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DLO Perceiver: Grounding Large Language Model
for Deformable Linear Objects Perception
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Abstract—The perception of Deformable Linear Objects (DLOs)
is a challenging task due to their complex and ambiguous ap-
pearance, lack of discernible features, typically small sizes, and
deformability. Despite these challenges, achieving a robust and
effective segmentation of DLOs is crucial to introduce robots into
environments where they are currently underrepresented, such as
domestic and complex industrial settings. In this context, the inte-
gration of language-based inputs can simplify the perception task
while also enabling the possibility of introducing robots as human
companions. Therefore, this letter proposes a novel architecture
for the perception of DLOs, wherein the input image is augmented
with a text-based prompt guiding the segmentation of the target
DLO. After encoding the image and text separately, a Perceiver-
inspired structure is exploited to compress the concatenated data
into transformer layers and generate the output mask from a latent
vector representation. The method is experimentally evaluated
on real-world images of DLOs like electrical cables and ropes,
validating its efficacy and efficiency in real practical scenarios.

Index Terms—Deformable linear objects, multi-modal models,
robotic perception, text-based segmentation.

I. INTRODUCTION

IN RECENT years, the rapid advancement of artificial intel-
ligence and computer vision technologies has significantly

transformed various fields, including object detection and recog-
nition [1].

Among the objects in the visual domain, Deformable Linear
Objects (DLOs) present unique challenges due to their flexible
and elongated nature. Indeed, objects such as electrical cables,
ropes, and wires, categorized as DLOs, exhibit notable variations
in both shape and appearance, thereby posing considerable
obstacles for standard perception algorithms [2], [3].

Traditionally, methods for DLO detection often rely solely
on visual cues extracted from images [4], [5], [6], neglecting
valuable contextual information that may be encoded within
associated text descriptions of the scene or task. Indeed, the
fusion of visual and textual modalities has shown promise in
enhancing the robustness and accuracy of perception systems in
several robotic-related fields [7], [8], [9].
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Fig. 1. Text-based image segmentation for DLOs perception.

Inspired by recent advancements in transformer architec-
tures [1], particularly in natural language processing and com-
puter vision domains, this letter proposes a novel framework
that integrates visual and text encoders in a compact and efficient
attention-based processing pipeline to achieve DLOs perception.
At its core, the idea is to exploit complementary information
from both vision and text modalities to segment only the target
DLO. In other words, the text-based prompt guides the segmen-
tation of the specific DLO instance of interest. An overview
of the proposed text-based DLOs segmentation approach is
provided in Fig. 1.

First, both the image and text prompt undergo separate em-
bedding processes through specific encoders. The proposed
architecture then employs a Perceiver-inspired structure [10]
to compress the encoded data using transformer layers. This
process generates the output mask from a learned latent vector
representation. Additionally, an auxiliary section of the model
functions as a training regularizer. This regularizer aligns asso-
ciated images and text prompts more closely within a specific
latent space using a contrastive learning objective. During in-
ference, the distance in this latent space between the image and
the provided text prompt can be used as a measure of similarity,
thereby validating the context of the prompt given the available
image.

The experimental validation includes real-world images of
DLOs, such as electrical cables and ropes, which are com-
mon in many domains. The efficacy of combining visual and
textual modalities for DLO segmentation tasks is thoroughly
investigated, specifically examining the impact of incomplete or
incorrect prompts. Additionally, the approach is compared with
state-of-the-art methods for DLO instance segmentation and
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multi-modal techniques. Finally, a timing and model complexity
analysis is reported to better characterize the computational
footprint of the proposed method.

In summary, the contributions of this letter can be listed as
follows:

1) A novel task for DLOs perception is proposed, leveraging
both image and text inputs, and allowing the exclusive
segmentation of the target DLO.

2) Efficient Perceiver-inspired architecture for effective com-
pression of encoded visual and textual data using trans-
former layers, enabling accurate output mask generation
from a learned latent vector representation.

