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The Intentional Analytics Model (IAM) has been devised to couple OLAP and analytics by (i) letting users
express their analysis intentions on multidimensional data cubes and (ii) returning enhanced cubes, i.e.,
multidimensional data annotated with knowledge insights in the form of models (e.g., correlations). Five
intention operators were proposed to this end; of these, describe and assess have been investigated in previous
papers. In this work we enrich the IAM picture by focusing on the explain operator, whose goal is to provide

an answer to the user asking “why does measure m show these values?”; specifically, we consider models that
explain m in terms of one or more other measures. We propose a syntax for the operator and discuss how
enhanced cubes are built by (i) finding the relationship between m and the other cube measures via regression
analysis and cross-correlation, and (ii) highlighting the most interesting one. Finally, we test the operator
implementation in terms of efficiency and effectiveness.

1. Introduction

Despite the OLAP (On-Line Analytical Processing) paradigm’s enor-
mous success in helping decision makers analyze multidimensional
cubes, it is now obvious that this paradigm cannot, by itself, satisfy
the sophisticated needs of new-generation users. The Intentional Ana-
Iytics Model (IAM) suggests pairing OLAP with analytics as one of the
approaches adopted by research to improve OLAP [1]. The two basic
tenets of the IAM are: (i) users explore the data space by expressing
their analysis intentions, and (ii) they obtain multidimensional data
as well as knowledge insights in the form of models as a result. To
achieve (i) five intention operators were proposed, namely, describe
(describes one or more cube measures at some aggregation level,
possibly focused on some level members), assess (judges one or more
cube measures with reference to some benchmark), explain (reveals
the reason behind the values of a measure, for instance by correlating
it with other measures), predict (shows data not in the original cubes,
derived for instance with regression), and suggest (shows data similar
to those the current user, or similar users, have been interested in).
As to (ii), first-class citizens of the IAM are enhanced cubes, defined as
multidimensional cubes coupled with highlights, i.e., interesting com-
ponents of models automatically extracted from cubes. An overview of
the approach is shown in Fig. 1. Noticeably, having different models
automatically computed and evaluated in terms of their interest relieves
the user from the time-wasting effort of trying different possibilities.

Among the five intention operators, describe and assess have been
investigated in previous papers [2-4]. In this paper we enrich the
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IAM picture by focusing on the explain operator. An explanation is
essentially a description of causation for an observed phenomenon;
in practice, it answers the why? question for that phenomenon by
providing a causal model for it [5]. In our context, we concentrate on
providing explanation models for a measure the user is observing (target
measure); thus, the goal of the explain operator will be to provide an
answer to the user asking “why does measure m show these values?”.

As envisioned in [1], several types of models can be used to this
end, for instance:

+ use regression analysis to correlate the values taken by m with
those taken by one or more other measures m’, m", etc. (e.g., sales
revenues are roughly proportional to the quantity sold);

use cross-correlation to match a time series of m with one of
another measure m’, by also considering that there may be a delay
between the two (e.g., the trend of deaths for a disease follows the
one of infections with a 2-weeks delay);

establish an analogy between the values of m at different aggre-
gation levels (e.g., the trend of sales revenues for beer closely
reflects the one of revenues for drinks);

find recurrent patterns that relate m to members and/or other
measures [6] (e.g., the sales of panettone are always high in
December);

+ find the cube facts that give the highest contributions to m [7].

In this work we focus on models that explain m in terms of one or more
other measures (candidate measures). While in a previous paper [8] we
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Fig. 1. The IAM approach.

have only considered models that establish a polynomial relationship'
between m and another measure m’, here we extend our approach by
also including multivariable linear regression and cross-correlation.

Example 1. Let a SALES cube be given, whose schema is shown in
Fig. 2, and let the user’s intention be

with SALES explain netRevenue by type for year = ‘2022’

where netRevenue is the target measure and all the other measures of
SALES (namely, quantity, unitPrice, grossRevenue, and discount)
are candidate to be used for explanation). Fig. 1 shows the result
of this intention, evaluated as follows. First, the subset of facts for
2022 (for clause) are selected from the SALES cube (with clause) and
aggregated by product type (by clause; in OLAP terms, a slice-and-
dice and a roll-up operator are applied). Then, regression analysis is
used to compare the netRevenue measure with the candidate measures
and find a set of components corresponding to (i) polynomials that
best approximates the relationship of netRevenue with each candi-
date measure, (ii) the linear combination that best approximates the
relationship of netRevenue with all candidate measures, and (iii) the
best cross-correlation of netRevenue with each candidate measure.
Finally, a measure of interest that expresses how well the values of
netRevenue are replicated by each component is computed for all the
components obtained, and the most interesting one (i.e., the highlight)
is shown to the user. In the SALES cube, measure netRevenue is
actually calculated as grossRevenue — discount; thus, not surprisingly, in
Fig. 1 the highlight shows that netRevenue is a linear combination of
grossRevenue and discount. []

The original contributions we give in this paper compared to [8]
are listed below:

1. Besides polynomial univariable regression, we also consider
models based on multivariable linear regression and cross-
correlation.

1 Since the term correlation in statistics is mainly used to denote linear rela-
tionships, to avoid misunderstandings we will use the general term relationship
instead.
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2. For each model type, we give a definition of interest.

3. We formalize a join operator between cubes (in the same direc-
tion of the drill-across OLAP operator), aimed at making more
candidate measures available for explanation and creating more
precise models.

4. We extend the syntax of explain to cope with the new model
types considered, to operate on two or more cubes, and to
support derived measures, i.e., measures computed from other
measures via algebraic expressions.

5. We define domination rules to cope with overlapping compo-
nents of different models.

6. We present the results of a comprehensive set of experimental
tests aimed to evaluate our approach not only from the point of
view of efficiency, but also from that of effectiveness.

The paper outline is as follows. After introducing a formalism to
manipulate cubes and queries in Section 2, in Section 3 we introduce
models and enhanced cubes. In Section 4 we give the syntax of explain
and illustrate how models of the different types are built. Then, in
Section 5 we explain how enhanced cubes are visualized. Finally, in
Section 6 we test the operator implementation in terms of efficiency
and effectiveness, in Section 7 we discuss the related literature, and in
Section 8 we draw the conclusions.

2. Formalities

To simplify the formalization and without loss of generality,” we
will restrict to consider linear hierarchies.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a triple h =
(Ly, =y, >;,) where:

(i) L, is a set of categorical levels, each coupled with a domain
Dom(l) including a set of members;
(ii) >, is a roll-up total order of L,; and
(iil) > is a part-of partial order of J,c;, Dom(l).

The top level of >, is called dimension. The part-of partial order is such
that, for each couple of levels / and !’ such that / >, I’, for each member
u € Dom(l) there is exactly one member «' € Dom(l’) such that u >, v'.

Definition 2 (Cube Schema). A cube schema is a couple C = (H, M)
where:

(i) H is a set of hierarchies;
(ii) M is a set of numerical measures, where each measure m € M
is coupled with one aggregation operator op(m) € {sum,avg, ...}.

