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Séminaire BOURBAKI Mars 2019
71e année, 2018–2019, no 1560

HOMFLY POLYNOMIALS FROM THE HILBERT SCHEMES OF A
PLANAR CURVE,

[ after D. Maulik, A. Oblomkov, V. Shende... ]

by Luca Migliorini

INTRODUCTION

Among the most interesting invariants one can associate with an oriented link L ⊂ S3

is its HOMFLY-PT polynomial P(L, v, s) ∈ Z[v±1, (s − s−1)±1] ([13, 33]). In 2010
A. Oblomkov and V. Shende ([32]) conjectured that this polynomial can be expressed
in algebraic geometric terms when L is an algebraic link, that is, it is obtained as the
intersection of a plane curve singularity (C, p) ⊂ C2 with a small sphere centered at p.
More precisely, let C [n]

p be the punctual Hilbert scheme of C at p, parameterizing the
length n subschemes of C supported at p. If m : C [n]

p → Z is the function associating
with the subscheme Z ∈ C [n]

p the minimal number m(I) of generators of its defining
ideal I in the local ring OC,p, they conjecture that the generating function

Z(C, v, s) =
∑
n≥0

s2n
∫
C

[n]
p

(1− v2)m(I)dχtop

coincides with P(L, v, s), up to the monomial term
(
v
s

)µ(f)−1
, where µ(f) is the Milnor

number. In the formula the integral is done with respect to the Euler characteris-
tic measure dχtop. Shortly afterwards, this surprising identity was generalized in two
different directions:

1. In [31], Oblomkov, Rasmussen and Shende propose a “homological version”: while
the equality of Oblomkov and Shende is at the level of Euler characteristics, they
conjecture a relation between the HOMFLY homology of Khovanov and Rozan-
sky and the virtual Poincaré polynomial of the Hilbert schemes of (C, p). This
conjecture, still open, will be shortly discussed in Section 7.

2. In [8], E. Diaconescu, Z. Hua and Y. Soibelman conjectured an equality in case
the data of C and L are “colored” by choosing an array −→µ of partitions, one for
every branch of the curve, or equivalently for every component of the link. This
choice allows one to define two enhancements of the original objects:

– On the algebraic geometric side a thickening C−→µ of C, using the corre-
spondence between partitions and monomial ideals in the plane (see Defi-
nition 5.8).
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– On the link side a “satellite link” L−→µ = L ∗ (Qµ1 , · · · , QµN ), by associat-
ing special braids with the partitions, closing them to links Qµ and finally
wrapping them around L (see Eq. (61)).

In this setting, the Hilbert schemes are replaced by the moduli spaces P(Y,C, µ, r, n)
of stable pairs framed on C−→µ , whereas P(L, v, s) is replaced by the colored
HOMFLY-PT polynomial W (L,−→µ ; v, s). Diaconescu, Hua and Soibelman conjec-
tured that a generating function arising from the topological Euler characteristic
of the spaces P(Y,C, µ, r, n) should coincide with W (L, t−→µ ; v, s), where t−→µ is
the vector of transposed partitions, see Theorem 5.41 for the precise statement.

It is shown in [31] that choosing all partitions to be trivial yields the conjecture of
Oblomkov and Shende as a special case. The conjecture of Diaconescu, Hua and Soibel-
man was proved by D. Maulik in 2012 in the striking paper [24]. The proof proceeds
by showing that the two sides of the identity have the same behaviour when the singu-
lar point is blown up, thus reducing to the case when the singularity is a single node,
where a direct verification is possible. It is worth noticing that, even starting in the
original uncolored setting of Oblomkov and Shende, the blow-up procedure leads to
colored links and curves. Therefore, even though the set-up in the colored version is
much more technical than the one required to explain the original conjecture, we need
to discuss this level of generality, besides its intrinsic interest and beauty. As the de-
tails of the proof of Theorem 5.41 are quite involved, but well presented in the original
paper [24], this seminar will only give a sketch of the main ideas used in the proof, and
focus instead on presenting the definitions and foundations needed, along with some
examples, so as to provide the necessary background for the reading of [24].

1. ALGEBRAIC LINKS

We summarize a few classical facts on singular points of a plane curve and their links
(see [28] for a historical account and references to the original papers). Let (C, p) be
a germ of a reduced plane curve singularity, defined as the zero set of a local equation
f = 0, where f ∈ C[X, Y ], with f(0, 0) = 0. We denote by m the maximal ideal of
functions vanishing at the point p = (0, 0). We denote also by f and m their images
in C[[X, Y ]]. The point p is singular if ∂xf, ∂yf ∈ m. Under these hypotheses, the
ideal (∂xf, ∂yf) is m-primary, and the quotient algebra C[[X, Y ]]/(∂xf, ∂yf) is a finite-
dimensional vector space, whose dimension µ(f) is the Milnor number of the singular
point. If f = ∑

k∈N fk, with fk homogeneous of degree k, let fd be the first nonzero
homogeneous component. Then d =: multp(C) is called the multiplicity of C at p, and
the scheme defined by fd(X, Y ) = 0 is the tangent cone. It is a union of lines, possibly
with multiplicities. Let Blp : Ã2(C) → A2(C) be the blow up at p. The points in the
intersection of the proper transform C̃ of C with the exceptional divisor correspond to
the lines in the tangent cone. By the theorem on embedded resolution of singularities,
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[43, Theorem 3.4.4], there exists a sequence of blow-ups so that the (reduced) total
transform of C is a normal crossing curve.

Let f = ∏
i fi, with fi ∈ m, be the factorization in irreducibles of f in C[[X, Y ]]:

since C is reduced, no multiple factors appear. The curves Ci defined by the equations
fi = 0 are called the branches of the germ (C, p). Let S3

ε ⊂ A2(C) be a sphere of radius
ε centered at p. For small enough ε the sphere and C intersect transversally, therefore
L := S3

ε ∩ C is a nonsingular oriented one-dimensional submanifold of S3
ε ' S3, whose

isotopy class is independent of ε, the link of the singularity.
If f is irreducible in C[[X, Y ]], then its link is connected, so actually a knot. More

generally, the connected components of L correspond to the branches of (C, p).

Example 1.1. — Let f = yr − xs, with r ≤ s. If r < s, the tangent cone is the line
y = 0 with multiplicity r, while if r = s it consists of the r distinct lines y − ξix = 0,
with ξ a primitive r-th root of unity. If r and s are coprime there is a unique branch,
whose link is the toral (r, s) knot Lr,s ⊂ S1 × S1, parameterized by

x = exp(
√
−1rt), y = exp(

√
−1st) with t ∈ [0, 2π].

Otherwise, let r = da, s = db, with a and b coprime, where d is the greatest common
divisor of r and s. Letting ξ be a primitive d-th root of unity, the factorization

(1) yr − xs = (ya)d − (xb)d =
d−1∏
`=0

(ya − ξ`xb)

shows that Lr,s has d connected components, each isomorphic to the (a, b) toral knot.
Notice that for r = s = 2 we obtain the Hopf link. As every link (Alexander’s Theo-
rem), Lr,s can be obtained as the closure of a braid: it is isomorphic to the closure of
(βr)s, where βr is the braid with r strands in which the first strand passes under all the
other ones (if the strands are oriented from top to bottom, see Section 3.1 for the sign
convention), that is, the product of the standard generators σi of the braid group Br.

Definition 1.2. — Given two germs of curves C (resp D) through p, of equations
f = 0 (resp g = 0), with no common factor, their intersection number at p is

(2) C •D = dimC[[X, Y ]]/(f, g).

The corresponding notion on the link side is that of linking number ([19, Chapter I]):

Definition 1.3. — Given two disjoint oriented knots K1, K2 ⊂ S3, let U1 be a tubular
neighborhood, homeomorphic to S1×D2, of K1, disjoint from K2. The homology group
H1(S3 \ U1) is canonically isomorphic to Z, and generated by a meridian of U1, i.e.
a circle bounding a disk in U1 and meeting K1 positively in only one point. Then
the linking number of K1 and K2 is defined as the homology class L(K1, K2) ∈ Z of
K2 ⊂ S3 \ U1.

It is easy to see that L(K1, K2) = L(K2, K1) (see [19, Chapter I]). The relation
between the two notions just defined is:
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Proposition 1.4. — If K1 is the link of C and K2 is the link of D, then L(K1, K2) =
C •D. In particular the linking numbers of components of algebraic knots are strictly
positive.

The links arising from curve singularities via this construction are called algebraic
links, and, among their several distinctive features, probably the most important is the
description of their single components as iterated torus knots (also called cable knots),
which is the topological counterpart of the Newton-Puiseux theorem: assume that f is
irreducible in C[[x, y]] and f(x, y) 6= x. Up to a change of coordinates we can assume
that it is a monic polynomial in y with coefficients in C[[X]]. Then one can “solve in y
as a function of x” and the Newton-Puiseux theorem states that y can be expressed as
a power series in fractional powers of x. It will be useful to write this series as

(3) y(x) = x
q0
p0 (a0 + x

q1
p0p1 (a1 + x

q2
p0p1p2 (a2 + . . . )))

where ai 6= 0, each Newton pair (pi, qi) consists of relatively prime positive integers,
and, eventually, pk = 1. This leads to an inductive description of the knot as an iterated
toral knot: We consider y(x) = x

q0
p0 as the first approximation (a toral knot K0 of type

(p0, q0)). Then y(x) = x
q0
p0 (a0 + a1x

q1
p0p1 ) gives the second approximation, describing a

toral knot K1 wrapped around K0 and so on. In order to state this iterative description
precisely, one needs at each step to have a framing of the knot: this notion will be
discussed in a more general framework later (Section 5.2.1) and for the time being we
shall limit ourselves to a “carousel” description of a specific example.

Example 1.5. — [10] Let f(x, y) = y4 − 2x3y2 − 4x5y + x6 − x7. There is a unique
branch which admits the parameterization

(4) x = t4, y = t6 + t7, or equivalently the Puiseux series y = x
3
2 + x

7
4 .