3) Exploitation of a contrastive learning objective between
image and text to regularize training and provide a similar-
ity score, thereby validating the match between the image
and the text prompt during inference.

4) Extensive experimental evaluations and comparisons of
the proposed method are reported, including a comprehen-
sive analysis of the effects of correct, partial, and incorrect
text-based inputs across a real-world dataset of both cables
and ropes.

The associated datasets and source code implementation have
been made publicly available on https://github.com/lar-unibo/
dlo_perceiver.

The remainder of this letter is organized as follows: Section II
provides an overview of the current literature concerning exist-
ing visual grounding approaches and perception methodologies
for DLOs; Section III presents the network architecture em-
ployed to obtain the text-based segmentation of DLOs; Sec-
tion IV describes the generation and structure of the dataset as
well as the training process; Section V outlines the experimental
validation employed, featuring an in-depth discussion of the
results; Section VI provides concluding remarks and future
research directions.

II. RELATED WORKS

A. Visual Grounding

Visual grounding is the process of associating linguistic de-
scriptions with their visual counterparts by localizing them in
an image [8]. This can be achieved through two main methods:
bounding boxes, addressing the Referring Expression Compre-
hension (REC) task, or segmentation masks, addressing the more
complex Referring Image Segmentation (RIS) task, which is also
the focus of this letter.

RIS applications appear in various fields, such as visual
grounding for navigation, where masks of goal points are pro-
vided for a self-driving agent [11], [12], [13], and robotic ma-
nipulation tasks, where RIS is augmented with human gaze to
indicate the target location of an object, reducing uncertainty
from under-specified instructions [14].

Given that visual grounding integrates diverse input sources
like vision and language, recent literature has introduced novel
approaches and architectures to address this challenge. CLIP [7]
connects text with images by aligning their embedded spaces,
and ClipSEG [8] builds on this by using pre-trained image
and text encoders from CLIP, along with a specialized decoder
module to interpret the combined information.

The Perceiver model [10] manages various input config-
urations using a single transformer-based architecture in a
domain-agnostic setting. It employs an asymmetric attention

mechanism to condense high-dimensional inputs into a compact
latent space, reducing model complexity. This architecture has
been successfully applied in several robotic tasks, including a
language-conditioned behavior-cloning agent [9].

B. DLOs Perception

Recently, there has been a notable increase in interest in
DLOs perception due to its importance for subsequent ma-
nipulation tasks [15]. DLOs perception is typically achieved
through vision-based methods [2], [3], [5], [6] or tactile-based
techniques [16], [17]. Vision-based approaches are preferred
due to the availability of various sensors and cameras that can
be easily integrated into robotic systems [3], [18]. However,
tactile sensing is essential in confined spaces and situations
involving occlusions where vision-based perception may strug-
gle. This section reviews recent methodologies for vision-based
perception of DLOs, categorized into three main approaches: 2D
shape estimation techniques, 3D shape estimation techniques,
and multi-modal segmentation.

1) 2D Shape Estimation: Research on estimating the 2D
shape of DLOs has focused on data-driven methods for semantic
segmentation. Various off-the-shelf deep learning models have
been used for this task, including UNet [19], FCN [20], and
DeepLabV3+ [2], [21]. A custom CNN architecture with an
encoder-decoder scheme is proposed in [22].

Comparisons between real-world and synthetic datasets are
conducted in [2] and [23], against the electrical wires dataset
by [21]. These works highlight how synthetic images can be a
viable alternative for DLO segmentation. Combining synthetic
with real-world images is shown to improve performance com-
pared to using synthetic images alone [2].

Algorithms for 2D shape estimation of DLOs often use
semantic segmentation as a preprocessing step, as shown
in [5]. Other approaches include simpler methods like color-
based techniques [6] and depth-thresholding [24]. Addition-
ally, some methods estimate DLO endpoints, as demonstrated
in [25].