Example 2. For our working example we will use the SALES and
PURCHASE cubes, whose conceptual schemata are depicted in Fig. 2
using the DFM [9]. Formally, it is SALES = (H, M) with

H = {hpate: Pproduct: Astore 3

M = {quantity, unitPrice, grossRevenue, discount, netRevenue};
date > month > year;

product > type > category;

store > city > country

and op(quantity) = op(grossRevenue) = op(discount) = op(netRevenue) =
sum, op(unitPrice) = avg. In the part-of order of the Product hierarchy

2 The presence of branches and diamonds in the hierarchies only affects the
definition of group-by sets and, consequently, the definition of roll-up partial
order and the computation of cube queries; it has no impact within the scope
of this paper since we focus on models that operate at a fixed group-by set,
the one stated in each intention.
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Fig. 2. Conceptual schemata for the SALES and PURCHASE cubes.

it is, for instance, Orange >p. g, Fresh Fruit >p 4, Fruit. The
PURCHASE cube is similar, except that it has a Supplier hierarchy
instead of Store. [

Aggregation is the basic mechanism to query cubes, and it is cap-
tured by the following definition of group-by set. As normally done
when working with the multidimensional model, if a hierarchy » does
not appear in a group-by set it is implicitly assumed that a complete
aggregation is done along A.

Definition 3 (Group-by Set and Coordinate). Given cube schema C =
(H, M), a group-by set of C is a set of levels, at most one from each
hierarchy of H. The partial order induced on the set of all group-by
sets of C by the roll-up orders of the hierarchies in H, is denoted with
>y A coordinate of group-by set G is a tuple of members, one for each
level of G. Given coordinate y of group-by set G, another group-by set
G’ such that G > G’, and the coordinate y’ of G’ whose members
are related to the corresponding members of y in the part-of orders, we
will say that y roll-ups to y’. Conventionally, each coordinate roll-ups
to itself.

Example 3. Two group-by sets of SALES are G' = {date, type, country}
and G?> = {month,category}, where G! >, G?. G' aggregates sales
by date, product type, and store country, G> by month and category.
Example of coordinates of the two group-by sets are, respectively,
y! = (2022-04-15, Fresh Fruit, Italy) and y? = (2022-04, Fruit), where
y; roll-ups to y,. [

The instances of a cube schema are called cubes and are defined as
follows.

Definition 4 (Cube). A cube over C is a triple C = (G, M, wc) where:

(i) G¢ is a group-by set of C;
(i) Mo € M;
(iii) w¢ is a partial function that maps the coordinates of G to a
numerical value for each measure m € M.

Each coordinate y that participates in w., with its associated tuple
of measure values, is called a fact of C. With a slight abuse of notation,
we will write y € C to state that y is a fact of C. The value taken by
measure m in the fact corresponding to y is denoted as y.m. A cube CT
whose group-by set is the top of > (i.e., it is the finest group-by set
of C) and such that M = M, is called a base cube.

Definition 5 (Cube Query). A query over cube schema C is a triple
q =(G,, P;, M) where:

() G, is a group-by set of H;

(ii) P, is a (possibly empty) set of selection predicates each ex-
pressed over one level of H using either a comparison operators
(=, 2, etc.) or the set inclusion operator (e.g., country IN ‘Italy’,
‘France’);

(iii) M, € M.

Let CT be a cube over C. The result of applying ¢ to C' is a cube
C = ¢(CT) such that (i) Gc =Gy, (i) Mc = M, and (iii) w assigns to
each coordinate y € C satisfying the conjunction of the predicates in
P, and to each measure m € M the value computed by applying op(m)
to the values of m for all the coordinates of CT that roll-up to y.

Example 4. The cube query over SALES used in Example 1 is ¢ =
(G, P, M) where G, = {type}, P, = {year = ‘2022’}, and M,
{netRevenue}. Let SALES, be the resulting cube; a coordinate of this
cube is (Batteries) with associated value €8090.96 for netRevenue.

|

To let our explain operator search for measure relationships across
two or more related cubes, simulating the drill-across OLAP operator,
we give a definition of cube joinability. Intuitively, two cubes are
joinable if they share, either completely or partially, at least one hier-
archy.’ To simplify the definition we assume that a hierarchy cannot be
partially shared; for discussion of how to cope with partially overlapped
hierarchies (e.g., date > month > year and date > year) we refer the
reader to [10].

Definition 6 (Joinability and Join). Let C|, ..., C, be v cubes over cube
schemata C,, ..., C,, respectively, be given, with C; = (H;, M;). We say
these cubes are joinable if (\;_, H; # @, i.e., they share at least one
hierarchy. The cube C resulting from join between these cubes, denoted
Ni-; Ci, has schema

v v
c=(H.|JM)
i=1 i=1

Let GT be the finest group-by set of C, and ¢; = (G',TRUE, M,)
for i = 1,...,v be the queries that aggregate each cube C; at G'.
The coordinates of C are the intersection of the coordinates of cubes
a(CD, ..., q,(C,), i.e., the common coordinates of Cy, ..., C, aggregated
at GT; each coordinate of C is associated with all the measure values
associated to the corresponding coordinates of the C;’s.

Intuitively, the schema of the join C of two or more cubes features
the intersection of their hierarchies and the union of their measures,
so its group-by set is the finest common group-by set and its measures
values, for each coordinate, are those of the corresponding coordinates
in the joined cubes.

Example 5. Cubes SALES and PURCHASE are joinable; their join,
SP = SALES A PURCHASE, features the Date and Product hierarchies
and has measures quantity, unitPrice, ... totalCost (see Fig. 3). The
finest group-by set of SP is GT = {date, product}; an example coordinate
of SP is y = (2022-04-15, Orange). []

3 Note that this definition of cube joinability is similar to the one given in
[4]1, but more general since it does not require that the group-by of one cube
is coarser than the one of the other cube.
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Fig. 3. Conceptual schema for the cube resulting from the join of SALES and
PURCHASE.

3. Enhanced cubes

Models are concise, information-rich knowledge artifacts [11] that
represent relationships hiding in the cube facts. A model is bound
to (i.e., is computed over the levels/measures of) one cube, and is
made of a set of components, each component being a specific re-
lationship among cube facts. To make our approach more flexible,
in this paper we give users the possibility of working with derived
measures, i.e., measures computed on-the-fly from other measures via
an algebraic expression. In the following, the term “measure” will be
used in a general way to also include derived measures.

Definition 7 (Model). A model is a tuple M = (t,alg,C,m, In, Out)
where:

(i) ¢ is the model type;

(ii) alg is the algorithm used to compute Our;

(iii) C is the cube to which the model is bound (possibly resulting
from a join);

(iv) m is the target measure of C;

(v) In is the set of r candidate measures of C supplied to alg to
compute the model;

(vi) Out is the set of model components.

In this paper we consider three types of models, namely:

« Polynomial regression, which establishes a polynomial relationship
between m and one other measure via regression analysis. There
are r components; each component ¢; € Out shows the rela-
tionship of the target measures m with one candidate measure
m; € In.

