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ABSTRACT

An anticorrelation between the central density of the dark matter (DM) halo (o1s0,pm) and the pericentric distances (rp) of
the Milky Way’s (MW’s) dwarf spheroidal galaxies (dSphs) has been reported in the literature. The existence and origin of
such anticorrelation are, however, controversial, one possibility being that only the densest dSphs can survive the tidal field
towards the centre of our Galaxy. In this work, we place particular emphasis on quantifying the statistical significance of such
anticorrelation, by using available literature data in order to explore its robustness under different assumptions on the MW
gravitational potential, and for various derivations of pso and r,. We consider models in which the MW is isolated and has low
(8.8 x 10" M, ) and high (1.6 x 10'> M, ) halo masses, respectively, as well as configurations in which the MW’s potential
is perturbed by a Large Magellanic Cloud (LMC) infall. We find that, while data generally support models in which the dSphs’
central DM density decreases as a function of their pericentric radius, this anticorrelation is statistically significant at 3o level
only in ~12 per cent of the combinations of p50 and r, explored. Moreover, including the impact of the LMC’s infall on to the
MW weakens or even washes away this anticorrelation, with respect to models in which the MW is isolated. Our results suggest
that the strength and existence of such anticorrelation are still debatable: exploring it with high-resolution simulations including

baryonic physics and different DM flavours will help us to understand its emergence.

Key words: galaxies: dwarf — galaxies: kinematics and dynamics —Local Group.

1 INTRODUCTION

Thanks to several observational campaigns and theoretical work on
dynamical modelling, the dark matter (DM) content and orbital
parameters of the Milky Way’s (MW) dwarf spheroidal galaxies
(dSphs)! are now relatively well known (e.g. Battaglia & Nipoti
2022; Battaglia et al. 2022, and references therein). The inner DM
density of dSphs is often quantified by measuring piso, defined as
the DM density at a distance of 150 pc from the centre of the dwarf
(e.g. Read, Walker & Steger 2019, hereafter R19). The orbit of
each dSph, which depends on the gravitational potential assumed
for the MW, can be described by different parameters, among which
the pericentric radius 7, (minimum distance of the dwarf centre of
mass from the Galactic Centre), which gives an indication of the
importance of tidal effects.

Using pericentres inferred from the second data release (DR2)
from the Gaia mission (Prusti et al. 2016; Gaia Collaboration 2018),
Kaplinghat, Valli & Yu (2019, hereafter K19) claimed that a sample
of nine MW dSphs exhibits an anticorrelation between p1so and ry,.
This anticorrelation, which is also found for DM sub-haloes in some
cosmological simulations (Robles & Bullock 2021; Genina et al.

* E-mail: scardona@iac.es
!Following Simon (2019), we adopt the nomenclature ‘dSph’/*UFD’ for the
galaxies brighter/fainter than absolute V-band magnitude My = —7.7.

2022), might be a consequence of survivor bias, i.e. the fact that
lower density satellites on small pericentre orbits have not survived
the tidal field of the MW (Hayashi, Chiba & Ishiyama 2020; Genina
et al. 2022). Alternatively, it may be a signature of self-interacting
dark matter, as gravothermal core collapse (Balberg, Shapiro &
Inagaki 2002) is accelerated in dwarfs that undergo tidal stripping
(Nishikawa, Boddy & Kaplinghat 2020), leading to larger central
densities.

The existence and the strength of such anticorrelation for MW
satellite galaxies are a matter of debate (Hayashi et al. 2020;
Genina et al. 2022; Hayashi et al. 2022). There is no evidence
of anticorrelation when samples of ultra-faint dwarfs (UFDs) are
analysed (K19). It is also to be considered that while the mass (and
average density) of these pressure-supported galaxies is determined
with the highest precision within the half-light radius (e.g. Wolf et al.
2010) or 1.8 times the half-light radius (Errani, Pefiarrubia & Walker
2018), where the mass-anisotropy degeneracy is minimized, mass
and density estimates at other locations carry larger uncertainties.

In this paper, we revisit the question of the possible anticorrelation
between py59 and r, of MW dSphs with a quantitative approach, by
performing a systematic statistical analysis. In particular, we address
the question of whether the result is sensitive to the set of literature
estimates of p;59 and r, considered. For the latter quantity, several
new determinations have recently been obtained using the more
accurate and precise data from the Gaia early third data release
(eDR3; Gaia Collaboration 2021) and also taking into account self-
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Table 1. Values of the pericentric radius and central DM density of each dSph (columns) compiled from the literature (rows); we refer the reader to
Section 2 for the labelling of each model. p150 and r;, are given as the 50th percentiles of the distribution of values, and the lower and upper error bars

bracket the 16th and 84th percentiles, respectively.
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consistently the impact of the infall of a massive Large Magellanic
Cloud (LMC) on to the MW, which can strongly affect the orbital
history of MW dSphs (e.g. Patel et al. 2020; Battaglia et al. 2022;
Pace, Erkal & Li 2022). This article is structured in the following
way: In Section 2, we introduce the set of MW dSphs considered,
and the sets of literature estimates for p;sp and rp,; in Section 3, we
present the statistical approaches undertaken, including a method of
general validity for data sets with asymmetric error bars, and test
them on mock data sets; and in Section 4, we discuss our results and
present our conclusions in Section 5.