After the segmentation stage, a tracing or merging procedure
is typically employed. Tracing iteratively extends the path of a
DLO, as shown in [22] and [25]. Merging-based algorithms, like
those by [6] and [5], combine smaller DLO segment estimates
into a single detection. Some studies, such as [2] and [23], have
applied instance segmentation directly for 2D DLO shape esti-
mation, but these methods often perform poorly when multiple
DLOs intersect.

2) 3D Shape Estimation: Acquiring the 3D configuration
of DLOs is essential for robotic grasping and manipulation
tasks [3]. However, direct 3D shape estimation is less explored
compared to 2D methods. Typically, depth data is used to map
estimated 2D shapes into 3D space [26], [27]. Challenges in
3D shape estimation arise from sensing technology limitations,
especially with thin cylindrical objects like DLOs [18]. High-
quality cameras are needed for accurate detection, but they face
issues such as larger dimensions, higher costs, and operational
constraints when mounted on robot end-effectors compared to
2D cameras [3], [18].

Recent efforts in 3D shape estimation for DLOs include
strategies to reduce sensor noise in depth measurements [27]
and the use of multi-view stereo techniques [3]. However, these
approaches are often time-consuming and may be limited to
static scenes.

https://github.com/lar-unibo/dlo_perceiver
https://github.com/lar-unibo/dlo_perceiver
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Fig. 2. Network architecture employed for text-based DLO segmentation composed of a perceiver-inspired branch and a contrastive similarity learning branch.

3) Multi-Modal Segmentation: Few works have exploited
multi-modal approaches for DLOs segmentation. Notably, the
Segment Anything Model (SAM) [28] has been employed in
zero-shot settings in [27] and [29]. Both studies use pre-trained
models to embed text prompts such as “ropes” or “cables”.
However, in [27], additional handcrafted post-processing steps
are required to achieve satisfactory segmentation results, and the
method in [29] is tested only in a limited environment.

The proposed method introduces several key improvements
over [27] and [29]: 1) It uses more descriptive prompts tailored
for specific target-object segmentation rather than general seg-
mentation; 2) It features an efficient, real-time capable architec-
ture in contrast to the full-size foundation models used in the
previous works.

III. METHOD

The proposed DLOPerceiver architecture, illustrated in Fig. 2,
consists of the following main steps:

A) Text and Image Encoding : InputsP andI are embedded
by using specific encoders and concatenated obtaining a
new tensor X .

B) Perceiver-inspired Processing : A cross-attention-based
processing module is employed to condition a latent im-
age vector V on the concatenated input tensor X .

C) Mask Decoding: The updated latent image vector V′′
is decoded through transposed convolutions and interpo-
lated to restore the original image dimensionality, yield-
ing a logit probability output for each pixel.

D) Contrastive Similarity Learning: Images and text
prompts are aligned within a specific latent space through
a contrastive learning objective, exploited both during
training for regularization and during inference for im-
age/prompt similarity estimation.

The steps mentioned above are analyzed individually in the
following section.

A. Text and Image Encoding

The first step in the approach involves embedding the inputsP
(prompt) and I (image) using specific encoders. The image has
dimensions (h× w × 3), where h and w are the image height
and width respectively. Both P and I are embedded such that
to have a feature dimension of f .

The text prompt P is encoded by using a pre-trained model
with frozen weights. For this step, BERT [30] is chosen for its
proven capabilities but it can be easily replaced with alternative
models. The embedded prompt is then passed through a linear
layer to reduce the dimensionality of the features to f , obtaining
Penc ∈ Rf .

The image I is processed by using a CNN-based encoder,
ResNet101 [31], whose weights are optimized during training to
extract features relevant to the DLO perception task considered
in this letter. The embedded image Ienc is initially a tensor of size
(h/4× w/4× f). To facilitate integration with the text input
and subsequent processing through the attention-based layers,
Ienc is reshaped to a size (m× f), where m is the flattened
dimension obtained by (h/4× w/4).

