖾, 𝗍𝗒𝗉𝖾, 𝖼𝗈𝗎𝗇𝗍𝗋𝗒}
nd 𝐺2 = {𝗆𝗈𝗇𝗍𝗁, 𝖼𝖺𝗍𝖾𝗀𝗈𝗋𝗒}, where 𝐺1 ⪰𝐻 𝐺2. 𝐺1 aggregates sales
y date, product type, and store country, 𝐺2 by month and category.
xample of coordinates of the two group-by sets are, respectively,
1 = ⟨2022-04-15, Fresh Fruit, Italy⟩ and 𝛾2 = ⟨2022-04, Fruit⟩, where
1 roll-ups to 𝛾2. □

The instances of a cube schema are called cubes and are defined as
ollows.

efinition 4 (Cube). A cube over  is a triple 𝐶 = (𝐺𝐶 ,𝑀𝐶 , 𝜔𝐶 ) where:

(i) 𝐺𝐶 is a group-by set of ;
(ii) 𝑀𝐶 ⊆ 𝑀 ;

(iii) 𝜔𝐶 is a partial function that maps the coordinates of 𝐺𝐶 to a
numerical value for each measure 𝑚 ∈ 𝑀𝐶 .

Each coordinate 𝛾 that participates in 𝜔𝐶 , with its associated tuple
f measure values, is called a fact of 𝐶. With a slight abuse of notation,
e will write 𝛾 ∈ 𝐶 to state that 𝛾 is a fact of 𝐶. The value taken by
easure 𝑚 in the fact corresponding to 𝛾 is denoted as 𝛾.𝑚. A cube 𝐶⊤

hose group-by set is the top of ⪰𝐻 (i.e., it is the finest group-by set
f ) and such that 𝑀𝐶 = 𝑀 , is called a base cube.

efinition 5 (Cube Query). A query over cube schema  is a triple
𝑞 = (𝐺𝑞 , 𝑃𝑞 ,𝑀𝑞) where:

(i) 𝐺𝑞 is a group-by set of 𝐻 ;
(ii) 𝑃𝑞 is a (possibly empty) set of selection predicates each ex-

pressed over one level of 𝐻 using either a comparison operators
(=, ≥, etc.) or the set inclusion operator (e.g., country IN ‘Italy’,
3

‘France’); i
(iii) 𝑀𝑞 ⊆ 𝑀 .

Let 𝐶⊤ be a cube over . The result of applying 𝑞 to 𝐶⊤ is a cube
= 𝑞(𝐶⊤) such that (i) 𝐺𝐶 = 𝐺𝑞 , (ii) 𝑀𝐶 = 𝑀𝑞 , and (iii) 𝜔𝐶 assigns to

ach coordinate 𝛾 ∈ 𝐶 satisfying the conjunction of the predicates in
𝑞 and to each measure 𝑚 ∈ 𝑀𝐶 the value computed by applying 𝑜𝑝(𝑚)
o the values of 𝑚 for all the coordinates of 𝐶⊤ that roll-up to 𝛾.

xample 4. The cube query over SALES used in Example 1 is 𝑞 =
𝐺𝑞 , 𝑃𝑞 ,𝑀𝑞) where 𝐺𝑞 = {𝗍𝗒𝗉𝖾}, 𝑃𝑞 = {𝗒𝖾𝖺𝗋 = ‘2022’}, and 𝑀𝑞 =
𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾}. Let 𝖲𝖠𝖫𝖤𝖲1 be the resulting cube; a coordinate of this
ube is ⟨Batteries⟩ with associated value e8090.96 for netRevenue.
□

To let our explain operator search for measure relationships across
wo or more related cubes, simulating the drill-across OLAP operator,
e give a definition of cube joinability. Intuitively, two cubes are

oinable if they share, either completely or partially, at least one hier-
rchy.3 To simplify the definition we assume that a hierarchy cannot be
artially shared; for discussion of how to cope with partially overlapped
ierarchies (e.g., 𝖽𝖺𝗍𝖾 ⪰ 𝗆𝗈𝗇𝗍𝗁 ⪰ 𝗒𝖾𝖺𝗋 and 𝖽𝖺𝗍𝖾 ⪰ 𝗒𝖾𝖺𝗋) we refer the
eader to [10].

efinition 6 (Joinability and Join). Let 𝐶1,… , 𝐶𝑣 be 𝑣 cubes over cube
chemata 1,… ,𝑣, respectively, be given, with 𝑖 = (𝐻𝑖,𝑀𝑖). We say
hese cubes are joinable if ⋂𝑣

𝑖=1 𝐻𝑖 ≠ ∅, i.e., they share at least one
hierarchy. The cube 𝐶 resulting from join between these cubes, denoted
⋀𝑣

𝑖=1 𝐶𝑖, has schema

 = (
𝑣
⋂

𝑖=1
𝐻𝑖,

𝑣
⋃

𝑖=1
𝑀𝑖)

Let 𝐺⊤ be the finest group-by set of , and 𝑞𝑖 = (𝐺⊤, 𝑇𝑅𝑈𝐸,𝑀𝑖)
for 𝑖 = 1,… , 𝑣 be the queries that aggregate each cube 𝐶𝑖 at 𝐺⊤.
The coordinates of 𝐶 are the intersection of the coordinates of cubes
𝑞1(𝐶1),… , 𝑞𝑣(𝐶𝑣), i.e., the common coordinates of 𝐶1,… , 𝐶𝑣 aggregated
at 𝐺⊤; each coordinate of 𝐶 is associated with all the measure values
associated to the corresponding coordinates of the 𝐶𝑖’s.

Intuitively, the schema of the join 𝐶 of two or more cubes features
the intersection of their hierarchies and the union of their measures,
so its group-by set is the finest common group-by set and its measures
values, for each coordinate, are those of the corresponding coordinates
in the joined cubes.

Example 5. Cubes 𝖲𝖠𝖫𝖤𝖲 and 𝖯𝖴𝖱𝖢𝖧𝖠𝖲𝖤 are joinable; their join,
𝖯 = 𝖲𝖠𝖫𝖤𝖲 ∧ 𝖯𝖴𝖱𝖢𝖧𝖠𝖲𝖤, features the Date and Product hierarchies

and has measures quantity, unitPrice, … totalCost (see Fig. 3). The
finest group-by set of SP is 𝐺⊤ = {𝖽𝖺𝗍𝖾, 𝗉𝗋𝗈𝖽𝗎𝖼𝗍}; an example coordinate
of SP is 𝛾 = ⟨2022-04-15,Orange⟩. □

3 Note that this definition of cube joinability is similar to the one given in
4], but more general since it does not require that the group-by of one cube
s coarser than the one of the other cube.
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F

Fig. 3. Conceptual schema for the cube resulting from the join of SALES and
PURCHASE.

3. Enhanced cubes

Models are concise, information-rich knowledge artifacts [11] that
represent relationships hiding in the cube facts. A model is bound
to (i.e., is computed over the levels/measures of) one cube, and is
made of a set of components, each component being a specific re-
lationship among cube facts. To make our approach more flexible,
in this paper we give users the possibility of working with derived
measures, i.e., measures computed on-the-fly from other measures via
an algebraic expression. In the following, the term ‘‘measure’’ will be
used in a general way to also include derived measures.

Definition 7 (Model). A model is a tuple  = (𝑡, 𝑎𝑙𝑔, 𝐶, 𝑚, 𝐼𝑛, 𝑂𝑢𝑡)
where:

(i) 𝑡 is the model type;
(ii) 𝑎𝑙𝑔 is the algorithm used to compute 𝑂𝑢𝑡;

(iii) 𝐶 is the cube to which the model is bound (possibly resulting
from a join);

(iv) 𝑚 is the target measure of 𝐶;
(v) 𝐼𝑛 is the set of 𝑟 candidate measures of 𝐶 supplied to 𝑎𝑙𝑔 to

compute the model;
(vi) 𝑂𝑢𝑡 is the set of model components.

