

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, nonmarine ecosystem from the late Campanian of west-Central Alberta, Canada / Fanti F.; Bell P.R.; Vavrek M.; Larson D.; Koppelhus E.; Sissons R.L.; Langone A.; Campione N.E.; Sullivan C.. - In: PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY. - ISSN 0031-0182. - ELETTRONICO. -592:(2022), pp. 110923.110923.110923.110940. [10.1016/j.palaeo.2022.110923] *Availability:*

This version is available at: https://hdl.handle.net/11585/879403 since: 2023-01-11

Published:

DOI: http://doi.org/10.1016/j.palaeo.2022.110923

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Fanti F.; Bell P.R.; Vavrek M.; Larson D.; Koppelhus E.; Sissons R.L.; Langone A.; Campione N.E.; Sullivan C.: *Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada*

PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, vol. 592 ISSN 0031-0182

DOI: 10.1016/j.palaeo.2022.110923

The final published version is available online at:

https://dx.doi.org/10.1016/j.palaeo.2022.110923

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

2	
3	
4	Filling the Bearpaw Gapgap: evidence for palaeoenvironment-driven taxon
5	distribution in a diverse, non-marine ecosystem from the late Campanian of
6	west-central Alberta, Canada.
7	
8	Fanti F. ^{1*} , Bell, P.R. ² , Vavrek, M. ³ , Larson, D ⁴ , Koppelhus, F. ⁵ , Sissons, R. L. ⁵ , Langone, A. ⁶ ,
õ	Compione N E 2 Sulliver C 4,7
7	Campione, N.E., Sumvan C.
10	
11	
12	¹ Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum, Università di Bologna, 40126
13	Bologna, Italy; <u>federico.fanti@unibo.it</u>
14	² Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale,
15	New South Wales 2351, Australia; <u>pbell23@une.edu.au</u> ; <u>nicolas.campione@gmail.comncampion@une.edu.au</u>
16	³ Grande Prairie, T8W 2L5, Canada; <u>matthew@matthewvavrek.com</u>
17	⁴ Royal BC Museum, Victoria, British Columbia V8W 9W2, Canada; <u>dlarson@royalbcmuseum.bc.ca</u>
18	⁵ Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; ebk@ualberta.ca;
19	robin.sissons@gmail.com; corwin1@ualberta.ca
20	⁶ Istituto di Geoscienze e Georisorse, Consiglio Nazionle delle Ricerche, 27100 Pavia, Italy; <u>langone@crystal.unipv.it</u>
21	² Philip J. Currie Dinosaur Museum, Wembley, Alberta T0H 3S0, Canada
22	
23	
24	
25	*corresponding author. Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum,
26	Università di Bologna, 40126 Bologna, Italy; <u>federico.fanti@unibo.it</u>
27	
28	

29 Abstract

30 Patterns of Late Cretaceous terrestrial vertebrate diversity across North America have been interpreted primarily in terms of biogeographic provincialism driven by latitude and/or coastal-31 32 inland habitat gradients. A major difficulty in determining the influence of these two gradients is the existence of some large gaps in the terrestrial fossil record, notably the 'Bearpaw gap' caused by a 33 34 transgression of the inland Bearpaw Seaway during the latter part of the Campanian. In this context, 35 the terrestrial fauna preserved in the Campanian deposits of the Wapiti Formation (west-central Alberta, Canada) provides is unequalled crucial contribution to for addressing the information 36 37 deficit. Deposited at the edge of the palaeo-circumpolar region, Unit 3 of the strictly terrestrial 38 Wapiti Formation (WU3) is coeval with the 'Bearpaw gap', a erucial-period when the terrestrial 39 record from better-sampled areas elsewhere in Canada and the U.S.A. gives way to marine 40 sediments. Here we show, based largely on evidence from the recently_discovered DC (Dinosaur-41 Chelonian) Bonebed locality, that the diverse WU3 vertebrate fauna share similarities with lowland 42 to marginal marine ecosystems in the Oldman and Dinosaur Park formations which were deposited 43 in southern Alberta prior to the Bearpaw gap. shares striking similarities with lowland to marginal marine ecosystems recording the initial phases of the Bearpaw transgression in the older Dinosaur 44 45 Park Formation and with the onset of the Dinosaur Park Formation over the Oldman Formation in 46 southern Alberta. In addition, a major change in faunal composition demarcates the upper boundary 47 of WU3, related to the disappearance of the Bearpaw Sea in Canada. Data presented here help, first 48 and foremost, to bridge an ~1.2-million-year gap in the North American record of Campanian 49 terrestrial vertebrates. Resemblances between the WU3 vertebrate fauna and slightly older 50 assemblages from southern Alberta underline underscore the importance in of determining the 51 spatiotemporal evolution of environmental factors (e.g., coastal proximity). The occurrence of 52 endemic forms and differences in relative taxon abundance may suggest that additional latitude-53 correlated factors, implicating both latitudinal and coastal-inland habitat gradients also exerted an 54 important influence on- in driving the taxonomic composition of Late Cretaceous terrestrial faunas.

55

56 Keywords: 6 -Microvertebrate; Campanian; Alberta; Bearpaw; Western Interior Seaway; Dinosaur 57 Park Formation; Wapiti Formation 58 59 1. Introduction 60 The Late Cretaceous terrestrial faunas of western North America provide one of the richest 61 availablebest datasets for unravelling potential relationships between fossil vertebrate communities 62 and palaeoenvironmental factors. In southern Alberta, where this record is arguably more 63 comprehensive than almost anywhere else in the world (Currie and Koppelhus, 2005ref), the marine Bearpaw Formation-a northern expression of the epicontinental Western Interior Seaway and 64 equivalent to ~1.5 million years of Campanian time (Hathway, 2016)-stands as a major 65 biochronological gap between the rich terrestrial faunal assemblages of the late Campanian 66 Dinosaur Park Formation (the upper part of the Belly River Group) and late Campanian-67 -Maastrichtian Horseshoe Canyon Formation (hereafter HSCHCHC Formation; the lower part of 68 69 the Edmonton Group). Despite recent advances in understanding patterns of palaeoecological 70 change through time across this interval, including the recognition of spatiotemporally discrete 71 terrestrial vertebrate 'biozones' inferred to have been associated with differing different 72 environmental and climatic conditions (Ryan and Evans, 2005; Larson et al., 2010; Mallon et al., 73 2012; Eberth et al., 2013; Eberth and Kamo, 2020), the break-hiatus in terrestrial deposition 74 represented by the Bearpaw Formation is a major hindrance in tracing evolutionary changes and 75 evaluating possible influences on terrestrial community structure between the Dinosaur Park and Horseshoe Canyon formations. The Bearpaw Formation accumulated diachronously over much of 76 77 the Western Interior Basin (WIB) of Canada and the United States between from approximately ~7476 and 73 Ma (Rogers et al., 2016; Eberth and Kamo, 2020; Zubalich et al., 2021) and 78 79 separates the clastic wedges of the Belly River and Edmonton g-Groups, both renowned for the 80 information their remarkable fossil records provide on vertebrate evolution and diversity in-from the

81	Late Cretaceous (Currie and Koppelhus, 2005; Eberth and Braman, 2012; Eberth et al., 2013;
82	Cullen and Evans, 2016; Gilbert and Bamforth, 2017). Here we refer to this terrestrial fossil record
83	hiatus in the terrestrial fossil record as the 'Bearpaw gap'.
84	Environmental gradients (e.g., between coastal and more inland environments) have an
85	important influence, alongside latitudinal gradients and many other abiotic factors, on the
86	distribution and diversity of modern faunas (Whittaker 1975; Hillebrand, 2004; Drakare et al.,
87	2006) and therefore must be taken into account considered when interpreting species distribution in
88	the fossil record. For example, (palaeo)latitudinal climatic gradients may explain observed north-
89	south faunal variations, including instances of endemism, whereas environmental gradients may
90	explain the existence of disparate, yet contemporaneous, ecological communities in strata deposited
91	in different settings. Therefore, bBoth latitudinal and environmental gradients have previously been
92	interpreted represent potentially important influences as important factors driving determinants of on
93	the composition of the faunas that existed in the Late Cretaceousthe faunal compositionduring the
94	evolution of across of faunas existing near the Western Interior Seaway during the Late Cretaceous
95	(e.g., Brinkman 1990; Lehman 1987, 2001; Sampson et al. 2010; Sampson and Loewen 2010;
96	Burgener et al., 2021; though also see Sullivan and Lucas, 2006; Vavrek and Larsson 2010; and
97	Lucas et al., 2016 for critical views). However, the current literature contains few well-constrained
98	studies of the interaction interplay between latitudinal and depositional gradients during the Late
99	Cretaceous and that show how such interactions may could have shaped the vertebrate communities
100	of the time. Furthermore, the dynamics and ecological consequences of complex, large-scale Earth
101	system events (e.g., major transgressions and regressions), capable of reshaping the geography and
102	environment of entire depositional basins, have been addressed only at a conceptual level
103	(Weishampel and Horner, 1987; Horner et al., 1992; Upchurch et al., 2002; Brinkman, 2003; Bell
104	and Snively, 2008; Butler and Barrett, 2008; Fanti and Miyashita, 2009; Mannion et al., 2012, 2014;
105	Lucas et al., 2016; Chiarenza et al., 2019). This dearth of information is primarily due to the lack of
 106	geographic and temporal continuity among fossil-bearing localities, combined with difficulties in