2 SAMPLE AND DATA SETS

We focus on eight of the MW dSphs, specifically the objects in
common between the studies of K19, R19, and Hayashi et al. (2020,
hereafter H20). K19 also included Canes Venatici I, but, as we will
see later, the exclusion of this system does not change the conclusions
on the existence of the anticorrelation between p;59 and r;,.

The values of p,sp are taken from K19, R19, and H20.2 InR19, they
were determined with GRAVSPHERE, which solves the spherical Jeans
equation for the projected line-of-sight (l.o.s.) velocity dispersion
profile of the stellar component and also fits two higher order
‘virial shape parameters’ (Merrifield & Kent 1990; Richardson &
Fairbairn 2014; Read & Steger 2017); it uses a non-parametric form
for the enclosed mass as a function of radius, M(<r). Also, K19
solved the spherical Jeans equation for the projected l.o.s. velocity
dispersion profile but considered one ‘virial shape parameter’; for
the DM halo density profile, they considered separately a NFW
(Navarro, Frenk & White 1996) model and a cored isothermal model;
therefore, we have two sets of p;so for the K19 study (which we label
K19_NFW and K19_ISO, respectively). In H20, the mass modelling
was performed by solving the axisymmetric Jeans equations for the
second moment of the l.o.s. velocity distribution at a given projected
2D position; the DM halo was modelled with a generalized Hernquist
(Hernquist 1990) profile, therefore probing cuspy and cored models
and considering non-spherical DM haloes; p;s is calculated along

2While for R19 and H20 the values are tabulated, in K19 they are not and we
have digitized their fig. 2.

the major axis of the DM halo, which is assumed to have the same
orientation as the stellar component.

We also consider several determinations of the pericentric radii for
the MW dSphs: the Gaia DR2-based determinations for an MW of
mass 0.8 x 10'2 Mg, by Fritz et al. (2018, hereafter F18), as used in
K193; the Gaia eDR3-based pericentric distances by Battaglia et al.
(2022, hereafter B22) in three gravitational potentials, two of them
with isolated MW of mass 8.8 x 10'! My, (‘Light’, hereafter B22 L)
and 1.6 x 10> My (‘Heavy’, hereafter B22_H), respectively, and
one with an 8.8 x 10'' My, MW perturbed by a 1.5 x 10! My LMC
(hereafter B22_LMC); and the Gaia-eDR3 based values by Pace et al.
(2022, hereafter P22) in an isolated 1.3 x 10'> Mg MW (hereafter,
labelled as P22) and in an MW + LMC potential (P22_LMC), having
the LMC mass of 1.38 x 10'! M.

Table 1 and Fig. 1 (black points with error bars) present all the
sets of pyso and 7, used in this work. As can be gathered from
Fig. 1 in a qualitative way, the relationship between r, and pis¢
varies, depending on the pericentric radii adopted as well as on the
determinations of the central DM densities. In the next sections, we
quantify this visual impression with a quantitative statistical analysis.

3 STATISTICAL ANALYSIS

In this section, we outline the methodology we use to quantify a
possible anticorrelation between p;s9 and ;.

As in K19, we model the relationship between piso and 7, as a
power-law (PL) of the form

P150 "p
1 — | = 1 —, 1
810 <107 Mg kpc—3) 7+ Mm% (kpc) M

with g and m being the logarithmic zero-point and slope, respectively.

One of the aspects that we wish to take into account is that usually
the error bars in the sets of p;s5o and r, are highly asymmetric.
However, this asymmetry has not been considered when fitting
equation (1) in the literature. For example, when quantifying the
relation between p 150 and r,, K19 symmetrize the errors by averaging
the upper and lower errors, and shift the median to the mid-point (see

3K19 also demonstrate that their results are essentially unchanged when using
the values for a twice as massive MW.
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Figure 1. Central DM density versus pericentric distance for eight classical dSphs. From top to bottom, we show the densities as derived in R19, K19 (assuming
isothermal and NFW DM density profiles, respectively), and H20. The pericentres are (from left to right): B22 assuming a heavy MW, a light MW and a light
MW with the inclusion of the LMC; P22 without and with LMC; and F18 with a light MW. The details of each data set can be found in Section 2. The shaded
region depicts the 68 per cent confidence-level region of the PL fit between the central DM density and the pericentric distance, obtained with the percentile
fitting method (see Appendix B). In each panel, we show the recovered median logarithmic slope (/) and logarithmic zero-point (¢). The uncertainties of the
parameters are indicated with the 16th and 84th percentiles. The colours of the reported relations have been chosen to represent the statistical significance of the
logarithmic slope: whether it is compatible with O within 1o (grey), between lo and 3o (light blue), or within more than 30 (magenta).

their appendix C). In this work, we explore two different methods
that retain the information of the asymmetries of the errors.

