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Polaron with quadratic electron-phonon interaction
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We present a numerically exact study of a polaron with quadratic coupling to the oscillator displacement,
or X 2 polaron, using two alternative methodological developments. Our results cover both antiadiabatic and
adiabatic regimes and the entire range of electron-phonon coupling g2, from the system’s stability threshold at
attractive g2 = −1 to arbitrary strong repulsion at g2 � 1. The key properties of X 2 polarons prove dramatically
different from their linear counterparts. They (i) are insensitive even to large quadratic coupling except in the
antiadiabatic limit near the threshold of instability at attraction, (ii) depend only on the adiabatic ratio but are
insensitive to the electron dispersion and dimension of space, and (iii) feature weak lattice deformations even
at the instability point. Our results are of direct relevance to the properties of electrons at low densities in polar
materials, including recent proposals for their superconducting states.

DOI: 10.1103/PhysRevB.107.L121109

Introduction. The first results on polarons with quadratic
coupling to phonons were reported in Refs. [1,2], which ex-
plored the properties of large-radius solitons in the adiabatic
limit at strong coupling. Indications that nonlinear coupling
to atomic displacements is important were found in several
materials such as doped manganites [3], halide perovskites
[4], and quantum paraelectrics [5]. Most notable is the un-
usual T 2 dependence of resistivity at high temperature, which
was explained by considering electron-phonon interactions
(EPIs) with a quadratic dependence on the phonon coordi-
nates [5,6]. The soft vibrational modes in these materials are
transverse optical (TO) phonons for which the linear EPI is
suppressed in the long-wave limit. However, local electron
density changes the potential acting on nearby atoms and this
change may increase or decrease the local spring constants.
Early suggestions that biphonon exchange could be an im-
portant pairing mechanism at low doping [7] were recently
revisited by quantifying and employing them for explaining
the superconducting properties of SrTiO3 [8–10]. While the
treatment of the problem was perturbative, the dimensionless
coupling constant was estimated to be of order unity, raising
the question of consistency.

In the low-density limit—when the polaron physics is
most relevant [11]—the key assumption on which the Migdal-
Eliashberg theory is based (irrelevance of vertex corrections
at strong coupling), namely EF � �, where EF is the Fermi
energy and � is the characteristic phonon frequency, fails.
Thus, any quantitative study of strong EPI effects in this
limit should start from precise calculations of basic polaron

properties such as its energy E , effective mass m∗, and the
quasiparticle residue Z . We are aware of only a few theoretical
attempts to account for quadratic EPI beyond perturbation
theory. The original work [1,2] was based on a variational
approach for large-radius soliton-type solutions. A nonpertur-
bative momentum average approximation [12] was used to
study the interplay between a linear (Holstein model [13])
and nonlinear EPI at zero temperature in Refs. [14,15]. The
effects of nonlinear EPI on the formation of charge density
waves, superconductivity, and quasiparticle properties were
investigated in a series of papers [16–18]. These determinant
Monte Carlo [19] studies considered finite clusters (up to
N = 8 × 8 sites) in two dimensions at high electron density
and finite temperature. More recently, the interplay between
linear and quadratic EPI in the Fröhlich model of continuous
space polarons was studied at zero temperature in Ref. [20]
using the variational Feynman’s path-integral method [21].

All studies find that a quadratic interaction with a
positive/negative coupling constant decreases/increases the
effective strength of the linear EPI. However, none of the
previous work was able to treat the effects of strong quadratic
coupling in the thermodynamic limit without approximations,
or was investigating polaron properties for a purely quadratic
interaction. Meanwhile, as was mentioned above, there exist
important cases when coupling to soft transverse phonons has
no linear terms in the long-wave limit, e.g., quantum para-
electrics [5] and optically pumped systems [22,23].

In this Letter, we employ two complementary numerically
exact methods to solve the polaron model with quadratic
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coupling to atomic displacements, or X 2 polaron, at zero
temperature. The first one is based on Feynman diagrams
and is best suited for studying dispersive phonons in the
regimes of weak and intermediate coupling. The second
method—performing best at strong coupling and becoming
particularly simple in the dispersionless regime—works with
the path-integral representation for both the electron and
atomic displacements.

We explore both adiabatic and nonadiabatic limits and find
that X 2 polarons remain well defined all the way to the insta-
bility threshold and possess the remarkable ability (especially
in the adiabatic case) to resist renormalization even in the
extreme strong-coupling limit.