107 tracing time-representative surfaces across multiple non-marineterrestrial sedimentary units (Sullivan and Lucas, 2006; Holland and Loughney, 2021). 108 109 The terrestrial fauna preserved in the Upper Cretaceous Wapiti Formation of west-central 110 Alberta, Canada, has emerged as a source of important palaeontological and geological information 111 that contributes significantly to addressing these shortfalls. The Wapiti-formation's clastic wedge 112 extends from the city of Edmonton, Alberta, to easternmost British Columbia, yet virtuallyalmost 113 all fossil localities known to date are in the vicinity of the city of Grande Prairie, where major and 114 minor drainage systems have provided the best exposures of this unit along the banks of waterway 115 bankss of waterways (Fig. 1). As such, fossils collected from the Wapiti Formation are not only 116 geographically isolated within Alberta, but also, in the North American framework, located between the world-renowned localities of southern Alberta (e.g., Currie and Koppelhus, 2005; Eberth et al., 117 118 2013; Cullen and Evans, 2016) and the near-palaeopolar deposits of Alaska (e.g. Fiorillo, 2018). 119 The Wapiti Formation fossil record is also distinctive in two key respects. First, it comes 20 exclusively from non-marineterrestrial (albeit potentially near-coastal, see Zubalich et al., 2021) 121 strata representing about 8 million years of Campanian-Maastrichtian time, critically including the 122 interval represented elsewhere in western North America by coastal and marine deposits of the 123 Bearpaw Formation. Second, the Wapiti Formation in the study area around Grande Prairie was 124 deposited at a palaeolatitude close to 60°N (Matthews et al., 2016), so its fossil assemblages are 125 unusual in representings multiple a rare example of a high-latitude Late Cretaceous community, or 126 rather multiple communities that succeeded one another over a period of across the 8 Ma timespan. 127 Over the last decade, an increasing number of papers have described the diverse vertebrate fossil 128 record of the Wapiti Formation, documenting some of the richest Cretaceous fossil sites in North 129 America (Currie et al., 2008; Fanti and Miyashita, 2009; Bell et al., 2014; Fanti et al., 2015; Bell 130 and Currie, 2016; Holland et al., 2021), remarkably preserved individual specimens (Nydam et al., 131 2010; Bell et al., 2013a, 2014; Barbi et al., 2019), and diverse ichnofossil assemblages (Bell et al., 132 2013b; Fanti et al., 2013; Enriquez et al., 2020, 2021, 2022).

133	Here we introduce a new, highly informative multitaxic bonebed, referred to as the DC	
134	(Dinosaur-Chelonian (DC)) Bonebed, which displays a high taxonomic diversity of well-preserved,	
135	and typically small (≤ 10 cm), plant remains and vertebrate bones and teethremains. The bonebed is	
136	situated within Wapiti Formation Unit 3 (sensu Fanti and Catuneanu, 2009, 2010; hereafter WU3),	
137	a stratigraphic interval deposited in a lowland, terrestrial environment during the peak transgression	
138	of the Bearpaw Formation. We provide new chronostratigraphic and palynological data to further	
139	constrain the age of the Wapiti faunal assemblage from the DC Bonebed_{ $st}$ and discuss its	
140	significance in the context of western Canada's Campanian fossil record. Finally, we compare the	
141	WU3 vertebrate fauna with other Late Cretaceous assemblages from Alberta and explore the	
142	implications for interpreting palaeoenvironmental influences on patterns of faunal evolution in	
143	northern Laramidia.	
144		
145	Institutional abbreviations: TMP, Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta,	
146	Canada; UALVP, University of Alberta Laboratory for Vertebrate Palaeontology, Edmonton,	
147	Alberta, Canada.	
148		
149	2. Geographic and Geological Setting	
150	The diachronous and, complex, stratigraphic interval represented by the Bearpaw Formation	Formattato: Tipo di carattere: Non Grassetto
151	across the northern U.S. (Montana) and western Canada (Alberta and Saskatchewan) encompasses a	
152	time intervalperiod of approximately 3 Ma during the Campanian (~76-73 Ma). In Montana, the	
153	onset of transgressive conditions is documented at ~76 Ma in the contemporaneous deposits of the	
154	Woodhawk Member of the Judith River Formation, whereas the base of the Bearpaw Formation is	Formattato: Inglese (Stati Uniti)
155	dated at 75.2 Ma (Rogers, 1998; Rogers et al., 2016). In Alberta, the Bearpaw Formation represents	
156	a reference marine interval that accumulated between ~74.3-73.1 Ma (Eberth and Kamo, 2020;	
157	Zubalich et al., 2021; Figs. 1A, 2). It overlies the clastic deposits of the Belly River Group and	
158	underlies the Edmonton Group, both renowned for their rich and diverse fossil contentvertebrate	

159	faunas (Russell and Chamney, 1967; Dodson, 1971, 1990; Currie and Koppelhus, 2005; Larson et
160	al., 2010; Eberth et al., 2013; Cullen and Evans, 2016). The uppermost subunit of the Belly River
161	Group is the Dinosaur Park Formation, whose upper exposures constitute the Lethbridge Coal Zone,
162	which was deposited predominantly in poorlydrained, swampy environments associated with the
163	onset of the Bearpaw transgression (Eberth, 2005). The overlying Bearpaw Formation consists of
164	lower and upper tongues, bounding the Strathmore Member of the Horseshoe Canyon Formation
165	(Fig. 2). In central Alberta (<i>i.e.</i> , Drumheller-Calgary area), the coal-rich, paralic Strathmore
166	Member has been defined solely by subcrop geophysical (well-log) signatures as the stratigraphic
167	interval confined by the Maximum Flooding Surfaces (MFS) of the lower and upper Bearpaw
168	tongues (Eberth and Braman, 2012; Hathway, 2016; Zubalich et al., 2021). No exposures of the
169	Strathmore Member have been documented or sampled at the time of writing, but recent studies
170	suggest that deposits correlative with the Strathmore Member are represented in the WU3 beds
171	exposed in the Grande Prairie region (Fanti and Catuneanu, 2010; Zubalich et al., 2021). Given the
172	fact that the Strathmore Member has been traced using well-logs over much of central and western
173	Alberta (Hathway, 2016; Zubalich et al., 2021), correlative deposits within the Wapiti Formation
174	could provide crucial information in the future about the coastal and terrestrial fauna that existed
175	during the Bearpaw gGap.
176	Immediately overlying the upper Bearpaw tongue, the Drumheller Member, which includes
177	aggrading and prograding paralic and coal-rich deposits, marks the transition into the alluvial
178	deposits of the HSCHC Formation. The Dinosaur Park and HSCHC formations have both been
179	subjects of detailed stratigraphic and palaeontological studies focused on defining dinosaur
180	assemblage zones (Ryan and Evans, 2005; Mallon et al., 2012; Eberth et al., 2013). However, the
181	intervening Bearpaw gap represents a major interruption in the latest Cretaceous terrestrial fossil
182	record, limiting our comprehension of biogeography, evolution, and ecology during a part of the

- 83 Campanian elearly characterized by dynamic environmental and global change and, accordingly,
- rapid biological turnover. <u>As this paper focuses primarily on the Alberta geological and</u>

