
   

 

 

 

This article has been accepted for publication in Monthly Notices of the Royal 

Astronomical Society.  ©: 2023 The Authors. Published by Oxford University Press on 

behalf of the Royal Astronomical Society. All rights reserved. 

 

Link to article on OUP website:  

https://academic.oup.com/mnras/article/522/2/3058/7129015 

 

 

 

https://academic.oup.com/mnras/article/522/2/3058/7129015


MNRAS 522, 3058–3066 (2023) https://doi.org/10.1093/mnras/stad1138 
Advance Access publication 2023 April 18 

On the anticorrelation between pericentric distance and inner dark matter 

density of Milky Way’s dwarf spheroidal galaxies 

Salvador Cardona-Barrero , 1 , 2 ‹ Giuseppina Battaglia , 1 , 2 Carlo Nipoti 3 and Arianna Di Cintio 

1 , 2 

1 Instituto de Astrof ́ısica de Canarias, Calle V ́ıa L ́actea s/n, E-38206 La Laguna, Tenerife, Spain 
2 Departamento de Astrof ́ısica, Universidad de La Laguna, Avda. Astrof ́ısico Fco. S ́anchez, E-38205 La Laguna, Tenerife, Spain 
3 Dipartimento di Fisica e Astronomia ‘Augusto Righi’, Universit ̀a di Bologna, Via Gobetti 93/2, I-40129 Bologna, Italy 

Accepted 2023 April 10. Received 2023 April 10; in original form 2022 December 20 

A B S T R A C T 

An anticorrelation between the central density of the dark matter (DM) halo ( ρ150, DM 

) and the pericentric distances ( r p ) of 
the Milky Way’s (MW’s) dwarf spheroidal galaxies (dSphs) has been reported in the literature. The existence and origin of 
such anticorrelation are, ho we v er, contro v ersial, one possibility being that only the densest dSphs can survive the tidal field 

towards the centre of our Galaxy. In this work, we place particular emphasis on quantifying the statistical significance of such 

anticorrelation, by using available literature data in order to explore its robustness under different assumptions on the MW 

gravitational potential, and for v arious deri v ations of ρ150 and r p . We consider models in which the MW is isolated and has low 

(8 . 8 × 10 

11 M � ) and high (1 . 6 × 10 

12 M � ) halo masses, respectively, as well as configurations in which the MW’s potential 
is perturbed by a Large Magellanic Cloud (LMC) infall. We find that, while data generally support models in which the dSphs’ 
central DM density decreases as a function of their pericentric radius, this anticorrelation is statistically significant at 3 σ level 
only in ∼12 per cent of the combinations of ρ150 and r p e xplored. Moreo v er, including the impact of the LMC’s infall on to the 
MW weakens or even washes away this anticorrelation, with respect to models in which the MW is isolated. Our results suggest 
that the strength and existence of such anticorrelation are still debatable: exploring it with high-resolution simulations including 

baryonic physics and different DM fla v ours will help us to understand its emergence. 

Key w ords: galaxies: dw arf – galaxies: kinematics and dynamics – Local Group. 

1  I N T RO D U C T I O N  

Thanks to several observational campaigns and theoretical work on 
dynamical modelling, the dark matter (DM) content and orbital 
parameters of the Milky Way’s (MW) dwarf spheroidal galaxies 
(dSphs) 1 are now relatively well known (e.g. Battaglia & Nipoti 
2022 ; Battaglia et al. 2022 , and references therein). The inner DM 

density of dSphs is often quantified by measuring ρ150 , defined as 
the DM density at a distance of 150 pc from the centre of the dwarf 
(e.g. Read, Walker & Steger 2019 , hereafter R19 ). The orbit of 
each dSph, which depends on the gravitational potential assumed 
for the MW, can be described by different parameters, among which 
the pericentric radius r p (minimum distance of the dwarf centre of 
mass from the Galactic Centre), which gives an indication of the 
importance of tidal effects. 

Using pericentres inferred from the second data release (DR2) 
from the Gaia mission (Prusti et al. 2016 ; Gaia Collaboration 2018 ), 
Kaplinghat, Valli & Yu ( 2019 , hereafter K19 ) claimed that a sample 
of nine MW dSphs exhibits an anticorrelation between ρ150 and r p . 
This anticorrelation, which is also found for DM sub-haloes in some 
cosmological simulations (Robles & Bullock 2021 ; Genina et al. 

� E-mail: scardona@iac.es 
1 Following Simon ( 2019 ), we adopt the nomenclature ‘dSph’/‘UFD’ for the 
galaxies brighter/fainter than absolute V -band magnitude M V = −7.7. 

2022 ), might be a consequence of survivor bias, i.e. the fact that 
lower density satellites on small pericentre orbits have not survived 
the tidal field of the MW (Hayashi, Chiba & Ishiyama 2020 ; Genina 
et al. 2022 ). Alternatively, it may be a signature of self-interacting 
dark matter, as gra v othermal core collapse (Balberg, Shapiro & 

Inagaki 2002 ) is accelerated in dwarfs that undergo tidal stripping 
(Nishikawa, Boddy & Kaplinghat 2020 ), leading to larger central 
densities. 

The existence and the strength of such anticorrelation for MW 

satellite galaxies are a matter of debate (Hayashi et al. 2020 ; 
Genina et al. 2022 ; Hayashi et al. 2022 ). There is no evidence 
of anticorrelation when samples of ultra-faint dwarfs (UFDs) are 
analysed ( K19 ). It is also to be considered that while the mass (and 
average density) of these pressure-supported galaxies is determined 
with the highest precision within the half-light radius (e.g. Wolf et al. 
2010 ) or 1.8 times the half-light radius (Errani, Pe ̃ narrubia & Walker 
2018 ), where the mass-anisotropy de generac y is minimized, mass 
and density estimates at other locations carry larger uncertainties. 

In this paper, we revisit the question of the possible anticorrelation 
between ρ150 and r p of MW dSphs with a quantitative approach, by 
performing a systematic statistical analysis. In particular, we address 
the question of whether the result is sensitive to the set of literature 
estimates of ρ150 and r p considered. For the latter quantity, several 
new determinations have recently been obtained using the more 
accurate and precise data from the Gaia early third data release 
(eDR3; Gaia Collaboration 2021 ) and also taking into account self- 
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Table 1. Values of the pericentric radius and central DM density of each dSph (columns) compiled from the literature (rows); we refer the reader to 
Section 2 for the labelling of each model. ρ150 and r p are given as the 50th percentiles of the distribution of values, and the lower and upper error bars 
bracket the 16th and 84th percentiles, respectively. 