Multivariable linear regression, which establishes a linear relation-
ship between m and a set of other measures. The model includes
exactly one component ¢ € Out showing the relationship of m
with all candidate measures in In.

Cross-correlation, which finds the similarity of two series as a func-
tion of the displacement of one relative to the other. There are r
components; each component ¢; € Out shows the relationship of
m with one candidate measure m; € In.

The form taken by components depends on the model type as follows.

Definition 8 (Component). For ¢ = polynomialRegression, a component
¢; is a triple ¢; = (m;, d;, coeff ;) where:

(i) m; is the candidate measure;
(ii) d, is the degree of the polynomial used to describe the relation-
ship between m and m;;
(iii) coeff; is an array of the d; + 1 coefficients of the polynomial
a’(m,) that best approximates m with reference to the facts in
C.
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For t = multivariableRegression, there is a single component ¢ = coeff,
where:

(i) coeff is an array of the r+1 coefficients of the linear polynomial
al'(my,...,m,) that best approximates m with reference to the
facts in C.

Finally, for + = crossCorrelation, a component ¢; is a couple ¢; =
(m;, disp;) where:

(i) m; is the candidate measure;
(ii) disp; is the displacement yielding maximum correlation between
the series of values of m and the one of m;.

Example 6. A possible polynomial regression model over the SALES,
cube computed in Example 4 is characterized by

t = polynomialRegression; alg = Polyfit; C = SALES,;
m = netRevenue; In = {quantity, discount}; Out = {c{,c,}
where

¢, = (quantity, 1, [2.15, -171.88]);

¢, = (discount, 1,[19.00,27.42])

According to this model, the relationships of netRevenue with quan-
tity and discount are described, respectively, as

netRevenue = a' (quantity) = 2.15 - quantity — 171.88

netRevenue = a' (discount) = 19.00 - discount + 27.42

An example of multivariable linear regression model over the same
cube is

t = multivariableRegression; alg = MultiReg; C = SALES;;

m = netRevenue; In = {grossRevenue, discount, quantity }; Out = {c3}

¢3 =[1.0,-1.0,0.0,0.0]

According to this model, the relationships of netRevenue with gross-
Revenue, discount, and quantity is described as

a'(grossRevenue, discount, quantity) = grossRevenue — discount

Finally, an example of cross-correlation model over the SP, cube,
obtained by joining SALES and PURCHASE (which produces cube SP
in Example 5) and then grouping by date, is

t = crossCorrelation; alg = CrossCorr; C = SP;;

m = unitPrice; In = {unitCost}; Out = {c, }

¢4 = (unitCost, 27)

According to this model, the daily trend of the average unitPrice is

displaced by 27 days with respect to that of the average unitCost. []
As the last step in the IAM approach, cube C is enhanced by

associating it with a set of models bound to C and with a highlight,
i.e., with the most interesting model component:

Definition 9 (Enhanced cube). An enhanced cube E is a triple of a cube
C, a set of models {M,, ..., M} bound to C, and a highlight

c= argmax e\J:_, Ou ;) (interest(c;))

Function interest() measures the interest of each component on
a continuous scale from O to 1; how this is done is the subject of
Section 4.6.

4. The explain operator

The explain operator provides an answer to the user asking “why is
this happening?” “why does measure m show these values?” by describ-
ing the relationship between m and the other cube measures, possibly
focused on one or more level members, at some given granularity. The
cube is enhanced by showing these relationships, with a highlight on
the most interesting one.
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4.1. Syntax

Let CIT, e C; be p joinable cubes, C, be their join, and C = (H, M)
be the schema of C,. The syntax for explain is (optional parts are in
brackets):

with CIT, ,C; explain expr, [as m]
byly,....1, [for P]

[against expr; [as m;], ... ,expr, [as m,]]
[using 2, ...,1,]

[range b]

where each expr; is an algebraic expression involving one or more
measures in C; P is a set of selection predicates, each expressed on one
level of H; {l,,...,1,} is a group-by set of H; t; € {polynomialRegres-
sion, multivariableRegression, crossCorrelation} is a model type; b is a
positive integer. The different clauses take the following roles:

» The with clause specifies the cubes(s) on which the intention is
executed.

The explain clause specifies the target measure.

The by clause specifies how the cube(s) must be aggregated.
The for clause specifies a selection on the cubes(s).

The against clause specifies the candidate measures.

The as clause gives names to derived measures specified via
expressions.

The using clause specifies which model types are to be computed.
The range clause specifies the maximum displacement allowed
for cross-correlation.

Model type crossCorrelation can be computed only when the by clause
includes exactly one level /, and / has type interval (e.g., a date).* Model
type multivariableRegression is computed only when the against clause
includes more than one candidate measure.

Example 7. Two examples of explain intentions on the SALES cube
are, besides the one in Example 1,

with SALES, PURCHASE explain unitPrice by date
against unitCost using crossCorrelation range 60

with SALES explain (grossRevenue — netRevenue) as diff by year

The first one leads to the computation of the cross-correlation model in
Example 6.

4.2. Semantics

The execution plan corresponding to a fully-specified intention,
i.e., one where all optional clauses have been specified, is as follows®:

1. If p > 1, i.e., two or more cubes are specified in the with clause,
compute the cube C, resulting from their join.

2. Execute query g = (G,, P,;, M) over C, where G, ={l,....1,},
P, = P,and M, = {m,my,...,m,}. Let C = q(Cy) be the cube
resulting from the execution of ¢ over C,.

3. For 1 < j < z, compute model M; = (t;,alg;, C,m, {my,...,m,},
Out,); see Sections 4.3, 4.4, and and 4.5 for a description of how
each model is computed and its components are determined.

4 Value types can be either nominal (qualitative and unordered), ordinal
(qualitative and ordered), interval (quantitative with no zero point, supports
the computation of a distance between values), and ratio (quantitative with
zero point) [12,13].

5 In the following, for simplicity, we will use labels m, m,...,m, to denote
measures even in the case they correspond to expressions specifying derived
measures.
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4. For each ¢ € Out; compute interest(c). Essentially, the interest
of component ¢ measures how well ¢ can replicate the values of
m; see Section 4.6 for an explanation of how this is done for the
different model types.

5. Find the highlight ¢ = argmax e\, ou, (interest(c)).

6. Return the enhanced cube E consisting of C, {M,, ...

C.

, M.}, and

Partially-specified intentions are interpreted as follows:

+ If the for clause is not specified, we consider P, = TRUE.

« If the against clause is not specified, models are created for each
measure in M (except m).

« If the using clause is not specified, all three model types are
considered.

Example 8. The second intention in Example 7 is executed by first
computing the cube C that aggregates SALES by year and projects
on measures grossRevenue and netRevenue; the difference between
these two measures is computed and named diff. Then, three models
are computed: (i) a polynomial regression with 3 components (one for
quantity, one for unitPrice, and one for discount, see Section 4.3); (ii)
a multivariable linear regression with one component (relating diff to
the other 3 measures, see Section 4.4); and a cross-correlation with 3
components (one for quantity, one for unitPrice, and one for discount,
see Section 4.5). Finally, the interest is computed for the 7 components
obtained (see Section 4.6); the highlight (the most interesting compo-
nent, i.e., the one that best replicates the values of diff) turns out to be
the polynomial expressing diff in terms of discount), which is returned
to the user together with C.