185	palaeontological records, the Bearpaw gap refers here to deposits overlying the Dinosaur Park	
186	Formation and underlying the Drumheller Member of the HCHSCHC Fm (see Rogers et al., 2016	
187	and Zubalich et al., 2021 for discussion). Exposures of paralic and marine sediments from this	
188	interval are restricted to more southerly parts of the province and do not occur in any part of the	
189	Wapiti Formation. However, integrated subsurface, outcrop and palaeontological data indicate that	
190	the fine-grained, non-marineterrestrial deposits of WU3 are correlative with the Bearpaw Formation	
191	of central Alberta (Fanti and Catuneanu, 2010; Zubalich et al., 2021). Sedimentological and	
192	palaeontological data also indicate that WU3 was deposited in extensive lowland environments	
193	located near (<i>i.e.</i> , within tens of kilometres offrom) the palaeo-shoreline (Fanti and Miyashita, 2009,	Formattato: Tipo di carattere: Corsivo
194	Fanti and Catuneanu, 2010; Schröder-Adams, 2014; Koppelhus and Fanti, 2019, Chiarenza et al.,	
195	2019; Zubalich et al., 2021; this study).	
196		
197	3. Geology and stratigraphic correlation	
198	Wapiti Formation Unit 3 (sensu Fanti and Catuneanu 2009, 2010) includes fine-grained	
199	floodplain deposits, bentonitic palaeosols, lenticular organic-rich mudstones, coal seams, and peat	
200	horizons deposited by or associated with high-sinuosity, aggrading channels. This unit and its fossil	
201	content-have been were primarily discussed by Fanti and Miyashita (2009), who described the WU3	
202	fauna of the Kleskun Hill locality. ² As-Wapiti Formation Unit 3 described, WU3-is characterized by	
203	low-energy environments, fine-grained sediments and high accumulation rates, resulting in a high n	
204	increased-preservation potential for vertebrate remains (Haubold, 1989; Butler et al., 2010; Fanti	
205	and Miyashita, 2009). and in several conference abstracts focusing on The the newly discovered DC	
206	Bonebed located approximately 10 km southeast of Grande Prairie on the north bank of	
207	the Wapiti River (55°3'55"N, 118°41'25"W; Fig. 1)-also. It lies within-pertains to-WU3 and is	
208	described herein. WU3 is also characterized by low-energy environments, fine grained sediments	
209	and high accumulation rates, resulting in an increased preservation potential for vertebrate remains	
210	(Haubold, 1989; Butler et al., 2010; Fanti and Miyashita, 2009). The DC Bonebed provides further	

211	insight into the sedimentology, facies analyses, and depositional architecture of WU3. Exposures
212	along the north bank of the Wapiti River near the DC Bonebed consist of tabular mudstone and
213	siltstone interbedded with minor channel sandstones and lenticular coal seams. The DC Bonebed
214	occurs at the base of a single-storey, laterally isolated channel deposit exposed approximately
215	transverse to the palaeo-flow direction (NESW; Fig. 3). The deposit contains point bars that are
216	vertically stacked, slightly asymmetric, and succession-dominated, suggesting a low rate of channel
217	migration/avulsion. The preservation of palaeochannel geometries permits discrimination of several
218	stages of point bar aggradation, and recognition of correlative overbank and inner levee surfaces.
219	The point bars are relatively thin, each being no thicker than < 40 cm, and lack fine-grained
220	components but display slightly erosive bases with common claychips and rip-up clasts. The
221	sandstone of the channel deposit is organic-rich and contains rare leaf impressions, conifer cones,
222	and unidentified seeds. Overall, w <u>We</u> in ferterpret that the deposits that include the DC Bonebed as
223	having been laid down by an aggrading fluvial systeman aggrading fluvial system in a
224	distal/backswamp floodplain laid down the deposits that include the DC Bonebed-in a
225	distal/backswamp floodplain. Sedimentological observations and facies associations indicate that
226	the sediments accumulated in the vicinity of a low-energy river system. For this study, additional
227	geological sections were measured along 18 km of the Wapiti River and integrated with each other
228	and-with those presented previously for Kleskun Hill (Fanti and Miyashita, 2009), Pipestone Creek
229	(Fanti and Currie, 2007; Currie et al., 2008), and other exposures in the Grande Prairie area (Fanti,
230	2009, Fanti and Catuneanu 2009). The new composite section of WU3 in the Grande Prairie area
231	documents the unit's major lithologies, facies distributions, and taxon occurrences. Mud-dominated
232	facies, frequent bentonitic layers, well-developed coal seams and peat deposits are present,
233	consistent with a water-saturated environment (see also Fanti and Miyashita, 2009; Koppelhus and
234	Fanti, 2019).

235

236 3.1 U-Pb dating

237	Samples were processed from three bentonite beds, respectively located stratigraphically 11
238	m below (Horizon B Lower bentonite, HBL), 10 m below (Horizon B Top bentonite, HBT) $_{\!\scriptscriptstyle \Delta}$ and 25
239	m above (Highway 40 bentonite, HW40) the DC Bonebed. Zircon grains provided a weighted
240	average age of 75.26 ± 0.8 Ma for the HBL bentonite, 73.5 ± 0.8 Ma for the HBT bentonite, and
241	72.4±0.7 Ma for the HW40 bentonite (see Suppl. Material). These new chronostratigraphic
242	constraints for WU3 are crucial for correlating the fossil sites discussed in this paper with the well-
243	sampled localities of central and southern Alberta (Fig. 2). Eberth and Kamo (2020) provided a
244	high-precision chronostratigraphy of the Bearpaw and Horseshoe Canyon Formations based on U-
245	Pb CA-ID-TIMS ages. They dated the base of the Bearpaw Formation in southern Alberta to 74.4 \pm
246	0.1 Ma, and a bentonite situated 5.5 m above the base of the formation to 74.308 ± 0.031 Ma.
247	Similarly, Eberth et al. (2016) provided a $^{206}\text{Pb}/^{238}\text{U}$ date of 74.26 \pm 0.03 Ma for the basalmost
248	deposits of the Bearpaw Formation in central Alberta. Eberth and Kamo (2020) revised the age of
249	the Dorothy Bentonite, which occurs near the base of the upper Bearpaw tongue in southern
250	Alberta, to 73.7 ± 0.1 Ma. This bentonite was used to mark the top of the Strathmore Member of the
251	HSCHC Formation by Eberth and Braman (2012) and marks the transition from the
252	Pseudoaquilapollenites parallelus_Parviprojectus leucocephalus palynostratigraphic biozone to
253	the Wodehouseia gracileMancicorpus glaber biozone (Braman, 2018; Eberth and Kamo, 2020
254	and below).
255	
256	3.2 Palynology
257	The palynological assemblage from the DC Bonebed includes abundant fern spores and
258	pollen from conifers and angiosperms. Eighteen species of fern spore, including microspores from
259	heterosporous aquatic ferns, are present in the DC Bonebed sample. In some cases, they are still
260	encased in the microsporangia (massulae) and have characteristic anchor-shaped glochidia.
261	Fragmentary megaspores, including identifiable examples of Ariadnesporites, Azolla and

Ghoshispora, are also present. Bisaccate conifer pollen grains are abundant but do not provide

262

263	meaningful chronostratigraphic information, as they represent morphotypes that have with long
264	stratigraphic ranges. Approximately 25 species of angiosperm were identified (see Supplementary
265	Material), many of which are represented by only a few specimens. A few of these species have
266	relatively short stratigraphic ranges (Fig. 4). The angiosperm palynomorphs are mostly of the
267	triprojectate type that is common in the Upper Cretaceous of North America, but their known
268	temporal ranges (Braman 2013, 2018) vary considerably. Accuratipollis glomeratus has the shortest
269	range, centered at about ~75 Ma in southern Alberta (Braman 2018) and falling entirely within the
270	Aquilapollenites configuratus-Mancicorpus tripodiformis palyno-stratigraphic biozone, which
271	extends from 75.5 to 74.5 Ma. However, this zonation is based on samples from southern Alberta,
272	whereas very little is known about the palyno-stratigraphy of the Wapiti Formation. Other
273	angiosperm pollen types from the DC Bonebed have longer ranges that suggest the DC Bonebed
274	assemblage belongs to the Pseudoaquilapollenites parallelusParviprojectus leucocephalus
275	palyno-stratigraphic biozone, which ranges from 74.5 to 73.7 Ma (Braman 2018; Fig. 4). These
276	results is suggests that the range of Accuratipollis glomeratus might in fact be have a longer range
277	than previously proposed, extending into the Pseudoaquilapollenites parallelus-Parviprojectus
 278	leucocephalus biozone.
279	With regard to the depositional environment, the identified megaspores and microspores
280	(Aridanesporites, Azolla, Ghoshispora) are characteristic of fresh, quiet water environments
281	(Srivastava and Braman, 2013). Zygospores of presumed freshwater algae (Botryococcus,
282	Lecaniella, Pediastrum and Savitrina) which that occupy similar habitats are also relatively
283	common in the sample. Taken together, the data suggest that shallow, marginal lacustrine settings,
284	or other quiet water environments were prevalent near the channel belt in which the DC Bonebed
285	was deposited (Nagy,1966; Yi 1997; Head 1992; Worobiec 2014).
286	The palynological evidence therefore corroborates the radiometric data presented above,
287	andabove, and reinforcinges the conclusion that WU3 and its non-marineterrestrial vertebrate fauna

are time-equivalent to the Bearpaw Formation of southern Alberta, particularly and most likely to

288

the Strathmore Member (HSCHC Formation) and the upper tongue of the Bearpaw Formation in
 central Alberta.