Thereafter, Penc and Ienc are concatenated to form a single
tensor X ∈ Rm×f ′

, where f ′ = 2 f . To perform the concatena-
tion, Penc is repeated for each pixel of the image, effectively
introducing an important conditioning factor for the segmen-
tation task. This dense conditioning approach differs from the
standard vector-like embedding methods [8].

Finally, X is processed by a linear layer to project the dimen-
sionality from f ′ back to f . Notice that, in this phase, encoding
the spatial information of the image pixels is avoided since, in the
attention mechanism, rotational encoding is employed instead
of standard positional encoding.

B. Perceiver-Inspired Processing

A perceiver-inspired architecture [10] is used to process the
image and text concatenated tensor X . The perceiver architec-
ture consists of a series of cross-attention, self-attention, and
MLP layers with GEGLU activation functions.

A learnable latent feature tensor V ∈ Rn×f is employed to
compress the input data while preserving essential information,
thereby reducing the complexity of the network model. Notice
that n is in general much smaller than m. This tight latent
bottleneck created by V enables the processing of very large
inputs, such as images, while mitigating the quadratic complex-
ity and memory usage typically associated with the attention
mechanism.

In particular, two key steps are employed, each one utilizing
a processing module that consists of a cross-attention layer, a
self-attention layer, and an MLP block. First, the processing
module conditions V on the input tensor X . This is done by
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using V as the query and X as the context in the cross-attention
mechanism, resulting in an updated tensor V′. Second, another
processing module decodes V′ conditioned on the input tensor
X . In this step,X serves as the query while V′ acts as the context
in the cross-attention, yielding the final tensorV′′ ∈ Rm×f . This
approach effectively creates a cross-coupling between the input
tensorX and the latent image tensorV . Compared to the feature-
wise transformations in [8] or the direct prompt-based mask
decoding in [28], we exploit a perceiver-inspired conditioning
of a learned latent image tensor to merge the text prompt with
the image data.

C. Mask Decoding

The latent image tensor V′′ is reshaped to obtain a tensor of
size (h/4× w/4× f). Then, it goes through a series of trans-
posed convolutions interleaved with batch normalization and
ReLU activation functions to reduce the feature dimensionality
to 1. Finally, the output is interpolated to the original image
size (h× w × 1) using bilinear upsampling. This output repre-
sents the logit probability of each pixel being the segmentation
requested by the prompt.

D. Contrastive Similarity Learning

The similarity branch is a key component of the network
model, designed to provide consistent embeddings for the
prompt and image tensors. Specifically, it ensures that re-
lated latent representations of I and P are effectively close
in the latent space while unrelated ones are pushed farther
away.

The similarity between these latent representations is evalu-
ated by comparing compressed latent vectors having the same
dimensionality. Thus, both Ienc andPenc are transformed to have
the same feature size f , i.e. the goal is to obtain Icl ∈ Rf and
Pcl ∈ Rf . To achieve this objective, Penc is processed using a
linear layer that preserves the output dimensionality at f . For the
image Ienc, a sequence of convolutional layers interleaved with
batch normalization and ReLU activation functions compresses
the initial tensor. Finally, a linear layer projects the resulting
dimensionality tof . During training,Icl andPcl are compared by
means of a distance-related function, more details are provided
in Section IV-B.

Instead, during inference, a measure of similarity s ∈ [0, 1]
can be exploited to better characterize the relationship between
the captured image and the supplied prompt. To obtain the sim-
ilarity score within these bounds, the cosine similarity between
the textPcl and image Icl feature vectors is computed as follows:

cos_sim(Pcl, Icl) =
PT

cl Icl

‖Pcl‖ ‖Icl‖ .

Since the output of the cosine similarity lies within the range
[−1, 1], the value is rescaled to fit the desired bounds.

Note that other methods, such as the multi-mask output selec-
tion in [28], provide confidence estimates for their predictions. In
contrast, the proposed similarity value does not reflect prediction
confidence but rather tries to assess the ’soundness’ of the prompt
relative to the image.