4.3. Polynomial regression

Given two variables in a dataset, polynomial fitting (or simply
Polyfit) summarizes their relationships by the polynomial function of
the lowest degree that best approximates their values [14]. Finding
the best polynomial function requires minimizing an error function
that balances the approximation error and the polynomial degree (the
higher the degree, the lower the error but the higher the overfitting
and the more complex — so the less interpretable — the model).

In our scenario, the goal is to approximate m with a polynomial
in m;, and the dataset is the set of facts of cube C. Let a? denote the
polynomial of degree d in m; that best approximates m; then, the fitting
error (namely, the mean squared error) can be expressed in function of
d as [15]

Y, ec(@ (r.m) —y.m)?
|Cl—d-1

where the y’s are the coordinates of C. Intuitively, this formula mea-
sures the average squared approximation error with a penalty on the
degree d: among the polynomials with similar approximation errors,
the one with the lowest degree is preferred.®

To find the best degree d; for each m; we follow a step-wise forward-
selection regression approach. We start with a constant polynomial,
then we iteratively test the addition of higher-degree coefficients in
the polynomial with a chosen fitness criterion (as suggested in [16]).
Specifically, we divide the query result into train and test, with 70%
and 30% facts respectively. We fit the polynomial to the training
data, then we assess its error() against the test set. We stop when,
after reaching a good model, the error increases again; intuitively, we
test how well the polynomial generalizes and we stop when higher-
degree polynomials are overfitting the query result. Note that there is a
possibility that a local minimum is reached by following this approach.

error(m,m;,d) =

6 If |C| <d + 1, no polynomial of degree d can be fitted, hence the error is
not computed.
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Algorithm 1 Polyfit

Require: m: target measure; m;: candidate measure
Ensure: «: optimal polynomial

1: e* « +o0 > Approximation error
2:d <0 > Degree
3: stop < False > Stop condition
4: do

5: > Find the best polynomial of degree d...

6: a? « OrdinaryLeastSquares(m, m;,d)

7: e « error(m,m;,d) > ...and compute its error
8: if e < ¢* then > If a better approximation is found...
9: ef—e > ...update the error, ...
10: de—d+1 > ...increment the degree and iterate, ...
11: else
12: stop < True > ...otherwise stop

13: while !stop A (|C| > 10 - d)

14: return o?"! > Return the polynomial

For instance, when fitting quadratic data, a cubic polynomial «* could
be worst than the quadratic one «?; so the search would stop, while a
quartic polynomial a* whose cubic and quartic terms tend to 0 might be
(slightly) better than a?>. However, we argue that in this case a simple
model should be preferred to a more complex one, i.e., to a polynomial
with a higher degree.

To ensure that a polynomial is trained on a “sufficient” amount
of facts, we apply the one-to-ten rule of thumb’: the polynomial with
degree d is considered only if the query result contains at least d - 10
tuples. The pseudocode is sketched in Algorithm 1. Given the target
measure m, we first initialize the approximation error (Line 1), the
initial degree (Line 2), and the Boolean stop condition (Line 3); then,
the iteration begins (Lines 4-13). We compute the best polynomial with
the given degree d through ordinary least squares optimization (Line 6)
and the error of the polynomial (Line 7). If the current error is better
than the one obtained so far (Line 8), we update it (Line 9), increase
the polynomial degree (Line 10), and continue with the iteration (Line
13). Otherwise, we terminate the iteration (Line 12). In any case, the
iteration stops if |C| < 10-d (Line 13) [17]. Finally, we return the best
polynomial (i.e., the one computed before the current iteration).

Example 9. The following intention:

with SALES explain netRevenue by type for year = ‘2022’

against unitPrice using polynomialRegression

is executed by first computing the cube that aggregates sales by type
for 2022 and then applying the Polyfit algorithm to obtain a model with
one component for measure unitPrice. Algorithm 1 iteratively finds the
following polynomials with degrees from O to 3 (see Fig. 4):

netRevenue = 10737.6

netRevenue = 191.74 - unitPrice — 8098.16

netRevenue = 1.1 - unitPrice? — 22.78 - unitPrice + 1409.33

netRevenue = 0.01 - unitPrice® — 1.73 - unitPrice’
+215.22 - unitPrice — 4027.88

As shown in Fig. 5, the quadratic polynomial is returned since the cubic
one has a higher error.® [J

7 “One to ten” or “one in ten” is a rule of thumb for how many param-
eters can be estimated from data when doing regression: a minimum of 10
observations per parameter is deemed necessary to avoid overfitting [17].

8 The polynomial of degree 3 resembles a parabola since the cubic term
tends to 0, hence, its sum of squared errors is similar to the one of the
polynomial of degree 2. However, the error function penalizes it due to the
higher degree.
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Fig. 4. Approximating polynomials with degrees 0 (a), 1 (b), 2 (c), and 3 (d) for the
unitPrice measure from Example 9.
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Fig. 5. Error in function of the degree for the polynomials in Fig. 4.

4.4. Multivariable linear regression

Given three or more variables in a dataset, multivariable linear
regression (or simply MultiReg) explains the dependent variable (in our
case, the target measure) by a linear function of “significant” indepen-
dent ones (the candidate measures); significant means that independent
variables are omitted if they have no effect on the dependent one.
Finding the best subset of independent variables is impractical because
of the combinatorial explosion of the number of subsets; thus, greedy
algorithms are commonly adopted to this end.

Specifically, the greedy algorithm we adopt here is called Recursive
Feature Elimination [18]; since variable selection can be non-optimal
when it comes to removing several variables at a time, this algorithm
finds the best linear function by minimizing the error while estimating
the effect of removing one variable at a time. The process is summa-
rized in Algorithm 2: (i) the linear regression model is trained with
all the candidate measures by minimizing the approximation error
through ordinary least squares [19]; (ii) the candidate measures are
ranked by the absolute value of their coefficients; and (iii) the candidate
measures with smallest ranking are iteratively removed. The best subset
of measures is returned by choosing the subset that gives the least
averaged error across different folds of the dataset; for all measures
removed, the corresponding coefficients in the coeff array that models
the polynomial within the component are set to 0. Note that, if too
many measures were involved, the greedy search could be prematurely
stopped based on the elbow method; this is not our case, since the
results of OLAP queries usually include a limited number of measures
and tuples (i.e., the cardinality of the result is “small”) [20].
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Algorithm 2 MultiReg

Algorithm 3 CrossCorr

Require: m: target measure; M: candidate measures
Ensure: o*: optimal linear model

1: e* « +o0 > Approximation error

2 M « M > Current measures
R ] > Initialize the best polynomial
4: do

5: > Find the best model with measures M’ ...