. 291

292 4. Vertebrate Palaeontology

293 Fossil vertebrate localities representing WU3 in the Grande Prairie region include the 294 Kleskun Hill and DC Bonebed microfossil localities, the Spring Creek lambeosaurine Bonebed 295 (Holland et al., 2021), and, potentially, the well-known Pipestone Creek Pachyrhinosaurus Bonebed (Fanti and Miyashita, 2009; Nydam et al., 2010; Currie et al., 2008; Bell and Currie, 2016; 296 297 Cocks et al., 2020; this paper). Regarding the age of the latter, Eberth (in Currie et al. 2008) 298 reported an age of 73.27±0.25 Mya, which would place it in the upper part of WU3; however, this 299 age should be regarded as uncertainwith caution, as they were it was based on few crystals and proper methodological information details were waserenot never formally published (David A. \$00 \$01 Eberth pers. comm, to F.F.). The Pipestone Creek Bonebed preserves what appear to be the remains 302 of a herd of the centrosaurine ceratopsid dinosaur Pachyrhinosaurus lakustai interspersed with 303 much smaller numbers of other fossils (Currie et al. 2008). The depositional setting is consistent 304 with the overlying, high-energy fluvial deposits of Wapiti Unit 4, which is dominated by a mixture 305 of isolated dinosaur skeletons and massive, monospecific bonebeds (e.g., Bell et al., 2014; Fanti et 306 al. 2015), and from which no highly productive microsites are so far known. Therefore, pending \$07 more accurate dating of this site, we refer the Pipestone Creek bonebed-is here referred to the \$08 basalmost deposits of Wapiti Formation Unit 4 (see also Cocks et al., 2020). \$09 A complete full-systematic review of the WU3 vertebrate assemblageDC Bbonebed \$10 assemblage, with justifications for our taxonomic identifications, can be found in the 311 Supplementary Material, and only the most salient aspects of the assemblage are considered here. \$12 The two-WU3 microsites, namely namely Kleskun Hill and the new DC Bonebed locality₂₇ are both \$13 highly informative. Kleskun Hill is a well-known has long been known as a source of a of the

\$14 remains of a diverse terrestrial and freshwater aquatic fossils-(include freshwater aquatic taxa) and to

Formattato: Tipo di carattere: Corsivo

315	some extent freshwater palaeocommunity, notably containing including fish, squamates,	
316	Cehampsosauruids, large and small theropods, hadrosaurids (including both neonate and adult	
317	specimens), ceratopsids, possible pachycephalosaurids, thescelosaurids, and mammals, and a	
318	possible pachycephalosaurid (Fanti and Miyashita, 2009; Nydam et al., 2010; Fox and Scott, 2010).	
319	However, the DC Bonebed provides important new complementary information regarding the	
320	diversity of the WU3 vertebrate assemblage.	
321	A total of 364 identifiable (below the level of Gnathostomata) vertebrate specimens were	
322	recovered from the DC Bonebed during the years-2014-2019 field seasons. Specimens described in	
323	this paper were collected from different spots within the accretionalry sequence of an individual	
324	channel (Fig. 3). One specimen is a partly articulated skeleton, but the others represent small to	
325	medium-sized individual bones and teeth, primarily collected from a restricted, mud-dominated,	
326	area. Specimens discussed in this paper range in size from 2.,4 to 288 mm-, although 92.5% of all	
327	elements have greatest dimensionsmeasure withinbetween 25 and 60 mm in their greatest	
328	dimension, and 72% measureare <50 mm: therefore, the DC Bonebed is considered as microfossil-	
329	dominated bonebed (sensu Behrensmeyer, 2007; Eberth et al., 2007; see SI2). Abiotic processes	<
330	were most likely responsible for the pervasive disarticulation and size-based sorting observed at the	
331	DC Bonebed.	
332	Fish account for some 25.8% of the specimens in the sample, whereas the remainder	
333	represent are tetrapods, including lissamphibians (0.5% of the total), turtles (17.6%),	
334	Champsosaurus (6.6%), squamates (0.5%), eusuchian crocodyliforms (0.8%), dinosaurs (33.5%).	
335	and mammals (0.5%). The remaining specimens (14.32%) in the available sample could be referred	
336	only tonot be classified beyond indeterminate Archosauria, Reptilia, or Tetrapoda.	
337	Lepisosteid (gar) remains (Fig. 5H_J) are the most abundant fish elements at the DC	

- Bonebed, with acipenserid (sturgeon) shoulder girdle bones and osteoderms (Fig. 5M) as a distant
- \$39 second. Less abundant still are the distinctive hexagonal teeth (Fig. 5E₁-F) and centra (Fig. 5C₁-D)
- 340 of the rhinobatoid (guitarfish) Myledaphus bipartitus. A number of additional osteichthyan skeletal

Formattato: Tipo di carattere: Corsivo Formattato: Tipo di carattere: Corsivo

341	elements not referable to Lepisosteidae or Acipenseridae are also present, notably including a
342	premaxilla of the aspidorhynchid Belonostomus (Fig. 5N-O), three amiid centra (Fig. 5AB), a
343	single scale of the Holostean 'A' morphotype known from southern Alberta (Fig. 5K-L), and a
344	dentary referable to the osteoglossomorph Coriops (Fig. 5G).
345	Among tetrapods, the only amphibian elements from the DC Bonebed are two vertebrae
346	(Fig. 6H) referable to the scapherpet <u>ont</u> id salamander <i>Hedronchus</i> (= <i>Scapherpeton</i> ; <i>see</i> Dubois and
1 347	Frétey, 2019). Turtles are remarkably abundant and diverse at the DC Bonebed, with three major
348	clades represented in the sample (Fig. 6A-E). Nearly half of the turtle elements that can be
349	identified below the level of Testudines pertain to Trionychidae, and many of these specimens are
350	shell fragments referable to Aspideretoides foveatus on the basis of their ornamentation. A partial
351	trionychid skull from the bonebed is reminiscent of the large trionychid Axestemys from the Upper
352	Cretaceous and Palaeocene of western North America (Vitek, 2012; Joyce et al., 2019). Baenid
353	turtle elements are also relatively abundant, and most-including a nearly complete skull-appear
354	referable to Plesiobaena antiqua, a species known from the Campanian of Montana and southern
355	Alberta (Brinkman, 2003; Lyson and Joyce, 2009). Chelydridae are represented by several partial
356	shell elements.
357	Squamates are represented by two large elements, namely a monstersaurian right frontal and
358	an astragalocalcaneum of indeterminate affinities (Fig. 6G). Specimens of the choristodere
359	Champsosaurus are relatively common at the site and include isolated cranial and postcranial
360	elements (Fig. 6F) that are indeterminate at the specific level. Crocodyliforms are extremely rare in
361	the Wapiti Formation, although a single osteoderm has been previously reported from the Pipestone
362	Creek Bonebed (Currie et al., 2008). The DC Bonebed sample includes three small eusuchian teeth
363	(Fig. 61).
364	Among-Oterrestrial the dinosaurian taxa represented in the DC Bonebed, the vast majority
365	of elements are dinosaurian, and most are from ornithischians specimens, which elements

predominate overwhelmingly in the DC Bonebed over theropod ones. Some 12 theseelosaurid

367	elements, representing at least two individuals, are known from the DC Bonebed (Fig. 7D).
368	Unexpectedly, a partial skeleton of an immature lambeosaurine hadrosaurid (UALVP 57103) was
369	collected from a sandstone (pointbar) deposit almost immediately adjacent, in the upstream
370	direction, to the DC Bonebed proper. The taxonomy of this specimen and its implications will be
371	detailed elsewhere. Indeterminate hadrosaurid material accounts for nearly half of all elements from
372	the bonebed that can be identified below the level of Dinosauria (Fig. 7F, G). The bonebed has
373	yielded a single ankylosaurid tooth (Fig. 7A). Non-avian theropods are represented by four
374	tyrannosaurid teeth (Fig. 7C), several dromaeosaurid bones (Fig. 7E), an ornithomimid metacarpal
375	and pubis (Fig. 7H), a troodontid pedal phalanx (Fig. 7B), and three small caenagnathid elements,
376	including an ilium (Fig. 7I), a pubis, and a pair of fused dentaries that we refer to Caenagnathidae
377	cf. Chirostenotes. The only avian specimen is the tarsometatarsus of an undoubtedly aquatic
378	hesperornithiform.
379	The only mammalian specimens from the DC Bonebed are a stagodontid marsupial
380	premolar referable to <i>Eodelphis</i> cf. <i>E. browni</i> , and a partial, indeterminate therian left mandible
381	with the tooth crowns broken away.
382	
383	5. Ecological implicationsy and significance of the WU3 vertebrate assemblage
384	At present, the most ecologically informative single-samples of the WU3 vertebrate fauna