Model. The key difference between our Hamiltonian and
the well-studied Holstein model [13] is the quadratic, in-
stead of linear, coupling to the local oscillator coordinates,
Xi = [b†

i + bi]/
√

2M� ≡ xi/
√

2M�, where M and � are the
oscillator mass and frequency, respectively (we use standard
notation for on-site creation/annihilation operators for har-
monic modes and electrons):

H = −t
∑
〈i j〉

a†
j ai + �

∑
i

b†
i bi + �

4
g2

∑
i

ni[b
†
i + bi]

2. (1)

Here, ni = a†
i ai is the electron occupation number. The first

two terms describe the electron hopping between nearest-
neighbor sites on the simple cubic lattice (in what follows we
take t as the unit of energy) and the local vibration modes,
respectively. We count oscillator energies from their ground
states, and use the dimensionless constant g2 to parametrize
the coupling. By writing the local potential energy for ni = 1
as M�2[1 + g2]X 2

i /2, we observe that (i) the model becomes
unstable at g2 � −1, implying that the radius of convergence
for a perturbative treatment in powers of g2 is unity, (ii) the
oscillator frequency is renormalized to

�̃ = r�, r =
√

1 + g2, (2)

and (iii) its ground state energy shifts to �(r − 1)/2.
Momentum-space representation (see also Supplemental

Material [24] and Refs. [25,26] therein). The first scheme is
based on the diagrammatic Monte Carlo (DiagMC) technique
introduced in Ref. [27] and further developed in Ref. [26].
The imaginary-time Green’s function G(k, τ ) for momentum
state k is sampled stochastically from the series expansion in
powers of g2 expressed as Feynman diagrams in terms of bare
electron and phonon propagators. This method is convergent
for |g2| < 1 where all results are identical with those of the
second approach within the statistical error bars. The differ-
ence between linear and quadratic coupling is a more complex
set of diagram topologies consisting of a set of n-phonon loops
because now each interaction vertex involves two phonons
(instead of one) being emitted or absorbed [see Eq. (1)].

Figure 1 shows typical low-order diagrams. The simplest
self-energy diagram is given by the 1-loop; its series (see
Fig. 2) is absorbed into the “bare” electronic propagator,
G0 → G̃0, by shifting the tight-binding dispersion εk → ε̃k =
εk + g2�/4:

G̃0(k, τ ) = e−ε̃kτ , D0(q, τ ) = e−�τ . (3)

G
=

G̃0
+

D0

+ +

+ + +

+ + + . . .

FIG. 1. Momentum-space diagrams for the Green’s function up
to fourth order in the quadratic coupling.

The remaining high-order loops display a wide variety of
topologies that increase dramatically with the order of the
diagram. In addition, there exist multiple Wick pairings that
are topologically equivalent and result in the same contribu-
tion, meaning that each diagram comes with the combinatorial
factor 2NV−N2 , where NV is the total number of vertices and
N2 is the number of 2-phonon loops, i.e., loops consisting of
two phonon propagators. The sign of the diagram is given
by (−g2)NV , meaning that the expansion is sign-positive for
g2 < 0.

An ergodic sampling scheme includes the following up-
dates:

Add/remove 2-loop: Seed time, τ1 and τ2, and momentum,
q1 and q2, variables for new vertices to be added to the
diagram and balance this proposal by suggesting to remove
any of the existing 2-loops.

Add/remove 3-loop: This update is a straightforward gen-
eralization of the previous one, but for 3-loops. It is required
for the generation of odd-order diagrams.

Relink: Pick any two phonon propagators across the whole
diagram at random such that they do not share vertices, i.e.,
they start and end on four different vertices. Propose a new
diagram topology by connecting the four vertices with the two
phonon propagators randomly.

Additional updates, such as changing time and/or momen-
tum variables of the diagram, are introduced to improve the
autocorrelation time.

Following Ref. [26], the simulation is extended to the
N-phonon Green’s function, which allows one to collect in-
formation about the structure of the phonon cloud. We employ
standard procedures to extract the ground state energy E ,
quasiparticle weight Z , average number of phonons 〈Nph〉, and
effective mass m∗ of the polaron.