In this paper we consider three types of models, namely:

• Polynomial regression, which establishes a polynomial relationship
between 𝑚 and one other measure via regression analysis. There
are 𝑟 components; each component 𝑐𝑖 ∈ 𝑂𝑢𝑡 shows the rela-
tionship of the target measures 𝑚 with one candidate measure
𝑚𝑖 ∈ 𝐼𝑛.

• Multivariable linear regression, which establishes a linear relation-
ship between 𝑚 and a set of other measures. The model includes
exactly one component 𝑐 ∈ 𝑂𝑢𝑡 showing the relationship of 𝑚
with all candidate measures in 𝐼𝑛.

• Cross-correlation, which finds the similarity of two series as a func-
tion of the displacement of one relative to the other. There are 𝑟
components; each component 𝑐𝑖 ∈ 𝑂𝑢𝑡 shows the relationship of
𝑚 with one candidate measure 𝑚𝑖 ∈ 𝐼𝑛.

The form taken by components depends on the model type as follows.

Definition 8 (Component). For 𝑡 = polynomialRegression, a component
𝑐𝑖 is a triple 𝑐𝑖 = (𝑚𝑖, 𝑑𝑖, coeff 𝑖) where:

(i) 𝑚𝑖 is the candidate measure;
(ii) 𝑑𝑖 is the degree of the polynomial used to describe the relation-

ship between 𝑚 and 𝑚𝑖;
(iii) coeff 𝑖 is an array of the 𝑑𝑖 + 1 coefficients of the polynomial

𝛼𝑑𝑖 (𝑚𝑖) that best approximates 𝑚 with reference to the facts in
4

𝐶.
or 𝑡 = multivariableRegression, there is a single component 𝑐 = coeff ,
where:

(i) coeff is an array of the 𝑟+1 coefficients of the linear polynomial
𝛼1(𝑚1,… , 𝑚𝑟) that best approximates 𝑚 with reference to the
facts in 𝐶.

Finally, for 𝑡 = crossCorrelation, a component 𝑐𝑖 is a couple 𝑐𝑖 =
(𝑚𝑖, 𝑑𝑖𝑠𝑝𝑖) where:

(i) 𝑚𝑖 is the candidate measure;
(ii) 𝑑𝑖𝑠𝑝𝑖 is the displacement yielding maximum correlation between

the series of values of 𝑚 and the one of 𝑚𝑖.

Example 6. A possible polynomial regression model over the 𝖲𝖠𝖫𝖤𝖲1
cube computed in Example 4 is characterized by

𝑡 = polynomialRegression; 𝑎𝑙𝑔 = Polyfit;𝐶 = 𝖲𝖠𝖫𝖤𝖲1;
𝑚 = 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾; 𝐼𝑛 = {𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒, 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍};𝑂𝑢𝑡 = {𝑐1, 𝑐2}

where

𝑐1 = (𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒, 1, [2.15,−171.88]);
𝑐2 = (𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 1, [19.00, 27.42])

According to this model, the relationships of netRevenue with quan-
tity and discount are described, respectively, as

𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 𝛼1(𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒) = 2.15 ⋅ 𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒 − 171.88

𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 𝛼1(𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍) = 19.00 ⋅ 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍 + 27.42

An example of multivariable linear regression model over the same
cube is

𝑡 = multivariableRegression; 𝑎𝑙𝑔 = MultiReg;𝐶 = 𝖲𝖠𝖫𝖤𝖲1;
𝑚 = 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾; 𝐼𝑛 = {𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾, 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒};𝑂𝑢𝑡 = {𝑐3}
𝑐3 = [1.0,−1.0, 0.0, 0.0]

According to this model, the relationships of netRevenue with gross-
Revenue, discount, and quantity is described as

𝛼1(𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾, 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒) = 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍

Finally, an example of cross-correlation model over the 𝖲𝖯1 cube,
obtained by joining SALES and PURCHASE (which produces cube SP
in Example 5) and then grouping by date, is

𝑡 = crossCorrelation; 𝑎𝑙𝑔 = CrossCorr;𝐶 = 𝖲𝖯1;
𝑚 = 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾; 𝐼𝑛 = {𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍};𝑂𝑢𝑡 = {𝑐4}
𝑐4 = (𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍, 27)

According to this model, the daily trend of the average unitPrice is
displaced by 27 days with respect to that of the average unitCost. □

As the last step in the IAM approach, cube 𝐶 is enhanced by
associating it with a set of models bound to 𝐶 and with a highlight,
i.e., with the most interesting model component:

Definition 9 (Enhanced cube). An enhanced cube 𝐸 is a triple of a cube
𝐶, a set of models {1,… ,𝑧} bound to 𝐶, and a highlight

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑐𝑖∈
⋃𝑧

𝑗=1 𝑂𝑢𝑡𝑗}(𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐𝑖))

Function 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡() measures the interest of each component on
a continuous scale from 0 to 1; how this is done is the subject of
Section 4.6.

4. The explain operator

The explain operator provides an answer to the user asking ‘‘why is
this happening?’’ ‘‘why does measure 𝑚 show these values?’’ by describ-
ing the relationship between 𝑚 and the other cube measures, possibly
focused on one or more level members, at some given granularity. The
cube is enhanced by showing these relationships, with a highlight on
the most interesting one.
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4.1. Syntax

Let 𝐶⊤
1 ,… , 𝐶⊤

𝑝 be 𝑝 joinable cubes, 𝐶0 be their join, and  = (𝐻,𝑀)
be the schema of 𝐶0. The syntax for explain is (optional parts are in
brackets):

𝗐𝗂𝗍𝗁 𝐶⊤
1 ,… , 𝐶⊤

𝑝 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝑒𝑥𝑝𝑟0 [𝖺𝗌 𝑚]

𝗒 𝑙1,… , 𝑙𝑛 [𝖿𝗈𝗋𝑃 ]

𝖺𝗀𝖺𝗂𝗇𝗌𝗍 𝑒𝑥𝑝𝑟1 [𝖺𝗌 𝑚1],… , 𝑒𝑥𝑝𝑟𝑟 [𝖺𝗌 𝑚𝑟]]

𝗎𝗌𝗂𝗇𝗀 𝑡1,… , 𝑡𝑧]

𝗋𝖺𝗇𝗀𝖾 𝑏]

here each 𝑒𝑥𝑝𝑟𝑖 is an algebraic expression involving one or more
easures in ; 𝑃 is a set of selection predicates, each expressed on one

evel of 𝐻 ; {𝑙1,… , 𝑙𝑛} is a group-by set of 𝐻 ; 𝑡𝑖 ∈ {polynomialRegres-
sion, multivariableRegression, crossCorrelation} is a model type; 𝑏 is a
positive integer. The different clauses take the following roles:

• The with clause specifies the cubes(s) on which the intention is
executed.

• The explain clause specifies the target measure.
• The by clause specifies how the cube(s) must be aggregated.
• The for clause specifies a selection on the cubes(s).
• The against clause specifies the candidate measures.
• The as clause gives names to derived measures specified via

expressions.
• The using clause specifies which model types are to be computed.
• The range clause specifies the maximum displacement allowed

for cross-correlation.

odel type crossCorrelation can be computed only when the by clause
ncludes exactly one level 𝑙, and 𝑙 has type interval (e.g., a date).4 Model

type multivariableRegression is computed only when the against clause
includes more than one candidate measure.

Example 7. Two examples of explain intentions on the SALES cube
are, besides the one in Example 1,

𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲, 𝖯𝖴𝖱𝖢𝖧𝖠𝖲𝖤 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 𝖻𝗒 𝖽𝖺𝗍𝖾

𝖺𝗀𝖺𝗂𝗇𝗌𝗍 𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍 𝗎𝗌𝗂𝗇𝗀 𝖼𝗋𝗈𝗌𝗌𝖢𝗈𝗋𝗋𝖾𝗅𝖺𝗍𝗂𝗈𝗇 𝗋𝖺𝗇𝗀𝖾 𝟨𝟢

𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 (𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾) 𝖺𝗌 𝖽𝗂𝖿𝖿 𝖻𝗒 𝗒𝖾𝖺𝗋

The first one leads to the computation of the cross-correlation model in
Example 6.