385 areis the diverse assemblage from the DC Bonebed. This is supplemented by and the smaller but 386 similarly diverse sample from Kleskun Hill (also WU3; Fanti and Miyashita, 2009; Nydam et al., 387 2010; Fox and Scott, 2010). Given that the WU3 sample corresponds stratigraphically to the \$88 Bearpaw gap-being younger than the Belly River assemblages of the Oldman and Dinosaur Park formations but older than the 'Edmontonian' assemblages of the HSCHC Formation (excluding the \$89 390 subsurface Strathmore Member)-comparisons to both the Belly River and Edmontonian southern 391 faunas are essential for understanding patterns of temporal and palaeolatitudinal variation in 392 Alberta's Late Cretaceous terrestrial vertebrate record. Microvertebrate samples are particularly

393	significant in this regard, because such samples are informative regarding not onlyproviding	
394	insights intoon the local (alpha)total diversity of the vertebrates fauna and unique knowledge of	
395	but also the relative abundances of specimens of different vertebrate groups. Microvertebrates from	
396	the Oldman, Dinosaur Park _a and $\frac{\text{HSC}}{\text{HC}}$ formations have received considerable research attention	
397	(Brinkman, 1990; Gao and Fox, 1996; Beavan and Russell, 1999; Peng et al., 2001; Larson et al.,	
398	2010; Cullen and Evans, 2016; Oreska and Carrano, 2018), so extensive comparisons to the DC	
399	Bonebed and Kleskun Hill microsamples are possible.	
400	The Oldman Formation underlies the Dinosaur Park Formation in the Dinosaur Provincial	
401	Park area, but upper Oldman strata exposed in the vicinity of Manyberries in southeastern Alberta	
402	appear to have been deposited contemporaneously with the Dinosaur Park Formation of Dinosaur	
403	Provincial Park, albeit in a more inland environment (Eberth and Hamblin, 1993; Cullen and Evans,	F
404	2016; Fanti, pers. obs.). Furthermore, the uppermost part of the Dinosaur Park Formation, called the	
405	Lethbridge Coal Zone, shows a strong marine influence and is faunally and lithologically distinct	
406	from the main portion of the formation, which is predominantly fluvial in origin (Brinkman, 1990;	
407	Beavan and Russell, 1999; Cullen and Evans, 2016). We interpret the voluminous data compiled by	
408	Cullen and Evans (2016) as defining three microsamples pertinent to our study: one from the upper	
409	Oldman strata in the Manyberries area (UO), one from the main, fluvial component of the Dinosaur	
410	Park Formation (DP), and one from the Lethbridge Coal Zone (LC). The three microsamples are	
411	referred to here as the UO, DP and LC microsamples, respectively. Similarly, Larson et al. (2010)	
412	provided comprehensive data on <u>a</u> microsamples from the Morrin and Tolman members of the	
413	HSCHC Formation, which we refer to here as the Morrin-Tolman (MT) microsample, and Fanti and	
414	Miyashita (2009) on a microsample from Kleskun Hill. These various samples have undoubtedly	
415	been influenced by different sets of taphonomic, environmental and ecological biases. For example,	
416	much of the HSCMT microsample described by Larson et al. (2010) comes from a bonebed	
417	dominated by the tyrannosaurid Albertosaurus, guaranteeing high abundance of tyrannosaurid teeth.	
418	Nevertheless, comparisons among them are informative when undertaken with due caution.	
1		

Formattato: Colore carattere: Blu

419	Striking faunal differences exist between the contemporaneous DC Bonebed and Kleskun
420	Hill microsamples (Fig. 8A)., As both sites are from WU3 and only ~23 km apart, and must reflect
421	an environmental and/or taphonomic discrepancy rather than it seems unlikely that these differences
422	are the results of large-scale biogeographic variation or faunal change over time (Fig. 8A). Instead,
423	the differences probably lie inreflect environmental, taphonomic, and/or sampling discrepancies.
424	The DC Bonebed sample is proportionally much richer in aquatic to semi-aquatic taxa, namely fish,
425	turtles, crocodyliforms and <u>Cehampsosaurus</u> , and less rich in presumably terrestrial lizards and
426	dinosaurs (Fig. 8B). Taken together, the eomplementary contemporaneous Kleskun Hill and DC
427	Bonebed assemblages give a broad, if in most respects taxonomically impreciseambiguous, picture
428	of the aquatic and terrestrial taxa that existed in northern Alberta during the late Campanian.
429	Based on the DC Bonebed, the fish component of the WU3 assemblage was dominated by
430	lepisosteids, acipenserids, and Myledaphus, in descending order of abundance. The Myledaphus
431	species present, M. bipartitus, occurs in the Dinosaur Park Formation (Neuman and Brinkman,
432	2005) but is distinct in dental ornamentation from the Myledaphus teeth reported by Larson et al.
433	(2010) in the HSCHC-Morrin and Tolman members (HSCHC Fm) microsample. Although
434	determining numbers of individuals based solely on isolated scales, bones and/or teeth is
435	problematic (based solely on isolated scales and/or teeth), the prominence of acipenserid specimens
436	within the fish fauna is a highly unusual feature of the DC Bonebed. It is notable that
437	acipenseriforms (considered as a whole) did not outnumber Myledaphus (considered together with
438	the similar <i>Pseudomyledaphus</i> , which does not occur at the DC Bonebed) at a single one of the
439	dozens of Upper Cretaceous microsites in southern Alberta included in the analysis of Cullen and
440	Evans (2016). Another peculiarity of the the DC Bonebed is the near-total absence from the DC
441	Bonebed of scales attributable to 'Holostean A', which are overwhelmingly abundant in the HSC
442	Morrin – Tolman members of the Horseshoe Canyon Formation microsample and intermediate in
443	abundance between Myledaphus/Pseudomyledaphus and lepisosteids in the DP and UO
444	microsamples. 'Holostean A' is also the most abundant identifiable fish taxon in the small aquatic

Formattato: Tipo di carattere: Corsivo

445	vertebrate component of the sample from Kleskun Hill. (refs?). Lepisosteids are somewhat less
 446	abundant as a proportion of the fish fauna in the DP and UO microsamples than at the DC Bonebed,
447	and are absent from the HSCMT microsample, although they do occur in the HSCMC Formation
 448	(Quinney, 2011). Myledaphus, by contrast, is almost twice as abundant in the DP microsample as at
449	the DC Bonebed, but rare in the UO microsample and especially the HSCMT microsample.
 450	Myledaphus is, however, abundant in the marine-influenced LC microsample, accounting for about
451	45% of all identifiable fish specimens. The LC microsample is also rich in other chondrichthyan
452	material, as well as in identifiable teleost elements. Chondrichthyan taxa other than Myledaphus are
453	minimally represented in the DP, HSCMT and UO microsamples, but teleosts are well represented
 454	in all three, and in the UO microsample in particular. Amiid and Belonostomus specimens are rare
455	in the UO, DP and HSCMT microsamples, as they are at the DC Bonebed. At the Phil's Knob (PK)
456	microsite, situated within the Foremost Formation that underlies the Oldman Formation in the Belly
457	River Group, Lepisosteidae accounts for nearly half of all fish material recovered, and
458	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen
458 459	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016).
458 459 460	<u>Pseudomyledaphus</u> for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and <i>Champsosaurus</i> make up a far higher percentage of the DC Bonebed sample,
458 459 460 461	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta-microsamples,
458 459 460 461 462	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of
458 459 460 461 462 463	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta-microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for
458 459 460 461 462 463 464	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016). The
458 459 460 461 462 463 464 465	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016). The strong numerical dominance of Champsosaurus elements over crocodyliform elements at the DC
458 459 460 461 462 463 464 465 466	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016). The strong numerical dominance of Champsosaurus elements over crocodyliform elements at the DC Bonebed is reversed opposite to the conditionat observed in the DP and UO microsamples, despite
458 459 460 461 462 463 464 465 466 467	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and <i>Champsosaurus</i> make up a far higher percentage of the DC Bonebed sample, relative to fish, than <u>inof any of the UO, DP, LC and HSCMT southern Alberta microsamples</u> , whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for <u>about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016)</u> . The strong numerical dominance of <i>Champsosaurus</i> elements over crocodyliform elements at the DC Bonebed is <u>reversed opposite to the conditionat observed</u> in the DP and UO microsamples, <u>despite</u> <u>in both of which-crocodyliform specimens are-being</u> relatively sparse <u>in general-but still more</u>
458 459 460 461 462 463 464 465 466 467 468	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016). The strong numerical dominance of Champsosaurus elements over crocodyliform elements at the DC Bonebed is reversed-opposite to the conditionat observed in the DP and UO microsamples, despite in both of which-crocodyliform specimens are being relatively sparse in general but still more abundant than those of Champsosaurus. The HSCMT microsample contains a fewsome
458 459 460 461 462 463 464 465 466 467 468 469	Pseudomyledaphus for nearly a third, while Acipenseriformes and 'Holostean A' are absent (Cullen et al., 2016). Turtles and Champsosaurus make up a far higher percentage of the DC Bonebed sample, relative to fish, than inof any of the UO, DP, LC and HSCMT southern Alberta-microsamples, whereas lissamphibians make up a much lower percentage (Fig. 8A). The relative abundance of lissamphibians is particularly high in the UO microsample, with lissamphibians accounting for about 71% of aquatic vertebrates at a UO site designed 'BMC' by Cullen and Evans (2016). The strong numerical dominance of Champsosaurus elements over crocodyliform elements at the DC Bonebed is reversed-opposite to the conditionat observed in the DP and UO microsamples, despite in both of which crocodyliform specimens are-being relatively sparse in general-but still more abundant than those of Champsosaurus. The HSCMT microsample contains a fewsome Champsosaurus elements and -but no crocodyliforms are

