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Abstract. Constrained decision problems in the real world are subject
to uncertainty. If predictive information about the stochastic elements is
available offline, recent works have shown that it is possible to rely on an
(expensive) parameter tuning phase to improve the behavior of a simple
online solver so that it roughly matches the solution quality of an antici-
pative approach but maintains its original efficiency. Here, we start from
a state-of-the-art offline/online optimization method that relies on opti-
mality conditions to inject knowledge of a (convex) online approach into
an offline solver used for parameter tuning. We then propose to replace
the offline step with (Deep) Reinforcement Learning (RL) approaches,
which results in a simpler integration scheme with a higher potential
for generalization. We introduce two hybrid methods that combine both
learning and optimization: the őrst optimizes all the parameters at once,
whereas the second exploits the sequential nature of the online problem
via the Markov Decision Process framework. In a case study in energy
management, we show the effectiveness of our hybrid approaches, w.r.t.
the state-of-the-art and pure RL methods. The combination proves ca-
pable of faster convergence and naturally handles constraint satisfaction.

Keywords: Deep Reinforcement Learning · Offline/Online Optimiza-
tion· Uncertainty · Constrained Optimization

1 Introduction

Real world constrained decision problems often mix offline and online elements.
In many cases, a substantial amount of information about the uncertainty (e.g.
in the form of historical solutions, event logs or probability distributions) is avail-
able before it is revealed, i.e. before the online execution starts. This information
generally allows to make both strategic (offline) and operational (online) deci-
sions: in production scheduling, for example, we may devise an initial plan to be
revised at run time in case of disruptions; or in Energy Management Systems
(EMS) the electrical load should be planned the day ahead, while power flow
balance should be maintained hour by hour.

The interplay of these offline and online phases has received attention in the
last years [8]. Recent works [9, 8] show that whenever distinct offline and online
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phases are present, a tighter integration can lead to substantial improvements
in terms of both solution quality and computational costs. In particular, since
in many application domains, efficient suboptimal algorithms for online opti-
mization are already available or easy to design (e.g. greedy heuristics or myopic
declarative models), such works exploit the available offline information to rely
on a (typically expensive) parameter tuning phase to improve the behavior of
the online solver, maintaining its original efficiency. [9] is based on the idea of
injecting knowledge of a (convex) online approach into an offline solver. This is
achieved by formulating the Karush-Kuhn-Tucker (KKT) optimality conditions
for the online solver and adding them as constraints in a (offline) Mixed-Integer
Programming (MIP) problem. The resulting model can be used to perform (of-
fline expensive) parameter tuning. However, formulating optimality conditions is
not trivial and requires operations research expertise. Moreover, KKT conditions
introduce non-linearity to the initial model which dramatically reduces scalabil-
ity. Finally, in this method, the uncertainty is managed by sampling, introducing
approximations.

In this paper, we explore the idea of using learning-based approximations
to lift this limitation. In particular, we employ Deep Reinforcement Learning
(DRL) approaches as black-box solvers to perform (instance-specific) parameter
tuning in a simpler integration scheme without requiring convexity for the online
optimization problem.

We propose two hybrid approaches that combine both learning and optimiza-
tion. The first one selects the parameters all at once, while the second approach
exploits the sequential nature of the online problem by using the Markov Deci-
sion Process (MDP) framework.

Based on an Energy Management System case study, we show the effec-
tiveness of our hybrid approaches, both compared to the (tuning) optimization
problem from [7, 9]. To demonstrate the advantages over full RL-based solutions,
we have developed and compared RL end-to-end counterparts of our proposed
methods. We show that the resulting hybrid approach benefits from powerful
learning algorithms and is well suited to deal with operational constraints.