Fig. 3. Dataset samples obtained by 1) rendering synthetic images of cable
and rope-like objects, and 2) associating label masks and prompts for a given
object instance.

IV. DATASET GENERATION AND TRAINING PROCESS

A. Training Dataset Generation

Following the procedure described in [2], a photorealistic syn-
thetic dataset of DLO images is generated, featuring both cable
and rope-like objects. Therefore, a text prompt is associated with
each DLO instance in a given image. Examples of cable and
rope cases, along with their associated image labels and text
prompts, are shown in Fig. 3. Details about the rendering and
the association of the text prompt are provided in the following
sections.

1) Image Rendering: The rendering of the synthetic images
utilizes Blender [32], where a mesh object is created from
the generated spline-based DLO model [2]. The DLO mesh is
obtained by specifying the object’s thickness and color. Addi-
tionally, the final appearance of the mesh can be customized
to appear either smooth or braided, reflecting different DLO
objects: cables and wires for the smooth case, and ropes for
the braided case. Finally, an environment map is used to simu-
late realistic lighting conditions, and a supporting plane with
a specific texture is added to the scene. All the mentioned
texture, light, and color properties are randomly selected during
the generation process to increase the dataset’s variance. This
approach allows for different combinations of shadows, objects,
and background scenes to be simulated, further enhancing the
generalization capabilities of the data-driven approaches trained
on the generated dataset. Along with each generated image
sample, the rendering pipeline provides associated ground-truth
data in the form of a label mask, where each pixel is labeled with
the corresponding object instance identifier.

2) Image/Prompt Association: For each generated image I,
a training sample is created for every DLO instance within the
image. Specifically, a text prompt is associated with each DLO
instance i as follows:

Pi =< object color position > .

The object attribute is either “cable” or “rope”, depending on
the object type rendered in the scene. The color attribute is
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Fig. 4. Schema of triplet loss contrastive learning with an example of positive
and negative prompts.

one of “red,” “green,” “blue,” “black,” “white,” “gray,” “yel-
low,” “orange,” “purple” or “striped.” The position attribute
is determined by processing the instance masks of the scene
in case of intersection between different DLOs, and is either
“top” or “bottom,” with the top position assigned to the DLO
placed at the top of the corresponding intersection area. The
results of this process are shown in Fig. 3 for two different DLO
instances. Therefore, each dataset sample can be denoted as a
tuple (I,Mi,Pi), where I is the source RGB image, and Mi

and Pi are the mask and prompt of DLO instance i.

B. Training Process

The network is optimized by employing a loss function com-
posed of two terms: segmentation consistency and image/prompt
similarity guidance.

Denoting by M̂i the predicted mask of DLO instance i
obtained from Section III-C, and by Mi the ground truth mask,
the segmentation loss is simply defined as:

Lseg = BinaryCrossEntropyLoss(M̂i,Mi).

Regarding the contrastive similarity branch discussed in Sec-
tion III-D, a more complex loss computation is required.

The contrastive-based approach utilizes the triplet loss crite-
rion [33] for the branch optimization. This criterion considers a
triplet of vectors â commonly denoted as anchor, positive, and
negative â and computes the distances between anchor-positive
and anchor-negative pairs. Specifically, during training, the goal
is to minimize the anchor-positive distance while maximizing
the anchor-negative one.

In this context, the image vectorIcl serves as the anchor, while
the positive vector is represented by the text associated with
the image sample, i.e. Pcl,i. Conversely, the negative vector is
randomly generated as a negative prompt example P̄cl,i, ensuring
that misleading or ambiguous prompts are avoided. An example
of anchor, positive and negative samples is provided in Fig. 4.
Therefore, the loss of the similarity branch can be denoted as:

Lcl = TripletLoss(Icl,Pcl,i, P̄cl,i).

Finally, the combined loss is obtained as a weighted sum of the
two losses, i.e. L = Lseg + λLcl where λ ∈ R+ is a hyperpa-
rameter to select.