471	Brinkman, 2015). The DC Bonebed turtle assemblage resembles the UO and DP microsamples in	
472	that baenid elements account for approximately one third of all identifiable turtle specimens, a	
473	similarity reinforced by the presence of the baenid Plesiobaena antiqua at the DC Bonebed and in	
474	the Dinosaur Park and Oldman formations (Brinkman, 2003). Trionychids are substantially more	
475	abundant than baenids at the DC Bonebed in the UO microsample, and especially in the DP	
476	microsample. Like Plesiobaena antiqua, the trionychid Aspideretoides foveatus is shared among the	
477	DC Bonebed and the Dinosaur Park and Oldman formations (Brinkman, 2003). However,	
478	mMaterial referred to Aspideretoides sp., and potentially representing A. foveatus, is known from	
479	the lower part of the HSCHC Formation, as part of a relatively diverse turtle assemblage that	C
480	includes chelydrids but lacks baenids (Brinkman and Eberth, 2006). A trionychid cf. Axestemys	tł
481	from the DC Bonebed is even less informative, given the wide stratigraphic distribution of	N tł
482	Axestemys itself (Vitek et al., 2012). However, it should be noted that the DC turtle specimens	
483	include the northernmost examples of P. baena, A. foveatuse and any Axestemys-like form. The few	F
484	turtle elements in the HSCMT microsample are all referable to Chelydridae. Chelydrids are	
485	relatively uncommon at the DC Bonebed and in the DP microsample, but more abundant in the UO	
486	microsample. The DC Bonebed is missing some additional turtle taxa known from southern	
487	Alberta, including the nanhsiungchelyid Basilemys, the baenid Boremys, and the large aquatic form	
488	Adocus (Brinkman, 2003; Brinkman and Eberth, 2006), but these are comparatively rare taxa whose	
489	absence from the DC Bonebed might be an artifact of small sample size. The upper Maastrichtian	
490	Scollard Formation notably contains a high diversity of turtles, including but not limited to baenids,	
491	trionychids and chelydrids (Brinkman and Eberth, 2006). At Phil's Knobthe PK site, turtles and	
492	Champsosaurus make up about the same respective proportions of the aquatic vertebrate sample as	
493	at the DC Bonebed, but at Phil's KnobPK crocodyliforms are even more abundant than	
494	Champsosaurus, and the most abundant turtle taxon is the helochelydrid Naomichelys.	
495	Combining information from the DC Bonebed and Kleskun Hill provides some valuable	

496 insights into the terrestrial component of the WU3 fauna. The most diagnostic mammal specimen so

Commentato [CS1]: Reviewer 2 complained about this, but the *Aspideretoides* material is reported in older papers that just say it's from "Unit 1", so we don't have any easy way of determining whether it's from the Horsethief Member or the Drumheller Member. We might want to note this in our response letter.

Formattato: Tipo di carattere: Non Corsivo

497	far reported from WU3 is the <i>Eodelphis</i> cf. <i>E. browni</i> tooth from the DC Bonebed. <i>Eodelphis</i>
498	browni proper has previously been documented in the Oldman and Dinosaur Park formations (Fox
499	and Naylor, 2006; Scott and Fox, 2015, Brannick and Wilson, 2020), but not in the HSCHC
500	Formation. Two mammal teeth, representing a multituberculate and a pediomyid marsupial,
501	werehave been reported from Kleskun Hill (Fanti and Miyashita, 2009; Fox and Scott, 2010), but
502	these are less useful in establishing faunal correlations.
503	Squamates from Kleskun Hill include the only known specimen of the scincoid
504	Kleskunsaurus grandeprairiensis, and multiple specimens of the chamopsiid Socognathus
505	unicuspis. (Nydam et al., 2010). While Kleskunsaurus grandeprairiensis may be endemieis
506	currently uniqueknown only from to WU3, Socognathus unicuspis is known from occurs in the
507	Dinosaur Park and Oldman Formations, and possibly also infrom the upper Maastrichtian Hell
508	Creek Formation of Montana (Gao and Fox, 1996; Nydam, 2013). A dentary from Kleskun Hill
509	referred to Chamops cf. C. segnis by Sternberg (1951) has the historical distinction of being the first
510	vertebrate fossil from the Wapiti Formation to be formally described, but displays some clear
511	differences from the Lancian taxon C. segnis (Gao and Fox, 1996; Nydam, 2013), and its
512	identification must be considered uncertain pending a re-evaluation of the specimen. The large
513	monstersaur frontal from the DC Bonebed represents the northernmost definitive record of
514	Monstersauria in the Upper Cretaceous of western North America and provides an additional point
515	of faunal similarity to the Oldman and Dinosaur Park formations, both of which have yielded
516	multiple monstersaur taxa (Gao and Fox, 1996; Nydam, 2013). Currie et al. (2008: p. 11) briefly
517	reported "a varanid cf. Palaeosaniwa [sic] vertebra" from the Pipestone Creek Bonebed, which may
518	be a second monstersaur from the Wapiti Formation given that the large lizard Palaeosaniwa
519	canadensis from the Dinosaur Park Formation and the Lance Formation of Wyoming (Estes, 1964;
520	Gao and Fox, 1996; Nydam, 2013) is now considered a monstersaur (Yi and Norell, 2013). The
521	astragalocalcaneum from the DC Bonebed is uninformative but could come from the same taxon as
522	the frontal, judging by its large size.

523	The relative abundance of hadrosaurid bones and teeth at the DC Bonebed is matched in the
524	Kleskun Hill microsample, in which hadrosaurid specimens also make up nearly half of all dinosaur
525	elements identifiable below the level of Dinosauria, but is considerably exceeded in the DP and UO
526	microsamples, in which hadrosaurids account for a larger majority of identifiable dinosaur
527	specimens. At two particularly dinosaur-rich UO sites, designated 'PLS' and 'RDS' by Cullen and
528	Evans (2016), more than 70% of all dinosaur specimens recovered represent hadrosaurids.
529	Hadrosaurids are less proportionally abundant in the HSCMT microsample than at the DC Bonebed,
530	presumably at least to some extent because because the dinosaur component of the former was
531	collected in large part from an Albertosaurus bonebed (Larson et al., 2010), which and is rich in
532	tyrannosaurid teeth as a result. However, theropods are even more prevalent as a percentage of the
533	total fauna at Kleskun Hill than in the HSCMT microsample, despite the provenance of the latter.
534	The rarity of ceratopsid elements from the DC Bonebed is unusual, given the abundance of
535	ceratopsids in Wapiti Formation Unit 4 (Currie et al., 2008; Fanti et al., 2015). Ceratopsids are
536	represented in the Kleskun Hill microsample, but only by a few teeth, whereas ceratopsid elements
537	constitute several percent of the identifiable dinosaur elements in the DP, UO and HSCMT
538	microsamples. Still more unusual is the DC Bonebed's extremely high abundance of
539	thescelosaurids. The ratio of thescelosaurid elements to hadrosaurid elements at the DC Bonebed is
540	about 0.29, whereas the ratio of "hypsilophodont" (presumably including thescelosaurid) elements
541	to hadrosaurid elements does not exceed 0.06 at any of the individual Dinosaur Park or upper
542	Oldman localities considered by Cullen and Evans (2016). Theseelosaurids are also poorly
543	represented in the Kleskun Hill and HSCMT microsamples, but Brown and Druckenmiller (2011)
 544	referred to Thescelosaurinae a total of eight teeth from two sites of early Maastrichtian age in the
545	Prince Creek Formation of Alaska. The rarity of ankylosaurid elements at the DC Bonebed is shared
546	with the Kleskun Hill, UO ₂ and HSCMT microsamples, but ankylosaurid remains are more
547	abundant in the DP microsample, and more abundant at the PLS site than in the UO microsample as
548	a whole. The absence of identifiable pachycephalosaurid specimens from the DC Bonebed is