Draco UMi Carina Sextans LeoI LeoII Sculptor Fornax 
Pericentres: r p (kpc) 

F18 42 . 0 + 16 . 0 
+ 11 . 0 44 . 0 + 12 . 0 

+ 10 . 0 103 . 0 + 8 . 0 + 23 . 0 79 . 0 + 9 . 0 + 8 . 0 63 . 0 + 221 . 0 
+ 47 . 0 67 . 0 + 154 . 0 

+ 52 . 0 69 . 0 + 10 . 0 
+ 9 . 0 100 . 0 + 28 . 0 

+ 33 . 0 

B22 L 51 . 7 + 4 . 0 + 6 . 0 48 . 9 + 3 . 0 + 3 . 0 106 . 7 + 6 . 0 + 5 . 0 74 . 5 + 4 . 0 + 6 . 0 46 . 6 + 30 . 0 
+ 26 . 0 115 . 5 + 88 . 0 

+ 59 . 0 63 . 6 + 4 . 0 + 3 . 0 89 . 4 + 31 . 0 
+ 26 . 0 

B22 H 37 . 6 + 4 . 0 + 4 . 0 34 . 9 + 3 . 0 + 3 . 0 102 . 8 + 10 . 0 
+ 32 . 0 64 . 0 + 5 . 0 + 6 . 5 35 . 0 + 24 . 0 

+ 20 . 0 69 . 0 + 64 . 0 
+ 29 . 0 48 . 7 + 4 . 0 + 4 . 0 56 . 2 + 22 . 0 

+ 15 . 0 

B22 LMC 100 . 0 + 22 . 0 
+ 19 . 0 70 . 4 + 8 . 5 + 5 . 0 98 . 0 + 14 . 0 

+ 24 . 0 71 . 6 + 4 . 5 + 6 . 0 40 . 1 + 29 . 0 
+ 24 . 0 105 . 4 + 115 . 0 

+ 50 . 0 47 . 7 + 3 . 4 + 3 . 4 91 . 7 + 32 . 0 
+ 25 . 0 

P22 40 . 4 + 6 . 5 + 5 . 4 41 . 8 + 5 . 3 + 4 . 5 114 . 4 + 49 . 7 
+ 11 . 8 82 . 8 + 3 . 7 + 4 . 0 42 . 9 + 28 . 9 

+ 23 . 2 54 . 3 + 55 . 7 
+ 31 . 6 55 . 0 + 5 . 5 + 5 . 2 85 . 2 + 38 . 6 

+ 29 . 3 

P22 LMC 58 . 0 + 11 . 4 
+ 9 . 5 55 . 7 + 8 . 4 + 7 . 0 77 . 9 + 24 . 1 

+ 17 . 9 82 . 2 + 3 . 8 + 4 . 3 47 . 5 + 30 . 9 
+ 24 . 0 61 . 4 + 62 . 3 

+ 34 . 7 44 . 9 + 4 . 3 + 3 . 9 76 . 7 + 43 . 1 
+ 27 . 0 

Central densities: ρ150 (10 7 M � kpc −3 ) 

R19 23 . 6 + 2 . 9 + 2 . 9 15 . 3 + 3 . 5 + 3 . 2 11 . 6 + 2 . 0 + 2 . 2 12 . 8 + 3 . 4 + 2 . 9 17 . 7 + 3 . 3 + 3 . 4 18 . 4 + 1 . 7 + 1 . 6 14 . 9 + 2 . 8 + 2 . 3 7 . 9 + 2 . 7 + 1 . 9 
H20 23 . 5 + 12 . 8 

+ 6 . 3 23 . 8 + 38 . 6 
+ 7 . 2 10 . 9 + 8 . 2 + 3 . 2 5 . 2 + 3 . 6 + 2 . 3 26 . 4 + 22 . 3 

+ 9 . 1 20 . 2 + 12 . 7 
+ 6 . 1 21 . 4 + 12 . 6 

+ 6 . 3 12 . 2 + 3 . 2 + 2 . 3 
K19 NFW 21 . 7 + 2 . 7 + 2 . 2 25 . 2 + 2 . 9 + 4 . 5 10 . 3 + 1 . 1 + 0 . 9 11 . 0 + 2 . 9 + 1 . 8 15 . 1 + 3 . 4 + 2 . 4 17 . 1 + 2 . 4 + 3 . 8 17 . 1 + 2 . 1 + 2 . 2 7 . 5 + 2 . 0 + 1 . 4 
K19 ISO 21 . 3 + 5 . 4 + 4 . 7 25 . 4 + 6 . 1 + 5 . 7 5 . 7 + 3 . 2 + 1 . 7 8 . 5 + 5 . 0 + 3 . 5 14 . 1 + 5 . 5 + 4 . 5 13 . 5 + 4 . 2 + 1 . 7 16 . 1 + 2 . 9 + 3 . 3 3 . 4 + 1 . 7 + 1 . 3 

consistently the impact of the infall of a massive Large Magellanic 
Cloud (LMC) on to the MW, which can strongly affect the orbital 
history of MW dSphs (e.g. Patel et al. 2020 ; Battaglia et al. 2022 ; 
Pace, Erkal & Li 2022 ). This article is structured in the following 
way: In Section 2 , we introduce the set of MW dSphs considered, 
and the sets of literature estimates for ρ150 and r p ; in Section 3 , we 
present the statistical approaches undertaken, including a method of 
general validity for data sets with asymmetric error bars, and test 
them on mock data sets; and in Section 4 , we discuss our results and 
present our conclusions in Section 5 . 

2  SAMPLE  A N D  DATA  SETS  

We focus on eight of the MW dSphs, specifically the objects in 
common between the studies of K19 , R19 , and Hayashi et al. ( 2020 , 
hereafter H20 ). K19 also included Canes Venatici I, but, as we will 
see later, the exclusion of this system does not change the conclusions 
on the existence of the anticorrelation between ρ150 and r p . 

The values of ρ150 are taken from K19 , R19 , and H20 . 2 In R19 , they 
were determined with GRAVSPHERE , which solves the spherical Jeans 
equation for the projected line-of-sight (l.o.s.) velocity dispersion 
profile of the stellar component and also fits two higher order 
‘virial shape parameters’ (Merrifield & Kent 1990 ; Richardson & 

Fairbairn 2014 ; Read & Steger 2017 ); it uses a non-parametric form 

for the enclosed mass as a function of radius, M ( < r ). Also, K19 
solved the spherical Jeans equation for the projected l.o.s. velocity 
dispersion profile but considered one ‘virial shape parameter’; for 
the DM halo density profile, they considered separately a NFW 

(Navarro, Frenk & White 1996 ) model and a cored isothermal model; 
therefore, we have two sets of ρ150 for the K19 study (which we label 
K19 NFW and K19 ISO, respectively). In H20 , the mass modelling 
was performed by solving the axisymmetric Jeans equations for the 
second moment of the l.o.s. velocity distribution at a given projected 
2D position; the DM halo was modelled with a generalized Hernquist 
(Hernquist 1990 ) profile, therefore probing cuspy and cored models 
and considering non-spherical DM haloes; ρ150 is calculated along 

2 While for R19 and H20 the values are tabulated, in K19 they are not and we 
have digitized their fig. 2. 

the major axis of the DM halo, which is assumed to have the same 
orientation as the stellar component. 

We also consider several determinations of the pericentric radii for 
the MW dSphs: the Gaia DR2-based determinations for an MW of 
mass 0 . 8 × 10 12 M � by Fritz et al. ( 2018 , hereafter F18 ), as used in 
K19 3 ; the Gaia eDR3-based pericentric distances by Battaglia et al. 
( 2022 , hereafter B22 ) in three gravitational potentials, two of them 

with isolated MW of mass 8 . 8 × 10 11 M � (‘Light’, hereafter B22 L) 
and 1 . 6 × 10 12 M � (‘Heavy’, hereafter B22 H), respectively, and 
one with an 8 . 8 × 10 11 M � MW perturbed by a 1 . 5 × 10 11 M � LMC 

(hereafter B22 LMC); and the Gaia -eDR3 based values by Pace et al. 
( 2022 , hereafter P22 ) in an isolated 1 . 3 × 10 12 M � MW (hereafter, 
labelled as P22) and in an MW + LMC potential (P22 LMC), having 
the LMC mass of 1 . 38 × 10 11 M �. 