The rest of the paper is organized as follows. In Section 2 we provide a
brief introduction on RL. Section 3 describes the proposed case study and the
state-of-the-art approach for offline/online optimization grounded on it. Sec-
tion 4 presents our proposed two hybrid approaches that combine both learning
and optimization. Section 5 provides an analysis of results. Section 6 discusses
the main approaches proposed in the literature focused on Deep RL, hybrid
methods that combine both learning and optimization, and methods for hybrid
offline/online optimization. Concluding remarks are in Section 7.

2 Background

Reinforcement Learning (RL) is a paradigm to solve sequential decision-making
problems, defined on top of the MDP mathematical framework. Formally, a
fully-observable MDP is defined by a tuple (S,A, p, r, γ), where S is the set of
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states, A is the set of actions, p(·|s, a) is the probability distribution of next
states, r(·|s, a) is the probability distribution of the reward and γ ∈ [0, 1], called
discount factor, controls the impact of future rewards.

The sequential decision making problem is then cast down to a recurrent
process where the RL agent interacts with the environment by performing actions
according to its behavior policy πθ(at|st). Consequently, these actions provoke
the agent’s state transitions. Based on the action outcome, a reward signal may
be attributed to the RL agent . The learning process is then formulated as the
maximization problem of cumulative rewards along state-action trajectories τ ,
dictated by πθ(at|st).

J(θ) = Eτ∼pθ(τ)

[

T
∑

t=1

γtr(st, at)

]

(1)

pθ(τ) = pθ(s1,a1, . . . , sT ,aT ) = p(s1)
T
∏

t=1

πθ(at|st)p(st+1|st,at) (2)

where T is the trajectory time horizon.
RL algorithms can be classified into two main categories: model-free and

model-based RL. Model-free RL algorithms try to find the optimal policy π∗

such that the expected cumulative discounted reward from the initial state st=1 is
maximized. The idea of model-based RL is to learn the model of the environment,
i.e. the transition probabilities p(·|s, a), rather than the optimal policy and then
use the learned model to choose the optimal actions.

Within the model-free family, Policy Gradient algorithms are widely used
when the actions space is continuous. One such an example is REINFORCE [20]:
given a parametric policy πθ, the parameters θ are optimized by gradient ascent
to directly maximize J(θ).

∇θJ(θ) = Eτ∼πθ(τ)

[(

T
∑

t=1

∇θ log πθ(at|st)

)(

T
∑

t=1

r(st, at)

)]

(3)

Policy gradient algorithms are known to suffer from high variance. several
non-mutually exclusive solutions can be employed to mitigate this issue, such
as baseline subtraction to correctly isolate positive actions. Among the possible
baselines, Actor-Critic (AC) methods are particularly effective in reducing vari-
ance. Instead of using a state-dependent baseline, one can reduce the variance
by computing the advantage of taking an action at in state st. The advantage is
defined as A(st, at) = r + γV (st+1) − V (st), where Vπ(st) = Eπ [J(τ)|s = st] is
the value function, r is the reward and st+1 is the next state. Thus, the actor is
represented by the policy, whereas the value function acts as the critic.

Modern RL approaches take advantage of deep learning models as powerful
tools for representation learning [15]. More precisely, neural networks are em-
ployed to approximate the policy πθ and Vθ(·). The scientific community usually
refers to this research field as Deep Reinforcement Learning (DRL).
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3 Problem description

In this section, we present the details of the application scenario of an En-
ergy Management System, and we illustrate the state-of-the-art offline/online
approach grounded on it.

3.1 Energy Management Case Study

As a practical use case, we consider an Energy Management System (EMS) that
requires allocating the minimum-cost power flows from different Distributed En-
ergy Resources (DERs). The uncertainty stems from uncontrollable deviations
from the planned loads of consumption and the presence of Renewable Energy
Sources (RES). Based on actual energy prices and on the availability of DERs,
the EMS decides: 1) how much energy should be produced; 2) which generators
should be used for the required energy; 3) whether the surplus energy should be
stored or sold to the energy market. Unlike in most of the existing literature,
we acknowledge that in many practical cases [8] some parameters can be tuned

offline, while the energy balance should be maintained online by managing en-
ergy flows among the grid, the renewable and traditional generators, and the
storage systems. Intuitively, handling these two phases in an integrated fashion
should lead to some benefits, thus making the EMS a good benchmark for our
integrated approach.