549	consistent with the rarity of this group in general, although a single <u>one</u> pachycephalosaurid-tooth is
550	knownwas interpreted from Kleskun Hill has been referred to Pachycephalosauridae (Fanti and
551	Miyashita, 2009).
552	The only theropod element from the DC Bonebed that is potentially-identifiable at the
553	specifica low taxonomic level is the small fused pair of dentaries referred to Caenagnathidae cf.
554	Chirostenotes. This bone is similar in some important respects to specimens of Chirostenotes
555	pergracilis from the Dinosaur Park Formation of southern Alberta (Longrich et al., 2013; Funston
556	and Currie, 2020), but is unusual enough in size and morphology that referral to Chirostenotes
557	pergracilis seems unwarranted (see Supplementary Material). The caenagnathid ilium and pubis
558	from the DC Bonebed are less diagnostic but could potentially belong to the same skeleton as the
559	fused dentaries given their small size. Even Efinding evidence of even a single individual
560	caenagnathid among the 122 dinosaur bones and teeth available from the DC Bonebed is
561	remarkable, however, given the rarity of caenagnathids at other sites, given that not a singleone
562	caenagnathide bones was found reported to occur in -t The DP, Kleskun Hill, HSCMT, and UO
563	microsamples, in fact, have not been reported to contain caenagnathid material at all. While the
564	rarity of caenagnathids in the Alberta Cretaceous record may be due in part to the edentulous
565	condition of this group, given the large contribution of shed tooth crowns to theropod representation
566	at microsites, their unmistakable presence in the DC Bonebed sample is nevertheless striking.
567	The DC Bonebed is fairly similar to the DP and UO microsamples in containing small
568	numbers of dromaeosaurid and tyrannosaurid elements, although tyrannosaurid teeth are more
569	abundant in the Kleskun Hill microsample and, especially, in the HSCMT microsamples. Curiously,
570	dromaeosaurids are about twice as abundant, as a percentage of all dinosaurian specimens
571	recovered, at the PLS and RDS sites as they are in the total UO microsample, showing that
572	representation of this group can be highly variable across localities. The large number of
573	tyrannosaurid teeth in the HSCMT microsample again reflects, at least in large part, the fact that
 574	much of this sample comes from an Albertosaurus bonebed (Larson et al., 2010). The Kleskun and

\$75 HSCMT microsamples also contain rare ornithomimid elements, tallying with the occurrence of . 576 only two ornithomimid elements at the DC Bonebed. Similarly, the presence of only a single 577 troodontid phalanx in the DC Bonebed is consistent with the rarity of troodontids in the southern 578 Alberta microsamples, although teeth attributed to Troodon by Fanti and Miyashita (2009) account 579 for about 14% of the dinosaur elements in the microsample from Kleskun Hill. The absence from 580 the DC Bonebed of the widespread but typically rare theropod tooth morphotypes designated 581 Paronychodon and Richardoestesia (both of which have been reported from Kleskun Hill) may be a 582 result of small sample size. Following the reidentification of Dinosaur Park Formation specimens of 583 another tooth-based taxon, Zapsalis, as premaxillary teeth of the velociraptorine Saurornitholestes 584 (Currie and Evans, 2020), the single tooth reported from Kleskun Hill of the Zapsalis-like taxon 585 Paronychodon (Fanti and Miyashita, 2009) probably represents a premaxillary tooth of a 586 Saurornitholestes-like velociraptorine. The hesperornithiform element from the DC Bonebed is an 587 unusual record in that hesperornithiforms are not documented in the southern Alberta microsamples 588 considered in this study, and have not been found at Kleskun Hill. However, a small number of 589 hesperornithiform bones have been collected from the uppermost Dinosaur Park Formation of 590 Saskatchewan, at the marine-influenced Saskatchewan Landing site (Gilbert et al., 2018). **\$**91 As a whole, and At least at face value, the WU3 vertebrate fauna more closely resembles \$92 more elosely that of the Dinosaur Park Formation, and to a large extent also that of the Oldman 593 Formation, more closely than that of the HSCMT Formation. The WU3 fauna also displays some . 594 unusual features that may reflect high northern palaeolatitude, smaller-scale palaeoenvironmental 595 factors, or perhaps in some cases limited sampling. The strongest faunal links to the Dinosaur Park and Oldman formations are provided by the presence at the DC Bonebed of the turtle Plesiobaena 596 597 antiqua, and the presence at Kleskun Hill of the lizard Socognathus unicuspis. Corroborating **\$98** evidence includes the occurrence at the DC Bonebed of the turtle Aspideretoides foveatus, an 599 indeterminate monstersaur, and specimens comparable to the theropod *Chirostenotes pergracilis* and the marsupial Eodelphis browni, although these faunal correlations are less individually 600

601	persuasive because they are less certain, taxonomically precise, and/or distinctive. Unusual features
602	of the WU3 assemblage, relative to Late Cretaceous faunas from southern Alberta, include the
603	presence of the endemic squamate Kleskunsaurus grandeprairiensis, the surprisingly high relative
604	abundance of acipenserids, turtles, Champsosaurus, thescelosaurids, Troodon, and perhaps
605	lepisosteids and caenagnathids, and the unusual rarity of 'Holostean A' and lissamphibians. The
606	WU3 fauna appears slightly closer to that of the Dinosaur Park Formation than that of the upper
607	Oldman Formation in the relatively high abundance of Myledaphus and in containing many more
608	trionychids than chelydrids, but closer to that of the upper Oldman Formation in the low abundance
609	of ankylosaurids. Only <u>twoa single general</u> characteristics of the WU3 fauna, namely the rarity of
610	crocodyliforms and the high abundance of theropods, represents even an arguable points of
611	distinctive similarity to the vertebrate assemblage of the HSCHC Formation. Moreover, the richness
612	of theropods in the HSCMT microsample of Larson et al. (2010) is clearly due in part to the origin
613	of much of that sample in an Albertosaurus bonebed, and is unlikely to be truly representative even
614	of the Morrin and Tolman members of the HSCHC Formation.
614 615	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially
614 615 616	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially Belly River character, containing a number of taxa that existed in southern Alberta prior to the
614 615 616 617	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially Belly River character, containing a number of taxa that existed in southern Alberta prior to the Bearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,
614 615 616 617 618	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially Belly River character, containing a number of taxa that existed in southern Alberta prior to the Bearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors, including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,
614 615 616 617 618 619	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially Belly River character, containing a number of taxa that existed in southern Alberta prior to the Bearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors, including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis, Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times in
614 615 616 617 618 619 620	of the Morrin and Tolman members of the HSCHC Formation. One major implication of these findings is that the WU3 vertebrate fauna has a partially Belly River character, containing a number of taxa that existed in southern Alberta prior to the Bearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors, including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis, Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times in continental ecosystems that are poorly documented in the Alberta fossil record. At least in most
614 615 616 617 618 619 620 621	of the Morrin and Tolman members of the HSCHC Formation.One major implication of these findings is that the WU3 vertebrate fauna has a partiallyBelly River character, containing a number of taxa that existed in southern Alberta prior to theBearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times incontinental ecosystems that are poorly documented in the Alberta fossil record. At least in mostcases, their absence from the HSCHC Formation may reflect evolutionary turnover around the end
614 615 616 617 618 619 620 621 622	of the Morrin and Tolman members of the HSCHC Formation.One major implication of these findings is that the WU3 vertebrate fauna has a partiallyBelly River character, containing a number of taxa that existed in southern Alberta prior to theBearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times incontinental ecosystems that are poorly documented in the Alberta fossil record. At least in mostcases, their absence from the HSCHC Formation may reflect evolutionary turnover around the endof the Campanian.
614 615 616 617 618 619 620 621 622 623	of the Morrin and Tolman members of the HSCHC Formation.One major implication of these findings is that the WU3 vertebrate fauna has a partiallyBelly River character, containing a number of taxa that existed in southern Alberta prior to theBearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times incontinental ecosystems that are poorly documented in the Alberta fossil record. At least in mostcases, their absence from the HSCHC Formation may reflect evolutionary turnover around the endof the Campanian.Nevertheless, the WU3 assemblage cannot simply be regarded as a northerly, late-surviving
 614 615 616 617 618 619 620 621 622 623 624 	of the Morrin and Tolman members of the HSCHC Formation.One major implication of these findings is that the WU3 vertebrate fauna has a partiallyBelly River character, containing a number of taxa that existed in southern Alberta prior to theBearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times incontinental ecosystems that are poorly documented in the Alberta fossil record. At least in mostcases, their absence from the HSCHC Formation may reflect evolutionary turnover around the endof the Campanian.Nevertheless, the WU3 assemblage cannot simply be regarded as a northerly, late-survivingBelly River fauna, given the presence of a number of peculiarities. Only one potentially_endemic
614 615 616 617 618 619 620 621 622 623 624 625	of the Morrin and Tolman members of the HSCHC Formation.One major implication of these findings is that the WU3 vertebrate fauna has a partiallyBelly River character, containing a number of taxa that existed in southern Alberta prior to theBearpaw gap but are not represented in the HSCHC Formation. These distinctive survivors,including Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,Eodelphis browni and Aspideretoides foveatus, presumably existed throughout Bearpaw times incontinental ecosystems that are poorly documented in the Alberta fossil record. At least in mostcases, their absence from the HSCHC Formation may reflect evolutionary turnover around the endof the Campanian.Nevertheless, the WU3 assemblage cannot simply be regarded as a northerly, late-survivingBelly River fauna, given the presence of a number of peculiarities. Only one potentially endemicspecies, the scincoid Kleskunsaurus grandeprairiensis, has so far been documented in WU3