Table 1 and Fig. 1 (black points with error bars) present all the 
sets of ρ150 and r p used in this work. As can be gathered from 

Fig. 1 in a qualitative way, the relationship between r p and ρ150 

varies, depending on the pericentric radii adopted as well as on the 
determinations of the central DM densities. In the next sections, we 
quantify this visual impression with a quantitative statistical analysis. 

3  STATISTICAL  ANALYSI S  

In this section, we outline the methodology we use to quantify a 
possible anticorrelation between ρ150 and r p . 

As in K19 , we model the relationship between ρ150 and r p as a 
power-law (PL) of the form 

log 10 

(
ρ150 

10 7 M � kpc −3 

)
= q + m log 10 

(
r p 

kpc 

)
, (1) 

with q and m being the logarithmic zero-point and slope, respectively. 
One of the aspects that we wish to take into account is that usually 

the error bars in the sets of ρ150 and r p are highly asymmetric. 
Ho we ver, this asymmetry has not been considered when fitting 
equation ( 1 ) in the literature. For example, when quantifying the 
relation between ρ150 and r p , K19 symmetrize the errors by averaging 
the upper and lower errors, and shift the median to the mid-point (see 

3 K19 also demonstrate that their results are essentially unchanged when using 
the values for a twice as massive MW. 
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Figure 1. Central DM density versus pericentric distance for eight classical dSphs. From top to bottom, we show the densities as derived in R19 , K19 (assuming 
isothermal and NFW DM density profiles, respectively), and H20 . The pericentres are (from left to right): B22 assuming a heavy MW, a light MW and a light 
MW with the inclusion of the LMC; P22 without and with LMC; and F18 with a light MW. The details of each data set can be found in Section 2 . The shaded 
region depicts the 68 per cent confidence-level region of the PL fit between the central DM density and the pericentric distance, obtained with the percentile 
fitting method (see Appendix B ). In each panel, we show the reco v ered median logarithmic slope ( m ) and logarithmic zero-point ( q ). The uncertainties of the 
parameters are indicated with the 16th and 84th percentiles. The colours of the reported relations have been chosen to represent the statistical significance of the 
logarithmic slope: whether it is compatible with 0 within 1 σ (grey), between 1 σ and 3 σ (light blue), or within more than 3 σ (magenta). 

their appendix C). In this work, we explore two different methods 
that retain the information of the asymmetries of the errors. 

The gathered data (Table 1 and Fig. 1 ) are provided in the literature 
as the median and the 16th and 84th percentiles ( x 50th , x 16th , and 
x 84th , respectively) of an underlying distribution. Our first approach 
(‘simulating errors’ method), described in Appendix A , consists 
in resimulating the error distribution via the reported percentiles: 
assuming a probability distribution, we fit its corresponding cumu- 
lative distribution function (CDF) to the percentiles of each pair 
of pericentre and central density values. Then, via random sampling 
from the fitted probability distribution we can obtain different random 

realizations of the original data. The second approach (‘percentile 
fitting’ method), described in Appendix B , consists in treating each 
percentile as a random variable and modelling its probability distri- 
bution; thus, a fully Bayesian approach is possible via order statistics. 
Finally, for comparison, we have also applied the fitting method used 
in K19 , which we will refer to as ‘symmetrized errors’ method. 

In order to test the performance of these three methods, we applied 
them to mock data sets, with a radial co v erage and noise level 

mimicking those of the data in the literature. We generate a set of 
eight pericentric distances r p ∗ with similar CDF as the one obtained 
from the pericentres of P22 ; the corresponding DM central densities 
ρ150 

∗ are obtained from equation ( 1 ) assuming q = 3 and m = −1. 
We introduce noise by simulating N = 20 samples 4 extracted from 

a log-normal distribution centred on r p ∗ and ρ150 
∗ with logarithmic 

variance σ 2 
LN . For each data point, we derive the 16th, 50th, and 84th 

percentiles. In this way, we are able to obtain samples of mock data 
with asymmetric errors similar to those in the literature. 

In Table 2 , we show the average uncertainty ( <σ data > ) for each 
of the sets of r p and ρ150 analysed, obtained from fitting the CDF of 
a log-normal distribution to the reported percentiles. To mimic these 
typical uncertainties, we then choose three different values of σ LN = 

{ 0.1, 0.25, 0.5 } (which hereafter we also refer to as ‘noise levels’ 1, 

4 Note that the choice of N = 20 does not meet the conditions described in 
Appendix B ; i.e. 20 is not a large number of samples and the fraction P i ( N −
1)/100 is not an integer. Thus, we may not expect an excellent performance 
when using the percentile method. 
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Table 2. Typical uncertainties in the quantities used in this work. Col. 1 
lists the set of r p and ρ150 being considered; col. 2 ( <σ data > ) gives the 
corresponding average uncertainty for that given quantity. 

Data set <σ data > 

ρR19 0.190 ± 0.059 

ρH20 0.458 ± 0.129 

ρNFW 

K19 0.164 ± 0.045 

ρISO 
K19 0.324 ± 0.110 

r p , F18 0.514 ± 0.517 

r p , 
LMC 
B22 0.300 ± 0.252 

r p , 
L 
B22 0.246 ± 0.250 

r p , 
H 
B22 0.281 ± 0.229 

r p , 
LMC 
P22 0.318 ± 0.245 

r p , P22 0.313 ± 0.260 

Figure 2. Reco v ered logarithmic slope for different mock data sets. The 
horizontal black line shows the input logarithmic slope ( −1). The different 
symbols and colours indicate the methods tested (as indicated in the legend). 
The groups of points refer to the noise levels explored, as indicated by the 
subscripts 1, 2, and 3 on σ . 

2, and 3, respectively) with which to produce the mock data sets. For 
each combination of these three noise lev els, we e xplore fiv e random 

realizations, getting a total of 3 × 3 × 5 = 45 pairs of mock data sets 
ξ = { ρ150 , r p } . 

Fig. 2 shows the reco v ered logarithmic slope m using the three 
different fitting procedures applied to the mocks. This analysis 
suggests that both the method of K19 , i.e. the ‘symmetrized errors’ 
method, and the ‘simulating errors’ method suffer from a bias towards 
flatter relations. Thus, the slopes derived with these two methods will 
be considered as upper limits on the actual slope. The bias worsens 
for larger noise levels and is mainly driven by the error level on 
the pericentric radii. The K19 method yields slopes closer to the 
true values than the ‘simulating errors’ method; therefore, in the 
remainder of the article, we will not consider the ‘simulating errors’ 
method further. On the other hand, the percentile method appears 
to be the one with the best performance o v erall, yielding unbiased 
values of the slope. This will be our reference method. 

4  RESULTS  

Fig. 3 shows the logarithmic slope reco v ered with the ‘percentile 
fitting’ and ‘symmetrized errors’ methods for all the data set pairs 
considered. In general, the logarithmic slopes co v er the range 
between −0.5 and −1.5, hinting at an underlying anticorrelation, 
in agreement with previous studies. We also note that we reco v er the 
K19 results, when using the same set of densities and pericentric radii 
as in their work (we reco v er them e xactly when applying their same 
methodology, and well within 1 σ when using the percentile fitting 
method; see the last panel of Fig. 3 ). The slope obtained with the 
H20 densities is the most uncertain, due to the larger errors on ρ150 , 
most likely due to the more complex modelling performed by the 
authors, which allo ws de viations from spherical symmetry in both 
the stellar and DM components of the dwarf galaxy. 