Up to a rescaling, the link L is described by

x = exp(4
√
−1t), y = exp(6

√
−1t) + ρ exp(7

√
−1t),

with ρ << 1. Since ρ is small, L is contained in a tubular neighborhood of the “leading
knot” L of equations x = exp(4

√
−1t), y = exp(6

√
−1t) (a (2, 3) knot ) of which L

is a satellite: for any point of L there are two points orbiting around. In a proper
parametrization of the tubular neighborhood they can be seen describing a torus knot of
type (2, 13) (with respect to the natural framing, see Example 5.15).

In general the Puiseux parameterization may contain infinitely many terms, but only
a finite number of them will be relevant for the topology of the knot, which will be then
described as an iteration of the construction of Example 1.5, in which the types of the
toric knots can be determined by the series of the Puiseux exponents [43, 10].

Remark 1.6. — Another important distinctive property of algebraic links is that their
topology is uniquely determined by the topology of their components and their pairwise
linking numbers ([28, Theorem 1.1]).
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2. PUNCTUAL HILBERT SCHEMES AND NESTED HILBERT
SCHEMES

Given a plane curve C ⊂ A2(C) and a point p ∈ C, its punctual Hilbert scheme
of length n, denoted C [n]

p , parameterizes 0-dimensional subschemes Z ⊂ C, such that
dim Γ(Z,OZ) = n and Zred = p. Let OC,p be the local ring of C at p and denote by
mp its maximal ideal. The points Z ∈ C [n]

p will be identified with their defining ideals
I ⊂ OC,p. The condition that Zred = p translates into

√
I = mp, and there is a natural

constructible function m : C [n]
p → Z>0, defined as

(5) m(I) = minimal number of generators of I = dimC I/mpI,

the last equality stemming from Nakayama’s lemma.
A variant of this construction, which is relevant for our purposes, is the nested Hilbert

scheme: given `, n ∈ N,

(6) C [`,`+n]
p = {mpJ ⊂ I ⊂ J, I ∈ C [`+n]

p , J ∈ C [`]
p } ⊂ C [`+n]

p × C [`]
p .

Remark 2.1. — The projection C [`,`+n]
p → C [`]

p , sending (I, J) to J is, when restricted
to a level set of m, a fibration, with fibre the Grassmannian Gr(n,m(I)). In fact, by
Nakayama’s lemma we have dim J/mpJ = m(J), and, given J , every n-codimensional
subspace W ⊂ J/mpJ defines the colength `+ n ideal W + mpJ ⊂ OC,p.

3. KNOTS AND LINKS AND THE HOMFLY-PT POLYNOMIAL

3.1. Diagrams of links

An oriented link is represented by a planar diagram, a collection of oriented closed
curves, which we will assume differentiable, with at most simple crossings and the
indication of which arc lies over the other. In other words, a neighborhood of a crossing
is oriented diffeomorphic to one of the following:

(7) L+ :

����

L− :

����ε = 1 ε = −1

.

As indicated in (7), we associate a sign ε with a crossing. We will often use, without
explicit mention, two basic theorems on knots:

– The theorem of Reidemeister, stating that two different diagrams represent the
same link if and only if they are related by a sequence of the three Reidemeister
moves and an oriented diffeomorphism of the plane (see [19, Chapter I]).
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I−→ II−→ III−→
The three Reidemeister moves

– The theorem of Alexander, stating that every link can be realized as the closure
of an appropriate braid (see [14, §2.3] ).

3.2. The HOMFLY-PT polynomial

The HOMFLY-PT polynomial of an oriented link L is defined as the unique element
in P(L, v, s) ∈ Z[v±1, (s− s−1)±] normalized by

(8) P(unknot, v, s) = v − v−1

s− s−1 ,

and satisfying the following skein relation (for which we follow the convention of [24]):
Assume the diagrams of three links L+,L−,L0 coincide except in the neighborhood of
a point, where they look like:

(9) <<bb <<bb OO OO

L− L+ L0

Then

(10) vP(L−)− v−1P(L+) = (s− s−1)P(L0).

These two conditions determine a well-defined invariant on oriented links in S3.

Example 3.1. — Two unlinked unknots : Applying the skein relation we get
vP(unknot)− v−1P(unknot) = (s− s−1)P(two unlinked unknots), hence

(11) P(two unlinked unknots) =
(
v − v−1

s− s−1

)2

= P(unknot)2.

The Hopf link : The skein relation gives:

vP(two unlinked unknots)− v−1P(Hopf) = (s− s−1)P(unknot).

Hence

(12) P(Hopf) =
(
v − v−1

s− s−1

)(
v3 − v
s− s−1 − v(s− s−1)

)
.
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The (2, 3) toral knot (trefoil) : Again applying the skein relation to a positive
crossing of the diagram,

vP(unknot)− v−1P(trefoil) = (s− s−1)P(Hopf).
Hence

(13) P(trefoil) =
(
v − v−1

s− s−1

)(
v2(s2 + s−2)− v4

)
.

We notice that the HOMFLY-PT polynomial does not change if all the orientations
of the components of the link are changed, but it does if only some of them are. This
will not be relevant for us since algebraic links are given a canonical orientation coming
from the orientation of C and that of S3

ε .

4. THE CONJECTURE OF OBLOMKOV-SHENDE

In [32] A. Oblomkov and V. Shende (1) conjecture the following surprising equality,
relating algebraic geometric data on (C, p) with topological invariants on L:

Theorem 4.1 (D. Maulik, [24]). — Let (C, p) be the germ of a singular plane curve,
with Milnor number µ(f), and L its associated oriented link. Let C [`,`+n]

p denote the
punctual nested Hilbert scheme, defined in Eq. (6). Let P denote the HOMFLY-PT
polynomial of L. Then

(14)
(
v

s

)µ(f)−1 ∑
`,n≥0

s2`(−v2)nχtop(C [`,`+n]
p ) = P(L, v, s),

where χtop denotes the topological Euler characteristic.

A remarkable completely unexpected consequence of Eq. (14) is that the left hand
side depends only on the topology of the link, and does not detect the analytic moduli
of the singularities. This can be tested explicitly in the case of the singularities xy(x−
y)(x − αy) = 0 which are not analytically equivalent for different values of α, but
have equivalent links (four circles, each simply linked with every other one). Another
completely non obvious feature is that the series on the left hand side represents a
rational function in v and s.

To write the left hand side of the equality in a more elegant form, we first re-
call the notion of integration of a constructible function against the Euler character-
istic measure: since the Euler characteristic of a compact space stratified by odd-
dimensional manifolds vanishes ([40]), the Euler characteristic of a complex analytic
space, possibly singular and noncompact, coincides with the “compactly supported Eu-
ler characteristic” χc(Z) := ∑(−1)k dim Hk

c (Z), thus it satisfies the additivity property

1. According to private communication from the authors of [32], a course of R. Pandharipande at
the University of Princeton, in the Fall term of 2008, played a catalyzing role for the elaboration of
the conjecture.
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χtop(X) = χtop(Y ) +χtop(X \Y ) if Y ⊂ X is a closed subset. Given a complex analytic
variety Y and a commutative ring R, let f : Y → R be an R-valued constructible
function namely a finite sum f = ∑

fα1Yα , where fα ∈ R and 1Yα are the characteristic
functions of locally closed complex subvarieties Yα ⊂ Y . We define the integral:

(15)
∫
Y
fdχtop :=

∑
α

fαχtop(Yα).

The additivity property ensures well-definedness, i.e. the “integral” does not change if
we subdivide the Yα’s. Furthermore, for a locally trivial fibration f : X → Y , with fibre
F , one has χtop(X) = χtop(Y )χtop(F ), so that “Fubini” theorem holds. The conjecture
of Oblomkov and Shende conjecture can be stated as follows:

Theorem 4.2. — Let (C, p) be the germ of a singular plane curve, with Milnor number
µ(f), and L its associated link. Let C [n]

p be the punctual Hilbert scheme and let P denote
the HOMFLY-PT polynomial. Then:

(16)
(
v

s

)µ(f)−1∑
`≥0

s2`
∫
C

[`]
p

(1− v2)m(I)dχtop(I) = P(L, v, s).

The integral on the left hand side of the equality requires some word of explanation:
as we noticed in Remark 2.1, the forgetful map C [`,`+n]

p → C [`]
p is, when restricted to

the level sets m−1(r), a fibration with fibre the Grassmannian Gr(n,m(I)). It is easily
seen that

(17) χtop (Gr(n,m(I))) =
(
m(I)
n

)
,

hence, from Fubini theorem and Eq. (15), we have

(18)
∑
`,n

s2`(−v2)nχtop(C [`,`+n]
p ) =

∑
`≥0

s2`
∫
C

[`]
p

(1− v2)m(I)dχtop(I).

Example 4.3. — We give some examples of direct verification of this equality, taken
from [32]:

nonsingular point : In case the point is nonsingular, the Milnor number vanishes
and the link is the unknot. The ideals of C[[T ]] are all of the form (T k), hence the
left hand side of Eq. (16) is

(19)(
v

s

)µ(f)−1∑
`≥0

s2`
∫
C

[`]
p

(1− v2)m(I)dχtop(I) = s

v

∑
`≥0

s2`(1− v2) = s(1− v2)
v(1− s2) = v − v−1

s− s−1 .

which equals the HOMFLY-PT polynomial of the unknot, Eq. (8).
Node : In case we have a node, of equation y2 − x2, the Milnor number is one.

