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Abstract
The huge volume of data gathered from wearable fitness devices and wellness appli-
ances, if effectively analysed and integrated, can be exploited to improve clinical 
decision making and to stimulate promising applications, as they can provide good 
measures of everyday patient behaviour and lifestyle. However, several obstacles 
currently limit the true exploitation of these opportunities. In particular, the health-
care landscape is characterised by a pervasive presence of data silos which prevent 
users and healthcare professionals from obtaining an overall view of the knowledge, 
mainly due to the lack of device interoperability and data representation format het-
erogeneity. This work focuses on current, important needs in self-tracked health 
data modelling, and summarises challenges and opportunities that will characterise 
the community in the upcoming years. The paper describes a virtually integrated 
approach using standard Web Semantic technologies and Linked Open Data to 
cope with heterogeneous health data integration. The proposed approach is verified 
using data collected from several IoT fitness vendors to form a standard context-
aware resource graph, and linking other health ontologies and open projects. We 
developed a web portal for integrating, sharing and analysing through a customis-
able dashboard heterogeneous IoT health and fitness data. In this way, we are able to 
map information onto an integrated domain model by providing support for logical 
reasoning.
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1  Introduction

Nowadays, wearable devices have significantly grown in popularity and recent 
statistics have shown that around 50% of people in developed countries make use 
of these devices to monitor fitness or physical activity [1]. Practically, people can 
keep track of their daily physical activities and constantly unobtrusively monitor 
their health status at an affordable price, or even at no cost at all in case of free 
mobile applications.

Commercial wearable devices include a large variety of apparatuses, rang-
ing from sophisticated smart-watches to simple belt-mounted pedometers. The 
measuring capabilities include vital signs (i.e., blood pressure, heart rate, body 
temperature, oxygen saturation) and human body actions (i.e., steps taken, flights 
climbed, distance travelled) [2]. An important subset of wearable devices is the 
fitness trackers: cost-contained electronic bracelets with limited computation 
resources, although with the capability to keep track of the most important fit-
ness-related measurements of the wearer, such as steps taken, distance walked, 
distance run, and heart rate [3,  4]. Users then have access to the collected data 
through smart-phone applications, Web portals or, if equipped, directly on device 
monitors.

However, the worldwide recorded data come from a variety of different hetero-
geneous sources and are represented with their own proprietary format depending 
on the device’s manufacturer (Fig.  1a). This heterogeneity characterises all the 
Internet of Things (IoT) health and fitness datasets and, together with the typi-
cal huge volume of data, makes data sharing and integration extremely difficult. 
Accordingly, data heterogeneity is one of the main open challenges that need to 
be addressed to fully exploit the potential of the health data [5]. Section 2 of this 
work deals with this issue.

The process of gathering and integrating data from scattered IoT sources is 
normally done manually by researchers and domain experts [6]. This process 
is cumbersome, time-consuming and, in many cases, error-prone. An effective 
and efficient exploitation of the IoT health and fitness data requires methods for 
accessing, integrating and interpreting datasets from multiple distributed sources 
in a unified way in order to make them freely available to the research community 
(Fig. 1b). We propose to convert heterogeneous IoT raw data collected by a multi-
tude of different devices into Resource Description Framework (RDF) graphs [7]. 
The homogenised datasets are then be stored in a structured format and exposed 
publicly via a SPARQL endpoint for accessing and querying. All the practical 
details are reported in Sect. 3.

Another open problem is health and fitness data robustness. Given the impor-
tance of the data to be collected, especially when used in medical applications 
such as post-traumatic rehabilitation and cancer prediction [8] (Fig.  1c), activ-
ity monitors must be precise and reliable. Accordingly, a great concern has been 
shown in the assessment of the validity and reliability of fitness trackers. It is 
difficult to evaluate and correctly consider the existing comparative studies of dif-
ferent devices due to the lack of standardised testing protocols and experimental 
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methodologies [9, 10]. An overview of the methodologies and gold standards to 
assess validity and accuracy of commercial activity monitors can act as guid-
ance to clinicians and researchers willing to employ fitness trackers in their pro-
grammes and provide further resources and useful indications for future research 
on commercial wearable’s validity assessment. Section 4 deals with this issue.

The validity and accuracy of the collected data is a fundamental issue. The het-
erogeneous nature of the collected information remains a problem limiting the 
community from really exploiting the opportunities provided by a large volume of 
health and fitness data. The number of research centres publicly disclosing health 
data is increasing but exploring datasets and extracting information is difficult and 
time-consuming for healthcare professionals. Although several attempts have been 
recently made to integrate different data, this topic is still quite new and remains 
unexplored [5].

In order to standardise data collection and integration and to allow users to 
achieve a common view of the available information, we designed and developed the 

Fig. 1   a Health and fitness trackers b data integration to provide a comprehensive view of a c patient’s 
health
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IoT Fitness Ontology (IFO). In Sect. 5 we introduced the IFO ontology, our domain 
representation model comprising the most common and important concepts related 
to the IoT fitness devices and wellness appliances. IFO allows to transform into RDF 
graphs the data stored in semi-structured formats by the multitude of heterogeneous 
IoT fitness sources.