Since the percentile fitting method appears to be the most robust, 
in Fig. 1 we show the best fits obtained using this method as a 
reference. In each panel, we show the 68 per cent confidence region 
of the PL fit as a shaded band. The colours of the shaded bands 
indicate whether the logarithmic slope m is compatible with 0 within 
< 1 σ (grey), between 1 σ and 3 σ (blue), or more than > 3 σ (magenta). 
As previously discussed, the value of m is ne gativ e in most cases, but 
with a varying statistical significance depending on the combination 
of data sets considered. In general, the relation obtained using the 
B22 r p in the potential including the LMC is flatter than that in the 
other cases with a logarithmic slope consistent with zero within 1 σ . 

When using the same pair of data sets as K19 , we reco v er their 
result of a statistically significant (at � 3 σ ) anticorrelation (see panels 
in the second and third rows and rightmost column of Fig. 1 ). The 
only other combination of data sets for which we find that m differs 
from zero in a statistically significant way is when the K19 ρ150 are 
paired with the P22 r p . Apart from variations in r p , a contributing 
factor is that the K19 densities for the galaxies with the smallest and 
largest pericentres tend to be, respectively, higher and lower than 
the corresponding estimates obtained in other works and also have 
smaller error bars. 

In order to test the effect of the small sample size in the deri v ation 
of the significance of the logarithmic slope, we repeated the analysis 
removing one of the galaxies at a time. On average, the effect of 
removing one galaxy (from any of the data sets) is to diminish 
the significance of the reco v ered logarithmic slope by a factor 
of 0.66. Furthermore, we do not find any galaxy whose removal 
systematically increases the significance of the relation or that would 
make it become statistically significant if the original significance is 
below 3 σ . 

As a further investigation of what relation might be underlying the 
inferred r p and ρ150 , we wish to compare models ( f θ ) with a different 
dependence of ρ150 on r p . Specifically, we test two models in which 
ρ150 depends on r p and one in which it is independent: 

(i) PL: As in K19 , the model is defined as f θ ≡ f ( r | m , q ) = 10 q r m , 

and the scatter σ 2 
i = δρi 

2 + 

(
m 10 q r m −1 

i δr i 
)2 

. 
(ii) Exponential (EX): The model is defined as f θ ≡ f ( r | m , q ) = 

exp [ q + mr ], and the scatter σ 2 
i = δρi 

2 + ( m exp [ q + mr i ] δr i ) 
2 . 

(iii) Intrinsic scatter (IS): The central density is independent of 
the pericentric distances. The model is defined as f θ ≡ f ( r | m , σ 0 ) = 

m , and the scatter σ 2 
i = δρi 

2 + σ 2 
0 , with σ 0 the IS. 

In the formulae described earlier, we use the same normalization 
as in equation ( 1 ), with the DM density ρ (and its uncertainty δρ) 
normalized to 10 7 M � kpc −3 , while the pericentric distance r (and 
its uncertainty δρ) is normalized to 1 kpc. 
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Figure 3. Measured logarithmic slope of the ρ150 –r p relation for the different pairs of data sets. The panels refer to the different sources of the measured 
pericentres: B22 ( i , ii , iii ); P22 ( iv , v); and F18 ( vi ). The source of the central density measurement is indicated in the horizontal axis of each panel. Blue and 
orange lines indicate the reported values for the logarithmic slope in K19 using F18 pericentres, for an isothermal sphere (yellow) and a NFW profile (blue). 
Different symbols indicate different fitting methods as indicated in the legend. 

We compare the quality of each of the previous models by making 
use of the Akaike information criterion (AIC; Akaike 1974 ) including 
a correction due to small sample size (Burnham 1998 ): 

AIC c = 2 k − 2 log L 

max + 

2 k( k + 1) 

n − k − 1 
, (2) 

with k the number of free parameters of the model tested. The model 
comparison is done using the metric � i = AIC 

i 
c − min j AIC 

j 
c . Those 

models with � i < 2 have substantial empirical support and cannot 
be rejected (Burnham 1998 ). 

Since calculating a likelihood for the percentile fitting method 
is a rather complex business, we take advantage of the fact that the 
percentile fitting and the symmetrized error methods give comparable 
results to perform the model comparison via the latter method, 
which allows for a simpler Gaussian likelihood; then, we define 
the likelihood as 

L ( { r i } , { ρi }| θ ) = 

∏ 

i 

1 √ 

2 πσ 2 
i 

exp 

[
− ( ρi − f θ ( r i ) ) 

2 

2 σ 2 
i 

]
, (3) 

with σ 2 
i the variance, f θ the model, and θ a vector gathering the 

model parameters. For sampling the likelihood, we have performed 
a Markov Chain Monte Carlo (MCMC) analysis as implemented in 
the public PYTHON package EMCEE (F oreman-Macke y et al. 2013 ). 

A summary of the model comparison can be found in Table 3 
(see Table C1 for the parameters of the best-fitting models to the 
different pairs of data sets). We find that, for an isolated MW, the 
two models with a decreasing central DM density of the dSphs as 
a function of r p (PL and EX) are preferred and perform similarly 
well. This preference is approximately independent of the source 
of the central density estimates. The only rele v ant exception is the 
densities from H20 for which models with or without a dependence 
on r p have similar empirical support. Also, with this analysis the K19 
densities are those that provide the largest support to the models with 
decreasing ρ150 as a function of r p . 

The effect of the inclusion of the LMC infall on the orbital 
integration of the dSphs appears to yield discrepant results between 
the tw o w orks that consider it. The pericentric distances derived by 
B22 seem to prefer the model where ρ150 and r p are uncorrelated, 
while three out of the four data pairs using P22 pericentres prefer 
the models in which ρ150 depends on r p . This is due to differences 
between the two sets of determinations that, while within 1 σ or at 

Table 3. Results of model comparison for the different data set pairs. The 
model comparison is done using the metric � i = AIC 

i 
c − min j AIC 

j 
c . Those 

models with � i < 2 have substantial empirical support and cannot be rejected 
(Burnham 1998 ). We explicitly identify them in the column ‘Preferred 
models’ and their � i is highlighted in boldface in the following columns. 

r p ρ150 Preferred models � EX � PL � IS 

B22 H R19 EX \ PL 0.0 0.5 2.1 
B22 H H20 EX \ PL \ IS 0.5 0.0 1.1 
B22 H K19 NFW EX \ PL 0.9 0.0 8.4 
B22 H K19 ISO EX \ PL 0.0 0.3 6.8 

B22 L R19 EX \ PL 0.0 1.3 3.4 
B22 L H20 EX \ PL \ IS 1.4 1.4 0.0 
B22 L K19 NFW EX \ PL 0.6 0.0 9.1 
B22 L K19 ISO EX \ PL 0.0 0.8 7.3 

B22 LMC R19 IS 4.1 5.3 0.0 
B22 LMC H20 EX \ PL \ IS 0.8 1.0 0.0 
B22 LMC K19 NFW IS 8.7 11.9 0.0 
B22 LMC K19 ISO IS 3.0 5.6 0.0 

P22 R19 EX \ PL 0.6 0.0 6.1 
P22 H20 EX \ PL 0.9 0.0 2.6 
P22 K19 NFW EX \ PL 1.2 0.0 10.5 
P22 K19 ISO EX \ PL 0.0 0.1 9.0 

P22 LMC R19 EX \ PL \ IS 0.0 0.7 1.9 
P22 LMC H20 EX \ PL 0.1 0.0 2.6 
P22 LMC K19 NFW EX \ PL 0.0 0.6 3.3 
P22 LMC K19 ISO EX \ PL 0.0 0.8 4.2 

F18 R19 EX \ PL 0.4 0.0 3.5 
F18 H20 EX \ PL \ IS 1.2 1.0 0.0 
F18 K19 NFW EX \ PL 0.5 0.0 7.3 
F18 K19 ISO EX \ PL 0.0 0.6 5.9 

most 2 σ , do nevertheless move the points on the ρ150 versus r p plane 
enough to change the significance of the relation. None the less, the 
empirical support for the models with a dependence on pericentric 
distance becomes much milder when including the effect of the LMC 

with respect to when considering an isolated potential (see Table 3 ), 
and also when using the P22 determinations of r p . The inclusion of 
the LMC infall on to the MW seems to be an important ingredient for 
exploring the existence of this possible anticorrelation, and further 
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efforts to understand the effect of the LMC on the orbital properties 
of the MW satellites are needed. 