The two nonsingular branches have linking number one, therefore we have the
Hopf link. The finite length ideals of C[[X, Y ]]/(Y 2 −X2) ' C[[T1, T2]]/T1T2 are,
besides the trivial (1) of length 0, with m((1)) = 1, either principal of the form
(T k1 + αT i−k2 ), with α 6= 0 for 1 ≤ k < i, or generated by two elements and
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of the form (T k1 , T i−k+1
2 ), for 1 ≤ k ≤ i (of length i). The principal ideals are

parameterized by C× so that the Euler characteristic of the corresponding locus
vanishes. The only contribution to the integral comes from the monomial ideals
with two generators, and there are i of them with length i > 0. The left hand side
of Eq. (16) is therefore:

(20)(
v

s

)µ(f)−1∑
`≥0

s2`
∫
C

[`]
p

(1−v2)m(I)dχtop(I) = (1−v2)+
∑
`>0

`s2`(1−v2)2 = (1−v2)
(

1 + 1− v2

(s− s−1)2

)

which equals the HOMFLY-PT polynomial of the Hopf link, Eq. (12).
Cusp : For the cusp, of equation y2−x3, the Milnor number is two, while its link is
the trefoil knot. The only ideals of length i in C[[X, Y ]]/(Y 2 −X3) ' C[[T 2, T 3]]
contributing to the Euler characteristic are the monomial ones, namely the prin-
cipal ones (T i) for i ≥ 2, and those with two generators (T i+1, T i+2), for i ≥ 1.
Thus

(21)(
v

s

)µ(f)−1∑
`≥0

s2`
∫
C

[`]
p

(1− v2)m(I)dχtop(I) = v − v3

s

1 +
∑
`≥2

s2` + (1− v2)
∑
`≥1

s2`

 ,
which equals the HOMFLY-PT polynomial of the trefoil, Eq. (13).

In [32, §5] the authors compute the left hand side of Eq. (14) for the general singularity
of Example 1.1, using the following remark: if an algebraic variety Z admits the action
of a torus T := (C×)N with a finite number of fixed points, then χtop(Z) = ]ZT . This
fact allows them to reduce the evaluation of the integral to counting the monomial ideals.

Remark 4.4. — 1. It is evident from Eqs. (8) and (10) and the skein definition of
the Alexander polynomial ∇L(s) that limv→−1

P(L,v,s)
P(unknot) = ∇L(s). It is not hard to

see that in the limit v → −1 of the left hand side of Eq. (16), divided by v−v−1

s−s−1 , only
principal ideals (m(I) = 1) give a nonzero contribution. In [32, §3], Oblomkov and
Shende show that this special case follows from the main result of [7].

2. The symmetry s 7→ −s−1 of the HOMFLY-PT polynomial, which is not immedi-
ately evident in the left hand side of Eq. (16), is shown to follow from Serre duality
in [32, §4].

3. The paper [9] gives a physical interpretation of Eq. (16) in terms of large N dual-
ity for conifold transitions, based in the conjectural equivalence between Gromov-
Witten and Donaldson-Thomas theory.

5. A COLORED REFINEMENT: THE CONJECTURE OF
DIACONESCU, HUA AND SOIBELMAN

The proof of the conjecture of Oblomkov and Shende given by Maulik in [24] descends
from a “colored” refinement, first proposed in [8].
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Assumption 5.1. — From now on we assume, without loss of generality, that every
irreducible component of C gives a unique branch at p, so let C = ⋃N

i=1Ci be the
decomposition of C into irreducible components, and let fi = 0 be the equation of Ci,
with fi ∈ C[X, Y ].

A coloring of C is the choice, for every irreducible component Ci of C, of a partition
µi of a positive integer |µi|. We set −→µ := (µ1, · · · , µN). These partitions are used:

– on the algebraic geometric side to define a “thickening” C−→µ of the curve (C, p),
namely a nonreduced structure, see Section 5.1.3.

– on the link side they are used to construct satellites L−→µ of the link L, by associating
special braids with the partitions, see Section 5.2.6.

The correspondence between the invariants of these two enhancements of the original
objects, which will be stated in Theorem 5.41, is quite remarkable.

While the objects appearing on the two sides of Eq. (16) can be easily described, their
colored variants are more involved and we will devote a good part of this exposition to
define them and put them in proper context.

5.1. Framed stable pairs
We start with the algebraic geometric side of the subject, dealing with the colored

variant of the Hilbert scheme, which turns out to be the moduli space of stable pairs
framed on a thickening of C associated with −→µ .

5.1.1. Moduli spaces of framed stable pairs. — Let us first recall some basic definitions:

Definition 5.2. — Let F be a coherent sheaf on X.
Associated point : A (not necessarily closed) point x ∈ X is an associated point
of F if the maximal ideal mx ⊂ OX,x is the annihilator of some element of Fx.

Embedded point : An associated point of F is said to be embedded if it is con-
tained in the closure of another associated point of F .

Schematic support : The schematic support Supp(F ) of F is the subscheme of
X defined by the annihilator ideal sheaf Ann(F ) := ker OX −→ EndOX (F ).

Pure sheaf : A coherent sheaf F is pure of dimension d if dim Supp(G ) = d for
every subsheaf G ⊂ F , or, equivalently, if all the associated points of F have
dimension d.

Schematic closure : If i : Z → X is a locally closed embedding, its schematic
closure is the smallest closed subscheme Z ′ ⊆ X such that i factors through it.
Equivalently, the sheaf of ideals of Z ′ is given by the regular functions on X which
vanish when pulled back to Z via i.

Recall that a one-dimensional scheme is Cohen-Macaulay if and only if it has no
embedded points The schematic closure of a one-dimensional Cohen-Macaulay scheme
is therefore Cohen-Macaulay.

We consider the following set-up
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– X is a nonsingular quasi-projective threefold,
– E ⊂ X a closed projective subvariety
– Z ⊂ X is a one-dimensional Cohen-Macaulay subscheme which coincides with the
schematic closure of Z ∪ (X \ E). In particular Z has no embedded points.

Definition 5.3. — A Z-framed stable pair on X is a pair (F , σ), where
Purity : F is a pure coherent sheaf of dimension 1.
Support : σ : OX → F is a section with zero-dimensional cokernel,
Framing : There is an isomorphism F|X\E

'−→ OZ |X\E making the diagram

OX |X\E
σ|X\E //

Id

��

F|X\E

'
��

OX |X\E // OZ |X\E

commutative.

Remark 5.4. — The appearance of stable pairs is probably made less misterious by
noticing that in case Z is Gorenstein, for instance if it is a planar curve, the datum of
a stable pair supported on Z is equivalent to that of a zero-dimensional subscheme of
Z, i.e. a point in the Hilbert scheme of Z([35, Prop. B5]). In fact, under the above
mentioned hypothesis, the sequence

0→ HomOZ (F ,OZ)→ OZ → Ext1OZ (Q,OZ)→ 0,

obtained applying the functor HomOZ (−,OZ) to the stable pair sequence

0→ OZ σ→ F → Q = Coker σ → 0

is exact, thus defining a subscheme of Z with associated sheaf of ideals HomOZ (F ,OZ).

Remark 5.5. — – As explained in [34, Lemma 1.3], where stable pairs were in-
troduced (see [36] for some motivation coming from enumerative geometry), the
requirements that F be pure and that the cokernel of σ be zero-dimensional should
be interpreted as a stability condition, whence the name.

– The support W := Supp(F ) is, by the purity condition, a Cohen-Macaulay sub-
scheme of dimension one. The condition on the cokernel of σ implies that F
coincides with OW outside a finite set of points.

– It follows from the framing condition that Z and W differ only on E. By the
universal property of the schematic closure, Z is a subscheme of W , whose ideal
sheaf we denote by IZ,W .

The homology class of the difference [W ] − [Z] is denoted by β(F , σ) ∈ H2(E): it
is the sum of the classes of the components of W contained in E with their generic
multiplicities, i.e. the lengths of their local rings at the generic points. We also set
χ(F , σ) := χ(Cokerσ)− χ(IZ,W ).
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Framed stable pairs with fixed discrete invariants (β, χ) ∈ H2(E) × Z are parame-
terized by a projective variety: the set-valued functor P(X,E,Z)β,χ associating with
a reduced scheme T the set of families of (Z × T )-framed stable pairs on X × T with
given invariants is represented by a projective variety, still denoted P(X,E,Z)β,χ ([24,
Lemma 2.1]). This existence theorem relies on the existence of a moduli space for stable
(i.e. not framed) pairs on a projective variety, due to R. Pandharipande and R. Thomas
[34], and based on previous work of J. Le Potier [17, 18]. If X is projective one just
has to prove that the subset corresponding to framed stable pairs is a closed subset of
the moduli space of stable pairs. The case when X is quasi-projective is reduced to
the projective case by choosing a projective compactification X and proving that the
restriction map between the functors

(22) P(X,E,Z)β,χ −→ P(X,E,Z)β,χ
is an equivalence, where Z denotes the closure if Z in X. In particular, the choice of
the compactification is irrelevant.

Remark 5.6. — More precisely, it can be proved that P(X,E,Z)β,χ only depends on
the completion X̂ of X along E ∪ Z.

Remark 5.7. — In the case we are interested in, X is a threefold and E is a non-
singular curve, isomorphic to P1(C), as explained in Section 5.1.2. Since H2(E) = Z,
the class β may be identified with a nonnegative integer r, which is just the generic
multiplicity of Supp(F ) along E.

5.1.2. Set-up: the flop. — The key technical tool used in [24] is the study of wall-
crossing in the derived category of coherent sheaves on CY 3-folds, the culmination of
ideas of many people such as Kontsevich-Soibelman, Joyce, Toda and Bridgeland. One
of the fundamental insights contained in [8], based on the physical background of [9], is
seeing how to give a Calabi-Yau threefold interpretation to what looks like a question
about curves on a surface. The local model on which the construction is based goes
back to Atiyah [3]. It is a map known as “flop” in birational geometry, and as “conifold
transition” in the physics literature.

Let Y be the total space of the vector bundle

OP1(−1)⊕OP1(−1)

over P1(C). An atlas for Y is given by two open subsets U1, U2 ' A3(C), with coor-
dinates (z, ξ1, ξ2) and (w, η1, η2). The coordinate change in the intersection U1 ∩ U2 is
w = z−1, η1 = zξ1, η2 = zξ2. We denote the zero section by E ' P1(C).

We have the vector bundle projection

(23) p : Y → P1(C), given by p(z, ξ1, ξ2) = z,

and we identify A2(C) with p−1(0), so that C sits inside Y :

(24) C ⊂ A2(C) = p−1(0) ⊂ Y = total space of OP1(−1)⊕OP1(−1),
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as the complete intersection

(25) C = {f(ξ1, ξ2) = 0, z = 0}.