Section  6 describes our approach using Linked Data and Semantic Web (SW) 
technologies to overcome this problem by modelling, sharing and interlinking IoT 
self-tracked health context information. The novelty of the proposed approach lies 
in exploiting SW and Linked Open Data (LOD) technologies to explicitly describe 
the meaning of the domain concepts and to facilitate interoperability and data inte-
gration, in order to construct a unified interlinked data model and enable semantic 
reasoning capabilities over it. We designed a LOD portal for the standardisation of 
the collection and integration of IoT health and fitness datasets which stems from 
our previous work [11]. In this work, we thoroughly described the development of 
the web platform and the design of the supporting ontology which lies at core of 
the process. The LOD portal may become a reference point for collecting, sharing 
and analysing IoT health and fitness data in structured format, accessible to domain 
experts, scientists and the web community without any restrictions by any form of 
patent or licensing. Differently from other platforms for sharing personal health data 
(PHD), such as Kaggle1 or Open Humans2 which redistribute users’ data directly 
in raw formats (i.e., unstructured or semi-structured serialisation formats), a novel 
aspect of our portal consists in providing a semantic representation of the IoT data-
sets. Our IFO addresses the problem of data provided in heterogeneous formats by 
formally clarifying what the data describe, thus facilitating the integration and the 
analysis of the datasets, promoting innovative ways to reuse the data.

Finally, in Sect.  7, the conceptual architecture and sample data collected from 
several IoT fitness vendors are presented to formally encoding domain concepts and 
semantics of the collected data and to verify the described proposal. The obtained 
standard context-aware resource graph is linked to other health ontologies and open 
projects to map information onto a specialized domain model by providing support 
for logical reasoning.

2 � Integrating health and fitness data

In the past years, the IoT industry has seen a proliferation of consumer devices for 
health and fitness tracking. The wearable technologies market alone is anticipated to 
grow from 325 million connected devices in 2016 to 929 million devices by 2021 
[12]. The huge volume of data collected by these devices has enormous potential for 
the healthcare sector, especially combined with advanced Artificial Intelligence (AI) 
analytics techniques, for instance automated reasoning. From a data-centric perspec-
tive, the main issue that afflicts the IoT landscape is the presence of data silos caused 

1  https://​www.​kaggle.​com/
2  https://​www.​openh​umans.​org/.

https://www.kaggle.com/
https://www.openhumans.org/
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by the heterogeneity of representation formats and the lack of interoperability. Such 
conditions prevent healthcare professionals from getting an integrated overview of 
health data (i.e., a representation of the complete knowledge) and an efficient data 
analysis process.

SW technologies offer opportunities to cope with the semantic data heterogeneity 
that hampers the integration and distribution of datasets drawn from diverse sources 
sharing the same context. The SW architecture is based on a layered approach, and 
each layer provides a set of specific functionalities. Semantic layers include ontol-
ogy languages, rule languages, query languages, logic, reasoning mechanisms, 
and trust. Ontologies constitute the backbone of the SW expressing concepts and 
relationships of a given domain, and specify complex constraints on the types of 
resources and their properties. A more detailed introduction to the major themes 
in SW research and data representation in the IoT healthcare domain can be found 
in [13]. Interoperability is particularly relevant in the IoT self-tracked health data 
domain, where a multitude of diverse vendors collect the same type of data but store 
and exchange them in many different ways. Semantics gives a structure to data and 
captures the meaning. In recent years, there has been a great deal of interest in the 
development of semantic-based systems to facilitate data integration and knowledge 
representation of heterogeneous data. Within the SW context, ontologies play a key 
role in resource representation, since they explicitly define concepts and relation-
ships related to a particular domain in a structured and formal way (i.e., ontologies 
are machine-processable) [13, 14, 15]. For example, Alamri recently proposed [16] 
a semantic interoperation middleware for IoT data in electronic healthcare records 
(EHR) data domain to improve patient healthcare, enabling health providers to mon-
itor their patients outside the clinic. He specifies complex constraints on the types of 
resources and allows expressiveness and powerful logical inferences. The existing 
fitness and wellness data aggregators rarely make use of SW technologies. There-
fore, they partially solve data integration, sharing, and analysis problems.

In a recent publication, we listed the main solutions today available for col-
lecting and integrating health and fitness data [13]. Briefly, Apple Health3 is an 
information hub for integrating in a single location point data from eHealth apps 
for iOS devices. Apple HealthKit4 provides APIs that allow third-party develop-
ers and medical sensor manufacturers to directly store their data within the Apple 
Health app. Apple allows users to store and aggregate health content which can 
optionally be exported in XML format, or encrypted and uploaded onto Apple’s 
iCloud servers. On the other hand, apps and devices that rely on HealthKit are 
restricted to run on iOS platforms only. Google Fit5 is the Apple Health equiva-
lent for Android operating systems. It is currently limited to fitness data only, 
whilst Apple Health supports a wider variety of medical data. Google Fit aggre-
gated content is accessible via the Web portal or through a REpresentational State 
Transfer (REST) APIs. Google Fit defines fixed sets of data types which can be 

3  https://​www.​apple.​com/​lae/​ios/​health/.
4  https://​devel​oper.​apple.​com/​healt​hkit/.
5  https://​www.​google.​com/​fit/.