In our case study, it is desirable to encourage the online heuristic to store
energy in the battery system when the prices of the Electricity Market are cheap
and the loads are low, in anticipation of future higher users’ demand. Storing
energy has no profit so the online (myopic) solver always ends up in selling all the
energy on the market. However, by defining a virtual cost parameter related to
the storage system, it is possible to associate a profit (negative cost) to storing
energy, which enables addressing this greedy limitation. Then, based on day-
ahead RES generation and electric demand forecasts, we can find the optimal
virtual costs related to the storage system to achieve better results in terms of
solution quality (management costs of the energy system).

3.2 State-of-the-art Offline/Online approach

We refer to the integrated offline/online optimization method proposed in [7, 9]
that assumes exogenous uncertainty, and that is composed of two macro steps: an
offline two-stage stochastic optimization model based on sampling and scenarios;
and an online parametric algorithm, implemented within a simulator, that tries
to make optimal online choices, by building over the offline decisions. The authors
assume that the online parametric algorithm is based on a convex optimization

model. Based on some configuration parameters of the online model, an offline
parameter tuning step is applied. In this way, the authors can take advantage of
the convexity of the online problem to obtain guaranteed optimal parameters. In
particular, convexity implies that any local minimum must be a global minimum.
Local minima can be characterized in terms of the KKT optimality conditions.
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Essentially, those conditions introduce a set of constraints that must be satisfied

by any solution that is compatible with the behavior of the online heuristic. They
can exploit this property by formulating the tuning phase as a Mathematical
Program that is not a trivial task for every constrained real-world problem.

The online step is composed by a greedy (myopic) heuristic that minimizes
the cost and covers the energy demand by manipulating the flows between the
energy sources. We underline that this is a typical approach to handle the online
optimization of an EMS [1]. The heuristic can be formulated as an LP model:

min

n
∑

k=1

∑

g∈G

ckgx
k
g (4)

s.t. L̃k =
∑

g∈G

xk
g (5)

0 ≤ γk + ηxk
0 ≤ Γ (6)

xg ≤ xk
g ≤ xg (7)

For each stage k up to n, the decision variables xg are the power flows between
nodes in g ∈ G and cg are the associated costs. All flows must satisfy the lower
and upper physical bounds xg and xg. Index 0 refers to the storage system and
the index 1 to the RES generators. Hence the virtual costs associated with the
storage system are ck0 . The battery charge, upper limit and efficiency are γ, Γ
and η. The EMS must satisfy the user demand at each stage k referred to as L̃k.

The baseline offline problem is modeled via MIP and relies on the KKT
conditions to define a model for finding the optimal values of ck0 for the set of
sampled scenarios ω ∈ Ω. Such model is given by:

min
1

|Ω|

∑

ω∈Ω

∑

g∈G

n
∑

k=1

ckgx
k
g,ω (8)

s.t. L̃k
ω =

∑

g∈G

xk
g,ω ∀ω ∈ Ω, ∀k = 1, · · · , n (9)

xg ≤ xk
g,ω ≤ xg ∀ω ∈ Ω, ∀k = 1, · · · , n (10)

0 ≤ γk
ω ≤ Γ ∀k = 1, · · · , n (11)

γk+1
ω = γk

ω + ηxk
0,ω ∀ω ∈ Ω, ∀k = 1, · · · , n− 1 (12)

xk+1
1,ω = R̂k + ξkR,ω ∀ω ∈ Ω, ∀k = 1, · · · , n (13)

L̃k+1
ω = L̂k + yk + ξkL,ω ∀ω ∈ Ω, ∀k = 1, · · · , n (14)