The zero section E can be blown down to a point, thus obtaining

(26) π : Y −→ Q := {(x1, · · · , x4) ∈ A4(C), such that x1x4 − x2x3 = 0}.

A coordinate description of the map π in terms of the previous atlas is:
π(z, ξ1, ξ2) = (ξ1, ξ2, zξ1, zξ2) ∈ Q on U1 and π(w, η1, η2) = (wη1, wη2, η1, η2) ∈ Q on U2.

The singular quadric threefold Q admits two “small” resolutions, related by a bira-
tional isomorphism φ,

(27) Y

π ��

φ // Y ′

π′��
Q ,

where Y ′ is also isomorphic to the total space of the vector bundle OP1(−1)⊕OP1(−1),
and E ′ := π′−1(0) ' P1(C).

There is a nice description of the maps in the diagram (27) in terms of two natural
resolutions of singularities of a Schubert variety: Let Gr(2, 4) be the Grassmanian of
two-dimensional vector spaces in C4 with canonical basis {e1, · · · , e4}. Fix the point
corresponding to the plane V0 = Span{e1, e2}, and let (x1, · · · , x4) be the coordinates
on the corresponding A4(C)-chart, namely (x1, · · · , x4) corresponds to Span{e1 +x1e3 +
x2e4, e2 + x3e3 + x4e4}. The closed subset

(28) S := {V ∈ Gr(2, 4) such that dim(V ∩ V0) ≥ 1} ∩ A4(C),

easily seen to be isomorphic to Q, admits two natural desingularizations: set

(29) Y = {(U, V ) ∈ Fl(1, 2,C4) such that V ∈ S and U ⊆ V ∩ V0}
π(U,V )=V−→ S ,

(30) Y ′ = {(V,W ) ∈ Fl(2, 3,C4) such that V ∈ S and V + V0 ⊆ W} π
′(V,W )=V−→ S ,

where Fl(d1, d2,C4) denotes the flag variety of nested pairs of linear subspaces in C4 of
dimensions d1 and d2 respectively.

The fibrations p : Y → P(V0) = P1(C) and p′ : Y ′ → P(C4/V0) = P1(C), defined as
p(U, V ) = U and p′(V,W ) = W respectively, show that Y and Y ′ are nonsingular.

If V0 6= V ∈ S , then dim V ∩ V0 = 1: in this case (V ∩ V0, V ) is the unique point in
Y over V and (V, V + V0) is the unique point in Y ′ over V , while if V = V0 we have
E := π−1(V0) = P(V0) = P1(C) in Y and E ′ := π′−1(V0) = P(C4/V0) = P1(C) in Y ′.
Thus, there is an isomorphism φ : Y \E '−→ Y ′ \E ′ over Q \ 0, defining a rational map
φ : Y 99K Y ′.

The map φ is called a flop. The proper transform by φ of A2(C) is its blow-up
Ã2(C) ⊂ Y ′ at the origin, with exceptional divisor E ′. Similarly, the proper transform
by φ of C is the blow-up C ′ ⊂ Ã2(C) ⊂ Y ′ of C at p. One of the main steps in [24] is to
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relate the generating functions of framed stable pairs on Y to the generating functions
of framed stable pairs on Y ′, see Theorem 6.3.

5.1.3. Coloring C. — To motivate the definition of the “coloring” of C, first recall
that, given a partition µ = (µ(1), · · · , µ(`)), with µ(1) ≥ · · · ≥ µ(`) > µ(`+1) = 0, there is
a corresponding monomial m-primary ideal of C[X, Y ] (see [27, §7.2]), namely the one
generated by the monomials

(31) Xj−1Y µ(j)
, for j = 1, · · · , `+ 1.

We denote by Zµ ⊂ A2(C) the corresponding subscheme. Recall that C is embedded
in Y, the total space of OP1(−1)⊕OP1(−1), as a complete intersection with equations
f(ξ1, ξ2) = 0 and z = 0. We will thicken C to a one-dimensional scheme C−→µ , whose
intersection with a two-dimensional slice through a smooth point of Ci is the monomial
scheme Zµi .

Definition 5.8. — Let −→µ := (µ1, · · · , µN) denote the partitions attached to the com-
ponents, where µi = (µ(1)

i , · · · , µ(`i)
i ) is the partition associated with the component

Ci = {fi = 0}. Let Ci,µi be the subscheme defined by the ideal generated by

(32) zj−1fi(ξ1, ξ2)µ
(j)
i , for j = 1, · · · , `i + 1,

where z is the local coordinate on P1 vanishing at 0 introduced above. The (nonreduced)
one-dimensional subscheme C−→µ ⊂ Y is defined as the schematic closure of

N⋃
1
Ci,µi ∩ (Y \ zero section) .

Since ⋃N1 Ci,µi∩(Y \ zero section) is Cohen-Macaulay, and the schematic closure does
not create new associated points, it follows that C−→µ is Cohen-Macaulay. Notice that
on the generic (nonsingular) point of the branch Ci, the scheme C−→µ is analytically
isomorphic to the product of Zµi with the germ of a nonsingular curve.

Remark 5.9. — When all the partitions are (1) we write −→µ = (1). In this case
C(1) = C.

We now consider C−→µ -framed stable pairs (F , σ), as in Section 5.1.1, asking the
restriction of σ to Y \ E to coincide with the canonical surjection OY −→ OC−→µ . As
discussed in Section 5.1.1, there are projective moduli spaces P(Y,E,C−→µ , Z)β,χ. In
this case the class β is the generic multiplicity r along E of the support of F (see
Remark 5.7). We denote

(33) P(Y,C,−→µ , r, n) := P(Y,E,C−→µ , Z)r[E],n

and we define the generating function of the Euler characteristics of the moduli spaces
of pairs

(34) Z ′(Y,C,−→µ ; q,Q) =
∑
r,n q

nQrχtop (P(Y,C,−→µ , r, n))∏
k(1 + qkQ)k ∈ C[[q,Q]].
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Notice that, when −→µ = (1), we recover the C-framed stable pairs, and that setting
Q = 0 amounts to consider only the moduli spaces of pairs (F , σ) with Supp(F ) = C−→µ .

Remark 5.10. — Even in the uncolored case, the blow-up identity relating Z ′(Y,C,−→µ ; q,Q)
to its analogue for the total transform of C by a blow-up, which lies at the heart of
Maulik’s proof (see Theorem 6.6 and Proposition 6.4 in Section 6.1), requires arbitrary
partition labels on the total transform of C.

Remark 5.11. — In [8, Thm.1.1], Diaconescu, Hua and Soibelman prove that, in
the set-up of Section 5.1.2, Z ′(Y,C, (1); s2,−v2) and ∑`≥0 s

2` ∫
C

[`]
p

(1 − v2)m(I)dχtop(I)
coincide after multiplying by a power of s, depending on the normalization chosen here
for the invariant χ of (F , σ).

5.2. Colored HOMFLY-PT polynomials

The link invariants we are going to discuss first arose in connection with the quantum
groups Uq(sl(N)) in the seminal works [38, 39]. We will avoid this approach, though,
and, following [24], adopt a more down to earth point of view, ultimately relying on
the classical construction of a satellite knot (see [19]). In order to have a well-posed
definition one needs to consider framed knots, which we now discuss. Good references
for this section are the introductory parts of [2, 21].

5.2.1. Framing. — Recall that we associated a sign with every crossing in the diagram
∆L of a link L (see (7)).

Definition 5.12. — The writhe w(∆L) is the sum, over all crossings, of their signs.

Remark 5.13. — 1. The second and third Reidemeister moves preserve the writhe,
whereas the first changes it: adding a positive curl increases the writhe by one.

2. If the link is represented by a diagram in the plane, the linking number L(K1, K2)
can be computed as the sum

(35) L(K1, K2) =
∑
i∈K1
K2

εi,

where K1
K2

is the set of crossings in which K1 passes over K2, and εi = ±1 is the
sign of the crossing.

Definition 5.14. — Given a link L = ⋃Li, a framing is the choice of a normal,
never vanishing, vector field on each component.

A framing defines a parallel curve, obtained by a little movement along the vector
field. Intuitively, the choice of a framing replaces every component of the link with a
“ribbon” (homeomorphic with an annulus, since the boundary consists of two connected
components). The self-linking number of a framed knot is defined to be the linking
number of the link with its parallel. This number fixes the framing up to isotopy.
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Example 5.15. — 1. If a link lies on a two-dimensional torus, as in Example 1.1, a
natural framing is given by choosing at each point x ∈ L a normal vector completing
the tangent vector in x to a positively oriented basis.

2. The unlinked, or natural, framing is given by choosing for each component Li of
the link the unique, up to isotopy, nearby knot which has zero linking number with
Li.

3. The choice of a diagram representing the link selects the blackboard framing,
in which each curve of the link diagram is thought of as a “ribbon” lying on the
plane containing the diagram. In this case the self-linking number equals its writhe
(Definition 5.12).

4. Since the blackboard framing is not invariant under the first Reidemeister move,
every framing can be realized as a blackboard framing of a diagram just adding a
few curls.

Remark 5.16. — The framing of a toral knot (Example 1.1) inherited by its embedding
in the torus differs from the blackboard one associated with the presentation as the
closure of the braid (βr)s defined in Example 1.1. In order to fix this discrepancy it is
enough to add a positive curl to the diagram of βr. One may get an intuition of this
fact imagining a braid that is wrapping around the outside of the torus and smashing it
onto the plane, thus obtaining the curl. We denote by βr,# the diagram thus obtained.

β3,#

5.2.2. Skein theory. — In this section we collect some facts of skein theory, an efficient
way to organize the colored HOMFLY-PT polynomials of a link. In particular, the skein
algebra of a rectangle, with n inputs and n outputs, and that of an annulus, play a
major role. They turn out to be isomorphic respectively to the Hecke algebra of type
An and to a commutative algebra, see Theorem 5.26.