The gathered data (Table 1 and Fig. 1) are provided in the literature
as the median and the 16th and 84th percentiles (xsom, Xi6m, and
Xgath, Tespectively) of an underlying distribution. Our first approach
(‘simulating errors’ method), described in Appendix A, consists
in resimulating the error distribution via the reported percentiles:
assuming a probability distribution, we fit its corresponding cumu-
lative distribution function (CDF) to the percentiles of each pair
of pericentre and central density values. Then, via random sampling
from the fitted probability distribution we can obtain different random
realizations of the original data. The second approach (‘percentile
fitting’ method), described in Appendix B, consists in treating each
percentile as a random variable and modelling its probability distri-
bution; thus, a fully Bayesian approach is possible via order statistics.
Finally, for comparison, we have also applied the fitting method used
in K19, which we will refer to as ‘symmetrized errors’ method.

In order to test the performance of these three methods, we applied
them to mock data sets, with a radial coverage and noise level

MNRAS 522, 3058-3066 (2023)

mimicking those of the data in the literature. We generate a set of
eight pericentric distances r,* with similar CDF as the one obtained
from the pericentres of P22; the corresponding DM central densities
piso” are obtained from equation (1) assuming ¢ = 3 and m = —1.
We introduce noise by simulating N = 20 samples* extracted from
a log-normal distribution centred on r,* and p50* with logarithmic
variance o}y. For each data point, we derive the 16th, 50th, and 84th
percentiles. In this way, we are able to obtain samples of mock data
with asymmetric errors similar to those in the literature.

In Table 2, we show the average uncertainty (<o gu,>) for each
of the sets of r, and p,50 analysed, obtained from fitting the CDF of
a log-normal distribution to the reported percentiles. To mimic these
typical uncertainties, we then choose three different values of o1 n =
{0.1, 0.25, 0.5} (which hereafter we also refer to as ‘noise levels’ 1,

“Note that the choice of N = 20 does not meet the conditions described in
Appendix B; i.e. 20 is not a large number of samples and the fraction P;(N —
1)/100 is not an integer. Thus, we may not expect an excellent performance
when using the percentile method.
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Table 2. Typical uncertainties in the quantities used in this work. Col. 1
lists the set of r, and p150 being considered; col. 2 (<0 gqaa >) gives the
corresponding average uncertainty for that given quantity.

Data set <0 data>
PRI9 0.190 + 0.059
pH20 0.458 £ 0.129
PRIo 0.164 = 0.045
PRI 0324 +0.110
Tps FI8 0.514 £ 0.517
TpBy 0.300 £ 0.252
rpvlﬁzz 0.246 £+ 0.250
TpB 0281 +0.229
oy 0318 £ 0.245
Tps P22 0.313 £ 0.260
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Figure 2. Recovered logarithmic slope for different mock data sets. The
horizontal black line shows the input logarithmic slope (—1). The different
symbols and colours indicate the methods tested (as indicated in the legend).
The groups of points refer to the noise levels explored, as indicated by the

subscripts 1, 2, and 3 ono.

2, and 3, respectively) with which to produce the mock data sets. For
each combination of these three noise levels, we explore five random
realizations, getting a total of 3 x 3 x 5 = 45 pairs of mock data sets
& ={pis0. 7p}-

Fig. 2 shows the recovered logarithmic slope m using the three
different fitting procedures applied to the mocks. This analysis
suggests that both the method of K19, i.e. the ‘symmetrized errors’
method, and the ‘simulating errors’ method suffer from a bias towards
flatter relations. Thus, the slopes derived with these two methods will
be considered as upper limits on the actual slope. The bias worsens
for larger noise levels and is mainly driven by the error level on
the pericentric radii. The K19 method yields slopes closer to the
true values than the ‘simulating errors’ method; therefore, in the
remainder of the article, we will not consider the ‘simulating errors’
method further. On the other hand, the percentile method appears
to be the one with the best performance overall, yielding unbiased
values of the slope. This will be our reference method.

Are 1, and p;so of MW dSphs anticorrelated?
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4 RESULTS

Fig. 3 shows the logarithmic slope recovered with the ‘percentile
fitting’ and ‘symmetrized errors’ methods for all the data set pairs
considered. In general, the logarithmic slopes cover the range
between —0.5 and —1.5, hinting at an underlying anticorrelation,
in agreement with previous studies. We also note that we recover the
K19 results, when using the same set of densities and pericentric radii
as in their work (we recover them exactly when applying their same
methodology, and well within 1o when using the percentile fitting
method; see the last panel of Fig. 3). The slope obtained with the
H20 densities is the most uncertain, due to the larger errors on p;sg,
most likely due to the more complex modelling performed by the
authors, which allows deviations from spherical symmetry in both
the stellar and DM components of the dwarf galaxy.