5  DISCUSSION  A N D  SUMMARY  

In this contribution, we reassess the question of whether an an- 
ticorrelation exists between the central DM density ( ρ150 ) and 
orbital pericentre ( r p ) of classical dSph satellites of the MW. We 
explore in a quantitative way how the existence and strength of 
the relation depend on the adopted sets of inferred central DM 

densities and pericentric distances. Specifically, we consider the ρ150 

determinations by R19 , K19 , and H20 and the pericentric radii by 
B22 and P22 in different gravitational potentials for the MW, both 
isolated or including the infall of a massive LMC. We also test a new 

method designed to handle the asymmetric error bars that naturally 
appear during the measurement of non-ne gativ e quantities such as 
radial distances or densities; this method is of general applicability 
to all situations in which asymmetric errors are present. 

In general, we find that only the adoption of the K19 DM densities 
with r p from the earlier Gaia DR2 determinations or the isolated 
MW potential by P22 results in strong empirical support for models in 
which ρ150 and r p are anticorrelated and a logarithmic slope differing 
from zero at > 3 σ when exploring a PL dependence. In contrast, the 
H20 DM densities do not result in a preference for models in which 
ρ150 and r p are anticorrelated with respect to models where they are 
independent. Clearly, uncertainties in the determinations of ρ150 play 
a role in establishing whether the existence of such anticorrelation is 
robust. The same can be said for the determinations of the pericentric 
radii. Even though the 3D bulk motions of the MW classical dSphs are 
no w kno wn in exquisite detail, transforming these observ ables into 
pericentric radii requires the adoption of a gravitational potential in 
which to integrate the orbits, which results in additional uncertainties. 
Besides the fact that the mass of the MW is still unknown within a 
factor of 2 (see e.g. Fritz et al. 2020 ; Wang, Hammer & Yang 2022 ), 
it is clear that the inclusion of the infall of a massive LMC in the 
determinations of the orbits of MW dSphs impacts the resulting r p , 
and that there is some variation in the values determined for these r p 
across different studies. 

The issue is exacerbated by the small number of galaxies involved 
in the analysis, which implies that any conclusion should be taken 
with care. Works by K19 and Hayashi et al. ( 2022 ) suggest that 
increasing the sample through the inclusion of MW UFD galaxies 
completely washes away the anticorrelation present in the MW 

dSphs. It is not clear whether the reason is to be ascribed to the larger 
errors in the inferences of the DM densities and pericentric radii of 
UFDs or to some more fundamental property of these galaxies. For 
example, a fraction of the UFDs may be on their first infall on to 
the MW as can be gathered by results of orbital integration (e.g. 
B22 ; P22 ) and arguments on conservation of energy and angular 
momentum (e.g. Hammer et al. 2021 ). Thus, those galaxies may not 
have suffered from the tidal field of the MW, and consequently can 
present small pericentre distances and central densities unaffected by 
their orbits, thus obscuring the possible relation. We plan to explore 
the dependence of this anticorrelation on the inclusion of UFDs in 
future work. 

The aforementioned possible effect of first infall is not necessarily 
limited to UFDs. The orbital integration of LeoI indicates that 
this classical dSph is on its first infall, having just passed its first 
pericentre. Furthermore, close interaction with the LMC may also 
introduce outliers in the relation. In particular, Carina has a small but 
non-negligible probability of being related to the LMC ( B22 ; P22 ). 
Ho we ver, as discussed in Section 4 , the significance of the obtained 

relations is not driven by any specific subset of satellites, indicating 
that our results are robust. 

Not only is the existence of the anticorrelation contro v ersial, but 
also its origin. A caveat against the survi v al bias hypothesis is the lack 
of MW satellites with high inner DM densities on external orbits, 
i.e. with large pericentres. This problem is reduced when adopting 
the pericentres of B22 (with the LMC): in this case, Draco and Leo 
I populate the high- ρ150 and high- r p region of the parameter space. 

The results from simulations are also contradictory. On the one 
hand, satellites in DM-only simulations seem to show an anticor- 
relation between the central DM density and the distance of the 
most recent pericentric passage (see H20 ). On the other hand, the 
inclusion of baryons in the simulations may have a strong impact on 
the proposed relation. As shown in Robles et al. ( 2019 ), the inclusion 
of the potential of the MW disc in the simulations can strongly alter 
the density of the satellites, diminishing the DM densities of the 
satellites with smaller pericentres and inverting the relation. 

In summary, out of the 24 combinations of r p and ρ150 explored, 
we found that only three strongly support (at more than 3 σ level) the 
presence of an anticorrelation between those two quantities: these 
represent the 12.5 per cent of the models explored. When making 
use of the AIC for model comparison, we find the data to be better 
described by models in which the central density ρ150 decreases as a 
function of r p (PL and EX), and these perform similarly well. Only 
in one of the MW potentials explored are the data better described 
by a model with no dependence of ρ150 on r p . Our results suggest 
that the strength and the existence of the ρ150 –r p anticorrelation on 
the MW’s dSphs are still debatable. Exploring the existence and 
characteristics of this relationship with cosmological simulations at 
very high resolution, including properly modelled baryonic effects, 
as well as different DM fla v ours, will be a step forward towards 
understanding its emergence and its likelihood in a Lambda cold 
dark matter universe. We plan to do this in a future contribution. 

AC K N OW L E D G E M E N T S  

SCB acknowledges support from the Spanish Ministry of Econ- 
omy and Competitiveness (MINECO) under the grant SEV-2015- 
0548-18-3 and the Spanish Ministry of Science and Innovation 
(MICIU/FEDER) through research grant PGC2018-094975-C22. 
GB and SCB acknowledge support from the Agencia Estatal de 
Investigaci ́on del Ministerio de Ciencia en Innovaci ́on (AEI-MICIN) 
and the European Regional Development Fund (ERDF) under grant 
number PID2020-118778GB-I00/10.13039/501100011033. GB ac- 
knowledges the AEI under grant number CEX2019-000920-S. ADC 

was supported by a Junior Leader fellowship from ‘La Caixa’ Foun- 
dation (ID 100010434), fellowship code LCF/BQ/PR20/11770010. 