https://www.apple.com/lae/ios/health/
https://developer.apple.com/healthkit/
https://www.google.com/fit/
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stored, and third-party developers need to inform Google to add and share new 
ones. Google Fit and Apple Health are intended to be data aggregators for their 
respective ecosystems and let health and fitness applications, as well as wearable 
devices, gather health information in one single location point. However, they are 
not interoperable among each other or with other systems; therefore, data remain 
confined to their respective platforms. MyFitnessCompanion [17] is a health and 
fitness app which aims to enable users to aggregate their data in one place in 
a similar way to Apple Health and Google Fit. It integrates off-the-shelf a sig-
nificant number of commercially available devices; it can interact with a wide 
range of wireless devices and wearable health trackers and can also aggregate 
data from third-party apps. However, MyFitnessCompanion can be used only on 
Android platforms. MELLO [18] is an ontology for representing health-related 
and life-logging data including definitions, synonyms, and semantic relation-
ships. The unified representation of lifelog terms facilitated by MELLO can 
help to describe an individual’s lifestyle and environmental factors, which can 
be included with user-generated data for clinical research and thereby enhance 
data integration and sharing, although, a SW system needs a mapping process 
to semantically annotated values within the data sources according to an ontol-
ogy. Recently, Patel et al. created SWoTSuite [19], which is an infrastructure that 
enables SWoT (Semantic Web and Internet of Things) applications. It takes high-
level specifications as input, parses them and generates code that can be deployed 
on IoT sensors at the physical layer and IoT actuators, and user interface devices 
at the application layer. SWoTSuite hides the use of SW technologies as much as 
possible to avoid the need for designing ontologies, annotating sensors data, and 
using reasoning mechanisms to enrich data.

In order to (a) accumulate and represent knowledge in a wide range of dif-
ferent databases, services and vocabularies, and (b) obtain an integrated view of 
health data and a representation of the complete knowledge, we propose a virtual 
integration approach using a distributed architecture based on remote sources and 
their access interfaces, without creating a single physical knowledge representa-
tion. Efforts are focused on the process of interlinking data silos given that the 
entities from distributed sources usually complement each other. The knowledge 
then becomes a logical structure represented by mapping remote data sources 
using ontologies to create and maintain relevant owl:sameAs links. For exam-
ple, owl:sameAs semantic links connect individuals from DBpedia, PubMed 
and Mesh source graphs using their URIs. Existing vocabularies with respective 
URIs are reused to eliminate the need to introduce a custom URI naming. Table 1 
summarises the main technical features of the physical and virtual approaches 
for knowledge representation [20, 21]. The physical integration of data sources 
requires the handling of certain issues. Custom URIs need to maintain consist-
ent alignment between remote data sources and a local schema in the new unified 
local storage graph. Moreover, physical integration requires sophisticated data 
fusion mechanisms. Conversely, the logical structure obtained from a virtual inte-
gration outperforms separated physical sources in terms of data scalability and 
interlinking.
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3 � Health and fitness open‑access data

The enormous amount of self-tracked health information collected by users through 
smart fitness devices offers important opportunities to the research community. The 
market for these devices has been growing steadily over the last few years and con-
tinues to do so. The ecosystem of mobile health solution is very complex and the 
need to provide integrated and open access data is strong. The mHealth Developer 
Economics is a global research program analysing the digital health and mobile 
health market since 2010. The last mHealth Developer Economics survey cycle 
(https : //research2guidance.com/product/mhealth-economics-2017-current-status-
and-future-trends-in-mobile-health/) describes this development. Surveys from par-
ticipants have been collected globally, with most of the answers coming from Europe 
(47%) and North America (36%). The other participants are from Asia–Pacific 
(11%), South America (4%) and Africa (2%). This year there are 325,000 health 
and fitness and medical apps available on all major app stores and 78,000 new 
health apps have been introduced since last year. However, only 27% of all mobile 
health app publishers have already opened their apps for others by directly offer-
ing access to a wealth of valuable data for instance through an API. 42% of mobile 
health apps connect to sensors and wearables. Fitbit is the most connected-to sensor/
wearable (52%), followed by iHealth6 and Withings.7 Smartwatches are becoming 
more attractive for mobile health app publishers, replacing other wearables. There 
were more than 50 Wear OS watches available in Q2/2018 from a range of third-
party manufacturers like LG,8 Fossil,9 Ticwatch,10 Asus,11 and Huawei.12 In this 
fragmented situation, it becomes important to furnish an integrated approach. API 
aggregation services bring together APIs from different sources into one single hub, 
pulling data from different sources, combining it and making it available for third 
parties.

Apple HealthKit is by far the most popular service with two thirds (63%) of 
API users opting for Apple. Number two is Google Fit (45%). All other API ser-
vice providers are used by 20% or less: Open mHealth, Samsung Health, Human 
API, Validic and Qualcomm Life. HealthKit, like other Apple products, is restricted 
to run on iOS devices. Google has a strict policy regarding what data developers 
can share via Google Fit. Google’s policy is that health data cannot be published 
[22]. Samsung Health app developers can use an existing set of data types and can 
extend this set with their own data types. But one disadvantage of this approach 
is the vendor lock-in, which means further technology-driven innovations become 
difficult due to the vendor-specific interconnections among the different parts of 

6  https://​iheal​thlabs.​com.
7  https://​wethi​ngs.​com.
8  https://​www.​lg.​com.
9  https://​www.​fossil.​com.
10  https://​www.​ticwa​tch.​com.
11  https://​www.​asus.​com.
12  https://​www.​huawei.​com.