V. EXPERIMENTS

The experiments are performed employing a workstation
equipped with an Intel Core i9-10900K CPU and an NVIDIA
GeForce RTX 2080Ti GPU. The method is implemented in Py-
Torch 2.0 and both the training and the inference are performed
on a single GPU.

A. Optimization Details

The network, detailed in Section III, is optimized employing
a dataset from Section IV composed of about 7000 samples with
a resolution of 640× 360 pixels. The usual 90–10% split is used
to obtain the training and validation datasets.

The dataset is heavily augmented during the learning process
to address the reality gap. The augmentation scheme includes
hue, saturation, and value randomization; image flipping; image
blur with noise; random cropping and padding; grid dropout;
and noise feature augmentation [34].

For the image encoder, a ResNet-101 backbone pre-trained
on ImageNet is used, which is optimized during training. Con-
versely, a frozen BERT text encoder [30] is utilized for the
prompt.

The perceiver module of Section III-B consists of 1 cross-
attention block followed by 3 self-attention blocks. Each block is
composed of 4 heads. After each attention operation, two linear
layers with GELU activation and dropout are added. Concerning
the tensor dimensions, f = 256 and n = 256 are employed.

The latent image vector is learned through the optimization of
the network. It is initialized with a random normal distribution
with a mean of 0 and a variance of 0.2.

The network is optimized for 400 000 steps with the final
weights selected as the ones corresponding to the lowest valida-
tion loss. Additional hyper-parameters defined are the batch size
of 6, Adam as optimizer, loss factor λ = 0.1, and a polynomial
learning rate adjustment policy with power 0.97 starting from
1× 10−4 to a minimum of 10−7 .

B. Test Dataset and Metrics

To evaluate the performances on real data, a test set of 90
manually labeled real images of electrical wires and ropes with
varying diameters and collected in different real scenarios is
used. The test dataset is organized into 3 categories, each one
containing 30 images. The categories are defined as follows:

S1: Scenes with target DLOs placed on a surface with-
out other distracting objects. Challenges include high-
contrast shadows, potential chromatic similarities with
the background, lighting conditions, and perspective dis-
tortions.

S2: Scenes featuring target DLOs over complex and highly
detailed backgrounds without other distractors. The algo-
rithm faces the challenge of accurately extracting DLOs
from cluttered scenes with chaotic backgrounds.

S3: Scenes depicting target DLOs in realistic settings, such as
industrial environments. Challenges arise from metallic
surfaces reflecting wires and other distracting objects
like commercial electromechanical components typical
of such environments.

For each category, the test set can be further divided into 3
subcategories, each containing 10 images with only cables, 10
images with only ropes and 10 images with mixed cables and
ropes. Alternatively, the test set can be divided into 2 subcat-
egories based on the difficulty level: easy with only two DLO
instances in the scene, and difficult with more than two DLO
instances in the scene. In this case, each subcategory contains
15 images. As detailed in Section IV-A1, cables are defined
as DLOs with a smooth and uniform texture, while ropes are
distinguished by their braided appearance.

The organization of the test set allows to evaluate the net-
work performances in different scenarios and to characterize the
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Fig. 5. Qualitative results on the categories S1, S2 and S3 of the test set. The first row shows the input images with the corresponding text prompt. The second
row shows the ground truth masks. The third row shows the predicted masks.

TABLE I
QUANTITATIVE RESULTS ON THE TEST SET WITH RESPECT TO THE DLOS TYPE,

SCENE COMPLEXITY AND THE AVERAGE

generalization capabilities of the model across different real
DLO objects, backgrounds, and scene complexities.

Concerning the evaluation metric, following previous
works [5], the evaluation is performed by employing the In-
tersection over Union (IoU) score. Specifically, the network
produces a binary mask M̂i, which corresponds to the predicted
segmentation of the target DLO i. The output is compared

against the ground truth label Mi as IoU = |M̂i∩Mi|
|M̂i|+|Mi| .

C. Segmentation Results

This section presents the results of the segmentation experi-
ments, featuring both quantitative and qualitative analysis.