4.2. Semantics

The execution plan corresponding to a fully-specified intention,
i.e., one where all optional clauses have been specified, is as follows5:

1. If 𝑝 > 1, i.e., two or more cubes are specified in the with clause,
compute the cube 𝐶0 resulting from their join.

2. Execute query 𝑞 = (𝐺𝑞 , 𝑃𝑞 ,𝑀𝑞) over 𝐶0, where 𝐺𝑞 = {𝑙1,… , 𝑙𝑛},
𝑃𝑞 = 𝑃 , and 𝑀𝑞 = {𝑚,𝑚1,… , 𝑚𝑟}. Let 𝐶 = 𝑞(𝐶0) be the cube
resulting from the execution of 𝑞 over 𝐶0.

3. For 1 ≤ 𝑗 ≤ 𝑧, compute model 𝑗 = (𝑡𝑗 , 𝑎𝑙𝑔𝑗 , 𝐶, 𝑚, {𝑚1,… , 𝑚𝑟},
𝑂𝑢𝑡𝑗 ); see Sections 4.3, 4.4, and and 4.5 for a description of how
each model is computed and its components are determined.

4 Value types can be either nominal (qualitative and unordered), ordinal
qualitative and ordered), interval (quantitative with no zero point, supports
he computation of a distance between values), and ratio (quantitative with
ero point) [12,13].

5 In the following, for simplicity, we will use labels 𝑚, 𝑚1,… , 𝑚𝑟 to denote
measures even in the case they correspond to expressions specifying derived
5

measures. n
4. For each 𝑐 ∈ 𝑂𝑢𝑡𝑗 compute 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐). Essentially, the interest
of component 𝑐 measures how well 𝑐 can replicate the values of
𝑚; see Section 4.6 for an explanation of how this is done for the
different model types.

5. Find the highlight 𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈⋃𝑗 𝑂𝑢𝑡𝑗 (𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐)).
6. Return the enhanced cube 𝐸 consisting of 𝐶, {1,… ,𝑧}, and

𝑐.

Partially-specified intentions are interpreted as follows:

• If the for clause is not specified, we consider 𝑃𝑞 = 𝑇𝑅𝑈𝐸.
• If the against clause is not specified, models are created for each

measure in 𝑀 (except 𝑚).
• If the using clause is not specified, all three model types are

considered.

xample 8. The second intention in Example 7 is executed by first
omputing the cube 𝐶 that aggregates SALES by 𝗒𝖾𝖺𝗋 and projects

on measures grossRevenue and netRevenue; the difference between
these two measures is computed and named diff. Then, three models
are computed: (i) a polynomial regression with 3 components (one for
quantity, one for unitPrice, and one for discount, see Section 4.3); (ii)
a multivariable linear regression with one component (relating diff to
the other 3 measures, see Section 4.4); and a cross-correlation with 3
components (one for quantity, one for unitPrice, and one for discount,
see Section 4.5). Finally, the interest is computed for the 7 components
obtained (see Section 4.6); the highlight (the most interesting compo-
nent, i.e., the one that best replicates the values of diff) turns out to be
the polynomial expressing diff in terms of discount), which is returned
to the user together with 𝐶.

4.3. Polynomial regression

Given two variables in a dataset, polynomial fitting (or simply
Polyfit) summarizes their relationships by the polynomial function of
the lowest degree that best approximates their values [14]. Finding
the best polynomial function requires minimizing an error function
that balances the approximation error and the polynomial degree (the
higher the degree, the lower the error but the higher the overfitting
and the more complex – so the less interpretable – the model).

In our scenario, the goal is to approximate 𝑚 with a polynomial
n 𝑚𝑖, and the dataset is the set of facts of cube 𝐶. Let 𝛼𝑑 denote the
olynomial of degree 𝑑 in 𝑚𝑖 that best approximates 𝑚; then, the fitting
rror (namely, the mean squared error) can be expressed in function of
as [15]

𝑟𝑟𝑜𝑟(𝑚,𝑚𝑖, 𝑑) =
∑

𝛾∈𝐶 (𝛼𝑑 (𝛾.𝑚𝑖) − 𝛾.𝑚)2

|𝐶| − 𝑑 − 1
here the 𝛾 ’s are the coordinates of 𝐶. Intuitively, this formula mea-

ures the average squared approximation error with a penalty on the
egree 𝑑: among the polynomials with similar approximation errors,
he one with the lowest degree is preferred.6

To find the best degree 𝑑𝑖 for each 𝑚𝑖 we follow a step-wise forward-
election regression approach. We start with a constant polynomial,
hen we iteratively test the addition of higher-degree coefficients in
he polynomial with a chosen fitness criterion (as suggested in [16]).
pecifically, we divide the query result into train and test, with 70%
nd 30% facts respectively. We fit the polynomial to the training
ata, then we assess its 𝑒𝑟𝑟𝑜𝑟() against the test set. We stop when,
fter reaching a good model, the error increases again; intuitively, we
est how well the polynomial generalizes and we stop when higher-
egree polynomials are overfitting the query result. Note that there is a
ossibility that a local minimum is reached by following this approach.

6 If |𝐶| ≤ 𝑑 + 1, no polynomial of degree 𝑑 can be fitted, hence the error is
ot computed.
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Algorithm 1 Polyfit
Require: 𝑚: target measure; 𝑚𝑖: candidate measure
nsure: 𝛼: optimal polynomial
1: 𝑒∗ ← +∞ ⊳ Approximation error
2: 𝑑 ← 0 ⊳ Degree
3: 𝑠𝑡𝑜𝑝 ← False ⊳ Stop condition
4: do
5: ⊳ Find the best polynomial of degree 𝑑...
6: 𝛼𝑑 ← 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦𝐿𝑒𝑎𝑠𝑡𝑆𝑞𝑢𝑎𝑟𝑒𝑠(𝑚,𝑚𝑖, 𝑑)
7: 𝑒 ← 𝑒𝑟𝑟𝑜𝑟(𝑚,𝑚𝑖, 𝑑) ⊳ ...and compute its error
8: if 𝑒 < 𝑒∗ then ⊳ If a better approximation is found...
9: 𝑒∗ ← 𝑒 ⊳ ...update the error, ...

10: 𝑑 ← 𝑑 + 1 ⊳ ...increment the degree and iterate, ...
11: else
12: 𝑠𝑡𝑜𝑝 ← True ⊳ ...otherwise stop
13: while !𝑠𝑡𝑜𝑝 ∧ (|𝐶| ≥ 10 ⋅ 𝑑)
14: return 𝛼𝑑−1 ⊳ Return the polynomial

For instance, when fitting quadratic data, a cubic polynomial 𝛼3 could
e worst than the quadratic one 𝛼2; so the search would stop, while a
uartic polynomial 𝛼4 whose cubic and quartic terms tend to 0 might be
slightly) better than 𝛼2. However, we argue that in this case a simple
odel should be preferred to a more complex one, i.e., to a polynomial
ith a higher degree.