R̂k and L̂k are the estimated RES production and load, and ξkR and ξkL are the
corresponding random variables representing the prediction errors. yk are opti-
mal load shifts and are considered as fixed parameters. The authors assume that
the errors follow roughly a Normal distribution N(0, σ2) and that the variance
σ2 is such that 95% confidence interval corresponds to ±10% of the estimated
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value. L̃k
ω is the observed user load demand for stage k of the scenario ω. Equa-

tions (12) to (14) model the transition functions.
The above formulation is free to assign variables (as long as the constraints

are satisfied), whereas all decisions that are supposed to be made by the heuristic
can not rely on future information. We account for this limitation by introducing,
as constraints, the KKT optimality conditions for our convex online heuristic.
The model achieves integration at the cost of offline computation time, because
of the additional variables introduced and the presence of non-linearities.

In the following we show the KKT conditions formulation for the online
heuristic in a single scenario:

− ckg = λk
ω + µk

g,ω − νkg,ω ∀g ∈ G (15)

µk
g,ω(x

k
g,ω + xg) = 0 ∀g ∈ G (16)

νki,ω(xg − xt
g,ω) = 0 ∀g ∈ G (17)

µ̂k
ω(ηx

k
0,ω + γk − Γ ) = 0 (18)

ν̂kω(ηx
k
0,ω + γk) = 0 (19)

µk
g,ω, ν

k
g,ω ≥ 0 ∀g ∈ G (20)

µ̂k
ω, ν̂

k
ω ≥ 0 (21)

where µk
g,ω and νkg,ω are the multipliers associated to the physical flow bounds,

while µ̂k
ω and ν̂kω are associated to the battery capacity bounds. Injecting the

conditions in the offline model yields:

min
1

|Ω|

∑

ω∈Ω

∑

g∈G

n
∑

k=1

ckgx
k
g,ω

s.t. Eq. (9) − (14) – offline problem constraints –

Eq. (15) − (21) ∀ω ∈ Ω, ∀k = 1, . . . n – KKT conditions –

where the decision variables are xk
g,ω, µk

g,ω, νkg,ω, µ̂k
ω, ν̂kω. To those, the authors

add the cost ck0 associated with the flow from and to the storage system (the
only parameter they allow the solver to adjust). This method allows the offline
solver to associate a virtual profit for storing energy, which enables addressing
the original limitation at no online computational cost.

4 Proposed Methods

Due to the limitations in terms of convexity assumption and scalability presented
in Section 3, we devise an alternative to the tuning approach of [7, 9]. Decision-
focused learning approaches are not directly applicable since the cost function
employed in the optimization problem takes also into account the (virtual) costs
related to the storage system ck0 , whereas the real cost to be minimized does not.
In particular, we propose a hybrid method that employs DRL as a black-box
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Fig. 1. In the single-step version, the policy π provides the set of {Ck

0 }
n

k=1 all at
once.

tool to find the optimal ck0 . The major benefit over the tuning version of [7, 9]
is that we do no longer require the greedy heuristic to be convex but we are still
able to compensate for its myopic behavior.

In the following sections, we will first describe our RL-based version of the
tuning algorithm. Then, to show the benefits of a hybrid approach that com-
bines both learning and optimization, we will outline an alternative end-to-end
RL method that directly provides the power flows.

4.1 RL-based tuning

We devise two viable ways to formulate the Reinforcement Learning problem. As
shown in fig. 1, in the first formulation (referred to as single-step), the policy
π : Rn×2 −→ R

n maps the day-ahead photovoltaic generation R̂k and electric
demand forecasting L̂k to the set of all the virtual costs ck0 for k = {1, . . . , n}.
Once ck0 are provided, a solution {xk

g}
n
k=1 is found solving the online optimization

problem defined in Equations (4) to (7) and the reward is the negative real cost
computed as:

−
n
∑

k=1

∑

g∈G
g ̸=0

ckgx
k
g

The second formulation (referred to as mdp) exploits the sequential nature of
the online step and fits the MDP framework and it is shown in fig. 2. The policy
π is a function π : Rn×3+1 −→ R. The state sk keeps track of the battery charge
γk and it is updated accordingly to the input and output storage flows. At each
stage k, the agent’s action ak is the virtual cost ck0 and the corresponding online
optimization problem is solved. Then the environment provides as observations
the battery charge γk, the set of forecasts R̃1,...,n and L̃1,...,n, and a one-hot
encoding of the stage k. The reward is again the negative real cost but for the
only current stage k:

−
∑

g∈G
g ̸=0

ckgx
k
g
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Fig. 2. In the MDP formulation, the agent sets the cost associated to the storage
step-by-step, for each stage in the range from 1 to n.

The two formulations have complementary advantages and drawbacks. The
single-step version is less prone to find suboptimal behaviors since it is rewarded
with the actual real cost at the end of all the optimization steps. Instead, mdp

receives a reward for each stage which makes it challenging to find a tradeoff
between maximizing both immediate and far-in-time rewards. On the other hand,
the task to be learned for mdp is simpler than for single-step because it has
only to set one virtual cost at a time rather than deciding them all at once.

4.2 End-to-end RL

As for the hybrid approaches, we have developed both the single episode and
sequential versions of the RL problem. Directly providing a feasible solution is
extremely hard because the actions must satisfy all the constraints. To simplify
the task, we make some architectural choices that allow for reducing the actions
space.

For both the formulations, the observations are the same as for the cor-
responding counterparts described in section 4.1. In the version equivalent to
single-step, the output of the policy is a vector of dimension n × (|G| − 1)
corresponding to the power flows xk

g for each stage k from 1 to n. Since one of
the power flows has no upper bound xg, we have set its value so that the power
balance constraint of eq. (9) is satisfied, reducing the actions space and making
the task for RL easier. We refer to this decision variable as xk

2 . In the MDP
version, the policy provides a (|G| − 1)-dimensional vector corresponding to the
power flows for a single stage. The actions are clipped in the range [−1, 1] and
then rescaled in their feasible ranges

[

xg, xg

]

.
Despite adopting these architectural constraints, the actions provided by the

agent may still be infeasible: the storage constraint of eq. (12) and the lower
bound x2 can be violated. Since the solutions’ cost is in the range [0, 3000],
the policy network is rewarded with a value of −10000 when infeasible actions
are selected to encourage the search for feasible solutions. The full RL version
of single-step has the same reward of single-step itself. Unfortunately, this
approach never founds a feasible solution during training. This is reasonable
since the actions space is huge and the task extremely hard. Due to its poor
performance, we do not consider this method for further investigation. In the
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MDP version, instead, the reward is non-zero only for the last stage and it is
computed as the negative cumulative real cost. In following of the paper, we only
consider this full RL method and refer to it as rl.

5 Experimental results

Fig. 3. Mean and standard deviation of the photovoltaic production and load demand
forecasts obtained from the Public Dataset.

Training and test of the methods are performed on real data based on a
Public Dataset 1. From this dataset, we assume electric load demand and pho-
tovoltaic production forecasts, upper and lower limits for generating units and
the initial status of storage units. During training of all the methods with an
RL component, R̃ and L̃ are obtained from the forecasts by adding noise from
a normal distribution as described in section 3.2. The dataset presents individ-
ual profiles of load demand with a time step of 5 minutes resolution from 00:00
to 23:00. We consider aggregated profiles with a timestamp of 15 minutes and
use them as forecasted load. The photovoltaic production is based on the same
dataset with profiles for different sizes of photovoltaic units but the same so-
lar irradiance (i.e. the same shape but different amplitude due to the different
sizes of the panels used). Also in this case photovoltaic production is adopted as
forecast.

To assess the variability of the dataset, in fig. 3 we show the mean and
standard deviation of photovoltaic production and user load demand regarding

1 www.enwl.co.uk/lvns



10 M. Silvestri et al.

the hour of the day. Photovoltaic production has not a high variance and this is
reasonable since it mainly depends on the solar irradiance. On the other hand,
the load demand is extremely variable proving the robustness of the benchmark.