1) Quantitative Results: Table I reports the quantitative re-
sults on the test set with respect to the different categories and
subcategories detailed in Section V-B. The results are reported
in terms of the mean Intersection over Union (mIoU) with
predictions thresholded at 0.5. The average scores reported for
the different S1, S2 and S3 categories are computed as the mean
of the scores obtained for each image, where the score of an
image is the mean IoU across the different DLO/prompts pairs.
The other scores, concerning the DLOs type and the scene
complexity, are computed as the mean of the scores obtained
for each image in the corresponding subcategory. Overall, the
network achieves consistent performances across the different
objects, backgrounds, and scene complexities. In the difficult
scene complexity case, the network shows a decrease in perfor-
mance, especially in the S2 category. This is due to the presence

TABLE II
ABLATION EXPERIMENTS SHOWING IOU VALUES ON THE TEST SET (S1, S2, S3)
FOR DIFFERENT IMAGE ENCODERS, WITH (✔) AND WITHOUT (✗) THE USE OF

THE CONTRASTIVE SIMILARITY LEARNING BRANCH DURING TRAINING

of more DLO instances in the scene, which makes the task more
challenging, as expected.

2) Qualitative Results: The quantitative results are sup-
ported by the qualitative analysis of Fig. 5. The figure shows the
input images with the corresponding text prompts, the ground
truth masks and the predicted masks. The network is able to
correctly segment the target DLOs in different scenarios, even
in the presence of difficult backgrounds and scene complexities.

D. Ablation Studies

To better understand the impact of various components of
the architecture, this section analyzes the contribution of the
similarity branch (Section III-D) to the overall network seg-
mentation accuracy. Additionally, different backbones for the
image encoder (Section III-A) are evaluated. Both results are
summarized in Table II where IoU scores across the test set cat-
egories for different training procedures and backbone models
are shown.

1) Effect of Similarity Branch During Training: By compar-
ing the different columns of Table II, it is possible to appreciate
the regularization effect of the similarity branch during the
training process, that helps to push the image and text prompt
in a consistent manner in the latent space, resulting in closer
accuracy results across the different test set categories.

2) Employing Different Image Encoders: Other backbones
tested for comparison against ResNet101 include the smaller
ResNet50 and the Swin Transformer architecture [35] in its
tiny (SwinT) and small (SwinS) variants. The ResNet and Swin
Transformer models have a comparable number of parameters
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Fig. 6. Reduced and wrong text prompt analysis.

relative to their respective variants. Table II highlights similar
results across the different backbones, with ResNet101, in the
contrastive learning configuration, achieving the highest IoU
score.

E. Text Prompt Analysis

The text prompt constitutes a fundamental element of the
proposed approach. Ideally, it could be supplied by an operator
interacting with the robot. Therefore, the possibility of incom-
plete or incorrect prompts is not negligible. In the following, the
effects of reduced and incorrect prompts are analyzed.

1) Reduced Prompt: As outlined in Section IV-A, a prompt
is composed of 3 tokens (object, color and position). Thus, to
evaluate the reduced prompt settings, for each image/prompt
pair in the test set, the prompt is modified by removing one
or more tokens. The results in terms of accuracy and similarity
(see Section III-D) are depicted in Fig. 6(a). The x-axis organizes
different configurations into complete (all 3 tokens), 2 tokens,
and 1 token for clarity. Among the tokens, color and object have
the most significant impact on accuracy, while the position token
has a lesser effect.

2) Wrong Prompt: A similar analysis to the reduced case
is conducted for the wrong settings. In this scenario, an entire
prompt composed of 3 tokens is always provided, but one, two, or
all three tokens are entirely incorrect. The results of this test are
illustrated in Fig. 6(b). The x-axis in this case spans from entirely
correct to entirely wrong, including intermediate configurations.
Consistent with the findings of Section V-E1, color is the most
crucial token type, leading to the poorest performance when
incorrect values are provided. Importantly, the similarity score
appears to reliably reflect the varying degrees of incorrectness.