6: a < OrdinaryLeastSquares(m, M")

7: e « error(m, M") > ...and compute its error
8: if e < ¢* then > If a better approximation has been found...
9: ef—e > ...update the error
10: af —a > ...and update the model
11: > Remove the measure with the coefficient closest to 0

12: M« M'\ {argmin,, ¢y (|coeff (m;, a)])}
13: while |[M'| >0

14: return o* > Return the best linear model

Example 10. Given again the intention in Example 1,
with SALES explain netRevenue by type for year = ‘2022’

a multivariable linear regression model based on all the other cube
measures has to be computed. Algorithm 2 first ranks the measures as
grossRevenue, discount, quantity, and unitPrice. Then, it iteratively
removes the measures one by one (starting from unitPrice). Finally,
the best linear model, involving grossRevenue and discount with
their coefficients being respectively 1.0 and —1.0, is returned (indeed,
netRevenue is computed in the SALES cube as grossRevenue—discount).

4.5. Cross-correlation

Given a series of a dependent variable and a series of an inde-
pendent variable, cross-correlation (or simply CrossCorr) explains the
former as a function of the best displacement relative to the latter.
In our scenario, the dependent variable is the target measure and the
independent variable is the candidate measure; to enable a series-wise
comparison, the cube must be aggregated by a level of interval type
(e.g., a temporal level such as date or month).

The process is summarized in Algorithm 3. For simplicity, we as-
sume that the two series are complete, i.e., that no event is missing.” We
normalize the cross-correlation function to get a time-dependent Pear-
son correlation coefficient, with 1 indicating perfect correlation and —1
indicating perfect anti-correlation; the correlation p with displacement
7 between the two series in X (corresponding to the candidate measure
m;) and Y (corresponding to the target measure m) is calculated as
follows:

e — L M

VEs = 1R\ Zi O = 2

where u and o represent the average and deviation of each series. Then,
finding the best cross-correlation requires determining the
displacement ¢ yielding the maximum absolute correlation, i.e.,
argmax_ ., pisp<z<+maxnisp(Px,y (¥)), where maxDisp defines the bound-
aries of the search, i.e., the initial displacement. Unless differently
specified, we pick maxDisp = |X| so the search for the best displace-
ment is carried out in [—|X]|,|X|]; in other words, all the possible
displacements are tried, starting from the one where the first series is
shifted so that its beginning is matched with the end of the second

9 Several imputation methods can be adopted in case of missing events,
ranging from arithmetic average for “steady” patterns to more complex
methods for periodical ones [21].

Require: m: target measure; m;: candidate measure; maxDisp: maxi-
mum displacement
Ensure: z*: optimal delay

1: corr* « — > Correlation

2: T « —maxDisp > Initial displacement
3: do

4: > Compute the (absolute) correlation with displacement ¢

5: corr « |pm‘_,m(1)|

6: if corr > corr* then > If a better correlation has been found...
7: corr® « corr > ...update the correlation
8: ™t T > ...set the best displacement
9: Te—r+1 > ...and increment the displacement
10: while 7 < maxDisp

11: return z* > Return the best displacement

—— unitCost
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Fig. 6. Cross-correlation between unitPrice and unitCost for Example 11.

series, and finishing with the opposite. However, using the range
clause in the explain intention, it is possible to inject some a priori
knowledge in the search for an explanation by specifying the maximum
displacement allowed; this allows to constrain the search space on
the one hand, to avoid “false positives” (i.e., displacements with high
correlations but outside the range of interest) on the other.

Example 11. Consider again the intention from Example 7,

with SALES, PURCHASE explain unitPrice by date

against unitCost using crossCorrelation range 60

After joining the SALES and PURCHASE cubes and aggregating the
result by date, Algorithm 3 starts by computing the cross-correlation
of unitPrice and unitCost with initial displacement —60, then it in-
crementally increases the displacement up to 60. During this process,
the best displacement (namely, 27) is found and stored, and eventually
returned. Fig. 6 shows the time series for unitPrice and unitCost as
computed by the intention.

4.6. Measuring the interest of components

Measuring the interest of components is crucial, since it allows for
ranking them when visualizing enhanced cubes and for determining the
highlight. We recall that function interest() ranges in [0..1]; its definition
depends on the type of model to which the component belongs:

+ Polynomial regression model. Let ¢; be the component explain-
ing m based on m;; we evaluate the interest of ¢;, interest(c;), as
the coefficient of determination R2 [22], which measures how well
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the polynomial in m; fits the values of the target measure m; if R2
is negative, function interest() returns 0.'° The better the model,
the closer the value of R2 to 1.

Multivariable linear regression model. Let ¢; be the component
explaining m based on the independent variables m, ..., m,; also
in this case, we evaluate the interest of ¢;, interest(c;), as the
coefficient of determination R2.

Cross-correlation model. Let ¢; be the component explaining m
based on m;; we evaluate the interest of c;, interest(c;), via the
absolute value of the correlation p as defined in Eq. (1). The better
the model, the closer the value of p to 1.

Note that, while in principle R2 is applicable to cross-correlation as
well, they can be discordant due to their different semantics: cross-
correlation is high when two measures are “well-aligned”, while R2
is high when a measure is a good approximation of another (in other
words, alignment does not imply a good fit). For instance, given unit-
Price and unitCost from Fig. 6, the cross-correlation value is 0.90 while
R2 is negative even if computed after aligning the two measures by the
displacement found; this means that the values of unitPrice are better
approximated by their average rather than by the values of unitCost.

Example 12. With reference to Example 6, for the regression models
on SALES, it is

interest(c;) = 0.96
interest(cy) = 0.99

interest(c3) = 1.00

Thus, the highlight is ¢;. For the cross-correlation model on SPy, it is
interest(cy) = 0.90.

4.7. Model overlaps

In certain situations, some components of different models can carry
the same information. For instance, if measure m is explained against
a set of measures m, ..., m, but is linearly dependent on measure m,,
(i) polynomial regression will return a polynomial m = a% (m,), with
d, = 1; (i) multivariable linear regression will return a polynomial
m = a'(my,...,m,) where all the coefficients except the one for m, are
null; (iii) cross-correlation will return displacement 0 between m and
m;. All three components will have high interest.

To avoid returning redundant information to users, but also to
properly rank components, we introduce three domination rules. Let
m be the target measure of an intention, m; € In be a measure used
for explaining m, and Out = U;l Out; be the set of all components
returned by that intention:

D.1 If Out includes a polynomial regression component cipoly

(m;, d;, coeff;) and a multivariable linear regression component
™I — coeff where all coefficients except the one for m; are
0, then cfmly dominates ¢c™ti, The rationale for this rule is that
multivariable linear regression always return linear polynomials,
while polynomial regression can return polynomials with any
degree; thus, c}mly may be more informative/accurate than ¢™t,
Indeed, in this case m is roughly expressed as coeff; - m; by c™1
and more accurately expressed as ai (m;) by cl.p°ly. Clearly, in case

d; = 1, the two components are fully equivalent.

10 R2 compares how well a model fits m in comparison with its simple
average value. More formally, it represents to what extent the variation in
the dependent variable m is predictable from a model in the independent
variable(s) m;. Should the average value be a better approximation than the
model, R2 is negative.