The electricity demand hourly prices have been obtained based on data
from the Italian national energy market management corporation2 (GME) in
e/MWh. The diesel price is taken from the Italian Ministry of Economic Devel-
opment3 and is assumed as a constant for all the time horizon (one day in our
model) as assumed in literature [1] and from [11].

In the following, we will refer to the version of tuning based on perfect
information (i.e. without scenario sampling) as oracle. For single-step, mdp

and rl, we have employed the Advantage Actor Critic (A2C) algorithm 4 since
it is robust and it can deal with a continuous actions space. All the code and
dataset to reproduce the results are publicly available at the following link 5.
Both training and evaluation were performed on a laptop with an Intel i7 CPU
with 4 cores and 1.5 GHz clock frequency.

Since hyperparameter search was outside the scope of this paper, we employ a
quite standard architecture. The policy is represented by a Gaussian distribution
for each action dimension, parametrized by a feedforward fully-connected Neural
Network with two hidden layers, each of 32 units and a hyperbolic tangent
activation function. The critic is again a deep neural network with the same
hidden architecture of the policy. Parameters are updated using Adam optimizer
with a learning rate of 0.01, which is larger than the usual 0.001: we choose this
value because it improves the speed of convergence without compromising the
final results for our use case. Observations are rescaled in the same range [0, 1]
dividing by their maximum values. We have used a batch size of 100 for all the
methods but mdp for which we have preferred a larger batch size of 9600 to have
a comparable number of episodes for each training epoch.

For the evaluation, we randomly select 100 pairs of load demand and pho-
tovoltaic production forecasts, referred to as instances in the following of the
section. Each method with a learning component (i.e. single-step, mdp and
rl) is trained on each instance individually. Here we focus on probing the effec-
tiveness of the proposed method and we intend to investigate the generalization
capabilities in future work.

5.1 Cost value over computation time

We start by comparing the mean cost on the generated realization during each
training epoch as a function of the computation time, averaging the results con-
sidering the set of 100 instances. Since the optimal cost may be different among
the instances, we normalize it by the best value found (i.e. the one provided by

2 http://www.mercatoelettrico.org/En/Default.aspx
3 http://dgsaie.mise.gov.it/
4 A2C algorithm was implemented with the TensorFlow version of the garage [5]

library.
5 https://github.com/matsilv/rl-offline-online-opt
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Fig. 4. Cost comparison of the methods w.r.t. the computational time.

oracle). To make a fair comparison with tuning, we train the methods with
a learning phase choosing a number of epochs such that the computation time
is similar. The mean epoch duration on the 100 instances, the number of epochs
and the total computation time required for all the methods are reported in
table 1.

Table 1. Mean epoch duration, number of epochs and total duration for the methods.

Method Epoch duration
(sec)

Num. of epochs Total duration
(sec)

single-step 9.85 37 364.45

mdp 19.28 19 366.32

rl 0.33 1085 358.05

oracle - - 74.13

tuning - - 360.21

heuristic - - 0.66

In the upper part of fig. 4, RL is compared to oracle: despite the agent
is actually minimizing the cost, it is far from being optimal. The results are
so poor that we do not make a further comparison with the other methods.
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In the lower part of fig. 4, our devised approaches (single-step and mdp) are
compared with the greedy heuristic, tuning and oracle. Since there is no
learning for these last three methods, the solution found is used as a reference
value and a simple horizontal line is plotted. Despite being extremely fast, the
greedy heuristic provides considerably worse results than the oracle, due to its
myopic behavior. Among our proposed methods, single-step provides better
results and a faster convergence; in addition, it also outperforms the state-of-
the-art tuning in almost the same computation time and without requiring
a convex online optimization problem. oracle finds the optimal solution and
it is faster than our proposed methods. On the other hand, it requires perfect
information so it is not applicable to real-world problems and here it is only used
as a reference value to evaluate the performance of the other methods.