X-representation approach. As discussed in Ref. [28] (see
also the Supplemental Material [24]), any nonlinear coupling
to local vibration modes can be dealt with exactly and ef-
ficiently by specifying dimensionless atomic coordinates xi

for all sites connected by the electron hopping transitions.
The only new ingredient required for adapting the scheme
of Ref. [28] to the model in Eq. (1) is the imaginary-time

G̃0
:=

G0
+ + + · · · = e−ε̃kτ

FIG. 2. The geometric series of the 1-loop diagrams defines the
“Hartree” renormalized electron propagator.
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FIG. 3. Polaron properties (energy, effective mass, and Z factor) in the adiabatic regime �/W = 1/48 [bandwidth W = 12t in three
dimensions (3D)] as functions of EPI coupling.

oscillator propagator in the presence of the electron,

Ũ (y, x, τ ) = e(1/2)�τ−Q̃(y,x,τ )
√

r

4π sinh(�̃τ )
,

Q̃(y, x, τ ) = r[cosh(�̃τ )(x2 + y2) − 2xy]

4 sinh(�̃τ )
. (4)

For empty sites, the “bare” propagator U (y, x, τ ) has the same
functional form as Ũ (y, x, τ ) but with r = 1 and �̃ = �.
Thus, for any electron’s lattice path and any set of atomic dis-
placements on sites connected by hopping transitions, one has
an exact sign-positive expression for the system’s evolution
operator subject to stochastic sampling without a bias.

In the so-called atomic limit (AL), t = 0, the solution for
the Green’s function immediately follows from the Gaussian
integral GA(τ ) = ∫

dxdyU (x)Ũ (x, y, τ )U (y), leading to

GA(τ ) = ZAe−EAτ

[
1 −

(
1 − r

1 + r

)2

e−2�̃τ

]−1/2

, (5)

where

ZA = 2
√

r

1 + r
, EA = �

2
(r − 1). (6)

The spectral density, defined by GA(τ ) = ∫ ∞
0 dωAA(ω)e−ωτ ,

is readily obtained by Taylor expanding GA(τ ) in powers of
e−2�̃τ :

AA(ω) =
∞∑

k=0

Z2kδ(ω − E2k ). (7)

It is a set of δ functions at frequencies E2k = EA + 2k�̃ with
Z2k factors equal to

Z2k = ZA
(2k − 1)!!

(2k)!!

[
1 − r

1 + r

]2k

. (8)

Finally, the atomic limit admits an exact solution for the
average number of phonons in the polaron cloud defined as
in Ref. [26],

〈Nph〉 =
∞∑

k=0

(2k)Z2k = (1 − r)2

4r
. (9)

If both �̃ and � are much larger than t (meaning that to
the leading approximation the oscillators always remain in the
ground state as the electron moves), then the finite-t effects
can be fully characterized by the overlap integral squared
between the bare and renormalized ground states equal to ZA:

E = −6ZAt + EA, m∗/m = Z−1
A . (10)

Results. In sharp contrast to conventional polarons, the
properties of X 2 polarons strongly depend on the sign of g2

(see Figs. 3 and 4). The effective mass (quasiparticle weight)
goes through a minimum (maximum) at g2 = 0, while the
energy is an increasing function of g2. The asymmetry is
especially notable in the antiadiabatic case �/W = 4 (see
Fig. 4), and is directly linked to the fact that at g2 → −1
the local phonon frequency undergoes a dramatic change and
ultimately softens to zero. Correspondingly, as long as the
condition �̃ > W is satisfied, the atomic-limit expressions
featuring square-root singularities [see Eqs. (5)–(10)] provide
an accurate description of the polaron properties. However, on
approach to the stability threshold, this condition ultimately
gets violated and the singularity is removed because an elec-
tron moves away before the slow phonon mode has a chance
to adjust to its interacting ground state. This explains the
remarkable fact that all polaron properties remain well defined
and regular in the g2 → −1 limit for any finite value of t (see
Figs. 4 and 5).

For positive g2, all properties change gradually even at
g2 � 1. Moreover, in the adiabatic limit �/W = 1/48 (see
Fig. 3), both Z and m∗/m remain close to unity with sub-
percent accuracy for any |g2| � 1. One way to interpret
the data is to make a connection with the linear problem
where the crossover from weak to strong coupling takes place
when the dimensionless coupling λ, defined as the ratio be-
tween the coupling strength squared and the product of W/2

L121109-3
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FIG. 4. Polaron properties (energy, effective mass, and Z factor) in the antiadiabatic regime �/W = 4 in 3D as functions of EPI coupling.
Solid lines are the analytic predictions based on the atomic limit (6)–(10); dashed lines connecting data points are used to guide the eye.

and �, is of the order of unity. Introducing a similar parameter
for model (1) we get λ = 2(g2�/4)2/(W �) = (g2

2�)/(8W ).
Its value for |g2| = 1 is λ = 1/384 for the adiabatic case
shown in Fig. 3 and λ = 1/2 for the antiadiabatic case shown
in Fig. 4.