Let F be a surface, possibly with boundary and with two sets of marked points P,Q
on the boundary. For our purpose F will be one of the following surfaces

1. F = R2, the euclidean plane, with P = Q = ∅,
2. the annulus A = {(x, y) ∈ R2 such that1 < x2 + y2 < 4} with P = Q = ∅,
3. the square Sn = [0, 1] × [0, 1] with n marked points Q = {q1, · · · , qn} on the top

side and n marked points P = {p1, · · · , pn} on the bottom side.
It will be useful to think of the square Sn as embedded in the annulus A as an angular
sector 1 ≤ ρ ≤ 2, θ ∈ [0, π/2].
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Definition 5.17. — A diagram ∆ in F is a series of oriented closed curves and
oriented arcs joining the points in P to those in Q, with the condition that every point
of P is the starting point of a unique arc and every point of Q is the end point of a
unique arc. As in the diagram of a generic planar projection of a link, these arcs and
curves are allowed to have only simple crossings. We identify diagrams obtained by an
ambient isotopy (fixing the boundary) or obtained one from the other by a sequence of
Reidemeister moves II and III.

Remark 5.18. — Notice that an element of the braid group Bn defines a diagram in
the square Sn.

Remark 5.19. — Given a diagram ∆ in Sn, thought of as a subset of A, this can be
closed to a diagram ∆̂ in A by joining, for every i = 1, · · ·n, the point qi to the point pi
with the circular arc θ ∈ [π/2, 2π]. For diagrams given by braids this is just the standard
operation of closure of a braid.

Remark 5.20. — The embedding of A into R2 sends diagrams in A to diagrams in
R2.

Let Λ be the ring

(36) Λ = Z[v±1, s±1, (sr − s−r)−1] for all r ≥ 1.

Definition 5.21. — The framed HOMFLY skein of F , denoted S[F ], is the Λ-module
generated by diagrams in F (up to isotopy and II and III Reidemeister moves), modulo
the skein relations:

1. If L+,L−,L0 are as in the diagram (9), then

(37) L+ − L− = (s− s−1)L0.

2. If ∆ is a diagram in F , then

(38) ∆
∐

unknot =
(
v−1 − v
s−1 − s

)
∆,

where ∐ is meant to denote that ∆ and the unknot are unlinked. In particular, if
F = R2 or F = A, we have

(39) unknot = v−1 − v
s−1 − s

[∅] = v−1 − v
s−1 − s

∈ Λ,

by setting the empty diagram to equal 1.
3. Deleting a curl with positive crossing amounts to multiplying by v−1, deleting a

curl with negative crossing amounts to multiplying by v:

= v−1 , = v .
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In this framework diagrams should be thought of as endowed with the “blackboard
framing”.

Remark 5.22. — Given the local nature of the relations in Definition 5.21, the em-
beddings Sn ↪→ A and A ↪→ R2, and the closure operation ∆ → ∆̂, discussed in Re-
marks 5.19 and 5.20, define Λ-module morphisms

(40) S[Sn] −̂→ S[A] −→ S[R2].

Stacking a square on top of the other (and rescaling) defines an associative product
on S[Sn]. Similarly, the operation of putting an annulus inside another defines an
associative product on S[A], which is commutative, as one can “slide” the diagram
contained in the inner annulus under the other one by using the Reidemeister moves II
and III, thus exchanging the two diagrams. To identify the algebra S[Sn], we recall the
following definition:

Definition 5.23. — The Hecke algebra Hn (of type An) is the associative Z[s, s−1]-
algebra (with unit), defined by a set of generators S = {S1, · · · , Sn−1}, subject to the
relations:

(41) SiSj = SjSi if |i− j| ≥ 2,

(42) SiSi+1Si = Si+1SiSi+1,

(43) (Si − s)(Si + s−1) = S2
i − (s− s−1)Si − 1 = 0.

Remark 5.24. — The specialization s = 1 gives the group algebra of the symmetric
group, with Si corresponding to the transposition (i, i + 1). Hence, the Hecke algebra
can be considered a one-parameter deformation of this group algebra.

Remark 5.25. — The standard set of generators S = {σ1, · · · , σn−1} of the braid
group on n strands Bn verifies Eqs. (41) and (42), hence Hn is the quotient of the
group algebra of Bn obtained imposing the relation Eq. (43). In particular, a braid
defines an element of Hn.

It is easily seen that Eq. (43) is just a rewriting of Eq. (37). We will often extend
the coefficients of Hn to Λ. The resulting algebra will still be denoted Hn.

Theorem 5.26. — 1. The skein algebra S[Sn] is isomorphic to the Hecke algebra
Hn with coefficients in Λ. This isomorphism sends a braid γ ∈ Bn, thought of as
a diagram in Sn, to its class in Hn (see Remark 5.25).

2. Set Cn := Ŝ[Sn] ⊂ S[A], where, as in Remark 5.22, ̂ denotes the closure map.
There is a graded isomorphism

(44) τ : C → S•Λ
between the graded subalgebra C ⊂ S[A] generated by ⋃n Cn, and the graded algebra
S•Λ of symmetric functions in infinitely many variables with coefficients in Λ. It
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is proved in [42] that C is freely generated as a polynomial algebra by the elements
Am := ̂σm−1 · · ·σ1, placed in degree m, where, as above, the σi’s are the standard
generators of Bm.

3. In R2 every diagram can be represented uniquely as a multiple of the empty dia-
gram. In other words, there is a canonical isomorphism:

(45) 〈 〉 : S[R2] −→ Λ,

the framed HOMFLY-PT polynomial, differing from the HOMFLY-PT polynomial
by the multiplicative term v−w(∆L), accounting for the framing.

Remark 5.27. — A particularly significant basis of S[Sn] (as a Λ-module) is given by
positive permutation braids. Given a permutation π = (π(1), · · · , π(n)) we consider
the unique braid ωπ associated with π (i.e. the i-th point at the bottom joins the π(j)-th
point at the top) in which each pair of strands cross at most once with positive sign (a
useful way to visualize these braids is to imagine them disposed in layers, with the first
strand at the very back and the last at the front. Notice that the standard generator σi
of Bn are the positive permutation braids of the transpositions (i, i+ 1).

5.2.3. The idempotents of Gyoja. — By Maschke’s Theorem, the complex group alge-
bra C[G] of a finite group decomposes into a direct product of matrix algebras indexed
by the irreducible representations: For each such irreducible one can choose a primitive
idempotent, giving the projection on a copy of the irreducible representation inside
C[G].

Let G = Sn be the symmetric group: the irreducible representations are indexed by
the set of partitions of n, which we will identify with their associated Young diagrams,
and explicit formulas for these idempotents, depending on the choice of a standard
tableau of shape λ, are given by the Young symmetrizers {eλ}λ`n (see [11, §4.1]). It
is known that if s is not a root of unity, then the Hecke algebra specialized at s is
semisimple and isomorphic to the group algebra of Sn. In [12] Gyoja defines primitive
idempotents, which we will still denote eλ ∈ Hn, specializing to the Young symmetrizers
when s→ 1. These idempotents are studied as elements of the skein S[Sn] in [2], which
also provides a vivid three-dimensional description of them as linear combination of
positive permutation braids. The following two propositions, characterizing the two
maps S[Sn] −→ S[A] and S[A] −→ S[R2], are important from the computational point
of view (see [23, §I.3] for the definition of the Schur functions):

Proposition 5.28. — [2, 20] Let λ ` n be a partition of n, and eλ ∈ Hn be the
corresponding Gyoja idempotent. The composition

(46) Hn
'−→ S[Sn] −̂→ S[A] τ−→ S•Λ

sends eλ to the Schur function sλ.
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Let Qλ = êλ ∈ S[A] be the closure of the Gyoja idempotent eλ ∈ Hn ' S[Sn]. By
Proposition 5.28, Qλ corresponds to sλ under the isomorphism C ' S•Λ, but we prefer
to keep a separate notation for the two objects. The family {Qλ}λ`n is a basis for Cn.

The next proposition describes the composition C −→ S[R2] 〈 〉−→ Λ in terms of the
elements of the basis Qλ by giving their framed HOMFLY-PT polynomials:

Proposition 5.29. — [22] Let λ ` n be a partition, and, for any box 2 in its Young
diagram, let c(2) and h(2) denote its content (2) and its hook-length (3) respectively.
Then:

(47) 〈Qλ〉 =
∏
2∈λ

v−1sc(2) − vs−c(2)

sh(2) − s−h(2) .

Remark 5.30. — It follows from Eq. (47) that, setting

〈Qλ〉low :=
∏
2∈λ

sc(2)

sh(2) − s−h(2) ,

we have

(48) 〈Qλ〉 = v−|λ|
(
〈Qλ〉low + vO(v)

)
where O(v) denotes a function with no poles at v = 0.

More generally, we can give the following

Definition 5.31. — Given X = ∑
γ`m cγ(v, s)Qγ ∈ Cm, we set

〈X〉low := vm−A〈X〉|v=0,

where A = minγ ordv=0 cγ(v, s). One always has 〈X〉 = vA−m
(
〈X〉low + vO(v)

)
as in

Eq. (48).

5.2.4. Satellites. — The diagrams in S[A] may be used as decorating patterns for links:
given a framed link L, with components K1, · · ·Kr, we have, for every i, the annulus
AKi , bounded by Ki and its parallel curve. Choose diffeomorphisms A '−→ AKi . Given
the diagrams Q1, · · ·Qr in the standard annulus A, the (framed) link L ∗ (Q1, · · ·Qr),
called a satellite of L, is obtained transplanting, for every i = 1, · · · r, the diagram Qi

in AKi with the help of the diffeomorphism above.

Example 5.32. — The link L of an irreducible curve singularity, with Puiseux devel-
opment as in Eq. (3), is represented by the diagram

(49) L = β̂q0
p0,# ∗

(
β̂q1
p1,# ∗

(
· · · ∗

(
β̂qsps,#

)))
∈ S[A],

2. if the box being considered is in the i-th row and j-th column, then c(2) = j − i.
3. the hook length h(2) of a box in a Young diagram is defined as a + b + 1 where a is the number

of boxes lying at its right and b the number of boxes lying below.
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where βnm,# is the n-th power of the diagram βm,# ∈ S[Rm] defined in Remark 5.16,
and ̂ denotes the closure operation.