Data analysis was performed using the PYTHON 

5 programming 
language. The following PYTHON modules were used for the analysis: 
PANDAS (The Pandas Development Team 2020 ); NUMPY (Harris et al. 
2020 ); SCIPY (Virtanen et al. 2020 ); MATPLOTLIB (Hunter 2007 ); 
CORNER (F oreman-Macke y 2016 ); NUMBA (Lam, Pitrou & Seibert 
2015 ); H5PY (Collette et al. 2021 ); and EMCEE (F oreman-Macke y 
et al. 2013 ). 

DATA  AVAI LABI LI TY  

The data underlying this article will be shared on reasonable request 
to the corresponding author. 

5 https://www.python.org 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/2/3058/7129015 by guest on 18 June 2024

https://www.python.org


3064 S. Car dona-Barr ero et al. 

MNRAS 522, 3058–3066 (2023) 

RE FEREN C ES  

Akaike H., 1974, IEEE Trans. Autom. Control , 19, 716 
Arnold B. C., Balakrishnan N., Nagaraja H. N., 2008, A First Course in Order 

Statistics,SIAM, Philadelphia, USA. 
Balberg S., Shapiro S. L., Inagaki S., 2002, ApJ , 568, 475 
Battaglia G., Nipoti C., 2022, Nat. Astron. , 6, 659 
Battaglia G., Taibi S., Thomas G. F., Fritz T. K., 2022, A&A , 657, A54 
Burnham K. P., 1998, Model Selection and Multimodel Inference, A Practical 

Information – Theoretic Approach. Springer, Berlin 
Collette A. et al., 2021, h5p y/h5p y: 3.5.0, available at https:// doi.org/ 10.528 

1/zenodo.5585380 
Errani R., Pe ̃ narrubia J., Walker M. G., 2018, MNRAS , 481, 5073 
F oreman-Macke y D., 2016, J. Open Source Softw. , 1, 24 
F oreman-Macke y D., Hogg D. W., Lang D., Goodman J., 2013, PASP , 125, 

306 
Fritz T. K., Battaglia G., P a wlo wski M. S., Kalli v ayalil N., v an der Marel R., 

Sohn S. T., Brook C., Besla G., 2018, A&A , 619, A103 
Fritz T. K., Di Cintio A., Battaglia G., Brook C., Taibi S., 2020, MNRAS , 

494, 5178 
Gaia Collaboration, 2018, A&A , 616, A1 
Gaia Collaboration, 2021, A&A , 649, A1 
Genina A., Read J. I., Fattahi A., Frenk C. S., 2022, MNRAS , 510, 2186 
Hammer F ., W ang J., P a wlowski M. S., Yang Y., Bonifacio P., Li H., 

Babusiaux C., Arenou F., 2021, ApJ , 922, 93 
Harris C. R. et al., 2020, Nature , 585, 357 
Hayashi K., Chiba M., Ishiyama T., 2020, ApJ , 904, 45 
Hayashi K., Hirai Y., Chiba M., Ishiyama T., 2022, preprint 

( arXiv:2206.02821 ) 
Hernquist L., 1990, ApJ , 356, 359 
Hunter J. D., 2007, Comput. Sci. Eng. , 9, 90 
Kaplinghat M., Valli M., Yu H.-B., 2019, MNRAS , 490, 231 
Lam S. K., Pitrou A., Seibert S., 2015, Proc. Second Workshop LLVM 

Compiler Infrastruct. HPC, LL VM’15, Numba: A LL VM-Based Python 
JIT Compiler,Assoc. Comput. Mach., New York, NY, p. 1 

Merrifield M. R., Kent S. M., 1990, AJ , 99, 1548 
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ , 462, 563 
Nishikawa H., Boddy K. K., Kaplinghat M., 2020, Phys. Rev. D , 101, 063009 
Pace A. B., Erkal D., Li T. S., 2022, ApJ, 940, 136 
Patel E. et al., 2020, ApJ , 893, 121 
Prusti T. et al., 2016, A&A , 595, A1 
Read J. I., Steger P., 2017, MNRAS , 471, 4541 
Read J. I., Walker M. G., Steger P., 2019, MNRAS , 484, 1401 
Richardson T., Fairbairn M., 2014, MNRAS , 441, 1584 
Robles V. H., Bullock J. S., 2021, MNRAS , 503, 5232 
Robles V. H., Kelley T., Bullock J. S., Kaplinghat M., 2019, MNRAS , 490, 

2117 
Simon J. D., 2019, ARA&A , 57, 375 
The P andas Dev elopment Team, 2020, P andas-dev/P andas: P andas , available 

at https:// doi.org/ 10.5281/ zenodo.3509134 
Virtanen P. et al., 2020, Nat. Methods , 17, 261 
Wang J., Hammer F., Yang Y., 2022, MNRAS , 510, 2242 
Wolf J., Martinez G. D., Bullock J. S., Kaplinghat M., Geha M., Mu ̃ noz R. 

R., Simon J. D., Avedo F. F., 2010, MNRAS , 406, 1220 

APPENDIX  A :  SIMULATED  E R RO R S  

Our first approach for handling asymmetric errors is to describe 
the error distribution of each data point with some probability 
distribution. Once this distribution has been chosen, we sample new 

data from it and fit them. 
The procedure can be summarized as follows: 

(i) Choose a probability distribution to be fitted to the percentiles 
x 50th , x 16th , and x 84th . 

(ii) For each galaxy ( g ) and variable ξg = { r g p , ρ
g 

150 } , obtain the 
best-fitting parameters of the CDF corresponding to item (i). 

(iii) Randomly sample for each galaxy one value of the density 
ρ

g,i 

150 and pericentric distance r g,i 
p following the distribution obtained 

in (ii). Let us denote these new data as ξ g , i . 
(iv) Fit the desired relation between resampled densities and 

pericentres, obtaining this way the set of parameters θ i . 
(v) Repeat (iii) and (iv) N times: θ = { θ1 , θ2 , ..., θN } , with N = 

10 4 . 
(vi) Store the results as the median of θ . 

For point (i), we tested three different distributions: a log-normal 
(LN) distribution, a log-logistic (LL) distribution, and a Gaussian 
distribution truncated at zero (TG). Since we find that these give 
similar results, in the main text we only show those for the LN 

distribution, and give the corresponding equation for the PDF, f LN , 
and CDF, F LN , below: 

f LN ( x | μLN , σLN ) = 

1 

xσLN 

√ 

2 π
exp 

[
− log x − log μLN 

2 σ 2 
LN 

]
, (A1) 

F LN ( x | μLN , σLN ) = 

1 

2 

[
1 + erf 

(
log x − log μLN √ 

2 σLN 

)]
. (A2) 

APPENDI X  B:  PERCENTI LES  A S  R A N D O M  

VA RI ABLES  

Our second approach for handling asymmetric errors is to treat each 
percentile as a random variable and model its probability distribution 
via order statistics. 

Let us denote the available sets of ρ150 and r p for each galaxy as 
d = { ρ150 , r p } . In general, these data will be different from the ‘real’ 
values, which we will denote as d 

∗ = { ρ150 
∗, r p ∗} . We indicate with 

η all the extra parameters of the model. Our goal is to obtain the 
probability distribution of the parameters { d 

∗, η} given our data d , 
i.e. P ( d 

∗, η| d ). 
We can decompose the probability described earlier via the Bayes’ 

theorem as 

P ( d 

∗, η | d ) = 

1 

P ( d ) 
P ( η) P ( d , d 

∗ | η) . (B1) 

The term in the denominator is a normalization constant that we 
can obviate. The second term on the r.h.s. is the a priori probability 
distribution of the parameters η. The last term is the joint probability 
distribution of the measured data d and the ‘real’ values d 

∗. We can 
further decompose this last term as 

P ( d , d 

∗ | η) = P ( d | d 

∗, η) P ( d 

∗ | η) (B2) 

The probability of the data given the ‘real’ values P ( d | d 

∗, η) and 
the probability distribution of the ‘real’ values given the model we 
are testing P ( d 

∗| η) remain to be solved for. 
Let us start with the model. The second term on the r.h.s. of equa- 

tion ( B2 ) can be decomposed as: P ( d 

∗| η) = P ( ρ150 
∗| r p ∗, η) P ( r p ∗| η). 