Since the percentile fitting method appears to be the most robust,
in Fig. 1 we show the best fits obtained using this method as a
reference. In each panel, we show the 68 per cent confidence region
of the PL fit as a shaded band. The colours of the shaded bands
indicate whether the logarithmic slope m is compatible with 0 within
<lo (grey), between 1o and 3o (blue), or more than >30 (magenta).
As previously discussed, the value of m is negative in most cases, but
with a varying statistical significance depending on the combination
of data sets considered. In general, the relation obtained using the
B22 r, in the potential including the LMC is flatter than that in the
other cases with a logarithmic slope consistent with zero within lo.

When using the same pair of data sets as K19, we recover their
result of a statistically significant (at 2>30') anticorrelation (see panels
in the second and third rows and rightmost column of Fig. 1). The
only other combination of data sets for which we find that m differs
from zero in a statistically significant way is when the K19 ps, are
paired with the P22 r,. Apart from variations in r,, a contributing
factor is that the K19 densities for the galaxies with the smallest and
largest pericentres tend to be, respectively, higher and lower than
the corresponding estimates obtained in other works and also have
smaller error bars.

In order to test the effect of the small sample size in the derivation
of the significance of the logarithmic slope, we repeated the analysis
removing one of the galaxies at a time. On average, the effect of
removing one galaxy (from any of the data sets) is to diminish
the significance of the recovered logarithmic slope by a factor
of 0.66. Furthermore, we do not find any galaxy whose removal
systematically increases the significance of the relation or that would
make it become statistically significant if the original significance is
below 3o

As a further investigation of what relation might be underlying the
inferred rp, and p150, we wish to compare models (f) with a different
dependence of pi50 on r,. Specifically, we test two models in which
p150 depends on r;, and one in which it is independent:

(i) PL: As in K19, the model is defined as fy = f(r | m, g) = 107",
and the scatter 67 = 80;> + (mquri'""eri)2

(i1) Exponential (EX): The model is defined as fy = f(ir | m, q¢) =
exp [q 4+ mr], and the scatter o = 8p; + (m exp [q + mr;18r;)*.

(iii) Intrinsic scatter (IS): The central density is independent of
the pericentric distances. The model is defined as fy = f(r | m, 0¢) =
m, and the scatter 62 = 8p;* + o2, with o the IS.

In the formulae described earlier, we use the same normalization
as in equation (1), with the DM density p (and its uncertainty §p)
normalized to 107 Mg kpc—3, while the pericentric distance r (and
its uncertainty §p) is normalized to 1 kpc.

MNRAS 522, 3058-3066 (2023)
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Figure 3. Measured logarithmic slope of the py50—rp relation for the different pairs of data sets. The panels refer to the different sources of the measured
pericentres: B22 (i, ii, iii); P22 (iv, v); and F18 (vi). The source of the central density measurement is indicated in the horizontal axis of each panel. Blue and
orange lines indicate the reported values for the logarithmic slope in K19 using F18 pericentres, for an isothermal sphere (yellow) and a NFW profile (blue).

Different symbols indicate different fitting methods as indicated in the legend.

We compare the quality of each of the previous models by making
use of the Akaike information criterion (AIC; Akaike 1974) including
a correction due to small sample size (Burnham 1998):
2k(k + 1)

n—k—1’

with & the number of free parameters of the model tested. The model
comparison is done using the metric A; = AIC’. — min; AIC/. Those
models with A; < 2 have substantial empirical support and cannot
be rejected (Burnham 1998).

Since calculating a likelihood for the percentile fitting method
is a rather complex business, we take advantage of the fact that the
percentile fitting and the symmetrized error methods give comparable
results to perform the model comparison via the latter method,
which allows for a simpler Gaussian likelihood; then, we define
the likelihood as

AIC, = 2k — 2log L™ 4 2)

L{ri} {pi}10)

- )2
_(,01 fe(rl)) :|’ (3)

1
B H N L P { 207
with al-2 the variance, fp the model, and 6 a vector gathering the
model parameters. For sampling the likelihood, we have performed
a Markov Chain Monte Carlo (MCMC) analysis as implemented in
the public PYTHON package EMCEE (Foreman-Mackey et al. 2013).

A summary of the model comparison can be found in Table 3
(see Table C1 for the parameters of the best-fitting models to the
different pairs of data sets). We find that, for an isolated MW, the
two models with a decreasing central DM density of the dSphs as
a function of 7, (PL and EX) are preferred and perform similarly
well. This preference is approximately independent of the source
of the central density estimates. The only relevant exception is the
densities from H20 for which models with or without a dependence
on rp, have similar empirical support. Also, with this analysis the K19
densities are those that provide the largest support to the models with
decreasing p1s as a function of ;.