Remark 5.33. — In order to describe the link of a general (i.e. not necessarily irre-
ducible) plane curve singularity as an iterated satellite construction, one also needs to
consider satellites of the closure of γnm,#, the n−th power of the diagram γm,# ∈ S[Rm+1]
obtained adding an extra strand, linked to the curl, to βm,# ([24, Eq. (11)]). This dia-
gram may be thought of as obtained by smashing down on the plane the braid wrapping
around the outside of a solid torus, along with a single strand running through its core.

γ3,#

5.2.5. Gyoja idempotents and the framing operator. — In this section we discuss a
theorem which relates the operation of taking a satellite of a toral knot with the fram-
ing operator. Although this result is not needed for the formulation of the conjecture
of Diaconescu, Hua and Soibelman, it plays an important role in its proof (see Sec-
tion 6.2.1).

Definition 5.34. — Let β̂1,# be the closure of the braid with one strand and one curl
(Remark 5.16). The operator

(50) Φ : S[A] −→ S[A], defined as Φ(X) = β̂1,# ∗X

is called the framing operator. It corresponds to a total twist of all the strands of a
diagram in S[A].

−→
the framing operator Φ

Notice that Φ(Cm) ⊆ Cm for every m. One important property of the Qλ’s is that
they give a basis of eigenvectors for Φ:
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Proposition 5.35. — [2, Thm. 17] Let λ = {λ(1) ≥ · · · ≥ λ(`) > 0}. Then:

(51) Φ(Qλ) = sκλv−|λ|Qλ

with |λ| = ∑
j λ

(j) and κλ = 2∑2∈λ c(2), where c(2) is the content of the box in the
Young tableau associated with λ.

Example 5.36. — For n = 2 there are only two partitions, (2) and 12, and the corre-
sponding elements, expressed in the basis introduced in Theorem 5.26, are

(52) Q2 = 1
s2 + 1(sA2 + A2

1), Q12 = s

s2 + 1(−A2 + sA2
1).

The framing operator acts as

(53) Φ(Q2) = v−2s2Q2, Φ(Q12) = v−2s−2Q12 .

Proposition 5.29 gives:

(54) 〈Q2〉 = (v−1 − v)(v−1s− vs−1)
(s− s−1)(s2 − s−2) , 〈Q12〉 = (v−1 − v)(v−1s−1 − vs)

(s− s−1)(s2 − s−2) .

Given a partition λ ` r, let Qλ[pm] ∈ Crm be the element corresponding to the
symmetric function sλ(zm1 , zm2 , · · · ) under the isomorphism τ . Since {Qν}ν`rm is a basis
for Crm we have an expression

(55) Qλ[pm] =
∑
ν`rm

aνλ(m)Qν .

We define

(56) Φ n
m (Qλ[pm]) :=

∑
ν`rm

aνλ(m)
(
sκνv−|ν|

) n
m Qν .

Theorem 5.37. — [26] Let m,n be coprime. Then, for every partition λ:

(57) β̂nm,# ∗Qλ = Φ n
m (Qλ[pm]) .

Remark 5.38. — 1. If m and n have a common factor d, then

(58) β̂nm,# ∗ (Qλ1 , · · ·Qλd) = β̂
n
d
m
d
,# ∗

(
d∏
1
Qλi

)
,

where the product on the right hand side is computed in C.
2. A formula analogous to the one of Theorem 5.37 holds for γ̂nm,# ∗ (Qµ, Qλ) ([24,

Lemma 3.2]), where γm,# is the diagram defined in Remark 5.33, and Qλ is the
decoration of the extra strand.

In principle, Theorem 5.37 and the analogous formulæ for the reducible case (Re-
mark 5.38) allow one to compute the (colored) HOMFLY-PT polynomial of any alge-
braic knot.
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Example 5.39. — We apply Theorem 5.37 to compute β̂3
2,# ∗ Q1, which corresponds

to the toric knot (2, 3) (the trefoil). Q1[2] corresponds to the sum of squares, which
equals h2 − e2, where h2 is the complete symmetric function of order two, also equal
to s2, and e2 the elementary symmetric function of order two, which equals s12. Thus
Q1[2] = Q2 −Q12. It follows from Eq. (53) that

(59) β̂3
2,# ∗Q1 = Φ 3

2 (Q1[2]) = Φ 3
2 (Q2 −Q12) = v−3

(
s3Q2 − s−3Q12

)
.

Applying Eq. (54) we find

(60) 〈β̂3
2,# ∗Q1〉 = v − v−1

v6(s− s−1)
(
v2(s2 + s−2)− v4)

)
,

which coincides, up to a monomial normalization, with the HOMFLY-PT polynomial
of the trefoil (Eq. (13)).

Finally, we define the meridian operator as follows: We consider the Hopf link H ∈
S[A] by choosing the first component to be homotopic to zero, and choosing a positive
generator of the fundamental group of A as the second component. Then, given X, Y ∈
S[A], we set MX(Y ) = H ∗ (X, Y ). It is proved in [22] that also this operator is
diagonalized by the basis {Qµ}, namely, for every partition µ we have MX(Qµ) =
tµ(X)Qµ for some tµ(X) ∈ Λ.

5.2.6. The colored HOMFLY-PT polynomial and the Diaconescu-Hua-Soibelman con-
jecture. — The operation ∗ can be extended by Λ-linearity. Given the framed link
L = ⋃N

i=1 Li, decorated with the partition −→λ = (λ1, · · · , λN), let, as above, Qλi be the
closure of the Gyoja idempotent eλi ∈ Hn ' S[Sn] for i = 1, · · · , N .

We construct the satellite

(61) L ∗Q−→
λ

:= L ∗ (Qλ1 , · · · , QλN ),

and set

Definition 5.40. — The colored HOMFLY-PT polynomial of L with the coloring
−→
λ

is

(62) W (L,−→λ , v, s) = vj(L,
−→
λ )sk(L,

−→
λ )〈L ∗Q−→

λ
〉

where j(L,−→λ ) and k(L,−→λ ) are integers, depending on
−→
λ and w(L), (see [24, §3.2] for

the exact expression) making the polynomial independent of the choice of the framing
of L.

Remark that when −→λ = (1), we recover the original definition of the HOMFLY-PT
polynomial, up to a normalization by a monomial.

We are finally ready to state the refined version of the conjecture of Oblomkov and
Shende, due to Diaconescu, Hua and Soibelman [8], proved by D. Maulik in [24]:
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Theorem 5.41. — There exist integers a, b and a sign ε, all depending on C and −→µ ,
such that the following equality holds:

(63) Z ′(Y,C,−→µ ; s2,−v2) = εvasbW (L, t−→µ ; v, s),

where t−→µ := ( tµ1, · · · , tµN).

As a special case, picking −→µ = ((1)), and applying Remark 5.11, we have the original
statement conjectured by Oblomkov and Shende, Theorem 4.1.

6. A SKETCH OF THE PROOF

The line of the proof of Theorem 5.41 is quite direct: both sides of Eq. (63) are shown
to change in the same way after a blow-up. By the theorem on embedded resolution of
singularities, one is reduced to checking the equality in the case of a smooth point (an
unknot) or a node (a Hopf link), where a direct verification is possible. The single steps
in the proof, however, are technically involved, and a detailed exposition is impossible
here for reasons of space. We will therefore limit ourselves to a summary of the main
points of the proof, in the hope that it may help the reading of the original paper.

We start by introducing some notation for the blow-up: we are in the set-up of
Section 5.1.2 and Assumption 5.1 holds. We have the flop φ : Y 99K Y ′. The proper
transform C ′ = φ(C \ E) of C is the blow-up of C at p, and we set C ′∩E ′ = {p1, · · · , p`}.
As recalled in Section 1, these points correspond to the lines in the tangent cone of C
at p. For k = 1, · · · , `, we denote by Bk the singularity of C ′ at pk, and by Dk the
reduced singularities of C ′ ∪ E ′ at pk, namely Dk = Bk ∪ E ′. For each k = 1, · · · , `,
the array −→µ defines an array of partitions −→µ [k], corresponding to the components of
C ′ meeting E ′ at pk, which may be used to decorate Bk. Given a partition λ, we may
color Dk = Bk ∪ E ′ with the partition (−→µ [k], λ), attaching the partitions in the array
−→µ [k] to the irreducible components of Bk and the partition λ to the component E ′.

Finally, C ′−→µ denotes the scheme theoretic closure of φ(C−→µ \E). Clearly
(
C ′−→µ

)
red

= C ′.
As explained in Section 5.1.1, there exist moduli spaces P(Y ′, C ′,−→µ , r, n), with the asso-
ciated generating function Z ′(Y ′, C ′,−→µ ; q,Q), and, for each k = 1, · · · , `, moduli spaces
P(Y,Dk, (−→µ [k], λ), r, n), with generating functions Z ′(Y,Dk, (−→µ [k], λ); q,Q). Similarly,
on the link side, we have the link LC , decorated with t−→µ , the links LBk , decorated with
tµ[k], and the links LDk decorated with ( tµ[k], tλ).

Notation 6.1. — Most of the results in this section are identities between rational
functions in two variables. For the sake of simplicity we will state some of the main
theorems in the form of identities which hold up to a monomial which we will not specify
and adopt the notation “≈” to indicate this. These monomials are computed explicitly
in [24].



1560–25

6.1. The blow-up relation for framed stable pairs

6.1.1. The flop invariance theorem. — The hardest technical step in [24] is probably
the proof of Theorem 6.3 below. The argument relies on the wall-crossing results due
to Bridgeland ([4, 5]) and Calabrese ([6]), and on the comparison between Donaldson-
Thomas invariants and stable pairs invariants, properly adapted to the set-up of framed
stable pairs, see [24, §2.4]. In order to rely on the available results on wall-crossing
quoted above, Maulik compactifies the set-up, introducing projective Calabi-Yau vari-
eties X+, X− with maps

(64) X+

π !!

φ // X−

π′}}
X0 ,

where π (resp. π′) contracts the curve E+ ' P1(C) (resp. E− ' P1(C)), both with
normal bundle OP1(−1) ⊕ OP1(−1), and φ is the flop along E and E ′, and containing
surfaces S+, S− such that the formal completions of X± along S± ∪ E± are isomorphic
to the formal completions of Y, Y ′ along A2(C) ∪ E and Ã2(C) ∪ E ′ respectively.