https://ihealthlabs.com
https://wethings.com
https://www.lg.com
https://www.fossil.com
https://www.ticwatch.com
https://www.asus.com
https://www.huawei.com
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the architecture. Open Humans is an open-source project which aims to make more 
health-related data available for scientists. The online portal allows users to upload, 
store and share their personal data such as genetic, social media, activity and health 
data gathered through IoT devices. Open Humans is a coproduced model of data 
community, where users are increasingly encouraged and facilitated to improve their 
healthcare information dataset for clinical and research purposes. Another well-
known example of data community is Kaggle: it provides a platform to store and 
share a variety of dataset formats. Kaggle’s core idea is to facilitate the analysis of 
data by allowing outsiders to model it. To do that, the company organises competi-
tions in which anyone interested can participate. Kaggle adopts a crowd-sourcing 
approach to collect datasets from companies, scientists and users, including IoT 
wearable data. The dataset repository listing can be viewed by size, file type, most 
votes and tags. PhysioBank13 is a different solution to store and share health data-
sets. The project collects databases of physiologic signals and offers free access to 
the research community since 1980 via Web. Successfully read and manipulated, the 
databases require specialised software: the distributed toolkits supply methods for 
reading and writing signals and annotations in many formats and can be linked to 
user-written applications in C, C +  + , and Fortran. DataGraft project [23] provides 
a set of tools and methodologies for open-data transformation and hosting services. 
DataGraft is designed to be scalable and reliable in a cloud-based environment. 
DataGraft’s features include RDF data publication and querying. It was devel-
oped to provide easy-to-use tools for users who consider the existing approaches 
to data transformation, hosting, and access too costly and/or technically complex. 
ResearchKit14 is an open-source framework introduced by Apple that allows the 
use of health data directly from users’ smartphones. ResearchKit collects medically 
relevant data obtained using the built-in capacity of the mobile device and secure 
data in a central repository, in compliance with regulatory requirements. The mobile 
application can communicate with connected devices to collect data via additional 
sensors, such as a heart-rate monitor on a watch or fitness band.

All these platforms are important initiatives to publish and share IoT health 
datasets online, but richer semantics of data are needed to resolve the heteroge-
neity problem and allow information integration and reuse. A notable example is 
Bio2RDF [24]. Bio2RDF addresses the data integration problem by integrating pub-
licly available databases in bioinformatics. Bio2RDF uses SW technologies to create 
a knowledge space of RDF documents linked together, sharing a common ontology. 
Bio2RDF scripts convert heterogeneously formatted data into RDF common format, 
without an attempt to marshal data into a single global schema; Bio2RDF currently 
provides the largest network of Linked Data for Life Sciences. BioPortal [25] is an 
open repository of biomedical ontologies that allows multiple mechanisms for con-
tent updates, provides access via Web services and provides support to integrate 
data from a variety of biomedical resources. BioPortal users can browse, search and 
visualise ontologies. The Web interface supports the evaluation and evolution of 

13  https://​www.​physi​onet.​org/​physi​obank.
14  https://​devel​oper.​apple.​com/​resea​rchkit.

https://www.physionet.org/physiobank
https://developer.apple.com/researchkit
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ontology content by providing features to add notes to ontology terms, mappings 
between terms and ontology reviews.

While all these projects share the common elements of longitudinal integration of 
heterogeneous relevant data, in some cases, even in health-related fitness data, each 
of them focuses on a relatively narrow set of measurements, or relies on commer-
cial or custom data storage and analysis architectures that do not provide a unifying 
model to promote open data sharing and analysis from multiple sources.

4 � Health and fitness data robustness

Another aspect that must be considered when analysing a large amount of data from 
IoT self-tracked devices is their reliability, especially when the data are then used 
in medical applications. It is worth noticing that significant measurement inaccura-
cies not only jeopardise the analyses, but can even result in harmful consequences 
for both consumers and clinician users in case of a wrong diagnosis. For example, 
an underestimated physical activity may lead athletes to overcompensate by over-
exercising, then risking exhaustion or injuries. On the other hand, an overestimated 
total energy expenditure could lead patients to reduce their activity levels and adher-
ence to activity prescriptions [26]. Furthermore, following the common myth that 
lifestyle modifications are promising strategies to reduce cancer risk [27], several 
studies have been performed in the last years from a number of Nations to infer sci-
entific connections between people’s lifestyle and tumour incidence [8, 29]. The 
huge amount of data stored comported (and will comport) significant costs for the 
supporting research Institutions, but today we have several scientific articles with 
discordant conclusions, probably due to data acquired without using standardised 
approaches and devices tested in different scenarios. More in-depth testbeds for 
devices should be performed, especially when proposing large population screen-
ings. For example, results of tests for steps-tracking conducted in laboratory settings 
(e.g., on a treadmill) may significantly differ from results of tests conducted in eve-
ryday conditions [29]. In fact, the accuracy of consumer wearable devices is affected 
by a variety of different factors such as the wearer’s anthropometric characteristics, 
health conditions and the kind of activity which is being performed. Devices tested 
on healthy individuals, which report with a high accuracy, may not be equally suita-
ble for monitoring patients with gait impairments [23]. Moreover, it should be noted 
that other important factors affect the validity of wearable devices and the preci-
sion of the experimental tests, such as sensor positioning, battery status, firmware 
version, device configuration and temporal granularity of the acquired data. These 
aspects are often overlooked or not reported, thus making the reproducibility of the 
experiments impossible and the result data not comparable across various studies 
[10]. Since everyday activities require complex body movements characterised by 
fluctuations in direction, speed, intensity and body parts involvement, it is clearly 
impossible for a fitness tracker worn on a single limb to capture all of them. Thus, 
activity monitors are always subject to measurement errors and activity misclas-
sifications. For instance, in the case of wrist-worn devices, activities that require 
high levels of wrist action, such as washing hands, may result in the detection of 
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increased activity level [30]. Similarly, users’ physical conditions can impact the 
measurement accuracy as well, for instance patients with movement disorders, such 
as Parkinson’s disease, may obtain an overestimation of the overall physical activity, 
whilst a person with limited arm movement may see an underestimation. Moreover, 
improper placement of the devices is another important factor that can significantly 
affect the ability of the device to correctly assess the actual activity, thus compro-
mising the measurements [30]. In this context, it would be important to refer to an 
overview of the existing literature and a discussion of the methodologies and stand-
ards used in scientific studies to assess the validity and accuracy of the used devices.