F. Comparison With State-of-the-Art Methods

In the DLOs perception domain, SOTA methods predomi-
nantly focus on the vision-based instance segmentation, i.e. these
methods return all DLOs present in the given RGB input. Alter-
natively, more general multi-modal approaches have emerged,
able to utilize both text and image inputs. While the former
methods are more closely aligned with the specific domain of
application proposed in this research, the latter exhibit greater

TABLE III
COMPARISON OF IOU SCORES ON THE TEST SET BETWEEN BASELINE INSTANCE

SEGMENTATION METHODS FROM THE DLOS DOMAIN AND MULTI-MODAL

APPROACHES

similarity to the proposed task modality. A comparison between
these two groups is shown in Table III, where with DloPerceiver
the proposed method is addressed.

1) DLOs Instance Segmentation Methods: The comparison
is conducted with FASTDLO [4], RT-DLO [5], and mBEST [6].
These methods utilize the same semantic segmentation stage of
FASTDLO to obtain a binary mask, followed by their specific in-
stance segmentation approaches. Consequently, all DLOs in the
image are retrieved and associated according to the ground truth
prompt. It’s worth noting that these methods do not utilize textual
information for prediction. The poor results of all these methods
are mostly due to the segmentation pre-processing step being
trained only on cable-like DLOs. Indeed, analyzing the results
on the cable only subcategory reveals stronger performances
with similar accuracy results among the baselines. However,
DloPerceiver achieves stronger performances, especially on the
S2 and S3 subcategories.

2) Multi-Modal Approaches: The comparison is conducted
with DINO+SAM, a version of SAM [28] that utilizes DINO [36]
as a language model to encode textual information. Additionally,
ClipSEG [8] represents a state-of-the-art textual-image model
for segmentation tasks. Throughout the comparison, all models
are inferred using the same prompt and input image. The results
in Table III reveal poor accuracy for the proposed multi-modal
baselines. This underperformance may rise from the larger im-
age reduction (factor of 16) during encoding, compared to the
more moderate factor of 4in the proposed encoder, which better
preserves thin DLO details. Moreover, general-purpose datasets
used to train multi-modal models may not capture DLO-specific
features effectively.

G. Timings and Model Complexity

The timing of the proposed method is evaluated using the
outlined test set and workstation setup. To account for GPU
warm-up, an initial run is performed on the entire test set, and
the average timings are computed during a subsequent run.

Overall, the network processes an image in an average of
23± 3 ms. Encoding the text and image takes an average of
11 ms and 7 ms, respectively. The perceiver-based processing
module with the similarity branch takes only 5 ms on average.
Compared to SOTA models, DLOPerceiver runs at approxi-
mately 40 Hz, making it faster than DLO instance segmentation
methods (e.g., 30 Hz for RT-DLO and 20 Hz for FASTDLO),
and an order of magnitude faster than multi-modal models.
This improvement is due to the compact size of its encoding
modules and the efficiency of the perceiver architecture. Indeed,
DLOPerceiver comprises only approximately 46 million learn-
able parameters.
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VI. CONCLUSION

In this work, a learning-based multi-modal method for the
perception of Deformable Linear Objects (DLOs) in real-world
scenarios is proposed making use of both image and text in-
puts. The approach involves segmenting target DLOs in images
using a perceiver-based architecture. A photorealistic synthetic
dataset comprising cables and ropes, the two primary types
of DLOs, is employed for model optimization. The method is
evaluated on a real-world dataset featuring images of cables and
ropes in diverse scenarios. The results demonstrate the method’s
capability to accurately segment DLOs, even in challenging
conditions characterized by complex backgrounds and multiple
DLOs instances.

In future work, the proposed approach will be introduced in
a collaborative manipulation task targeting the assembly and
routing of DLOs. Additionally, there is potential to extend the
method to accommodate more complex text-based prompts,
such as those comprising multiple sentences or providing more
detailed descriptions of the target DLOs.
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