The effect of the inclusion of the LMC infall on the orbital
integration of the dSphs appears to yield discrepant results between
the two works that consider it. The pericentric distances derived by
B22 seem to prefer the model where p;50 and r, are uncorrelated,
while three out of the four data pairs using P22 pericentres prefer
the models in which p;50 depends on r,. This is due to differences
between the two sets of determinations that, while within 1o or at

MNRAS 522, 3058-3066 (2023)

Table 3. Results of model comparison for the different data set pairs. The
model comparison is done using the metric A; = AICQ — min; AIC/. Those
models with A; < 2 have substantial empirical support and cannot be rejected
(Burnham 1998). We explicitly identify them in the column ‘Preferred

models’ and their A; is highlighted in boldface in the following columns.

p £150 Preferred models AEX Apr, Ajs
B22_ H R19 EX\PL 0.0 0.5 2.1
B22_H H20 EX\PL\IS 0.5 0.0 1.1
B22_H KI9.NFW EX\PL 0.9 0.0 8.4
B22_H K19_ISO EX\PL 0.0 0.3 6.8
B22_L R19 EX\PL 0.0 1.3 34
B22_L H20 EX\PL\IS 14 14 0.0
B22_L K19-NFW EX\PL 0.6 0.0 9.1
B22 L K19_1SO EX\PL 0.0 0.8 7.3
B22_LMC RI19 1S 4.1 5.3 0.0
B22 ILMC H20 EX\PL\IS 0.8 1.0 0.0
B22_LMC KI9.NFW IS 8.7 11.9 0.0
B22 ILMC K19.1SO IS 3.0 5.6 0.0
P22 R19 EX\PL 0.6 0.0 6.1
P22 H20 EX\PL 0.9 0.0 2.6
P22 K19.NFW EX\PL 1.2 0.0 10.5
P22 K19_1SO EX\PL 0.0 0.1 9.0
P22 LMC RI19 EX\PL\IS 0.0 0.7 1.9
P22 LMC H20 EX\PL 0.1 0.0 2.6
P22 LMC KI9.NFW EX\PL 0.0 0.6 33
P22 .LMC KI19.ISO EX\PL 0.0 0.8 4.2
F18 R19 EX\PL 0.4 0.0 3.5
F18 H20 EX\PL\IS 1.2 1.0 0.0
F18 KI9.NFW EX\PL 0.5 0.0 7.3
F18 K19_ISO EX\PL 0.0 0.6 5.9

most 20, do nevertheless move the points on the p 50 versus 7, plane
enough to change the significance of the relation. None the less, the
empirical support for the models with a dependence on pericentric
distance becomes much milder when including the effect of the LMC
with respect to when considering an isolated potential (see Table 3),
and also when using the P22 determinations of r,,. The inclusion of
the LMC infall on to the MW seems to be an important ingredient for
exploring the existence of this possible anticorrelation, and further
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efforts to understand the effect of the LMC on the orbital properties
of the MW satellites are needed.

5 DISCUSSION AND SUMMARY

In this contribution, we reassess the question of whether an an-
ticorrelation exists between the central DM density (p;s0) and
orbital pericentre (r,) of classical dSph satellites of the MW. We
explore in a quantitative way how the existence and strength of
the relation depend on the adopted sets of inferred central DM
densities and pericentric distances. Specifically, we consider the p s
determinations by R19, K19, and H20 and the pericentric radii by
B22 and P22 in different gravitational potentials for the MW, both
isolated or including the infall of a massive LMC. We also test a new
method designed to handle the asymmetric error bars that naturally
appear during the measurement of non-negative quantities such as
radial distances or densities; this method is of general applicability
to all situations in which asymmetric errors are present.

In general, we find that only the adoption of the K19 DM densities
with 7, from the earlier Gaia DR2 determinations or the isolated
MW potential by P22 results in strong empirical support for models in
which p 5 and r,, are anticorrelated and a logarithmic slope differing
from zero at >30 when exploring a PL dependence. In contrast, the
H20 DM densities do not result in a preference for models in which
pis0 and r,, are anticorrelated with respect to models where they are
independent. Clearly, uncertainties in the determinations of p;so play
arole in establishing whether the existence of such anticorrelation is
robust. The same can be said for the determinations of the pericentric
radii. Even though the 3D bulk motions of the MW classical dSphs are
now known in exquisite detail, transforming these observables into
pericentric radii requires the adoption of a gravitational potential in
which to integrate the orbits, which results in additional uncertainties.
Besides the fact that the mass of the MW is still unknown within a
factor of 2 (see e.g. Fritz et al. 2020; Wang, Hammer & Yang 2022),
it is clear that the inclusion of the infall of a massive LMC in the
determinations of the orbits of MW dSphs impacts the resulting 7,
and that there is some variation in the values determined for these r,,
across different studies.

The issue is exacerbated by the small number of galaxies involved
in the analysis, which implies that any conclusion should be taken
with care. Works by K19 and Hayashi et al. (2022) suggest that
increasing the sample through the inclusion of MW UFD galaxies
completely washes away the anticorrelation present in the MW
dSphs. It is not clear whether the reason is to be ascribed to the larger
errors in the inferences of the DM densities and pericentric radii of
UFDs or to some more fundamental property of these galaxies. For
example, a fraction of the UFDs may be on their first infall on to
the MW as can be gathered by results of orbital integration (e.g.
B22; P22) and arguments on conservation of energy and angular
momentum (e.g. Hammer et al. 2021). Thus, those galaxies may not
have suffered from the tidal field of the MW, and consequently can
present small pericentre distances and central densities unaftected by
their orbits, thus obscuring the possible relation. We plan to explore
the dependence of this anticorrelation on the inclusion of UFDs in
future work.