5 � The IFO ontology: design, process and implementation

The IoT Fitness Ontology (IFO)15 is a domain ontology which aims to represent the 
most common and important concepts within the domain of the IoT fitness devices 
and wellness appliances. The list of products and vendors that were taken in consid-
eration during the design process includes: Apple Health, Microsoft HealthVault, 
Google Fit, Fitbit, Jawbone, Strava, Runtastic, iHealth and Nokia Health. The key 
terms used in the ontology are the nouns describing generic types of physical activi-
ties and physiological parameters with no relation to specific brands. Examples 
of terms used about physical activities are: Steps, Running, Walking, Swimming, 
ActivityIntensity, FlightsClimbed. Examples of terms used about physiological 
parameters are: HeartRate, BodyTemperature, BodyWeight, BloodPressure, Calo-
riesBruned. Examples of other general terms are: Meditation, TemporalRelation-
ship, BodyPosture, Measure, Statistics, TimeFrame, MassUnit.

Within the IFO ontology we organised the classes representing the concepts in a 
classic hierarchical fashion in a top- down approach. The ontology is built around 
the root class Episode which represent the set of all possible events that can be 
measured by an IoT wellness device. For example, an episode could be the heart 
beat rate measured during a running training session by a wearable wrist worn heart 
rate monitor or the body weight of the user measured by a smart scale. To each 

Fig. 2   Excerpt of the IFO ontology. An Episode is any event that can be recorded by an IoT fitness 
device and it constitutes the fundamental abstraction mechanism of the IFO ontology. Episodes are 
always precisely collocated in time and can be numerical quantified

15  http://​purl.​org/​ifo.

http://purl.org/ifo
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episode is always associated a time reference and a numeric measurement value with 
the related unit of measurement. The time reference can be a single point in time or 
a time interval, that is, the start time and the end time of the event. This information 
are essential because they allow to numerical quantify the object of the event and 
give it a temporal collocation and duration (Fig. 2).

Two main categories of episodes can be distinguished: (a) the physical activities; 
(b) the body measurements (Fig. 3).

Physical activities encompass any kind of activity involving body move-
ment such as walking, running, swimming or steps taken. Body measurements, 
on the other hand, are relative to the physiological parameters of a person such 
as the body weight or body height or the person’s vital signs such as the heart 
rate or the blood pressure. Minor categories of episodes that the IFO ontology 
defines, concern the sleep and the meditation. It is noteworthy to underline that 
some measurements require more than a single numerical value such as the blood 
pressure. The blood pressure is measured in millimetres of mercury (mmHg) and 
is written as two numbers (e.g., 120/80  mmHg). The first (120 in the example 
aforementioned) number is the systolic blood pressure, and the second number 

Fig. 3   Excerpt of IFO ontology hierarchy. Episodes are grouped into two main categories: physical activ-
ities and body measurements. Physical activities are the kind of events which involve a body movement 
(e.g., a walk) and are typically measured by wearable devices. Body measurements regard the physi-
ological readings normally collected using health appliances (e.g., smart scales, digital blood pressure 
meters)

Fig. 4   Excerpt of the IFO ontology. Episodes can be augmented with metadata such as individual’s per-
sonal information or geolocation position
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(80) is the diastolic blood pressure. Systolic blood pressure and diastolic blood 
pressure according to the IFO ontology are two separated episodes. Other com-
ponents of the IFO ontology are the OWL class Measure and the class Time-
Frame which they respectively model the measurement and the time reference; 
these two classes are associate to the Episode class through the OWL proper-
ties hasMeasurement and hasTime Frame as shown in Fig. 2. Metadata such as 
geolocation coordinates or individual’s information can be optionally added to 
episodes (Fig. 4).

Devices used to acquire data about an episode are represented in the IFO ontol-
ogy by the class InputSource and are classified in Wearable for wearable devices, 
Appliance generic systems, Smartphone for mobile applications and UserTyped 
for episodes recorded manually by the user.

Object properties have been defined to model the relationships among con-
cepts. The two most important object properties relate an episode to its meas-
ure (i.e., hasMeasure) and to its time reference (hasTimeFrame). Units of meas-
urement were modelled as OWL individuals since are concepts that cannot 
be specialised anymore in the hierarchy. To achieve a better integration with 
other systems and better specify the meaning of each class, references to other 

Fig. 5   From different IoT self-tracked data to a uniform model. Three-layered conceptual architecture 
to transform multiple IoT self-tracked data in a uniform model to access, model and analyse data. The 
enriched data model allows its reuse and a logical reasoning on knowledge representation
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standardised ontologies such as SNOMED-CT were made. Personal information 
(e.g., date of birth) was based on FOAF ontology and the Basic geo (WGS84 lat/
long) vocabulary was used for the geospatial locations.