Information Systems 121 (2024) 102338
D.2 If Out includes a polynomial regression component Cipoly
(m;, d;, coeff ;) and a cross-correlation component
™ = (m;, disp;) where disp, = 0, then cf’oly dominates ¢SS,
The rationale for this rule is that cross-correlation does not
return any expression relating m to m;, hence, c,POIY is more
informative/accurate than ¢;™%. Indeed, in this case m is roughly
expressed as m; by ¢ and more accurately expressed as a“i (m,)
by P oly
1
D.3 If Out includes a multivariable linear regression component
et — coeff where all coefficients except the one for m; are
0 and a cross-correlation component ¢™* = (m;,disp;) where
disp, = 0, then ¢™ !t dominates ¢{T°%. The rationale for this rule
is that cross-correlation does not return any expression relating
m to m;, hence, emulti js more informative/accurate than €O,
Indeed, in this case m is roughly expressed as m; by ¢ and

! i
more accurately expressed as coeff - m; by ¢™t,

Noticeably, these rules can be applied in the user interface in two
ways (depending on the user’s preferences): (i) to hide the dominated
components from the user’s view, or (ii) to sort components yielding the
same interest. Besides, they could be used to improve performances by
avoiding to compute some components.

Example 13. Consider again the intention
with SALES explain (grossRevenue — netRevenue) as diff by year

from Example 8. Since netRevenue is actually computed as
grossRevenue — discount, we expect that this relationship is used as
an explanation for derived measure diff, i.e., that diff=discount is
the relationship returned. Indeed, three components have maximum
interest in this case:

P = (discount, 1,[1,0]), interest(c™™) = 1.0

™t — (0,0, 1,0], interest(c™t) = 1.0

Cross

€7 = (discount, 0), interest(clm’“) =1.0

The first component expresses diff as a polynomial of degree 1 in
discount, with coefficients 1 and 0. The second one expresses diff as
a linear polynomial in all candidate measures, with all coefficients set
to 0 except the one for discount. Finally, c¢{™ tells us that the time
series for diff is very correlated with the one for discount, with no dis-
placement. In fact, all three components convey the same information
to the user. The dominating component returned as the highlight is, in
this case, c‘f°ly.

5. Visualizing enhanced cubes

As previously done for the describe and assess IAM operators, to
give an effective visualization of the enhanced cubes built for explain
intentions we couple a text-based representation (a pivot table and a
ranked component list) with a graphical one (a chart) and with an ad-
hoc interaction paradigm. Specifically, the visualization of enhanced
cube E = (C, M,c) relies on three distinct but inter-related areas: a
table area that shows the facts of C using a pivot table; a component
area that shows a list of model components sorted by their interest,
with ¢ at the top; a chart area that uses a scatter chart to display, for
each component ¢; of M, the relationship between the target measure
and the candidate measure(s). Specifically:

+ For polynomial regression, we use a scatter chart superimposed
with the function plotting the approximating polynomial (see [8]
for an example).

» For multivariable linear regression, if the number of candidate
measures with non-null coefficients is 2, we use a 3-D scatter
chart superimposed with the plan plotting the approximating
polynomial (see Example 14); otherwise, no chart is created.
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Intention

with SALES explain netRevenue by type for year='2022"
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netRevenue = 0.95 *
grossRevenue + 1.2

properties

type netRevenue comp 1itinterest
Anchovies 2296.38
Aspirin 3613.39
Auto Magazines 1958.62
Bagels 1872.97 Polyfit 0.98
Batteries 8478.78
Beer 28900.45
Bologna 5859.95
Candles 1360.1
Canned Fruit 3314.52
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Fig. 7. The visualization obtained for the intention in Example 1.

Table 1
Test results in function of the cube cardinality.

|C| Complexity
(numb. of char.)

Time (s)

Intention Query Python Query CrossCorr MultiReg Polyfit Total

12 116 268 2165 0.03  0.01 0.01 0.01 0.06
36 132 397 2841 0.04 - 0.01 0.02 0.07
333 115 265 2165 0.04 0.01 0.01 0.02 0.08
540 134 403 2841 0.05 - 0.01 0.02 0.08
1224 137 412 2841 0.06 - 0.01 0.02 0.09
12113 133 400 2841 0.05 - 0.02 0.03 0.10
16949 129 395 2841 0.07 - 0.02 0.04 0.13
18492 128 385 2841 0.06 - 0.02 0.04 0.12
20525 128 392 2841 0.07 - 0.02 0.04 0.13
77832 127 382 2841 0.08 - 0.06 0.10 0.24
86832 140 509 2841 0.10 - 0.05 0.11 0.26

« For cross-correlation, we use a multiple line chart showing the
two series (the one for the target measure and the one for the
candidate measure, see Example 11 for an example).

The interaction paradigm we adopt is component-driven: clicking
on one component ¢; in the component area leads to show the corre-
sponding visualization in the chart area. The highlight is selected by
default.

Example 14. Fig. 7 shows the visualization obtained when the
intention in Example 1 is formulated. On the left, the table area; on the
right, the chart area; in the middle, the component area. The highlight
is a (multivariable) linear polynomial that approximates netRevenue
in function of grossRevenue and discount, so the chart area shows
the 3-D relationship between these three measures.

6. Evaluation

The prototype we developed to test our approach uses the simple
multidimensional engine described in [23], which in turn relies on the
MySQL DBMS to execute queries on a star schema based on multidi-
mensional metadata (in principle, the prototype could work on top of
any other multidimensional engine). The algorithms used for regression
and cross-correlation are imported from the Scikit-Learn Python library.
Finally, the web-based visualization is implemented in JavaScript and
exploits the D3 library for chart visualization. The code is publicly
available at https://github.com/big-unibo/explain.

6.1. Efficiency

To verify the feasibility of our approach from the computational
point of view, we made some scalability tests. Two main factors affect
performances: the cardinality |C| of the cube to which a model is
bound, i.e., the one resulting from the by and for clauses (which
determines the time required to compute a single model component),
and the number of cube measures, |M| (which determines the number
of model components to be computed).

To evaluate scalability with reference to cube cardinality, we popu-
lated the SALES cube using the FoodMart data (https://github.com/
julianhyde/foodmart-data-mysql) and considered 11 intentions with
increasing cardinalities; in each intention we explained the quantity
measure against netRevenue, grossRevenue, discount, and unitPrice
(i.e., |[M| = 5). The intentions were computed on cubes obtained
by progressively including in the group-by set levels from the Date,
Product, and Store hierarchies; for polynomial regression, polynomials
up to the 5th degree were considered. Note that cross-correlation could
be computed for two intentions only, namely, the ones yielding |C| = 12
and |C| = 333, where the group-by levels of type interval are month
and date, respectively.

The tests were run on an Intel(R) Core(TM)i7-6700 CPU@3.40 GHz
CPU with 8 GB RAM; each intention was executed 10 times and the
average results are reported. Table 1 shows the time (in seconds) nec-
essary to query the base cube and to compute the models. Remarkably,
it turns out that less than one second is necessary to explain a cube
of almost 87 000 facts.'! Additionally, we measured the complexity (as
the number of characters [24]) of writing explain intentions vs. the
underlying cube query. It turns out that our approach saves 95% of
complexity with respect to writing cube queries in SQL and writing
the Python implementation necessary to compute the models (640
characters for cross-correlation, 676 for multivariate linear regression,
and 1525 for polynomial regression).