Remark 6.2. — It follows from the main result in [4], that, in this case, there is
an equivalence of (unbounded) derived categories of coherent sheaves D(X) ' D(X ′)
extending the natural identification D(X \ E) ' D(X ′ \ E ′).

Theorem 6.3. — [24, Prop. 2.2] In the set-up above

(65) Z ′(Y,C,−→µ ; q,Q−1) ≈ Z ′(Y ′, C ′,−→µ ; q,Q).

6.1.2. Localization. — The second step consists in splitting the right hand side of
Theorem 6.3 into local contributions corresponding to the points in C ′ ∩ E ′. This is
done by considering the C×-action on Y ′ which fixes the proper transform of A2(C)
and scales its normal bundle. Since the Euler characteristic of a one-dimensional C×-
orbit vanishes, we have χtop (P(Y,C,−→µ , r, n)) = χtop

(
P(Y,C,−→µ , r, n)C∗

)
, so that the

computation of Z ′(Y ′, C ′,−→µ ; q,Q) reduces to the study of the contributions of the fixed
points of this action on the various moduli spaces P(Y ′, C ′,−→µ , r, n). These fixed points
correspond to framed stable pairs supported on a C×-invariant Cohen-Macaulay scheme.
In particular, the nonreduced structure along E ′ is given by a monomial ideal associated
with a partition λ of r.

Proposition 6.4. — [24, Prop 2.6] There exists function Uλ(q,Q) (explicitly deter-
mined in [24]) such that

(66) Z ′(Y ′, C ′,−→µ ; q,Q) ≈
∑
λ

Uλ(q,Q)
∏̀
k=1

Z ′(Y,Dk, (−→µ [k], λ); q, 0)

where the sum is extended to all partitions λ.
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Remark 6.5. — As already noticed, taking Q = 0 in Z ′(Y,Dk, (−→µ [k], λ); q,Q) amounts
to considering sheaves supported on Dk i.e. not containing the projective line E in their
support.

Finally, joining Proposition 6.4 with Theorem 6.3 we obtain the description of the be-
haviour of Z ′(Y,C,−→µ ; q,Q) under blow-up, which will be compared with the analogous
formula for the colored HOMFLY-PT polynomial (Section 6.2).

Theorem 6.6. — We have:

(67) Z ′(Y,C,−→µ ; q,Q−1) ≈
∑
λ

Uλ(q,Q)
∏̀
k=1

Z ′(Y,DK , (−→µ [k], λ); q, 0).

6.2. Blow-up relation for colored HOMFLY-PT polynomials
The next goal is to prove an identity analogous to Eq. (67) for the HOMFLY-PT

polynomials of algebraic links. The starting point is the presentation of LC or of
LC ∗ Q−→λ as an iteration of the operations β̂nm,# ∗ ( ) and γ̂nm,# ∗ ( ) (see Example 5.32
and Remark 5.33).

6.2.1. The effect of blowing up on the link. — The second step is relating the colored
HOMFLY-PT polynomials of the links of C,Bk, Dk. Instead of giving the complete
statement, which is quite involved, we will limit ourselves to give an idea of what
happens in the case when C has a single branch, with a Puiseux parameterization

y(x) = x
q0
p0 (a0 + x

q1
p0p1 (a1 + x

q2
p0p1p2 (a2 + . . . )))

as in Eq. (3). As in Example 5.32, the associated knot has a presentation

LC = β̂q0
p0,# ∗

(
β̂q1
p1,# ∗

(
· · · ∗

(
β̂qsps,#

)))
∈ C ⊂ S[A].

Assume q0
p0

> 1: blowing up the singular point amounts to the change of variables
y = xw, and the Puiseux parameterization for C ′ is:

w(x) = x
q0
p0
−1(a0 + x

q1
p0p1 (a1 + x

q2
p0p1p2 (a2 + . . . ))),

from which we see that only the first Puiseux pair changes, and the class in C of the
link for C ′ is, by Example 5.32,

LC′ = β̂q0−p0
p0,# ∗

(
β̂q1
p1,# ∗

(
· · · ∗

(
β̂qsps,#

)))
.

By Theorem 5.37, relating the operator β̂q0−p0
p0,# ∗ ( ) with the fractional power of the

framing operator Φ, the equality
(68) LC′ = Φ−1(LC)
holds in C, and clearly also holds if LC and LC′ are decorated with a Qλ. More generally,
let us assume that q0

p0
> 1 in the Puiseux development of every component of C. Since

(69) γ̂nm,# ∗ (Qλ,Φ (Qµ)) = Φ
(
γ̂n−mm,# ∗ (Qλ, Qµ)

)
,
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there is an analogue of Eq. (68) in this case too (see Remark 5.38). A slight modification
of the argument fixes the general case, with no assumption on the terms q0

p0
of the

components, expressing the link LC in term of the LBi ’s and the operations Φ and
γ̂1,#∗. Finally, the link of Dk = Bk ∪ E ′, colored with λ on E ′, can be expressed
simply as LDk = Mλ(LBk), where Mλ is the meridian operator introduced at the end
of Section 5.2.5.

6.2.2. The inductive step. — The main step is establishing the following identity in
Λ, which is then applied to X = LC (under the hypothesis that x = 0 is not a branch
of the curve):

Theorem 6.7. — Let X = vA
∑
γ`m cγ(s)Qγ ∈ Cm. Then

(70) (−1)mvm+A〈X〉 = 1∏
k(1− s2kv−2)k

∑
λ

(−v−2)|λ|s−κλ〈Qλ〉low〈MλΦ−1X〉low.

Here Mλ and Φ−1 denote the meridian operator and the inverse of the framing operator
respectively, whereas 〈 〉low, a function only of s, is as in Definition 5.31.

Notice that in each summand the only term depending on v is (−v−2)|λ|. Eq. (70)
is first established for X = Qµ, where it follows from the “vertex flop” identity proved
in [16], a combinatorial formula expressing 〈Qµ〉 (Eq. (47)) as a sum over the set
of partitions of a product of Schur functions, after interpreting each term in this
sum as (−v2)|λ|s−κλ〈Qλ〉low〈MλΦ−1Qµ〉low, using the knowledge of the eigenvalues of
Φ (Eq. (51)) and those of Mλ (Theorem 4.4 in [22]), and Remark 5.30.

6.3. Conclusion of the proof
Finally one has to compare the identitites in Theorem 6.7 and Theorem 6.6. The

proof of Theorem 5.41 is reduced to checking the lowest degree part of the identity by
the following:

Proposition 6.8. — [24, Proposition 6.4] Assume

(71) Z ′(Y,Dk, (µ[k], λ); s2, 0) ≈ 〈LDk ∗ (Q tµ[k], Qtλ)〉low

holds for every k = 1, · · · , `, and for every partition λ. Then Theorem 5.41 holds for
C decorated with −→µ .

Remark 6.9. — In turn, Theorem 5.41 implies that

Z ′(Y,C,−→µ ; s2, 0) ≈ 〈LC ∗Q t−→µ 〉low,

as soon as one proves that 〈LC ∗Q t−→µ 〉low 6= 0.

Eq. (71) is verified for the Hopf link (a node) colored with any pair of partition.
Recall that, by Eq. (67),

Z ′(Y,C,−→µ ; s2,−v−2) ≈
∑
λ

Uλ(s2,−v2)
∏̀
k=1

Z ′(Y,Dk, (−→µ [k], λ); s2, 0).
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The proof of Proposition 6.8 consists in matching every term

(72) Uλ(s2,−v2)
∏̀
k=1

Z ′(Y,Dk, (−→µ [k], λ); s2, 0)

in Eq. (67) with the corresponding term

(73) (−v2)|λ|s−κ tλ〈Qtλ〉low〈MtλΦ−1LC ∗Qt−→µ 〉low

in Eq. (70). By hypothesis Z ′(Y,DK , (−→µ [k], λ); s2, 0) ≈ 〈LDk ∗ Q( t−→µ [k],tλ)〉low. Using
the results sketched in Section 6.2.1 on the relation between LC and the LDk ’s, the
term in Eq. (73) turns out to be ≈ ∏

k〈LDk ∗ Q( t−→µ [k],tλ)〉low. At the end the quantities
in Eq. (72) and in Eq. (73) differ by a monomial, a priori depending on λ, and the
last step is proving that in fact the monomial is the same for all the partitions λ. A
byproduct of the proof of this last fact is the nonvanishing 〈LC ∗Q tµ〉low 6= 0 for every
C and −→µ , which completes the argument, see Remark 6.9.

In this last step, an important role is played by the following evaluation of the term
of lowest order in v and s in the expansion of L ∗Q−→

λ
in C in the basis {Qµ}:

Theorem 6.10. — Assume x = 0 is not a component of C, let mi denote the number
of strands in the annulus diagram of the i-th connected component of LC, and set
µm = µ∪m1

1 ∪ · · · ∪ µ∪m`` , where ∪ denotes the concatenation of partitions. Then, there
exist exponents A and B, depending on the Puiseux pairs of C, such that the following
holds in C:

LC ∗ (Qµ1 , . . . , Qµr) = ±vAsB
Qµm +

∑
γ�µm

cγ(s)Qγ


where the function cγ(s) has no poles at s = 0, and � denotes the natural order on
partitions.

7. A HOMOLOGICAL VERSION

Theorem 4.1 is an equality of Euler characteristics: this is evident for the left hand
side ∑`,n≥0 s

2`(−v2)nχtop(C [`,`+n]
p ), but, thanks to the work of Khovanov and Rozansky

[15], the HOMFLY-PT polynomial turns out to be the Euler characteristic of a complex
as well. More precisely, for every link L, there are the triply graded knot homology
groups Hi,j,k(L), such that, up to some normalization (see the discussion in [31] for the
numbering conventions),∑

i,j,k

(−1)kvisj dimHi,j,k(L) = P(L, v, s).