6 � A layered approach to integrate iot health and fitness data

In the previous Sections we introduced how the use of semantic technologies and 
LOD can provide standardized frameworks for the concept representation in health 
and fitness landscape. IoT low-level data can thus be transformed into an enriched 
information model that allows its reuse and a logical reasoning on the knowledge 
representation. The conceptual architecture of such a system is illustrated in Fig. 5, 
comprising of three components, namely (i) data integration layer, (ii) data access 
layer and (iii) data evaluation layer. (i) The data integration layer collects domain 
datasets from users or remote servers and transforms semi-structured format input 
data into an RDF graph. Datasets are semantically annotated according to reference 
ontologies and stored within a triple store server. (ii) The data access layer controls 
data access and bridges the clients with the system via service protocols, allow-
ing users to interact with the system using the Web-based access or the SPARQL 
endpoint. (iii) The data evaluation layer helps to promote the reproducibility of 
the experiments and the comparability of the results across various studies, over-
coming the main issues of data silos. The novelty of the proposed approach lies 
in exploiting SW and LOD technologies to explicitly describe the meaning of the 
domain concepts and to facilitate interoperability and data integration, to construct 
a unified interlinked data model and enable semantic reasoning capabilities over it. 
We suggest the use of SW technologies and LOD in order to ensure standardized 
frameworks and to facilitate reuse and consumption of these data. Accordingly, we 
propose the three-layered architecture summarised in Fig. 5 to implement semantic 
interoperable systems, addressing all four types of interoperability (system, struc-
tural, syntactic and semantic) in order to exchange information without the loss of 
meaning or intent.

To further improve the usability of semantically integrated data, starting from the 
early work described in [11], we developed a LOD-based web portal in order to col-
lect health and fitness data gathered from consumer health IoT devices, and make 
them freely available on the Web. For the design process of the system we mostly 
followed the detailed set of recommended practices for creating and publishing LD 
sources in the Health Care and Life Sciences (HCLS) domain as described by Mar-
shall et al. in [31].

We developed the web portal using JavaServer Pages (JSP)16 (JavaServer Pages 
Technology, n.d.) as back-end technology. The experimental web portal is availa-
ble at: http://​137.​204.​74.​19:​8080/​IFOPl​atform/​welco​mePage.​jsp. On the Help page 
of the web portal a video tutorial and some sample datasets for testing purposes 
are provided. Precisely, 4 sample datasets in different file formats are available: (1) 

16  http://​www.​oracle.​com/​techn​etwork/​java/​index-​jsp-​138231.​html.

http://137.204.74.19:8080/IFOPlatform/welcomePage.jsp
http://www.oracle.com/technetwork/java/index-jsp-138231.html
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“blood_pressure.csv”, file format: Nokia Health; (2) “blood_pressure.xml”, file for-
mat: Health Kit; (3) “fitbitWeight.json”, file format: Fitbit; (4) “weight.csv”, file for-
mat: Nokia Health. Furthermore, we also provided a video tutorial17 to guide step-
by-step the users in exploiting the different functionalities of the portal. Briefly, our 
LOD portal is capable of: (a) collecting IoT fitness data manually entered by users 
or automatically retrieved from remote repositories; (b) integrating and storing IoT 
datasets semantically annotated according to a reference ontology; (c) visualising 

Fig. 6   A screen shot of the web-based dashboard showing some vital signs data charts and a customised 
body weight chart generated through a user defined SPARQL query

Fig. 7   Different data formats. Listing 1: An excerpt of body weight data retrieved in JSON format using 
Fitbit proprietary APIs. Listing 2: An excerpt of body weight data collected by a Nokia Health smart 
scale in CSV format. Listing 3: An excerpt of health data manually exported in XML format from the 
Apple Health app

17  http://​isi-​idata.​csr.​unibo.​it:​8080/​IFOPl​atform/​video_​tutor​ial.​mp4.

http://isi-idata.csr.unibo.it:8080/IFOPlatform/video_tutorial.mp4


850	 R. Reda et al.

1 3

information through a customisable dashboard; (d) sharing datasets adhering to LD 
principles.

The portal allows users access their PHD through a customisable dashboard 
which can provide multiple views of the integrated datasets. RDF graphs offer 
unique opportunities since they enable to bind data to visualisations in unfore-
seen and dynamic ways. For instance, when an information visualisation technique 
requires certain data structures to be present, we can derive and generate these data 
structures automatically from reused vocabularies or semantic representations, in 
this way we are able to realise a largely automatic visualisation workflow [32]. To 
take advantage of the flexibility provided by RDF graphs, we made the dashboard 
highly customisable by letting expert users to define the information to be displayed 
on charts through custom-made SPARQL queries (Fig. 6). Since disjoint-domains 
data integration is a key feature of SW, federated queries are also possible within the 
embedded dashboard. However, writing SPARQL queries is a challenging task for 
nontechnical users. For this reason, several preset queries for visualising common 
information (such as the heart rate or the blood pressure readings) in the form of 
time series are available on the dashboard by default.