The aforementioned possible effect of first infall is not necessarily
limited to UFDs. The orbital integration of Leol indicates that
this classical dSph is on its first infall, having just passed its first
pericentre. Furthermore, close interaction with the LMC may also
introduce outliers in the relation. In particular, Carina has a small but
non-negligible probability of being related to the LMC (B22; P22).
However, as discussed in Section 4, the significance of the obtained

Are 1, and p;so of MW dSphs anticorrelated?

3063

relations is not driven by any specific subset of satellites, indicating
that our results are robust.

Not only is the existence of the anticorrelation controversial, but
alsoits origin. A caveat against the survival bias hypothesis is the lack
of MW satellites with high inner DM densities on external orbits,
i.e. with large pericentres. This problem is reduced when adopting
the pericentres of B22 (with the LMC): in this case, Draco and Leo
I populate the high-p50 and high-r, region of the parameter space.

The results from simulations are also contradictory. On the one
hand, satellites in DM-only simulations seem to show an anticor-
relation between the central DM density and the distance of the
most recent pericentric passage (see H20). On the other hand, the
inclusion of baryons in the simulations may have a strong impact on
the proposed relation. As shown in Robles et al. (2019), the inclusion
of the potential of the MW disc in the simulations can strongly alter
the density of the satellites, diminishing the DM densities of the
satellites with smaller pericentres and inverting the relation.

In summary, out of the 24 combinations of r, and ps59 explored,
we found that only three strongly support (at more than 3¢ level) the
presence of an anticorrelation between those two quantities: these
represent the 12.5 percent of the models explored. When making
use of the AIC for model comparison, we find the data to be better
described by models in which the central density psy decreases as a
function of r, (PL and EX), and these perform similarly well. Only
in one of the MW potentials explored are the data better described
by a model with no dependence of piso on rp,. Our results suggest
that the strength and the existence of the p;50—7, anticorrelation on
the MW’s dSphs are still debatable. Exploring the existence and
characteristics of this relationship with cosmological simulations at
very high resolution, including properly modelled baryonic effects,
as well as different DM flavours, will be a step forward towards
understanding its emergence and its likelihood in a Lambda cold
dark matter universe. We plan to do this in a future contribution.
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APPENDIX A: SIMULATED ERRORS

Our first approach for handling asymmetric errors is to describe
the error distribution of each data point with some probability
distribution. Once this distribution has been chosen, we sample new
data from it and fit them.

The procedure can be summarized as follows:

(1) Choose a probability distribution to be fitted to the percentiles

X50ths X16th, aNd Xgah-
(ii) For each galaxy (g) and variable &% = {r, piso), obtain the
best-fitting parameters of the CDF corresponding to item (i).

MNRAS 522, 3058-3066 (2023)

(iii) Randomly sample for each galaxy one value of the density
p15 and pericentric distance r§ following the distribution obtained
in (ii). Let us denote these new data as £%'.

(iv) Fit the desired relation between resampled densities and
pericentres, obtaining this way the set of parameters §'.

(v) Repeat (iii) and (iv) N times: @ = {0', 6, ..., 0"}, with N =
10*,

(vi) Store the results as the median of 6.

For point (i), we tested three different distributions: a log-normal
(LN) distribution, a log-logistic (LL) distribution, and a Gaussian
distribution truncated at zero (TG). Since we find that these give
similar results, in the main text we only show those for the LN
distribution, and give the corresponding equation for the PDF, fi n,
and CDF, Fy, below:

1 logx — log pin
) = - , Al
Jin(x | pan, oN) o exp { 207, } (A1)
1 logx —lo
Fin(x | pin, oin) = ) [1 +erf <gTLiHLN>] . (A2)

APPENDIX B: PERCENTILES AS RANDOM
VARIABLES

Our second approach for handling asymmetric errors is to treat each
percentile as a random variable and model its probability distribution
via order statistics.

Let us denote the available sets of p;59 and r, for each galaxy as
d = {pis0, 1} In general, these data will be different from the ‘real’
values, which we will denote as d* = {p;50*, r,* }. We indicate with
n all the extra parameters of the model. Our goal is to obtain the
probability distribution of the parameters {d*, n} given our data d,
ie. P(d*, n|d).

‘We can decompose the probability described earlier via the Bayes’
theorem as

P, n|d)= %P(W)P(d, d* | n). B
The term in the denominator is a normalization constant that we
can obviate. The second term on the r.h.s. is the a priori probability
distribution of the parameters 1. The last term is the joint probability
distribution of the measured data d and the ‘real’ values d*. We can
further decompose this last term as

P, d" | n)=P@]|d", nP@ |n) (B2)

The probability of the data given the ‘real’ values P(d|d*, n) and
the probability distribution of the ‘real’ values given the model we
are testing P(d*|n) remain to be solved for.