5.2 Decision variables

Next, we proceed by comparing the power flows and storage capacity for each
method (shown in fig. 5). Since we introduce a virtual cost related to the battery
system, our discussion focuses on storage usage. The end-to-end RL approach is
only learning to satisfy the power balance and storage constraints and it does
not take smarter actions to reduce the cost. One possible reason for this poor
performance is the challenging exploration of the huge actions space. As one
would expect, the greedy (and myopic) heuristic uses all the available energy in
the storage and does not further charge the battery since it is not directly prof-
itable. The hybrid approaches (single-step and mdp) have similar behaviors
and extensively use the storage whereas tuning focuses on the only hours close
to the users demand peaks. The smartest decisions are taken by oracle which
frequently resorts to the battery system but keeps the storage fully loaded for
the first part day when the load demand is low.

Fig. 5. Mean and standard deviation of the power ŕows and storage capacity w.r.t. the
time for all the described methods.
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6 Related Work

In this section we initially describe some recent Deep Reinforcement Learning
approaches to solve combinatorial optimization problems. Then we illustrate the
predict-then-optimize framework which has several properties in common with
the method we have devised. The section ends with a brief overview of hybrid
offline/online optimization approaches.

6.1 Deep Reinforcement Learning for Combinatorial Optimization

Recently, there has been an increasing interest in combining learning and opti-
mization [13] with particular emphasis on DRL to solve combinatorial optimiza-
tion problems [14]. Handcrafted heuristics are often used in place of exact solvers
to find high-quality solutions in a reasonable time, but they require expert knowl-
edge to be designed. Instead, DRL can learn its heuristic from a simple reward
signal without any supervision. In the following, we describe the state-of-the-art
methods adopting the same taxonomy proposed in [14].

Principal learning. In principal learning, the agent directly provides a solu-
tion or takes actions that are part of the solution. One of the first attempts to
solve Combinatorial Optimization problems with DRL has been made in [2] and
mainly addresses the Traveling Salesman Problem. In particular, a Pointer Net-
work [19] iteratively builds a tour by choosing the most probable remaining city
at each step. The network is trained with an Actor-Critic algorithm using the
negative tour length as a reward. Experimental results show that this method
can achieve near-optimal solutions for tours with up to 100 nodes. In [12], the
authors improve the results of [2] by replacing the Pointer Network with the
Transformer architecture [18]. Similarly, [16] further extends [2] to the family of
Vehicle Routing Problem (VRP). In [6], the authors develop a meta-algorithm
to solve combinatorial optimization problems defined over graphs. The state is
a partial solution and the set of actions is represented by the set of all possible
nodes that can be added.

Generally, DRL approaches have trouble dealing with combinatorial struc-

tures: this issue could be addressed by injecting knowledge of the online solver
into the policy itself, either by making the solver part of the environment, or by
using Differentiable Programming to embed the online solver in the structure of
the deep neural network. In this perspective, here we take advantage of the pow-
erful learning framework provided by RL and rely on Declarative Optimization
to deal with operational constraints.

Joint training. Alternatively to principal learning, the policy can be jointly
trained with an off-the-shelf solver to improve the solution quality or other
performance metrics. For instance, in [3] DRL is employed as a value-selection
heuristic to improve Constraint Programming searching strategy. Rather than
constructing a solution, one can think of using RL to improve an already existing
one, similarly to Local Search. For example, NeuRewriter [4] is an Actor Critic
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algorithm that learns a solution improvement heuristic by iteratively re-writing
part of the solution until convergence is reached. Two policies are learned simul-
taneously: the region-picking and rule-picking policies. The region-picking policy
chooses which part of the solution should be re-written, whereas the rule-picking
policy selects the re-writing rule.