7 � Resulting integrated domain model

To demonstrate the usefulness of our conceptual architecture, we used data collected 
from several IoT fitness vendors. For example, the JSON code shown in Fig. 7 List-
ing 1 is the response obtained after being authenticated and authorised to the Fitbit 
server and executing an HTTP GET request using Fitbit proprietary APIs. Figure 7 
Listing 2 shows “body weight” data collected by Nokia Health smart scale in CSV 
format. Figure 7 Listing 3 shows an excerpt of data manually exported from Apple 
Health7 in XML format. Since for each vendor to obtain the required data defines its 
own specific proprietary API interface, deploying ad-hoc platforms could be very 
expensive and ineffective on the long run. These are the technologies that do not 
allow data to be distributed in LOD mode for possible sharing and reusing. Data 
access and data evaluation layers are needed to extract data and convert them into a 
standard RDF format, so to be distributed in open mode, that means queryable tri-
plestores, for instance using RDF/XML or JSON-LD format.

For the mapping process we employed the RDF Mapping language (RML) [33] 
for mapping specification and the RML Processor for its execution. RML is a declar-
ative source-independent mapping language which allowed us to express customised 
mapping rules for converting heterogeneous resources into RDF graphs according 
to a reference ontology (i.e., the IFO ontology). RML extends the W3C standard 
R2RML (R2RML: RDB to RDF Mapping Language, n.d.) which can define cus-
tomised mappings only from data stored in relational databases. RML keeps the 
mapping definitions as in R2RML but encompasses broader variety of data format 
as input sources. Additionally, RML provides the vocabulary for defining the itera-
tor pattern over the input data which allows us to explicitly specify how the source 
data that have to be accessed. Iterator patterns make use of target-specific query lan-
guages. For instance, an XPath expression can be used to specify an iterator over an 
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XML document while a JSONPath expression can be defined in a similar way for a 
JSON document. RML as a source-independent mapping language is particularly 
useful within the IoT fitness context because different IoT devices vendors employ 
different data serialisation formats to represent and store information about the same 
concept. RML mapping specifications are based on one or more Triples Maps which 
define how the triples (i.e., the resulting RDF graph) are generated. A triple map 
contains a rule to generate zero or more RDF triples which share the same subject 
for each extract of data from the input source. A single triples map is composed by 
the Logical Source, the Subject Map and zero or more Predicate-Object Maps.

As an example, Fig.  8 Listing 1 shows a set of RML triples maps which can 
be used for generating an RDF graph starting from the Fitbit data about the body 
weight as proposed in Fig. 7 Listing 1. The logical source consists of the reference to 
the input source to be mapped, in this case the fitbitWeight.json file. The Reference 
Formulation, pinpoint by rml:referenceFormulation, specifies how references to the 
data occurs and, since RML uses references relevant to the input source, in this case 
JSONPath is used. The iterator specifies how to iterate over the input data, here is 
specified by the JSONPath expression: $.weight. The subject map consists of the 
template that defines the URI pattern used to generate the subject of the triple and 
optionally its type. A blank node is generated and the triple is typed as fo:Measure; 
fo is the name space used for the IFO ontology. A Predicate Object Map consists of 
a Predicate Map that specifies the predicate of the triple and an Object Map which 
specifies the object (one or more) of the triple. A JSONPath expression is used to 
point to the body weight value in the source rml:reference”@.weight”. The resulting 
RDF graph is shown in Fig. 8 Listing 2.

RML significantly simplifies the development of a mapping specification for the 
same concepts since the definition of the triple structure has to be specified only 

Fig. 8   Listing 1: An example of RML triples map which can be used to generate an RDF graph starting 
from a JSON file about body weight data collected by a Fitbit IoT smart scale. Listing 2: RDF graph rep-
resenting IoT health data annotated according to the IFO ontology
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once and can be reused across other sources in the same or different formats. Several 
mapping specifications, manually written, for different devices are already available 
and ready to use within our system and users can also add their own specifications. 
As soon as the triples are generated, they are loaded to the triple store.

Thanks to these layers, data from multiple heterogeneous sources are now 
exposed in a structured format and the different representations converted to stand-
ard RDF formats can be merged to form a context-aware resource graph. Conversely, 
ad hoc Web or desktop applications are able to synchronize body weight measure-
ments between platforms with online clouds or local files by selecting source and 
target formats. These applications generally use their own file format and the avail-
ability of units and types of measurement depends on the specific supplier (e.g. 
www.​weemp​le.​com/​weigh​thub). Now, the resource graph can be further expanded 
to include concepts, relationships and data from other ontologies and linked open 
projects. For example, we can add a triple: “schema:angina_pectoris owl:sameAs 
snomedct: 194,828,000” to indicate that the concept “angina pectoris” in the 
Schema.org vocabulary has the same meaning as that of “snomedct:194,828,000”, 
which is the ischemic heart disease concept under the SNOMED-CT clinical ontol-
ogy, also related to the class: “Angina co-occurrent and due to coronary arterio-
sclerosis” and the subclass: “Preinfarction syndrome and related to Family history: 
Angina in first degree female relative less than 65 years”. Similarly, angina concept 
can be related to DBpedia (the central interlinking hub of the Web of Data con-
taining millions of RDF links to other Web data sources), Mesh (Medical Subject 
Headings, a comprehensive controlled vocabulary for the purpose of indexing life 
sciences journal articles and books), or Wordnet (a fairly large on-line lexical refer-
ence system offering broad coverage of general lexical English relations) by add-
ing the following triples: “schema:angina_pectoris owl:sameAs dbpedia:552,599”, 
“schema:angina_pectoris owl:sameAs meshId:D000787”, “schema:angina_pecto-
ris owl:sameAs wordnet:14,197,107”, and “schema:angina _pectoris owl:sameAs 
wordnet:14,131,521”, which represent “disease of the throat or fauces marked by 
spasmodic attacks of intense suffocative pain” and “the heart condition marked by 
paroxysms of chest pain due to reduced oxygen to the heart” concepts. More details 
on a WordNet-based knowledge representation used for concept recognition and 
reasoning processes and on the use of ontologies to recognize the concepts in the 
domain ontology are described by Riccucci et al. [34].