To ensure that a polynomial is trained on a ‘‘sufficient’’ amount
f facts, we apply the one-to-ten rule of thumb7: the polynomial with
egree 𝑑 is considered only if the query result contains at least 𝑑 ⋅ 10
uples. The pseudocode is sketched in Algorithm 1. Given the target
easure 𝑚, we first initialize the approximation error (Line 1), the

nitial degree (Line 2), and the Boolean stop condition (Line 3); then,
he iteration begins (Lines 4–13). We compute the best polynomial with
he given degree 𝑑 through ordinary least squares optimization (Line 6)
nd the error of the polynomial (Line 7). If the current error is better
han the one obtained so far (Line 8), we update it (Line 9), increase
he polynomial degree (Line 10), and continue with the iteration (Line
3). Otherwise, we terminate the iteration (Line 12). In any case, the
teration stops if |𝐶| < 10 ⋅ 𝑑 (Line 13) [17]. Finally, we return the best
olynomial (i.e., the one computed before the current iteration).

xample 9. The following intention:

𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 𝖻𝗒 𝗍𝗒𝗉𝖾 𝖿𝗈𝗋 𝗒𝖾𝖺𝗋 = ‘2022’
𝖺𝗀𝖺𝗂𝗇𝗌𝗍 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 𝗎𝗌𝗂𝗇𝗀 𝗉𝗈𝗅𝗒𝗇𝗈𝗆𝗂𝖺𝗅𝖱𝖾𝗀𝗋𝖾𝗌𝗌𝗂𝗈𝗇

s executed by first computing the cube that aggregates sales by type
or 2022 and then applying the Polyfit algorithm to obtain a model with
ne component for measure unitPrice. Algorithm 1 iteratively finds the
ollowing polynomials with degrees from 0 to 3 (see Fig. 4):

𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 10737.6
𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 191.74 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 − 8098.16

𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 1.1 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾2 − 22.78 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 + 1409.33

𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 0.01 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾3 − 1.73 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾2

+ 215.22 ⋅ 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 − 4027.88

s shown in Fig. 5, the quadratic polynomial is returned since the cubic
ne has a higher error.8 □

7 ‘‘One to ten’’ or ‘‘one in ten’’ is a rule of thumb for how many param-
ters can be estimated from data when doing regression: a minimum of 10
bservations per parameter is deemed necessary to avoid overfitting [17].

8 The polynomial of degree 3 resembles a parabola since the cubic term
ends to 0, hence, its sum of squared errors is similar to the one of the
olynomial of degree 2. However, the error function penalizes it due to the
6

igher degree.
Fig. 4. Approximating polynomials with degrees 0 (a), 1 (b), 2 (c), and 3 (d) for the
unitPrice measure from Example 9.

Fig. 5. Error in function of the degree for the polynomials in Fig. 4.

4.4. Multivariable linear regression

Given three or more variables in a dataset, multivariable linear
regression (or simply MultiReg) explains the dependent variable (in our
ase, the target measure) by a linear function of ‘‘significant’’ indepen-
ent ones (the candidate measures); significant means that independent
ariables are omitted if they have no effect on the dependent one.
inding the best subset of independent variables is impractical because
f the combinatorial explosion of the number of subsets; thus, greedy
lgorithms are commonly adopted to this end.

Specifically, the greedy algorithm we adopt here is called Recursive
eature Elimination [18]; since variable selection can be non-optimal
hen it comes to removing several variables at a time, this algorithm

inds the best linear function by minimizing the error while estimating
he effect of removing one variable at a time. The process is summa-
ized in Algorithm 2: (i) the linear regression model is trained with
ll the candidate measures by minimizing the approximation error
hrough ordinary least squares [19]; (ii) the candidate measures are
anked by the absolute value of their coefficients; and (iii) the candidate
easures with smallest ranking are iteratively removed. The best subset

f measures is returned by choosing the subset that gives the least
veraged error across different folds of the dataset; for all measures
emoved, the corresponding coefficients in the coeff array that models
he polynomial within the component are set to 0. Note that, if too
any measures were involved, the greedy search could be prematurely

topped based on the elbow method; this is not our case, since the
esults of OLAP queries usually include a limited number of measures
nd tuples (i.e., the cardinality of the result is ‘‘small’’) [20].
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Algorithm 2 MultiReg
Require: 𝑚: target measure; 𝑀 : candidate measures
nsure: 𝛼∗: optimal linear model
1: 𝑒∗ ← +∞ ⊳ Approximation error
2: 𝑀 ′ ← 𝑀 ⊳ Current measures
3: 𝛼∗ ← ∅ ⊳ Initialize the best polynomial
4: do
5: ⊳ Find the best model with measures 𝑀 ′...
6: 𝛼 ← 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦𝐿𝑒𝑎𝑠𝑡𝑆𝑞𝑢𝑎𝑟𝑒𝑠(𝑚,𝑀 ′)
7: 𝑒 ← 𝑒𝑟𝑟𝑜𝑟(𝑚,𝑀 ′) ⊳ ...and compute its error
8: if 𝑒 < 𝑒∗ then ⊳ If a better approximation has been found...
9: 𝑒∗ ← 𝑒 ⊳ ...update the error
0: 𝛼∗ ← 𝛼 ⊳ ...and update the model
1: ⊳ Remove the measure with the coefficient closest to 0
2: 𝑀 ′ ← 𝑀 ′ ⧵ {𝑎𝑟𝑔𝑚𝑖𝑛𝑚𝑖∈𝑀 ′ (|coeff (𝑚𝑖, 𝛼)|)}
3: while |𝑀 ′

| > 0
4: return 𝛼∗ ⊳ Return the best linear model

Example 10. Given again the intention in Example 1,

𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 𝖻𝗒 𝗍𝗒𝗉𝖾 𝖿𝗈𝗋 𝗒𝖾𝖺𝗋 = ‘2022’

a multivariable linear regression model based on all the other cube
measures has to be computed. Algorithm 2 first ranks the measures as
grossRevenue, discount, quantity, and unitPrice. Then, it iteratively
removes the measures one by one (starting from unitPrice). Finally,
the best linear model, involving grossRevenue and discount with
their coefficients being respectively 1.0 and −1.0, is returned (indeed,
netRevenue is computed in the SALES cube as 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾−𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍).

4.5. Cross-correlation

Given a series of a dependent variable and a series of an inde-
pendent variable, cross-correlation (or simply CrossCorr) explains the
former as a function of the best displacement relative to the latter.
In our scenario, the dependent variable is the target measure and the
independent variable is the candidate measure; to enable a series-wise
comparison, the cube must be aggregated by a level of interval type
(e.g., a temporal level such as date or month).

The process is summarized in Algorithm 3. For simplicity, we as-
sume that the two series are complete, i.e., that no event is missing.9 We
normalize the cross-correlation function to get a time-dependent Pear-
son correlation coefficient, with 1 indicating perfect correlation and −1
indicating perfect anti-correlation; the correlation 𝜌 with displacement
𝜏 between the two series in 𝑋 (corresponding to the candidate measure
𝑚𝑖) and 𝑌 (corresponding to the target measure 𝑚) is calculated as
follows:

𝜌𝑋,𝑌 (𝜏) =
∑

𝑖(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖+𝑘 − 𝜇𝑦)
√

∑

𝑖(𝑥𝑖 − 𝜇𝑥)2 ⋅
√

∑

𝑖(𝑦𝑖+𝑘 − 𝜇𝑦)2
(1)

here 𝜇 and 𝜎 represent the average and deviation of each series. Then,
inding the best cross-correlation requires determining the
isplacement 𝜏 yielding the maximum absolute correlation, i.e.,
𝑟𝑔𝑚𝑎𝑥−𝑚𝑎𝑥𝐷𝑖𝑠𝑝≤𝜏≤+𝑚𝑎𝑥𝐷𝑖𝑠𝑝(𝜌𝑋,𝑌 (𝜏)), where 𝑚𝑎𝑥𝐷𝑖𝑠𝑝 defines the bound-
ries of the search, i.e., the initial displacement. Unless differently
pecified, we pick 𝑚𝑎𝑥𝐷𝑖𝑠𝑝 = |𝑋| so the search for the best displace-
ent is carried out in [−|𝑋|, |𝑋|]; in other words, all the possible
isplacements are tried, starting from the one where the first series is
hifted so that its beginning is matched with the end of the second