To evaluate scalability with reference to the number of measures,
we created a cube with |C| = 10° facts and |M| = 10 measures
(one randomly generated, m,, and 9 more measures whose values we
generated using polynomials in m, with increasing degrees). Fig. 8
shows the performance when m is explained against an increasing
number of measures, up to | M| — 1.

As expected, cross-correlation and polynomial regression scale lin-
early with respect to the number of measures (because they compute a
component for every candidate measure independently of the others).

11 Since explain intentions are formulated over analytical workloads, cardi-
nalities |C| of OLAP query results in the order of 10* are already large enough
to be considered unrealistic [20].
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Fig. 9. Conceptual schema for the CAPTURE cube.

30 A

—— #Adults
251 #Largelnstars
—— #Smalllnstars
20 1
15 1
10 1
5 -
0 -
10 15 20 25 30 35 40
Week

Fig. 10. Temporal trends in the CAPTURE cube.

Conversely, multivariable linear regression scales quadratically with
respect to the number of measures since the complexity of Ordinary
Least Square is O(|M|? - |C|). Note that also polynomial regression uses
Ordinary Least Square optimization, but in this case the complexity is
related to the degree of the polynomial (O(d? - |C|)) and not to the
number of candidate measures; in these tests we considered polynomi-
als up to the 5th degree, which explains why polynomial regression
scales linearly. Overall, given 9 measures and 10° facts, computing
an explanation takes around 10 s, thus fulfilling the requirement of
near-real-time response typical of analytical workloads.

6.2. Effectiveness

We tested our approach in terms of effectiveness from three points
of view: using synthetic data, using real data, and asking for the
feedback of a set of users. The results are described in the following
subsection.

6.2.1. Synthetic dataset

In this test we artificially injected three patterns into the data of
the SALES cube, to check that they are properly detected by the
explanations generated:

10
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1. Measure discount is computed by applying to grossRevenue a
percentage randomly chosen among 0%, 5%, and 10% (in the
average, 5%).

2. Measure netRevenue is computed as grossRevenue — discount.

3. Measure unitCost is computed as unitPrice/2 plus a uniformly
distributed random noise in [—%, %] and displaced

ahead by 30 days, to simulate that the fluctuations in the price

of products follow the ones in their cost.

Then, we expressed three intentions to verify that explain is capable to
detect these patterns:

I1 : with SALES explain discount by month

12
I3 :

with SALES explain netRevenue by type for year = ‘2022’
with SALES, PURCHASE explain unitPrice by date

against unitCost
The highlights returned by each intention are, respectively,

cfc’ly =(grossRevenue, 1,[0.05, —1.3])

c;"“m =[grossRevenue = 1.0, discount = —1.0, quantity = 0.0,

unitPrice = 0.0]
c§r055 =(unitCost, 27)

which shows that explain detects the patterns we injected into the
cube. Indeed, P shows that discount is about 5% of grossRev-
enue; c;““m shows that netRevenue can be computed as the difference
between grossRevenue and discount; c§r°55 shows that unitPrice is
delayed by 27 days with respect to unitCost.

The reason why these explanations are not 100% precise (e.g., the
displacement detected is 27 rather than 30) is that some noise is
introduced when computing unitCost (as mentioned above) and also
by aggregating and averaging measures at different levels of detail.
Indeed, while unitCost is computed out of unitPrice at the finest cube
granularity, I3 aggregates and averages unitPrice and unitCost over
all products and all stores in the same date, thereby cumulating and
propagating the noise at a coarser level of detail.

6.2.2. Real dataset

As a second test to verify that the explanations provided by our
approach can effectively detect patterns present in the data, we eval-
uated it against the CAPTURE cube, whose conceptual schema is
depicted in Fig. 9; the dataset has been collected from a real case study
in the field of precision agriculture, precisely, in the context of the
Agro.Big.Data.Science project [25]. This cube describes the captures of
the brown marmorated stink bug (Halyomorpha halys), one of the main
insect pest species causing economic damages to agricultural assets, in
different dates, traps, and crops. Captures are characterized by the age
of the insects. The cube contains four measures: the amount of captured
adults, large instars, and small instars as well as the air temperature.
Since it is well known that the spreading of Halyomorpha halys follows
seasonal peaks [26,27], we verified if an explain intention is capable
of highlighting such temporal pattern (shown in Fig. 10) as the most
interesting.

The intention we formulated to this end is the following:

I : with CAPTURE explain #Adults by week

The components returned by the intention, ranked by decreasing inter-
est, are:

£CTOss
1
Cross _
C2 =

(#Largelnstars, 3),
(#SmallInstars, 5),

interest(c{™%) = 0.9

interest(c5™°%) = 0.8

c;‘“ﬂti = [#Largelnstars = 2.71, #SmallInstars = 0.0], imereSl(C;mﬂti) =02
P = (#Largelnstars, 1, [2.77,5.03]), interest(c2®Y) = 0

2 = (#SmallInstars, 0, [9.21]), interest(c2®Y) = 0
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Fig. 12. Component interest and overall perceived value for intention I3.

The first component explains measure #Adults by pointing out that
the number of adults shows a 3-week delay from the number of large
instars, while the second one points out that it shows a 5-week delay
from the number of small instars. This confirms that the explain
operator retrieves the seasonal patterns and correctly returns the tem-
poral displacement between adults and instars as the most interesting
components.

6.2.3. Tests with users

As a last test of effectiveness, we experimented our approach with
86 users, mainly master students with advanced or basic knowledge
of business intelligence and data warehousing. After giving them a
5-minute introduction to the explain operator and its syntax, we pro-
ceeded as follows:

(i) We showed them intentions 72 and I3 (we omitted I1 for the
sake of time) together with the resulting cubes.
(ii) For each intention:

a. We asked them to explain the behavior of the target
measure on their own by visually inspecting the cube
data.

. We proposed to them, as possible explanations, the two
components with maximum interest returned by the in-
tention.

c. We asked them to rate on a 5-values Likert scale the
interest of the explanations we provided and their overall
perceived value (e.g., how well our explanations were
aligned with their own explanation)

(iii) We asked them to rate the overall user experience.

Figs. 11, 12, and 13 show the results in the form of bar charts.
In 12 (Fig. 11), consistently with the interest of the components,
the users deemed the result of multivariable linear regression (our
highlight, i.e., the fact that netRevenue = grossRevenue — discount) more
interesting than the one of polynomial regression. Surprisingly, in I3
(Fig. 12), the users deemed polynomial regression as interesting as
cross-correlation, since Polyfit returns a more detailed explanation (a
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Fig. 13. User experience rating.

polynomial rather than a simple measure of displacement between the
two time series). Overall, the perceived value of both the explana-
tions and the user experience (Fig. 13) are good. This suggests that
indeed explain achieves good results, although it could be improved
by refining the explanations provided and adding the ones suggested
by the users. Interestingly, the main users’ suggestions concern the
adoption of qualitative models (e.g., grossRevenue is proportional to
quantity, uniprice, and netRevenue but not to discount; unitPrice
is always higher than unitCost); although we agree that these models
could be more intuitive that the quantitative ones we generate, we
observe that they seem more aimed at providing descriptions rather than
explanations.