Let us start with the model. The second term on the r.h.s. of equa-
tion (B2) can be decomposed as: P(d*|n) = P(p150*|rp*, m)P(rp*|n).
The first term is the conditional probability of the central DM density
of the dSphs given the pericentric distance. The second term is the
a priori probability distribution of the pericentres, which we will as-
sume uniform between riin and rmax: P(rp" (1) = Ui rmac 1 7p™)- We
model the relation between the central densities and the pericentres
as equation (1); the conditional probability of piso given r, can be
written as

P(o1so” | rp*, m) = N (log(piso™) | ¢ +mlog,(r") ; 0%) =

X )
1 1 Piso " B
—— i E - log;y 2 .
Vana? eXp{ 202 [og“’ (107 Mo /kpc? 4 miogn jpc

(B3)

X

The only term that remains to be solved for in equation (B2) is
the conditional probability of the measured data d given the ‘real’
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Table B1. Fixed parameters of the model B1.

Parameter Value
Ninin> Nmax 10, 10*
Finins Fmax 1073,5 x 102
Mmin, Mmax _15a 15
qmin> gmax —15,15

v, 72 1,0.1

ones d*, i.e. P(d|d*, n). To characterize this last term, we need to
give more details on the data gathering process. First, we make the
reasonable assumption that the measurements of the central density
and the pericentric distance are independent. Thus, we can split the
probability distribution as

P |d*,n) = P(piso | prso™, mP(ry [ 15", 1) . (B4)

The available estimates of p;so and r, are in the form of
percentiles, namely X, Xsom, and xgam, Where x is either pjsp or
rp. We can handle these data without losing information via order
statistics.

Let us assume a continuous PDF for X, f(x; B) defined by the set
of parameters . If we get N samples from the distribution fand we
sort them in such a way that: x; <x, < ... <xy_ < xy, the joint
probability distribution of all the order statistics described previously
(Arnold, Balakrishnan & Nagaraja 2008) is

N
Forxn @ xy) = N T £Gis ). (BS)
i=1

As we have only three of the N order statistics (x; < x; < x;), we
shall marginalize over the unwanted N — 3 parameters. The result
of this procedure is the joint probability distribution of three order
statistics:
N!

(i—DN =Dk =i =DI(j—k—=1)!

P(x,-,xk,xj | B, N) =

X f (x| B) £ (| B) £ (x| B) Flxi | B) (1= F(x; | £))™

k—i—1 j—k—1

< (F(x [ )= F(xi | B)) " (Fx; [ B) = F x| B))

(B6)

The indices {i, k, j} of the order statistics can be easily related to
the py; & j;-th percentile as® {i, k, j} = int[1 + Piik 3N — 1)/100].
Note that this probability depends on the family chosen for the PDF
(CDF) f(F), the set of parameters £, and on the number of samples
N. In particular, in this work 8 = {x*, s}, where x* is a location
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OThis is only true if the fraction is an integer. If not, the percentile is usually
computed as the weighted mean between the closest order statistics. Taking
into account this fact is possible but increases the complexity of the model.
Moreover, the difference is only significant when the number of samples N is
small. As this is not generally the case, we decided to stick with the simpler
model.

parameter while s is a parameter characterizing the width of the
distribution. In particular, in this work we chose a log-normal PDF
parametrized by the median x* and the variance in log space s*:

1 { In? x /x* ]
exp |— .
xv/2ms? 252
If we introduce a prior over N and s?, we can remove these two param-
eters via marginalization. We have assumed a uniform prior for N,
between Npin = 20 and Npay = 10* such as P(N) = Ui Npin Noma) (V)
For s2, we impose as prior a scaled inverse chi-square distribution:

f&1B =" s = (B7)

'EZV
(T2V/2>V/2 exXp |:—27S2:|
F(V/z) (s2)1+l)/2

PScaleflnvf)(2 (52 [ v, tz) = ’ (B3)

with 1 degree of freedom (v = 1) and fixed scale parameter (7> =
0.1), with T" being the gamma function.

Finally, the probability distribution of the measured data given the
‘real’ values P(d|d*, n) can be written as

paar,m= ]
& = {p1s0, 1p}

X Psee—tmy—y2(s” | v =1,7° = 0.1)

/ds2 Z |:U[Nminvaax)(N)
N

x P&, &.& | B=1{E"5), N)}. (B9)

The parameters we are finally left to fit are {r,*}, {p150*}, and n =
{m, g,0?*},i.e. 2n + 3 parameters with n = 8 the number of galaxies.
We also need to choose the prior probability over 1. For m and g,
we choose uniform probability distributions P(m) = Uy, mme) (711)
and P(q) = Uginame(@)- For o2, we chose a prior of the form
P(c?) o 1/0%. The values used in this work can be found in Table
BI.