9 Several imputation methods can be adopted in case of missing events,
anging from arithmetic average for ‘‘steady’’ patterns to more complex
ethods for periodical ones [21].
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Algorithm 3 CrossCorr
Require: 𝑚: target measure; 𝑚𝑖: candidate measure; 𝑚𝑎𝑥𝐷𝑖𝑠𝑝: maxi-

mum displacement
Ensure: 𝜏∗: optimal delay
1: 𝑐𝑜𝑟𝑟∗ ← −∞ ⊳ Correlation
2: 𝜏 ← −𝑚𝑎𝑥𝐷𝑖𝑠𝑝 ⊳ Initial displacement
3: do
4: ⊳ Compute the (absolute) correlation with displacement 𝜏
5: 𝑐𝑜𝑟𝑟 ← |𝜌𝑚𝑖 ,𝑚(𝜏)|
6: if 𝑐𝑜𝑟𝑟 > 𝑐𝑜𝑟𝑟∗ then ⊳ If a better correlation has been found...
7: 𝑐𝑜𝑟𝑟∗ ← 𝑐𝑜𝑟𝑟 ⊳ ...update the correlation
8: 𝜏∗ ← 𝜏 ⊳ ...set the best displacement
9: 𝜏 ← 𝜏 + 1 ⊳ ...and increment the displacement
0: while 𝜏 ≤ 𝑚𝑎𝑥𝐷𝑖𝑠𝑝
1: return 𝜏∗ ⊳ Return the best displacement

Fig. 6. Cross-correlation between unitPrice and unitCost for Example 11.

series, and finishing with the opposite. However, using the range
clause in the explain intention, it is possible to inject some a priori
knowledge in the search for an explanation by specifying the maximum
displacement allowed; this allows to constrain the search space on
the one hand, to avoid ‘‘false positives’’ (i.e., displacements with high
correlations but outside the range of interest) on the other.

Example 11. Consider again the intention from Example 7,

𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲, 𝖯𝖴𝖱𝖢𝖧𝖠𝖲𝖤 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 𝖻𝗒 𝖽𝖺𝗍𝖾

𝖺𝗀𝖺𝗂𝗇𝗌𝗍 𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍 𝗎𝗌𝗂𝗇𝗀 𝖼𝗋𝗈𝗌𝗌𝖢𝗈𝗋𝗋𝖾𝗅𝖺𝗍𝗂𝗈𝗇 𝗋𝖺𝗇𝗀𝖾 𝟨𝟢

After joining the SALES and PURCHASE cubes and aggregating the
result by date, Algorithm 3 starts by computing the cross-correlation
of unitPrice and unitCost with initial displacement −60, then it in-
crementally increases the displacement up to 60. During this process,
the best displacement (namely, 27) is found and stored, and eventually
returned. Fig. 6 shows the time series for unitPrice and unitCost as
computed by the intention.

4.6. Measuring the interest of components

Measuring the interest of components is crucial, since it allows for
ranking them when visualizing enhanced cubes and for determining the
highlight. We recall that function 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡() ranges in [0..1]; its definition
depends on the type of model to which the component belongs:

• Polynomial regression model. Let 𝑐𝑖 be the component explain-
ing 𝑚 based on 𝑚𝑖; we evaluate the interest of 𝑐𝑖, 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐𝑖), as
the coefficient of determination R2 [22], which measures how well
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the polynomial in 𝑚𝑖 fits the values of the target measure 𝑚; if R2
is negative, function 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡() returns 0.10 The better the model,
the closer the value of R2 to 1.

• Multivariable linear regression model. Let 𝑐𝑖 be the component
explaining 𝑚 based on the independent variables 𝑚1,… , 𝑚𝑟; also
in this case, we evaluate the interest of 𝑐𝑖, 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐𝑖), as the
coefficient of determination R2.

• Cross-correlation model. Let 𝑐𝑖 be the component explaining 𝑚
based on 𝑚𝑖; we evaluate the interest of 𝑐𝑖, 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐𝑖), via the
absolute value of the correlation 𝜌 as defined in Eq. (1). The better
the model, the closer the value of 𝜌 to 1.

Note that, while in principle R2 is applicable to cross-correlation as
well, they can be discordant due to their different semantics: cross-
correlation is high when two measures are ‘‘well-aligned’’, while R2
is high when a measure is a good approximation of another (in other
words, alignment does not imply a good fit). For instance, given unit-
Price and unitCost from Fig. 6, the cross-correlation value is 0.90 while
R2 is negative even if computed after aligning the two measures by the
displacement found; this means that the values of unitPrice are better
approximated by their average rather than by the values of unitCost.

Example 12. With reference to Example 6, for the regression models
on 𝖲𝖠𝖫𝖤𝖲1 it is

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐1) = 0.96

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐2) = 0.99

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐3) = 1.00

Thus, the highlight is 𝑐3. For the cross-correlation model on 𝖲𝖯1, it is
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐4) = 0.90.

4.7. Model overlaps

In certain situations, some components of different models can carry
the same information. For instance, if measure 𝑚 is explained against
a set of measures 𝑚1,… , 𝑚𝑟 but is linearly dependent on measure 𝑚1,
(i) polynomial regression will return a polynomial 𝑚 = 𝛼𝑑1 (𝑚1), with
𝑑1 = 1; (ii) multivariable linear regression will return a polynomial
𝑚 = 𝛼1(𝑚1,… , 𝑚𝑟) where all the coefficients except the one for 𝑚1 are
null; (iii) cross-correlation will return displacement 0 between 𝑚 and
𝑚1. All three components will have high interest.

To avoid returning redundant information to users, but also to
properly rank components, we introduce three domination rules. Let
𝑚 be the target measure of an intention, 𝑚𝑖 ∈ 𝐼𝑛 be a measure used
for explaining 𝑚, and 𝑂𝑢𝑡 =

⋃𝑧
𝑗=1 𝑂𝑢𝑡𝑗 be the set of all components

returned by that intention:

D.1 If 𝑂𝑢𝑡 includes a polynomial regression component 𝑐poly
𝑖 =

(𝑚𝑖, 𝑑𝑖, coeff 𝑖) and a multivariable linear regression component
𝑐multi = coeff where all coefficients except the one for 𝑚𝑖 are
0, then 𝑐poly

𝑖 dominates 𝑐multi. The rationale for this rule is that
multivariable linear regression always return linear polynomials,
while polynomial regression can return polynomials with any
degree; thus, 𝑐poly

𝑖 may be more informative/accurate than 𝑐multi.
Indeed, in this case 𝑚 is roughly expressed as coeff 𝑖 ⋅𝑚𝑖 by 𝑐multi

and more accurately expressed as 𝛼𝑑𝑖 (𝑚𝑖) by 𝑐poly
𝑖 . Clearly, in case

𝑑𝑖 = 1, the two components are fully equivalent.

10 R2 compares how well a model fits 𝑚 in comparison with its simple
verage value. More formally, it represents to what extent the variation in
he dependent variable 𝑚 is predictable from a model in the independent
ariable(s) 𝑚𝑖. Should the average value be a better approximation than the
odel, R2 is negative.
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D.2 If 𝑂𝑢𝑡 includes a polynomial regression component 𝑐poly
𝑖 =

(𝑚𝑖, 𝑑𝑖, coeff 𝑖) and a cross-correlation component
𝑐cross
𝑖 = (𝑚𝑖, 𝑑𝑖𝑠𝑝𝑖) where 𝑑𝑖𝑠𝑝𝑖 = 0, then 𝑐poly

𝑖 dominates 𝑐cross
𝑖 .