We expanded the resource graph by linking it with other health ontologies, 
LOD, linked open health data and hierarchy concept graphs containing hypo-
nyms and hypernyms. Accordingly, they can be accessed and queried in a uni-
form way using standard languages. Data visualisation in a personalised manner 
is now possible through a Web dashboard. The homogenised data are now avail-
able for statistical analysis, for example to monitor the percentage of individu-
als aged 15 or above who had cancer, or are overweight and obese, and also to 
survey health conditions and recourse to health services. Once the data is rep-
resented as RDF and exposed through a SPARQL endpoint we can combine 
them with other data belonging to a different LOD portal, because the differ-
ent storage modalities are irrelevant from a SPARQL query perspective. A fed-
erated query “on the fly”, like the one aforementioned, without the support of 

http://www.weemple.com/weighthub
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SW technologies, would have been complex to be formulated and executed. For 
instance, we could carry out a selective survey of risk factors affecting the health 
status of all families living in a specific area by cross-checking data extracted 
from devices with those from the registry of families in the territory. The inter-
pretation and the processing of the resulted knowledge can be furthermore addi-
tionally enhanced owing to the SWRL to propose rules for different goals, such 
as to verify the proper functioning of the connected objects and the validity of 
the detected data and to provide the adequate service for patients. Summariz-
ing, our proposed integration architecture combines the advantages of formally 
representing domain concepts, collecting data and their relationships allowing to 
map information onto a specialized domain model by providing support for logi-
cal reasoning [35–38.

The presented architecture allows acting at different levels on the validity 
of the functionality and the verification of the data collected by the sensors. 
As example, consider that the sensors are characterized by numerous proper-
ties such as data range, frequency, date and time, etc. We can set SWRL rules 
to automatically verify the values of vital signs detected by the sensors, with 
respect to the interval that they must assume to validate the operation of the sen-
sor. The following rule performs the validity of sensor vital signs:

Rule Validity_vital_signs: IoT(?o)∧ Sensing-device(?s) ∧ contains 
(?o, ?s) ∧ Measurement(?m) ∧ detects(?o,?m) ∧ hasvalue(?m,?v) 
∧ hasmaxValue(?o,?maxv) ∧ hasminValue(?o,?minv) ∧ 
swrlb:greaterThanOrEqual (?v,?minv) ∧ swrlb:lessThanOrEqual 
(?v,?maxv) − > validity(?m, true)

Another SWRL rule can be set to determine the risk exposure of patients. For 
example, the following rule aims to verify the risk of a patient suffering from 
obesity (an event detected by the execution of another rule and passed as an 
input to the current rule) to be subject to cardiac attack if at the same time sub-
ject to events that highlight cardiac problems.

Rule cardiac_attack_risk: Patient(?p) ∧ has-event(?p, Obesity) − > has-
risk (?p,Cardiac-failure)

There are a lot of health situations in which IoT low-level data should be com-
plemented by social and Web data, collective intelligence and domain ontologies 
(i.e., medical knowledge). These situations provide conditions for the establish-
ment of a more complex scenario, but also more realistic one where, for exam-
ple, heart rate, pressure and body weight are to be considered in conjunction 
with medical diabetes treatment as exenatide and liraglutide [39]. Our workflow 
enables data integration using semantic representation, reasoning technologies 
and incorporating domain knowledge into the computation. We established 
a broad workflow that takes a stream of low-level-encoded IoT information 
instances, transforms them to domain-level Ontology Web Language concepts 
[40], and reasons with them to generate knowledge.
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8 � Conclusions

The huge amount of self-tracked health information collected by users through 
smart IoT devices offers important opportunities to the research community. 
However, an effective and efficient exploitation of these data requires methods for 
accessing, integrating and analysing datasets from multiple distributed sources in 
a unified way. In this paper we focused on current, important needs in IoT self-
tracked health data modelling and described an approach for the representation 
and the context-aware integration of IoT health and fitness data. The main goal is 
to understand current limits and future opportunities related to the large amount 
of open-access, robust and accurate IoT self-tracked health data. To address these 
opportunities the paper presented a virtually integrated approach using SW and 
LOD technologies. The proposed approach is verified using data collected from 
several IoT fitness vendors to form a standard context-aware resource graph, and 
linking other health ontologies and open projects. The paper sowed how to map 
information onto an integrated domain model by providing support for logical 
reasoning. Such representations can be a viable and comprehensive solution for 
describing and integrating the heterogeneous IoT health and fitness data, thus 
overcoming the main issues of data silos.

These findings regarding obstacles, benefits, and facilitators can guide the devel-
opment of smart systems and help researchers determine best practices when devel-
oping horizontally integrated schemes and harnessed by knowledge acquisition 
and capabilities sharing to fully exploit the potential of the IoT health and fitness 
devices. When these challenges will find positive proposals by the research commu-
nity, we will see an explosion of knowledge in several fields, particularly in medical 
applications. For example, in Oncology, it will be possible to statistically analyse 
different cancer types and the relations between lifestyle and cancer incidence and 
see if sedentary habits really increase the cancer risk whilst regular physical activity 
and high cardiorespiratory fitness really have the opposite effect.
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