The first term is the conditional probability of the central DM density 
of the dSphs given the pericentric distance. The second term is the 
a priori probability distribution of the pericentres, which we will as- 
sume uniform between r min and r max : P ( r p ∗| η) = U [ r min ,r max ] ( r p 

∗). We 
model the relation between the central densities and the pericentres 
as equation ( 1 ); the conditional probability of ρ150 given r p can be 
written as 

P ( ρ150 
∗ | r p ∗, η) = N 

(
log 10 ( ρ150 

∗) 
∣∣ q + m log 10 ( r p 

∗) ; σ 2 ) = 

× 1 √ 

2 πσ 2 
exp 

{ 

− 1 

2 σ 2 

[
log 10 

(
ρ∗

150 

10 7 M �/ kpc 3 

)
−

(
q + m log 10 

r ∗p 
kpc 

))]2 
} 

. 

(B3) 

The only term that remains to be solved for in equation ( B2 ) is 
the conditional probability of the measured data d given the ‘real’ 
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Table B1. Fixed parameters of the model B1 . 

Parameter Value 

N min , N max 10, 10 4 

r min , r max 10 −3 , 5 × 10 2 

m min , m max −15, 15 
q min , q max −15, 15 
ν, τ 2 1, 0.1 

ones d 

∗, i.e. P ( d | d 

∗, η). To characterize this last term, we need to 
give more details on the data gathering process. First, we make the 
reasonable assumption that the measurements of the central density 
and the pericentric distance are independent. Thus, we can split the 
probability distribution as 

P ( d | d 

∗, η) = P ( ρ150 | ρ150 
∗, η) P ( r p | r p ∗, η) . (B4) 

The available estimates of ρ150 and r p are in the form of 
percentiles, namely x 16th , x 50th , and x 84th , where x is either ρ150 or 
r p . We can handle these data without losing information via order 
statistics. 

Let us assume a continuous PDF for X , f ( x ; β) defined by the set 
of parameters β. If we get N samples from the distribution f and we 
sort them in such a way that: x 1 < x 2 < . . . < x N − 1 < x N , the joint 
probability distribution of all the order statistics described previously 
(Arnold, Balakrishnan & Nagaraja 2008 ) is 

f X 1 ,...,X N ( x 1 , ..., x N ) = N ! 
N ∏ 

i= 1 

f ( x i ; β) . (B5) 

As we have only three of the N order statistics ( x i < x k < x j ), we 
shall marginalize o v er the unwanted N − 3 parameters. The result 
of this procedure is the joint probability distribution of three order 
statistics: 

P 

(
x i , x k , x j 

∣∣ β, N 

) = 

N ! 

( i − 1)!( N − j )!( k − i − 1)!( j − k − 1)! 

× f 
(
x i 

∣∣ β
)

f 
(
x k 

∣∣ β
)

f 
(
x j 

∣∣ β
)

F 

(
x i 

∣∣ β
)i−1 (

1 − F 

(
x j 

∣∣ β
))N−j 

× (
F 

(
x k 

∣∣ β
) − F 

(
x i 

∣∣ β
))k−i−1 (

F 

(
x j 

∣∣ β
) − F 

(
x k 

∣∣ β
))j−k−1 

. 

(B6) 

The indices { i , k , j } of the order statistics can be easily related to 
the p { i , k , j } -th percentile as 6 { i , k , j } = int[1 + p { i , k , j } ( N − 1)/100]. 
Note that this probability depends on the family chosen for the PDF 

(CDF) f ( F ), the set of parameters β, and on the number of samples 
N . In particular, in this work β = { x ∗, s 2 } , where x ∗ is a location 

6 This is only true if the fraction is an integer. If not, the percentile is usually 
computed as the weighted mean between the closest order statistics. Taking 
into account this fact is possible but increases the complexity of the model. 
Moreo v er, the difference is only significant when the number of samples N is 
small. As this is not generally the case, we decided to stick with the simpler 
model. 
parameter while s 2 is a parameter characterizing the width of the 
distribution. In particular, in this work we chose a log-normal PDF 

parametrized by the median x ∗ and the variance in log space s 2 : 

f ( x | β = { x ∗, s 2 } ) = 

1 

x 
√ 

2 πs 2 
exp 

[
− ln 2 x /x ∗

2 s 2 

]
. (B7) 

If we introduce a prior o v er N and s 2 , we can remo v e these two param- 
eters via marginalization. We have assumed a uniform prior for N , 
between N min = 20 and N max = 10 4 such as P ( N ) = U [ N min ,N max ) ( N ). 
For s 2 , we impose as prior a scaled inverse chi-square distribution: 

P Scale −Inv −χ2 

(
s 2 | ν, τ 2 

) = 

(
τ 2 ν/ 2 

)ν/ 2 

�( ν/ 2) 

exp 

[
− τ 2 ν

2 s 2 

]

( s 2 ) 1 + ν/ 2 
, (B8) 

with 1 degree of freedom ( ν = 1) and fixed scale parameter ( τ 2 = 

0.1), with � being the gamma function. 
Finally, the probability distribution of the measured data given the 

‘real’ values P ( d | d ∗, η) can be written as 

P ( d | d ∗, η) = 

∏ 

ξ = { ρ150 , r p } 

∫ 

d s 2 
∑ 

N 

[
U [ N min ,N max ) ( N ) 

× P Scale −Inv −χ2 ( s 2 | ν = 1 , τ 2 = 0 . 1) 

× P 

(
ξi , ξk , ξj 

∣∣ β = { ξ ∗, s 2 } , N 

)]
. (B9) 

The parameters we are finally left to fit are { r p ∗} , { ρ150 
∗} , and η = 

{ m , q , σ 2 } , i.e. 2 n + 3 parameters with n = 8 the number of galaxies. 
We also need to choose the prior probability o v er η. F or m and q , 
we choose uniform probability distributions P ( m ) = U ( m min ,m max ) ( m ) 
and P ( q) = U ( q min ,q max ) ( q). For σ 2 , we chose a prior of the form 

P ( σ 2 ) ∝ 1/ σ 2 . The values used in this work can be found in Table 
B1 . 

APPENDI X  C :  M O D E L  C O M PA R I S O N  

We report here Table C1 , containing the results of the MCMC 

sampling of the likelihood described in Section 4 . 
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Table C1. Results of the MCMC sampling of the likelihood described in Section 4 . The first two columns indicate 
the data set pair used in the regression. The following columns indicate the median of the parameters of the three 
different models tested in this work. The lower and upper error bars indicate the 16th and 84th percentiles, 
respectively. 