The rationale for this rule is that cross-correlation does not
return any expression relating 𝑚 to 𝑚𝑖, hence, 𝑐poly

𝑖 is more
informative/accurate than 𝑐cross

𝑖 . Indeed, in this case 𝑚 is roughly
expressed as 𝑚𝑖 by 𝑐cross

𝑖 and more accurately expressed as 𝛼𝑑𝑖 (𝑚𝑖)
by 𝑐poly

𝑖 .
D.3 If 𝑂𝑢𝑡 includes a multivariable linear regression component

𝑐multi = coeff where all coefficients except the one for 𝑚𝑖 are
0 and a cross-correlation component 𝑐cross

𝑖 = (𝑚𝑖, 𝑑𝑖𝑠𝑝𝑖) where
𝑑𝑖𝑠𝑝𝑖 = 0, then 𝑐multi dominates 𝑐cross

𝑖 . The rationale for this rule
is that cross-correlation does not return any expression relating
𝑚 to 𝑚𝑖, hence, 𝑐multi is more informative/accurate than 𝑐cross

𝑖 .
Indeed, in this case 𝑚 is roughly expressed as 𝑚𝑖 by 𝑐cross

𝑖 and
more accurately expressed as coeff 𝑖 ⋅ 𝑚𝑖 by 𝑐multi.

Noticeably, these rules can be applied in the user interface in two
ays (depending on the user’s preferences): (i) to hide the dominated

omponents from the user’s view, or (ii) to sort components yielding the
ame interest. Besides, they could be used to improve performances by
voiding to compute some components.

xample 13. Consider again the intention

𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 (𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾) 𝖺𝗌 𝖽𝗂𝖿𝖿 𝖻𝗒 𝗒𝖾𝖺𝗋

rom Example 8. Since netRevenue is actually computed as
𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, we expect that this relationship is used as
n explanation for derived measure diff, i.e., that diff=discount is
he relationship returned. Indeed, three components have maximum
nterest in this case:
poly
1 = (𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 1, [1, 0]), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐poly

1 ) = 1.0
multi = [0, 0, 1, 0], 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐multi) = 1.0
cross
1 = (𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍, 0), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐cross

1 ) = 1.0

The first component expresses diff as a polynomial of degree 1 in
iscount, with coefficients 1 and 0. The second one expresses diff as

a linear polynomial in all candidate measures, with all coefficients set
to 0 except the one for discount. Finally, 𝑐cross

1 tells us that the time
eries for diff is very correlated with the one for discount, with no dis-
lacement. In fact, all three components convey the same information
o the user. The dominating component returned as the highlight is, in
his case, 𝑐poly

1 .

5. Visualizing enhanced cubes

As previously done for the describe and assess IAM operators, to
give an effective visualization of the enhanced cubes built for explain
intentions we couple a text-based representation (a pivot table and a
ranked component list) with a graphical one (a chart) and with an ad-
hoc interaction paradigm. Specifically, the visualization of enhanced
cube 𝐸 = (𝐶,, 𝑐) relies on three distinct but inter-related areas: a
table area that shows the facts of 𝐶 using a pivot table; a component
area that shows a list of model components sorted by their interest,
with 𝑐 at the top; a chart area that uses a scatter chart to display, for
ach component 𝑐𝑖 of , the relationship between the target measure
nd the candidate measure(s). Specifically:

• For polynomial regression, we use a scatter chart superimposed
with the function plotting the approximating polynomial (see [8]
for an example).

• For multivariable linear regression, if the number of candidate
measures with non-null coefficients is 2, we use a 3-D scatter
chart superimposed with the plan plotting the approximating

polynomial (see Example 14); otherwise, no chart is created.
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Fig. 7. The visualization obtained for the intention in Example 1.
Table 1
Test results in function of the cube cardinality.
|𝐶| Complexity

(numb. of char.)
Time (s)

Intention Query Python Query CrossCorr MultiReg Polyfit Total

12 116 268 2165 0.03 0.01 0.01 0.01 0.06
36 132 397 2841 0.04 – 0.01 0.02 0.07
333 115 265 2165 0.04 0.01 0.01 0.02 0.08
540 134 403 2841 0.05 – 0.01 0.02 0.08
1224 137 412 2841 0.06 – 0.01 0.02 0.09
12 113 133 400 2841 0.05 – 0.02 0.03 0.10
16 949 129 395 2841 0.07 – 0.02 0.04 0.13
18 492 128 385 2841 0.06 – 0.02 0.04 0.12
20 525 128 392 2841 0.07 – 0.02 0.04 0.13
77 832 127 382 2841 0.08 – 0.06 0.10 0.24
86 832 140 509 2841 0.10 – 0.05 0.11 0.26

• For cross-correlation, we use a multiple line chart showing the
two series (the one for the target measure and the one for the
candidate measure, see Example 11 for an example).

The interaction paradigm we adopt is component-driven: clicking
on one component 𝑐𝑖 in the component area leads to show the corre-
sponding visualization in the chart area. The highlight is selected by
default.

Example 14. Fig. 7 shows the visualization obtained when the
intention in Example 1 is formulated. On the left, the table area; on the
right, the chart area; in the middle, the component area. The highlight
is a (multivariable) linear polynomial that approximates netRevenue
in function of grossRevenue and discount, so the chart area shows
the 3-D relationship between these three measures.

6. Evaluation

The prototype we developed to test our approach uses the simple
multidimensional engine described in [23], which in turn relies on the
MySQL DBMS to execute queries on a star schema based on multidi-
mensional metadata (in principle, the prototype could work on top of
any other multidimensional engine). The algorithms used for regression
and cross-correlation are imported from the Scikit-Learn Python library.
Finally, the web-based visualization is implemented in JavaScript and
exploits the D3 library for chart visualization. The code is publicly
available at https://github.com/big-unibo/explain.
9

6.1. Efficiency

To verify the feasibility of our approach from the computational
point of view, we made some scalability tests. Two main factors affect
performances: the cardinality |𝐶| of the cube to which a model is
bound, i.e., the one resulting from the by and for clauses (which
determines the time required to compute a single model component),
and the number of cube measures, |𝑀| (which determines the number
of model components to be computed).

To evaluate scalability with reference to cube cardinality, we popu-
lated the SALES cube using the FoodMart data (https://github.com/
julianhyde/foodmart-data-mysql) and considered 11 intentions with
increasing cardinalities; in each intention we explained the quantity
measure against netRevenue, grossRevenue, discount, and unitPrice
(i.e., |𝑀| = 5). The intentions were computed on cubes obtained
by progressively including in the group-by set levels from the Date,
Product, and Store hierarchies; for polynomial regression, polynomials
up to the 5th degree were considered. Note that cross-correlation could
be computed for two intentions only, namely, the ones yielding |𝐶| = 12
and |𝐶| = 333, where the group-by levels of type interval are month
and date, respectively.

The tests were run on an Intel(R) Core(TM)i7-6700 CPU@3.40 GHz
CPU with 8 GB RAM; each intention was executed 10 times and the
average results are reported. Table 1 shows the time (in seconds) nec-
essary to query the base cube and to compute the models. Remarkably,
it turns out that less than one second is necessary to explain a cube
of almost 87 000 facts.11Additionally, we measured the complexity (as
the number of characters [24]) of writing explain intentions vs. the
underlying cube query. It turns out that our approach saves 95% of
complexity with respect to writing cube queries in SQL and writing
the Python implementation necessary to compute the models (640
characters for cross-correlation, 676 for multivariate linear regression,
and 1525 for polynomial regression).

To evaluate scalability with reference to the number of measures,
we created a cube with |𝐶| = 106 facts and |𝑀| = 10 measures
(one randomly generated, 𝑚0, and 9 more measures whose values we
generated using polynomials in 𝑚0 with increasing degrees). Fig. 8
shows the performance when 𝑚0 is explained against an increasing
number of measures, up to |𝑀| − 1.

As expected, cross-correlation and polynomial regression scale lin-
early with respect to the number of measures (because they compute a
component for every candidate measure independently of the others).