Despite the RL algorithm being trained end-to-end with the online solver, our
proposed method is different from the approaches described above: the agent is

not directly integrated into a step of the solutions process of a pre-defined solver.
Instead, it applies a parameters tuning phase separated from the optimization
step and that guides the solver.

6.2 Predict-then-optimize

Our approach is related to the family of decision-focused learning. Many real-
world problems require a predictive model whose predictions are given as input to
a combinatorial optimization problem. In decision-focused learning, the training
of the predictive model is improved by taking into account the solutions of the
optimization problem.

One such example is the Smart “Predict, then Optimize” (SPO) framework
[10]: rather than simply minimizing the prediction error, the model is trained
to provide estimates such that optimal solutions are found. Training is usually
performed in a supervised fashion and the major challenge of this kind of ap-
proach is finding a differentiable and computational-efficient loss function, like
the SPO+ that was proposed in [10].

Our method differs from decision-focused learning since we allow for a dis-

crepancy between the true cost that needs to be minimized and the cost function

technically employed in the optimization problem. As an additional benefit, we
do not require differentiability on the cost function. This is the reason why we
adopt RL rather than a supervised method in the learning stage.

6.3 Hybrid offline/online optimization

Stochastic optimization problems are usually solved via offline or online methods.
Offline approaches find a robust solution taking into account future uncertainty
in advance but they are computationally expensive. On the other side, online

algorithms take decisions once uncertainty is revealed but the solution quality is
strictly affected by the available amount of computation time.

In many real-world cases, a large amount of information about the stochastic
variables is available before the uncertainty is revealed. For example, in the
energy management case study, historical data about past user demands can be
used to model the uncertainty. This motivates the interest in developing hybrid
offline/online approaches and taking advantage of both worlds to improve in
terms of solution quality and computational cost.

If we model an n-stage stochastic optimization problem as a Markov Decision
Process [17] then Dynamic Programming can be seen as a hybrid offline/online
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optimization approach. The policy and its corresponding value-function are it-
eratively improved offline, simulating executions, and then the resulting policy
can be efficiently executed online.

When fast but sub-optimal, online algorithms are available (e.g. greedy heuris-
tic), their behavior can be improved via a parameter tuning procedure without
introducing additional computational cost during the online phase.

In [7, 9], the authors propose a method to inject knowledge about a con-
vex online solver in the offline problem. In practice, this is achieved by adding
the KKT optimality conditions for the online solver as constraints in the offline
problem. The method achieves positive results in cost/quality tradeoff by tak-
ing advantage of the offline/online integration. However, formulating optimality
conditions is not trivial requiring experience and domain knowledge. Moreover,
KKT conditions introduce non-linearity to the initial model and dramatically re-
duce scalability. Finally, in this method, the uncertainty is managed by sampling,
introducing approximations.

The major benefit of our learning/optimization hybrid methods over the
tuning version of [7, 9] is that we do no longer require the greedy heuristic to be

convex but we are still able to compensate for its myopic behavior.

7 Conclusions

This paper makes a significant step towards hybrid learning/optimization ap-
proaches for offline/online optimization under uncertainty.

We start from a state-of-the-art offline/online optimization method that
makes offline parameter tuning by relying on optimality conditions to inject
knowledge of a (convex) online approach into an offline solver. Then, we propose
two approaches to replace this offline parameter tuning phase, by using DRL as
a black-box solver. We present two hybrid methods that combine both learning
and optimization: the first one optimizes all the parameters at once, whereas
the second approach exploits the sequential nature of the online problem via the
MDP framework.

In a case study in energy management, we show the effectiveness of our
hybrid approaches w.r.t. the state-of-the-art methods. We also experimentally
assess that a full RL-based approach struggles to find feasible solutions and its
performance are poor compared to the state-of-the-art and our devised methods.
The combination of RL and optimization proves capable of faster convergence
and naturally handles constraint satisfaction. In contrast to current state-of-
the-art approaches for offline/online optimization, our hybrid method has the
potential to generalize: we leave probing generalization as an open question and
future research direction.
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