Another stark difference between linear and quadratic cou-
plings is found in the structure of the lattice distortion dragged
along by polarons. It is quantified through probabilities Zn of
having n virtual phonons in the ground state [for AL it is given
by Eq. (8)]. In the linear case, the peak in Zn shifts from n = 0
at weak coupling to large finite values of n at strong coupling
[26,29]. In contrast, Zn for X 2 polarons is peaked at n = 0 and
decreases exponentially at large n [Fig. 5(b)] for any value
of negative g2, including the close vicinity of the instability
point (1 + g2) < 10−3 when the average phonon number of
phonons 〈Nph〉 is already large [Fig. 5(a)]. Somewhat coun-
terintuitively, Zn=0 for the moving particle (t > 0) is larger
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FIG. 5. Phonon cloud in the antiadiabatic limit in 3D at �/W =
4. (a) Average number of phonons 〈Nph〉 (blue circles) and the
AL prediction (line), Eq. (9), for a negative coupling constant.
(b) Phonon distributions Zn in the polaron cloud (symbols) and the
AL prediction [lines, Eq. (8)], g2 = −0.25 (stars, dotted line), −0.75
(circles, dashed line), −0.95 (triangles down, dashed-dotted line),
−0.98 (triangles up, dashed-dotted-dotted line), −0.998 (squares,
short-dashed-dotted line), and −0.9996 (diamonds, solid line). The
inset in (a) shows the phonon distribution (squares) and Eq. (8)
(diamonds) for g2 = −0.9996 on a smaller scale.

than for the localized particle in the AL (t = 0), whereas for
large n the opposite is true [see the inset in Fig. 5(a)]. Only
for large g2 in the deep adiabatic limit �/t 
 1 is it possible
that Zn has a peak at finite n due to the formation of the soliton
state [1].

We also find that properties of X 2 polarons mostly depend
on the particle bandwidth, and are rather insensitive to the
form of the dispersion relation and even the dimension of
space, e.g., E , Z , 〈Nph〉, and m∗ are practically indistinguish-
able between the 3D and 1D cases provided the bandwidth is
the same (see Supplemental Material [24]).

To complete the picture, we performed an analytic contin-
uation of the Green’s function spectral density A(ω) in the
antiadiabatic limit by the stochastic optimization with con-
sistent constraints method [26,30]. In Fig. 6, we show the
extracted positions of excited states and how they compare
with the AL predictions [Fig. 6(a)]. One can see in Fig. 6(b)
that the onsets of high-energy peaks are well described by
energies E2k in Eq. (7).
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FIG. 6. Antiadiabatic limit in 3D at �/W = 4. (a) Ground state
energy (circles connected by the black line) and that of the first
excited state (blue diamonds). The blue dashed line is the first excited
state energy in the AL. The vertical line at g2 = −0.95 corresponds
to the coupling for which the spectral function A(ω) in (b) is shown.
(b) Spectral function A(ω) at g2 = −0.95 for which Eq. (2) predicts
�̃ ≈ 10.7. Arrows show energies of 2-phonon 2�̃ and 4-phonon 4�̃

thresholds above the ground state energy.
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Conclusions. We find that the properties of X 2 polarons
are dramatically different from those based on the intuition
gained during a long history of Holstein polaron studies. In
the adiabatic regime, X 2 polarons are nearly indistinguish-
able from bare particles for any coupling with |g2| ∼ 1. In
the antiadiabatic regime, particle properties are renormalized
more strongly (but saturate to finite values) when approaching
the instability threshold at g2 = −1, but remain small for
positive g2 except in the limit of large coupling. Perhaps the
most unexpected result is that the lattice deformation around
the X 2 polaron remains weak even at the threshold. This
outcome explains the success of recent work on supercon-
ductivity in SrTiO3 [8–10] which treated electrons as bare
particles.

We established that the adiabatic ratio �/W is the key
parameter to pay attention to for this problem, while other
microscopic details and even the system dimension are less
relevant. This fact can be used for the development of approx-
imate schemes, such as momentum average [12], dynamical
mean-field theory [31], or a many-body approach [32] in
the low-density limit, that can then be validated against our
numerically exact results.

The soliton-type solutions [1] cannot form for model pa-
rameters simulated in this work. The minimal requirement
is to have m∗/m � 1 at � 
 �̃ � t , which is not satisfied
even for the (�/t = 0.1, �̃ = 30 �) parameter set, for which
we find m∗/m ≈ 3. Future work should address the soliton
problem under the assumption that the crystal is in close
proximity to the quantum critical point when � → 0 and the
electron contribution to the local vibrational energy is finite
when �̃ → const.
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