11 Since explain intentions are formulated over analytical workloads, cardi-
nalities |𝐶| of OLAP query results in the order of 104 are already large enough
to be considered unrealistic [20].

https://github.com/big-unibo/explain
https://github.com/julianhyde/foodmart-data-mysql
https://github.com/julianhyde/foodmart-data-mysql
https://github.com/julianhyde/foodmart-data-mysql
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Fig. 8. Scalability test.

Fig. 9. Conceptual schema for the CAPTURE cube.

Fig. 10. Temporal trends in the CAPTURE cube.

Conversely, multivariable linear regression scales quadratically with
respect to the number of measures since the complexity of Ordinary
Least Square is 𝑂(|𝑀|

2 ⋅ |𝐶|). Note that also polynomial regression uses
Ordinary Least Square optimization, but in this case the complexity is
related to the degree of the polynomial (𝑂(𝑑2 ⋅ |𝐶|)) and not to the
number of candidate measures; in these tests we considered polynomi-
als up to the 5th degree, which explains why polynomial regression
scales linearly. Overall, given 9 measures and 106 facts, computing
an explanation takes around 10 s, thus fulfilling the requirement of
near-real-time response typical of analytical workloads.

6.2. Effectiveness

We tested our approach in terms of effectiveness from three points
of view: using synthetic data, using real data, and asking for the
feedback of a set of users. The results are described in the following
subsection.

6.2.1. Synthetic dataset
In this test we artificially injected three patterns into the data of

the SALES cube, to check that they are properly detected by the
10

explanations generated:
1. Measure discount is computed by applying to grossRevenue a
percentage randomly chosen among 0%, 5%, and 10% (in the
average, 5%).

2. Measure netRevenue is computed as 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍.
3. Measure unitCost is computed as 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾∕2 plus a uniformly

distributed random noise in [− 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾
10 , 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾10 ] and displaced

ahead by 30 days, to simulate that the fluctuations in the price
of products follow the ones in their cost.

Then, we expressed three intentions to verify that explain is capable to
detect these patterns:

𝐼1 ∶ 𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍 𝖻𝗒 𝗆𝗈𝗇𝗍𝗁

𝐼2 ∶ 𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 𝖻𝗒 𝗍𝗒𝗉𝖾 𝖿𝗈𝗋 𝗒𝖾𝖺𝗋 = ‘2022’
𝐼3 ∶ 𝗐𝗂𝗍𝗁 𝖲𝖠𝖫𝖤𝖲, 𝖯𝖴𝖱𝖢𝖧𝖠𝖲𝖤 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 𝖻𝗒 𝖽𝖺𝗍𝖾

𝖺𝗀𝖺𝗂𝗇𝗌𝗍 𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍

The highlights returned by each intention are, respectively,

𝑐poly
1 =(𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾, 1, [0.05,−1.3])

𝑐multi
2 =[𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 1.0, 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍 = −1.0, 𝗊𝗎𝖺𝗇𝗍𝗂𝗍𝗒 = 0.0,

𝗎𝗇𝗂𝗍𝖯𝗋𝗂𝖼𝖾 = 0.0]

𝑐cross
3 =(𝗎𝗇𝗂𝗍𝖢𝗈𝗌𝗍, 27)

which shows that explain detects the patterns we injected into the
cube. Indeed, 𝑐poly

1 shows that discount is about 5% of grossRev-
enue; 𝑐multi

2 shows that netRevenue can be computed as the difference
between grossRevenue and discount; 𝑐cross

3 shows that unitPrice is
delayed by 27 days with respect to unitCost.

The reason why these explanations are not 100% precise (e.g., the
displacement detected is 27 rather than 30) is that some noise is
introduced when computing unitCost (as mentioned above) and also
by aggregating and averaging measures at different levels of detail.
Indeed, while unitCost is computed out of unitPrice at the finest cube
granularity, 𝐼3 aggregates and averages unitPrice and unitCost over
all products and all stores in the same date, thereby cumulating and
propagating the noise at a coarser level of detail.

6.2.2. Real dataset
As a second test to verify that the explanations provided by our

approach can effectively detect patterns present in the data, we eval-
uated it against the CAPTURE cube, whose conceptual schema is
depicted in Fig. 9; the dataset has been collected from a real case study
in the field of precision agriculture, precisely, in the context of the
Agro.Big.Data.Science project [25]. This cube describes the captures of
the brown marmorated stink bug (Halyomorpha halys), one of the main
insect pest species causing economic damages to agricultural assets, in
different dates, traps, and crops. Captures are characterized by the age
of the insects. The cube contains four measures: the amount of captured
adults, large instars, and small instars as well as the air temperature.
Since it is well known that the spreading of Halyomorpha halys follows
seasonal peaks [26,27], we verified if an explain intention is capable
of highlighting such temporal pattern (shown in Fig. 10) as the most
interesting.

The intention we formulated to this end is the following:

𝐼 ∶ 𝗐𝗂𝗍𝗁 𝖢𝖠𝖯𝖳𝖴𝖱𝖤 𝖾𝗑𝗉𝗅𝖺𝗂𝗇 #𝖠𝖽𝗎𝗅𝗍𝗌 𝖻𝗒 𝗐𝖾𝖾𝗄

The components returned by the intention, ranked by decreasing inter-
est, are:

𝑐cross
1 = (#𝖫𝖺𝗋𝗀𝖾𝖨𝗇𝗌𝗍𝖺𝗋𝗌, 3), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐cross

1 ) = 0.9
cross
2 = (#𝖲𝗆𝖺𝗅𝗅𝖨𝗇𝗌𝗍𝖺𝗋𝗌, 5), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐cross

2 ) = 0.8
multi
3 = [#𝖫𝖺𝗋𝗀𝖾𝖨𝗇𝗌𝗍𝖺𝗋𝗌 = 2.71, #𝖲𝗆𝖺𝗅𝗅𝖨𝗇𝗌𝗍𝖺𝗋𝗌 = 0.0], 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐multi

3 ) = 0.2
poly
4 = (#𝖫𝖺𝗋𝗀𝖾𝖨𝗇𝗌𝗍𝖺𝗋𝗌, 1, [2.77, 5.03]), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐poly

4 ) = 0
poly = (#𝖲𝗆𝖺𝗅𝗅𝖨𝗇𝗌𝗍𝖺𝗋𝗌, 0, [9.21]), 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐poly) = 0
5 5
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Fig. 11. Component interest and overall perceived value for intention 𝐼2.
Fig. 12. Component interest and overall perceived value for intention 𝐼3.
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The first component explains measure #Adults by pointing out that
he number of adults shows a 3-week delay from the number of large
nstars, while the second one points out that it shows a 5-week delay
rom the number of small instars. This confirms that the explain
perator retrieves the seasonal patterns and correctly returns the tem-
oral displacement between adults and instars as the most interesting
omponents.

.2.3. Tests with users
As a last test of effectiveness, we experimented our approach with

6 users, mainly master students with advanced or basic knowledge
f business intelligence and data warehousing. After giving them a
-minute introduction to the explain operator and its syntax, we pro-
eeded as follows:

(i) We showed them intentions 𝐼2 and 𝐼3 (we omitted 𝐼1 for the
sake of time) together with the resulting cubes.

(ii) For each intention:

a. We asked them to explain the behavior of the target
measure on their own by visually inspecting the cube
data.

b. We proposed to them, as possible explanations, the two
components with maximum interest returned by the in-
tention.

c. We asked them to rate on a 5-values Likert scale the
interest of the explanations we provided and their overall
perceived value (e.g., how well our explanations were
aligned with their own explanation)

(iii) We asked them to rate the overall user experience.