7. Related work
7.1. OLAP + analytics
The idea of coupling data and analytical models was born in the

90’s with inductive databases, where data were coupled with patterns
meant as generalizations of the data [28]. Later on, data-to-model
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unification was addressed in MauveDB [29], which provides a language
for specifying model-based views of data using common statistical
models. However, achieving a unified view of data and models was still
seen as a research challenge in business intelligence a few years later
[30]. More recently, Northstar [31] has been proposed as a system to
support interactive data science by enabling users to switch between
data exploration and model building, adopting a real-time strategy for
hyper-parameter tuning. Finally, the coupling of data and models is
at the core of the IAM vision [1], on which this paper relies. The
three basic pillars of IAM are (i) the redefinition of query as expressing
the user’s intention rather than explicitly declaring what data are
to be retrieved, (ii) the extension of query results from plain data
cubes to cubes enhanced with models and highlights, and (iii) the
characterization of model components in terms of their interest to users.
The coupling of the OLAP paradigm and data mining to create an
approach where concise patterns are extracted from multidimensional
data for user’s evaluation, was the goal of some approaches commonly
labeled as OLAM [32]. In this context, k-means clustering is used in
[33] to dynamically create semantically-rich aggregates of facts other
than those statically provided by dimension hierarchies. Similarly, the
shrink operator is proposed in [34] to compute small-size approxima-
tions of a cube via agglomerative clustering. Other operators that enrich
data with knowledge extraction results are DIFF [35], which returns
a set of tuples that most successfully describe the difference of values
between two facts of a cube, and RELAX [36], which verifies whether a
pattern observed at a certain level of detail is also present at a coarser
level of detail, too. Finally, in [37] the OLAP paradigm is reused to
explore prediction cubes, i.e., cubes where each fact summarizes a
predictive model trained on the data corresponding to that fact.

7.2. Query explanation

In an attempt to develop tools for helping users understand data,
there have been several efforts in the research community to devise
techniques to model explanations for observations made on data [38].
See [39] for a comprehensive analysis of the literature and of the trends
in explanation.

A common way to give an explanation is to identify the actual cause
of the observed outcome [40]. Given the result of a database query,
which database tuple(s) caused that output to the query? One way to
answer this question is to quantify the contribution that each tuple
has to the result and identify the tuples with the highest contributions
[7,41]; the intuition is that tuples with high contribution tend to be
interesting explanations to query answers. Similarly, in [40] causality
is defined in terms of intervention: an input is a cause to an output if
we can affect the output by changing the value of that input. Thus, an
explanation is defined as a predicate such that, when we remove from
the database all tuples satisfying that predicate, the output is signifi-
cantly affected. Along this direction, techniques were devised to make
the search for explanations more efficient by precomputing the effects
of potential explanations [42] or to return more specific explanations
concerning subgroups of answers determined via clustering [43]. Other
approaches to query explanation rely on ontologies [44,45].

Causality poses additional challenges when the query contains ag-
gregates [7], as in our scenario. The DIFF operator [35] tells users
why a given aggregated quantity is lower or higher in one cube fact
than in another by returning the set of rows that best explains the
observed increase or decrease at the aggregated level. In Scorpion [46],
outliers are explained in terms of properties of the tuples used to com-
pute these outliers, while [47] explains outliers in aggregation queries
through counter-balancing. Specifically, this explanation determines
the predicates that, when applied to the input data, cause the outliers
to disappear. LensXPlain [48] explains why some measure value is high
or low by identifying subsets of facts that contributed the most toward
such observation. The contributions are measured either by intervention
(if the contributing facts are removed, the value changes in the opposite
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direction), or by aggravation (if only the contributing facts are kept, the
value changes more in the same direction).

A different approach to query explanation is taken in [49]. The
authors focus on multidimensional data where a binary dimension
is present, and explain query results by building explanation tables
which provide an interpretable and informative summary of the factors
affecting the binary dimension.

7.3. Regression

A completely different direction to represent how some data (mea-
sures, in our case) is derived and infer causal relationship is to use
models built by regression analysis [50]. In statistical modeling, re-
gression analysis is a set of statistical processes for estimating the
relationships between a dependent variable and one or more indepen-
dent variables. A common form of regression analysis is polynomial
regression, which we adopt in this paper; although polynomial regres-
sion may use a non-linear model (e.g., a parabola) to fit the data, as
a statistical estimation problem it is considered to be linear, since the
regression function is linear in the unknown parameters that are esti-
mated from the data. The method we use for polynomial regression is
ordinary least squares, which computes the unique line (or hyperplane)
that minimizes the sum of squared differences between the true data
and that line (or hyperplane) [19].

Regression is used to explain query results in the XAXA approach
[50]. The authors focus on aggregate queries with a center-radius
selection operator, and give explanations using a set of paramet-
ric piecewise-linear functions acquired through a statistical learning
model. Remarkably, model training is performed by only monitoring
queries and their answers online; thus, explanations for future queries
can be computed without any database access.

Some examples of possible alternatives to polynomial regression are:
(i) multivariable regression, where the explanation is expressed as the
relationship between a set of variables [51]; (ii) symbolic regression,
where the explanation is expressed as a combination of mathematical
expressions [52]; and (iii) HSIC lasso, where the explanation is ex-
pressed using a feature selection method that also considers non-linear
relationships between variables [53]. In principle, all these regres-
sion techniques could be plugged into our approach; in this paper
we only considered multivariable regression, while investigating the
applicability of symbolic regression and HSIC lasso are left for future
work.

7.4. Discussion

The approach we propose is not competing with the ones mentioned
above, but should rather be seen as a modular framework where any
approach to explanation of aggregate data could be plugged. The added
value lies in the IAM paradigm, i.e., in giving users the possibility
of explicitly expressing intentions, in letting the system select the
most interesting/suitable explanations, and showing these explanations
together with data.

8. Conclusion

In this paper we have given a proof-of-concept for explain inten-
tions formulated inside the IAM framework. The explain syntax is
flexible enough to suit users who wish to verify a specific hypothesis
they made about an inter-measure relationship, as well as users who
have no clue so they will let the system find the most interesting
relationship. Intention processing takes a few seconds even on very
large query results, thus performances are perfectly in line with the
interactivity requirements of OLAP sessions.

The main directions for future research we wish to pursue are: (i)
shift towards models that explain measure values in terms of dimension
members, also considering aggregation; (ii) generalize the definition of
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model to cope with these additional model types; and (iii) experiment
other interest metrics [54]. In particular, as to the last point, we plan
to consider the framework proposed in [39] to evaluate explanations
in terms of succinctness (large explanations will probably be not well
understandable), interpretability (the suitability of an explanation will
depend on the target users), and actionability (explanations should point
to actionable suggestions).
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