APPENDIX C: MODEL COMPARISON

We report here Table C1, containing the results of the MCMC
sampling of the likelihood described in Section 4.
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Table C1. Results of the MCMC sampling of the likelihood described in Section 4. The first two columns indicate
the data set pair used in the regression. The following columns indicate the median of the parameters of the three
different models tested in this work. The lower and upper error bars indicate the 16th and 84th percentiles,

respectively.
IS PL EX
p P150 m 002 q m q m
+2.2 41 +0.4 +0.2 +0.3 +0.004
B22.H R19 153733 30™1, 2373 —09703 34703 —0.012*+ )00
+6.0 +189 +1.3 +0.8 +0.8 —+0.017
B22.H H20 17.3%%9  111tg 34t —13Ty 4t —0.027F ) 01é
+2.7 57 0.4 0.2 0.3 +0.005
B22.H K19.NFW  15.3%3] 4513] 2803 —0.9707  3.7103 —0.018%( 02
+3.6 +94.4 +0.7 +0.3 +0.4 +0.007
B22.H K19.1SO 131455 71515 35000 —l4Tgn 4.00% —0.02715.000
+2.2 +41.3 0.4 0.2 0.2 +0.003
B22.L R19 153535 29.9%h7  25%0%  —07ty3 3413 —0.0097( 003
+5.9 +183 +2.1 +1.2 +1.4 +0.015
B22.L H20 17289 10t 26130 —08TT 3213 —0.010% )50
2.6 59 0.4 0.2 0.2 0.003
B22.L KI9NFW 15329 45133 3.0t03  —1.0103  3.6%03 —0.01219003
+3.5 96 +0.7 +0.4 +0.4 —+0.005
B22.L K19.ISO 13.1%33 71538 3.9%0¢  —15%y 40t —0.020% 7 00c
2.3 42 0.7 0.3 0.8 0.004
B22.LMC RI19 153733 3075 0.1%0¢ 0.6%93 22108 +0.006 1001
6.0 187 1.8 0.8 0.9 0.008
B22.LMC H20 17.2755 111ty 0.2+)% 0.4705 2.00 +0.005 0006
+2.7 +57 +0.4 +0.2 +0.2 +0.003
B22IMC KI9NFW 15373/ 4501 22705 —0.6%)3 33703 —0.008* 003
+3.6 +96 +0.6 +0.3 +0.3 +0.003
B221MC KI19.1SO 13.1%3% 72758 28708 —09%)3 3473 —0.013%7 00
2.2 41 0.4 0.2 0.2 0.002
P22 R19 15.3737 3077, 22493 —0.6703 32103 —0.008* 003
+5.9 +191 +1.2 +0.6 +0.8 +0.012
P22 H20 17253 111t 35T —13TS 4atd —0.022%)015
+2.6 +56 +0.3 +0.2 +0.2 -+0.003
P22 K19.NFW  15.3%3¢ 44130 25003 =075 35103 —0.011% )00
+3.6 94 +0.7 +0.3 +0.4 +0.005
P22 K191SO 13.173% 71154 334y =12t 37103 —0.017" 0007
2.7 41 0.6 0.2 0.3 0.004
P22.LMC RI19 15.3737 305 24108 —0755; 33503 —0.010* 008
+5.8 +186 +1.6 +0.8 +0.9 —+0.013
P22 LMC H20 17458 11073 42010 LTS 457 —0.029% 012
+2.6 +56 +0.7 -+0.3 +0.3 +0.004
P22IMC KI9NFW 153739 45135 29700 —1.0f); 36003 —0.014%7 006
+3.6 +94 +1.4 +0.5 +0.7 +0.007
P22 IMC KI191SO 13.143% 3% 365 —l4atgy 3.8 —0.0201 )01
2.2 40 0.5 0.2 0.3 0.003
F18 R19 15.3%33 2971 24707 —0705 34703 —0.010% o0
+5.9 190 1.7 1.2 1.2 +0.016
F18 H20 1747, 111t3 24537 —0.7hs 3.4t —0.012+)012
+2.7 +58 +0.5 +0.2 +0.3 -+0.003
F18 KI19.NFW  15.2%3] 45138 28507 =095 37503 —0.014% o0
+3.6 94 +0.9 +0.3 +0.4 —+0.005
F18 K19.ISO 131133 7243 3.600.  —14%y7 3970 —0.02077 00c

This paper has been typeset from a TeX/IZTEX file prepared by the author.

MNRAS 522, 3058-3066 (2023)

20z aunf 8| uo 1sanb Aq G|062 | £/850€/2/22S/PI0IMe/SEIUL/WOo"dNo"olwapede//:sdny Wolj papeojumoq



	1 INTRODUCTION
	2 SAMPLE AND DATA SETS
	3 STATISTICAL ANALYSIS
	4 RESULTS
	5 DISCUSSION AND SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: SIMULATED ERRORS
	APPENDIX B: PERCENTILES AS RANDOM VARIABLES
	APPENDIX C: MODEL COMPARISON