IS PL EX 

r p ρ150 m σ 2 
0 q m q m 

B22 H R19 15 . 3 + 2 . 2 −2 . 2 30 + 41 
−16 2 . 3 + 0 . 4 −0 . 3 −0 . 9 + 0 . 2 −0 . 2 3 . 4 + 0 . 3 −0 . 2 −0 . 012 + 0 . 004 

−0 . 005 

B22 H H20 17 . 3 + 6 . 0 −4 . 7 111 + 189 
−73 3 . 4 + 1 . 3 −1 . 4 −1 . 3 + 0 . 8 −0 . 8 4 . 1 + 0 . 8 −1 . 0 −0 . 027 + 0 . 017 

−0 . 016 

B22 H K19 NFW 15 . 3 + 2 . 7 −2 . 5 45 + 57 
−23 2 . 8 + 0 . 4 −0 . 3 −0 . 9 + 0 . 2 −0 . 2 3 . 7 + 0 . 3 −0 . 2 −0 . 018 + 0 . 005 

−0 . 005 

B22 H K19 ISO 13 . 1 + 3 . 6 −3 . 2 71 . 5 + 94 . 4 
−38 3 . 5 + 0 . 7 −0 . 6 −1 . 4 + 0 . 3 −0 . 4 4 . 0 + 0 . 4 −0 . 4 −0 . 027 + 0 . 007 

−0 . 009 

B22 L R19 15 . 3 + 2 . 2 −2 . 2 29 . 9 + 41 . 3 
−16 . 4 2 . 5 + 0 . 4 −0 . 4 −0 . 7 + 0 . 2 −0 . 2 3 . 4 + 0 . 2 −0 . 2 −0 . 009 + 0 . 003 

−0 . 003 

B22 L H20 17 . 2 + 5 . 9 −4 . 8 110 + 183 
−72 . 7 2 . 6 + 2 . 1 −2 . 2 −0 . 8 + 1 . 2 −1 . 1 3 . 2 + 1 . 4 −1 . 2 −0 . 010 + 0 . 015 

−0 . 020 

B22 L K19 NFW 15 . 3 + 2 . 6 −2 . 5 45 + 59 
−23 3 . 0 + 0 . 4 −0 . 3 −1 . 0 + 0 . 2 −0 . 2 3 . 6 + 0 . 2 −0 . 3 −0 . 012 + 0 . 003 

−0 . 003 

B22 L K19 ISO 13 . 1 + 3 . 5 −3 . 2 71 + 96 
−38 3 . 9 + 0 . 7 −0 . 6 −1 . 5 + 0 . 4 −0 . 4 4 . 0 + 0 . 4 −0 . 4 −0 . 020 + 0 . 005 

−0 . 006 

B22 LMC R19 15 . 3 + 2 . 3 −2 . 2 30 + 42 
−17 0 . 1 + 0 . 7 −0 . 6 0 . 6 + 0 . 3 −0 . 4 2 . 2 + 0 . 8 −0 . 3 + 0 . 006 + 0 . 004 

−0 . 011 

B22 LMC H20 17 . 2 + 6 . 0 −4 . 7 111 + 187 
−73 0 . 2 + 1 . 8 −1 . 6 0 . 4 + 0 . 8 −0 . 9 2 . 0 + 0 . 9 −0 . 8 + 0 . 005 + 0 . 008 

−0 . 010 

B22 LMC K19 NFW 15 . 3 + 2 . 7 −2 . 6 45 + 57 
−23 2 . 2 + 0 . 4 −0 . 5 −0 . 6 + 0 . 2 −0 . 2 3 . 3 + 0 . 2 −0 . 3 −0 . 008 + 0 . 003 

−0 . 003 

B22 LMC K19 ISO 13 . 1 + 3 . 6 −3 . 3 72 + 96 
−38 2 . 8 + 0 . 6 −0 . 5 −0 . 9 + 0 . 3 −0 . 3 3 . 4 + 0 . 3 −0 . 3 −0 . 013 + 0 . 003 

−0 . 004 

P22 R19 15 . 3 + 2 . 2 −2 . 2 30 + 41 
−16 2 . 2 + 0 . 4 −0 . 3 −0 . 6 + 0 . 2 −0 . 2 3 . 2 + 0 . 2 −0 . 2 −0 . 008 + 0 . 002 

−0 . 003 

P22 H20 17 . 2 + 5 . 9 −4 . 7 111 + 191 
−73 3 . 5 + 1 . 2 −1 . 1 −1 . 3 + 0 . 6 −0 . 7 4 . 1 + 0 . 8 −0 . 8 −0 . 022 + 0 . 012 

−0 . 012 

P22 K19 NFW 15 . 3 + 2 . 6 −2 . 5 44 + 56 
−23 2 . 5 + 0 . 3 −0 . 3 −0 . 7 + 0 . 2 −0 . 2 3 . 5 + 0 . 2 −0 . 2 −0 . 011 + 0 . 003 

−0 . 003 

P22 K19 ISO 13 . 1 + 3 . 6 −3 . 3 71 + 94 
−38 3 . 3 + 0 . 7 −0 . 6 −1 . 2 + 0 . 3 −0 . 4 3 . 7 + 0 . 4 −0 . 3 −0 . 017 + 0 . 005 

−0 . 007 

P22 LMC R19 15 . 3 + 2 . 7 −2 . 2 30 + 41 
−17 2 . 4 + 0 . 6 −0 . 4 −0 . 7 + 0 . 2 −0 . 4 3 . 3 + 0 . 3 −0 . 2 −0 . 010 + 0 . 004 

−0 . 005 

P22 LMC H20 17 . 4 + 5 . 8 −4 . 8 110 + 186 
−73 4 . 2 + 1 . 6 −1 . 5 −1 . 7 + 0 . 8 −0 . 9 4 . 5 + 0 . 9 −0 . 9 −0 . 029 + 0 . 013 

−0 . 015 

P22 LMC K19 NFW 15 . 3 + 2 . 6 −2 . 6 45 + 56 
−23 2 . 9 + 0 . 7 −0 . 5 −1 . 0 + 0 . 3 −0 . 4 3 . 6 + 0 . 3 −0 . 2 −0 . 014 + 0 . 004 

−0 . 006 

P22 LMC K19 ISO 13 . 1 + 3 . 6 −3 . 3 73 + 94 
−40 3 . 6 + 1 . 4 −0 . 8 −1 . 4 + 0 . 5 −0 . 8 3 . 8 + 0 . 7 −0 . 4 −0 . 020 + 0 . 007 

−0 . 013 

F18 R19 15 . 3 + 2 . 2 −2 . 2 29 + 40 
−16 2 . 4 + 0 . 5 −0 . 4 −0 . 7 + 0 . 2 −0 . 3 3 . 4 + 0 . 3 −0 . 2 −0 . 010 + 0 . 003 

−0 . 004 

F18 H20 17 . 4 + 5 . 9 −4 . 8 111 + 190 
−73 2 . 4 + 1 . 7 −2 . 3 −0 . 7 + 1 . 2 −0 . 9 3 . 4 + 1 . 2 −1 . 4 −0 . 012 + 0 . 016 

−0 . 015 

F18 K19 NFW 15 . 2 + 2 . 7 −2 . 5 45 + 58 
−23 2 . 8 + 0 . 5 −0 . 4 −0 . 9 + 0 . 2 −0 . 3 3 . 7 + 0 . 3 −0 . 2 −0 . 014 + 0 . 003 

−0 . 004 

F18 K19 ISO 13 . 1 + 3 . 6 −3 . 3 72 + 94 
−39 3 . 6 + 0 . 9 −0 . 6 −1 . 4 + 0 . 3 −0 . 5 3 . 9 + 0 . 4 −0 . 4 −0 . 020 + 0 . 005 

−0 . 006 
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