Figs. 11, 12, and 13 show the results in the form of bar charts.
n 𝐼2 (Fig. 11), consistently with the interest of the components,
he users deemed the result of multivariable linear regression (our
ighlight, i.e., the fact that 𝗇𝖾𝗍𝖱𝖾𝗏𝖾𝗇𝗎𝖾 = 𝗀𝗋𝗈𝗌𝗌𝖱𝖾𝗏𝖾𝗇𝗎𝖾 − 𝖽𝗂𝗌𝖼𝗈𝗎𝗇𝗍) more
nteresting than the one of polynomial regression. Surprisingly, in 𝐼3

(Fig. 12), the users deemed polynomial regression as interesting as
11

cross-correlation, since Polyfit returns a more detailed explanation (a m
Fig. 13. User experience rating.

olynomial rather than a simple measure of displacement between the
wo time series). Overall, the perceived value of both the explana-
ions and the user experience (Fig. 13) are good. This suggests that
ndeed explain achieves good results, although it could be improved
y refining the explanations provided and adding the ones suggested
y the users. Interestingly, the main users’ suggestions concern the
doption of qualitative models (e.g., grossRevenue is proportional to
uantity, uniprice, and netRevenue but not to discount; unitPrice
s always higher than unitCost); although we agree that these models
ould be more intuitive that the quantitative ones we generate, we
bserve that they seem more aimed at providing descriptions rather than
xplanations.

. Related work

.1. OLAP + analytics

The idea of coupling data and analytical models was born in the
0’s with inductive databases, where data were coupled with patterns

eant as generalizations of the data [28]. Later on, data-to-model
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unification was addressed in MauveDB [29], which provides a language
for specifying model-based views of data using common statistical
models. However, achieving a unified view of data and models was still
seen as a research challenge in business intelligence a few years later
[30]. More recently, Northstar [31] has been proposed as a system to
support interactive data science by enabling users to switch between
data exploration and model building, adopting a real-time strategy for
hyper-parameter tuning. Finally, the coupling of data and models is
at the core of the IAM vision [1], on which this paper relies. The
three basic pillars of IAM are (i) the redefinition of query as expressing
the user’s intention rather than explicitly declaring what data are
to be retrieved, (ii) the extension of query results from plain data
cubes to cubes enhanced with models and highlights, and (iii) the
characterization of model components in terms of their interest to users.

The coupling of the OLAP paradigm and data mining to create an
approach where concise patterns are extracted from multidimensional
data for user’s evaluation, was the goal of some approaches commonly
labeled as OLAM [32]. In this context, k-means clustering is used in
[33] to dynamically create semantically-rich aggregates of facts other
than those statically provided by dimension hierarchies. Similarly, the
shrink operator is proposed in [34] to compute small-size approxima-
tions of a cube via agglomerative clustering. Other operators that enrich
data with knowledge extraction results are DIFF [35], which returns
a set of tuples that most successfully describe the difference of values
between two facts of a cube, and RELAX [36], which verifies whether a
pattern observed at a certain level of detail is also present at a coarser
level of detail, too. Finally, in [37] the OLAP paradigm is reused to
explore prediction cubes, i.e., cubes where each fact summarizes a
predictive model trained on the data corresponding to that fact.

7.2. Query explanation

In an attempt to develop tools for helping users understand data,
there have been several efforts in the research community to devise
techniques to model explanations for observations made on data [38].
See [39] for a comprehensive analysis of the literature and of the trends
in explanation.

A common way to give an explanation is to identify the actual cause
f the observed outcome [40]. Given the result of a database query,
hich database tuple(s) caused that output to the query? One way to
nswer this question is to quantify the contribution that each tuple
as to the result and identify the tuples with the highest contributions
7,41]; the intuition is that tuples with high contribution tend to be
nteresting explanations to query answers. Similarly, in [40] causality
s defined in terms of intervention: an input is a cause to an output if
e can affect the output by changing the value of that input. Thus, an
xplanation is defined as a predicate such that, when we remove from
he database all tuples satisfying that predicate, the output is signifi-
antly affected. Along this direction, techniques were devised to make
he search for explanations more efficient by precomputing the effects
f potential explanations [42] or to return more specific explanations
oncerning subgroups of answers determined via clustering [43]. Other
pproaches to query explanation rely on ontologies [44,45].

Causality poses additional challenges when the query contains ag-
regates [7], as in our scenario. The DIFF operator [35] tells users
hy a given aggregated quantity is lower or higher in one cube fact

han in another by returning the set of rows that best explains the
bserved increase or decrease at the aggregated level. In Scorpion [46],
utliers are explained in terms of properties of the tuples used to com-
ute these outliers, while [47] explains outliers in aggregation queries
hrough counter-balancing. Specifically, this explanation determines
he predicates that, when applied to the input data, cause the outliers
o disappear. LensXPlain [48] explains why some measure value is high
r low by identifying subsets of facts that contributed the most toward
uch observation. The contributions are measured either by intervention
12

if the contributing facts are removed, the value changes in the opposite m
direction), or by aggravation (if only the contributing facts are kept, the
alue changes more in the same direction).

A different approach to query explanation is taken in [49]. The
uthors focus on multidimensional data where a binary dimension
s present, and explain query results by building explanation tables
hich provide an interpretable and informative summary of the factors
ffecting the binary dimension.

.3. Regression

A completely different direction to represent how some data (mea-
ures, in our case) is derived and infer causal relationship is to use
odels built by regression analysis [50]. In statistical modeling, re-

ression analysis is a set of statistical processes for estimating the
elationships between a dependent variable and one or more indepen-
ent variables. A common form of regression analysis is polynomial
egression, which we adopt in this paper; although polynomial regres-
ion may use a non-linear model (e.g., a parabola) to fit the data, as
statistical estimation problem it is considered to be linear, since the

egression function is linear in the unknown parameters that are esti-
ated from the data. The method we use for polynomial regression is
rdinary least squares, which computes the unique line (or hyperplane)
hat minimizes the sum of squared differences between the true data
nd that line (or hyperplane) [19].

Regression is used to explain query results in the XAXA approach
50]. The authors focus on aggregate queries with a center-radius
election operator, and give explanations using a set of paramet-
ic piecewise-linear functions acquired through a statistical learning
odel. Remarkably, model training is performed by only monitoring

ueries and their answers online; thus, explanations for future queries
an be computed without any database access.

Some examples of possible alternatives to polynomial regression are:
i) multivariable regression, where the explanation is expressed as the
elationship between a set of variables [51]; (ii) symbolic regression,
here the explanation is expressed as a combination of mathematical
xpressions [52]; and (iii) HSIC lasso, where the explanation is ex-
ressed using a feature selection method that also considers non-linear
elationships between variables [53]. In principle, all these regres-
ion techniques could be plugged into our approach; in this paper
e only considered multivariable regression, while investigating the
pplicability of symbolic regression and HSIC lasso are left for future
ork.

.4. Discussion

The approach we propose is not competing with the ones mentioned
bove, but should rather be seen as a modular framework where any
pproach to explanation of aggregate data could be plugged. The added
alue lies in the IAM paradigm, i.e., in giving users the possibility
f explicitly expressing intentions, in letting the system select the
ost interesting/suitable explanations, and showing these explanations

ogether with data.

. Conclusion

In this paper we have given a proof-of-concept for explain inten-
ions formulated inside the IAM framework. The explain syntax is
lexible enough to suit users who wish to verify a specific hypothesis
hey made about an inter-measure relationship, as well as users who
ave no clue so they will let the system find the most interesting
elationship. Intention processing takes a few seconds even on very
arge query results, thus performances are perfectly in line with the
nteractivity requirements of OLAP sessions.

The main directions for future research we wish to pursue are: (i)
hift towards models that explain measure values in terms of dimension

embers, also considering aggregation; (ii) generalize the definition of



Information Systems 121 (2024) 102338M. Francia et al.

u

model to cope with these additional model types; and (iii) experiment
other interest metrics [54]. In particular, as to the last point, we plan
to consider the framework proposed in [39] to evaluate explanations
in terms of succinctness (large explanations will probably be not well
nderstandable), interpretability (the suitability of an explanation will

depend on the target users), and actionability (explanations should point
to actionable suggestions).
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