It is natural to consider the “superpolynomial”

(74) P(v, s, t) =
∑
i,j,k

tkvisj dimHi,j,k(L),
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specializing to the HOMFLY-PT for t = −1, and wonder whether it has an algebraic
geometric interpretation, in the spirit of Theorem 4.1.

Example 7.1. — If L is the trefoil knot, then

P(v, s, t) = vt+ v−1

s−1 − s
(
v2s−2 + v4t3 + v2s2t2

)
.

On the other hand, a polynomial invariant of an algebraic variety which is finer than
the Euler characteristic is the weight polynomial: its definition is based on the theory
of mixed Hodge structures, created by P. Deligne in the early ’70’s. The cohomology
groups with rational coefficients, compactly supported or not, of a complex algebraic
variety are endowed with an increasing filtration W•, the weight filtration, natural with
respect to all the maps between cohomology groups induced by maps of the correspond-
ing varieties. An important property of the weight filtration is that these maps between
cohomology groups are strict with respect to it: if

0→ H1 → H2 → H3 → 0

is an exact sequence of mixed Hodge structures, then for every k

0→ GrWk H1 → GrWk H2 → GrWk H3 → 0

is exact. If X is a complex algebraic variety, we set

w(X) :=
∑
j,k

(−1)j+ktk dim GrWk Hj
c(X).

For instancew(C) = t2, andw(C×) = t2−1, since H1
c(C×) has dimension one and weight

zero. Note that if for every i we have GrWi Hi
c(X) = Hi

c(X), as in the case of nonsingular
proper varieties, then w(X) = ∑

k t
k dim Hk

c (X) is just the Poincaré polynomial. The
most important property of the weight polynomial is its additivity: if Y ⊂ X is a closed
algebraic subvariety of X, then w(X) = w(Y ) +w(X \ Y ), which follows from the fact
that the long exact sequence

. . .→ Hi
c(Y )→ Hi

c(X)→ Hi
c(X \ Y )→ Hi+1

c (Y )→ . . .

is an exact sequence of mixed Hodge structures, and the strictness property above.
In [31], Oblomkov, Rasmussen and Shende conjecture a “homological” refinement

of Eq. (14), for which they provide some evidence, relating the superpolynomial of
the algebraic link L with the generating function for the weight polynomials of nested
Hilbert schemes:

Conjecture 7.2. — Let L be the link of a plane curve singularity (C, p) Then:

(75) P(L, v, s, t) =
(
v

s

)µ(f)−1∑
l,m

s2lv2mtm
2
w(C [l,l+m]

p ).

Recent development and perspectives on the new emerging picture on algebraic links,
stemming from this conjecture, are thoroughly discussed in the lecture notes [29, 30].



1560–30

ACKNOWLEDGMENTS

It is a pleasure to thank N. Bourbaki for giving me the honor of delivering this
seminar, D. Maulik for writing the beautiful paper [24] and for his help in preparing this
text, and J. Fresán for his many comments and suggestions. Finally, I thank my friends
of the Algebra and Geometry group in Bologna for listening to my preparatory talks,
helping me to clarify some points and get some computations right: Nicoletta, Fabrizio,
Giovanni, Luca, Stefano, with Andrea Maffei, who also made precious comments on a
first draft of the paper, as a special guest.

REFERENCES

[1] A. Aiston, Skein theoretic idempotents of Hecke algebras
and quantum group invariants, Ph.D. thesis, available at
http://www.liverpool.ac.uk/ su14/paper/aistonthesis.pdf

[2] A. Aiston, H. Morton, Idempotents of Hecke algebras of type A, J. Knot Theory
Ramifications 7 (1998), no. 4, 463-487.

[3] M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London.
Ser. A 247 1958 237–244.

[4] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613-
632.

[5] T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc.
24 (2011), 969-998.

[6] J. Calabrese, Donaldson-Thomas Invariants and Flops, J. Reine Angew. Math.
716 (2016), 103–145.

[7] A. Campillo, F. Delgado, S.M. Gusein-Zade The Alexander polynomial of a plane
curve singularity via the ring of functions on it, Duke Math. J. 117 (2003), no. 1,
125–156.

[8] E. Diaconescu, Z. Hua, Y. Soibelman, HOMFLY polynomials, stable pairs and
motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 6 (2012),
no. 3, 517–600.

[9] E. Diaconescu, V. Shende, C. Vafa, Large N duality, Lagrangian cycles, and alge-
braic knots, Comm. Math Phys. 319, (2013), no. 3, 813–863.

[10] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane
curve singularities. Annals of Mathematics Studies, 110. Princeton University
Press, Princeton, NJ, 1985.

[11] W. Fulton, J. Harris, Representation Theory. A first course, Graduate Texts in
Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.

[12] A. Gyoja, A q-analogue of Young symmetrizer. Osaka J. Math. 23 (1986), no. 4,
841-852.



1560–31

[13] J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter,
A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985)
239-246.

[14] C. Kassel, V. Turaev, Braid Groups, Graduate Texts in Mathematics, 247.
Springer, New York, 2008.

[15] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, II, Geom.
Topol. 12 (2008), no. 3, 1387-1425.

[16] Y. Konishi, S. Minabe. Flop invariance of the topological vertex. Internat. J. Math.
19 (2008), no. 1, 27-45.

[17] J. Le Potier, Systemes cohérents et structures de niveau Astérisque 214, (1993).
[18] J. Le Potier, Faisceaux semi-stables et systemes cohérents. In: Vector Bundles in

Algebraic Geometry, Durham, 1993. London Math. Soc. Lecture Note Ser., vol.
208, pp. 179–239. Cambridge Univ. Press, Cambridge (1995).

[19] W.B.R. Lickorish, An introduction to the theory of knots, Graduate Texts in
Mathematics, 175. Springer-Verlag, New York, 1997.

[20] S. Lukac, Idempotents of the Hecke algebra become Schur functions in the skein
of the annulus, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 79-96.

[21] S. Lukac, HOMFLY skeins and the Hopf link, Ph. D. thesis, available at
http://www.liv.ac.uk/ su14/papers/lukacthesis.pdf.

[22] S. Lukac, H. Morton, The HOMFLY polynomial of the decorated Hopf link, J. Knot
Theory Ramifications 12 (2003), no. 3, 395-416.

[23] I.G. Macdonald, Symmetric functions and Hall polynomial, Second edition, Oxford
Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University
Press, New York, 2015. xii+475 pp.

[24] D. Maulik, Stable pairs and the HOMFLY polynomial. Invent. Math. 204 (2016),
no. 2, 787-831.

[25] J. Milnor, Singular points of complex hypersurfaces. Annals of Mathematics Stud-
ies, No. 61 Princeton University Press, Princeton, N.J.

[26] H. Morton, P. Manchón, Geometrical relations and plethysms in the HOMFLY
skein of the annulus. J. Lond. Math. Soc. (2) 78 (2008), no. 2, 305-328.

[27] H. Nakajima, Lectures on the Hilbert Schemes of points on surfaces, University
Lecture Series, vol.18, Amer.Math.Soc. Providence, RI,1988.

[28] W. Neumann, Topology of hypersurface singularities., Erich Kaehler: Mathematis-
che Werke, R. Berndt and O. Riemenschneider eds., (de Gruyter 2003), 727-736.

[29] S. Nawata, A. Oblomkov, Lectures on knot homology, Physics and mathematics of
link homology 137–177, Contemp. Math., 680, Centre Rech. Math. Proc., Amer.
Math. Soc., Providence, RI, 2016.

[30] A. Oblomkov, Notes on matrix factorizations and knot homology, Notes for the
CIME Summer School June 2018, arXiv:1901.04052



1560–32

[31] A. Oblomkov, J. Rasmussen, V. Shende, with appendix by E. Gorsky, The Hilbert
scheme of a plane curve singularity and the HOMFLY homology of its link., Geom.
Topol. 22 (2018), no. 2, 645–691.

[32] A. Oblomkov, V. Shende, The Hilbert scheme of a plane curve singularity and
the HOMFLY polynomial of its link, Duke Mathematical Journal 161,7, (2012),
1277-1303.

[33] J. Przytycki and P. Traczyk, Conway Algebras and Skein Equivalence of Links,
Proc. Amer. Math. Soc. 100 (1987) 744–748.

[34] R. Pandharipande, R. Thomas, Curve counting via stable pairs in the derived cat-
egory. Invent. Math. 178 (2009), 407-447.

[35] R. Pandharipande, R. Thomas, Stable pairs and BPS invariants, J. Amer. Math.
Soc. 23 (2010), no. 1, 267–297.

[36] R. Pandharipande, R. Thomas, 13/2 ways of counting curves. in Moduli spaces,
282–333, London Math. Soc. Lecture Note Ser., 411, Cambridge Univ. Press, Cam-
bridge, 2014.

[37] R. Pandharipande, R. Thomas, The 3-fold vertex via stable pairs. Geom. Topol.
13 (2009), no. 4, 1835-1876.

[38] N. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quan-
tum groups. Comm. Math. Phys. 127 (1990), 1–26.

[39] N. Reshetikhin, N. Turaev, Invariants of 3 -manifolds via link polynomials and
quantum groups. Invent. Math.103(1991), 547–597.

[40] D. Sullivan, Combinatorial invariants of analytic spaces, Proceedings of Liverpool
Singularities Symposium I Lecture Notes in Mathematics Volume 192, 1971, 165-
177.

[41] J. Stoppa, R. Thomas, Hilbert schemes and stable pairs: GIT and derived category
wall crossings, Bull. SMF. 139, 297-339, 2011.

[42] V. Turaev, The Conway and Kauffman modules of a solid torus. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167, 1988, Issled. Topol. 6,
79–89 (Russian), English translation: J. Soviet Math. 52 (1990), 2799–2805.

[43] C.T.C. Wall, Singular points of plane curves. London Mathematical Society Stu-
dent Texts, 63. Cambridge University Press, Cambridge, 2004.

Luca Migliorini
Dipartimento di Matematica,
Università di Bologna,
Piazza Porta S. Donato 5,
40126 Bologna ITALY
E-mail : luca.migliorini@unibo.it


	Copertina_postprint_IRIS_UNIBO (2)
	Exp1160-Migliorini.pdf