627	the abundance of certain groups and the rarity of others. Many of these patterns lack any obvious	
628	explanation, but the abundance of Myledaphus and the predominance of trionychids over chelydrids	
629	may reflect the coastal rather than inland character of the fauna given that they are shared with the	
630	Dinosaur Park microsample but not with the upper Oldman microsample. The single	
631	hesperornithiform element from the DC Bonebed is another likely indicator of coastal proximity,	
632	especially given the presence of hesperornithiforms at Saskatchewan Landing (Gilbert et al., 2018).	
633	By contrast, the fact that Champsosaurus elements predominate over crocodyliform ones at	
634	the DC Bonebed—unlike in both the DP and UO microsamples—may be due to latitude.	
635	Champsosaurus is consistently present in the Campanian of southern Alberta and Montana, but	
636	absent from contemporaneous faunas in Utah, Texas, and Mexico (Larson et al., 2010). A	
637	neochoristodere possibly referable to Champsosaurus is even known from the-Turonian-Coniacian	
638	deposits on-of Axel Heiberg Island in the Canadian Arctic, occurring with turtles, amiids,	
639	lepisosteids, and teleosts (Tarduno et al., 1998; Friedman et al., 2003; Vandermark et al., 2007).	
 640	Crocodylians have previously been documented in Campanian strata from Mexico to southern	
641	Alberta (Markwick 1998; Gates et al., 2010; Lucas et al., 2016; Rivera-Sylva et al., 2019), but	
642	Amiot et al. (2004) suggested the southern Alberta occurrence was near the northern limit of their	
643	range, defined by their inability to tolerate climates in which the mean temperature of the coldest	
644	month averaged below 5-10°C. The presence of a small number of crocodyliform elements at the	
645	DC Bonebed alongside a much larger quantity of Champsosaurus material is consistent with the	
646	seemingly greater ability of Champsosaurus to thrive in high-latitude environments. However,	
647	Champsosaurus is also notably abundant in the vertebrate assemblage from Saskatchewan Landing,	
648	in which crocodyliforms do not occur (Gilbert et al., 2018). Acipenserids resemble champsosaurids	
649	in having a predominantly high-latitude record, with reported Campanian and Maastrichtian	
650	occurrences extending from the Northwest Territories to northern New Mexico (Hilton and Grande,	
651	2006; Vavrek et al., 2014). Furthermore, they may have spread into the southern part of this range	
652	only as temperatures decreased towards the end of the Cretaceous (Vavrek et al., 2014).	

.

653	Accordingly, the numerous acipenserid elements recovered from the DC Bonebed may be another	
654	indication of the high-latitude character of the WU3 fauna.	
655	The high abundance and moderately high diversity of turtles in WU3 suggests that they, like	
656	Champsosaurus, may have been resilient to high-latitude conditions despite being ectotherms.	
657	Brinkman and Eberth (2006) argued based on the Upper Cretaceous Alberta record for a link	
658	between turtle diversity and palaeotemperature, warmer conditions being conducive to greater	
659	species richness. Consistent with this hypothesis is the fact that the HSCMT microsample, which is	
660	from the part of the HSCHC Formation thought to have been deposited under cool conditions	
661	(Larson et al., 2010), contains only one turtle taxon. Cool temperatures may also explain why	
662	crocodyliform material is absent from the HSCMT microsample while Champsosaurus is present,	
663	albeit in small numbers. Wapiti Formation Unit 3 may have been laid down in a warmer	
664	environment despite the high palaeolatitude, given its greater turtle diversity and the presence of a	
665	few crocodyliform elements. The abundance of Myledaphus at the DC Bonebed arguably supports	
666	this interpretation, as extant rhinobatoids have circumtropical to warm temperate distributions	
667	(Wilson et al., 2013).	
668	In the context of Late Cretaceous Albertan vertebrate communities, the WU3 assemblage	
669	suggests that evolutionary turnover, palaeolatitude, and proximity to the coastline of the Western	
670	Interior Seaway were all important influences on faunal composition (Fig. 9). However, knowledge	
671	of the assemblage rests overwhelmingly on specimens recovered from Kleskun Hill and the DC	
672	Bonebed, and broader sampling will be needed to build a more complete picture of the vertebrate	
673	fauna.	
674	To summarise, the DC Bonebed is the most ecologically informative sample of the WU3	$\overline{\langle}$
675	vertebrate fauna and, from the perspective of non-marine fauna, from the entirety of, along with the	
676	Kleskun Hill locality, represent the only terrestrial fauna from the Bearpaw gap in western North	
677	America. The complementary and contemporaneous faunas from the DC Bonebed and Kelskun Hill	
678	(both WU3) show demonstrable affinities with the Belly River fauna of southern Alberta, including	_
1		

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

Formattato: Rientro: Prima riga: 1,25 cm, Interlinea: doppia

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

679	the shared presence of the baenid Plesiobaena antiqua, the trionychid Aspideretoides foveatus, and
680	the chamopsiid Socognathus unicuspis. The identification of a monstersaur, Eodelphis cf. E. browni
681	and cf. Chirostenotes from the DC Bonebed provides additional potential links with the Belly River
682	fauna. At the same time, the WU3 fauna differs from both the Belly River and Edmonton groups in
683	the unusual abundance of acipenseriforms, near absence of 'Holostean A', and the abundance of
684	turtles and Champsosaurus. The scincoid Kleskunsaurus grandeprairiensis remains the only taxon
685	potentially endemic to WU3. The implication is that at least some 'typical' Belly River Group taxa
686	(such as Plesiobaena antiqua, Socognathus unicuspis, and possibly Chirostenotes pergracilis,
687	Eodelphis browni and Aspideretoides foveatus) survived throughout Bearpaw times by following
688	suitable tracking appropriate habitats to the north in the Grande Prairie region. Given the number
689	ofits evident peculiarities, however, the WU3 fauna is not simply a northerly, late-surviving Belly
690	River fauna, but one that wasmust have also been influenced also-by the localized effects of climate
691	and latitude, as well as by faunal turnover,
 692	

693 6. Palaeoenvironmental implications

694 Historically considered as representing a single, major marine transgressive event, the 695 Bearpaw Formation in fact comprises two marine tongues divided by the coal-dominated deposits 696 of the Strathmore Member of the HSCHC Formation, and thus documents multiple sea level 697 changes (Eberth and Braman, 2012; Hathway, 2016; Zubalich et al., 2021). Furthermore, the 698 Drumheller Marine Tongue in the upper part of the HSCHC Formation represents an additional, 699 minor incursion of the Western Interior Seaway (Straight and Eberth, 2002). To the north and west 700 of the main areas of Bearpaw deposition in central and southern Alberta, the Bearpaw shale is 701 correlates updip gradually replaced with by time-equivalent coastal and terrestrial deposits that are 702 dominated by coal seams and organic-rich, fine-grained sediments. In west-central Alberta, WU3 703 includes low-energy, mud-dominated, alluvial lowland deposits, and formed in a depositional 704 setting consistent with the pattern of transgressive-regressive events recorded by the Bearpaw

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt

Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt 705 Formation and Strathmore MbrMember. (Fanti and Catuneanu, 2009, 2010; Zubalich et al., 2021). . 706 Measured sections in the Grande Prairie area document frequent coal seams and peat horizons, with 707 widespread oxbow lakes, bogs and marshes (Fanti and Miyashita, 2009; Fanti and Catuneanu, 708 2009). The sedimentological evidence for a waterlogged landscape is consistent with the presence 709 in the DC Bonebed palynomorph sample of megaspores and microspores characteristic of quiet 710 freshwater environments, and zygospores apparently belonging to freshwater algae. 711 The Bearpaw Formation was deposited diachronously across Alberta, owing to a younger 712 onset of paralic-marine conditions toward the north. Recent studies of Bearpaw palaeogeography 713 have documented not only the geographic extent of coal zones at the bottom (Lethbridge Coal 714 Zone) and top (Drumheller Member) of this interval, but also widespread coal-dominated areas to 715 the west of Edmonton, similar to those found near Grande Prairie (Fanti and Miyashita, 2009; 716 Zubalich et al., 2021). Therefore, the geographic extent of the ecological and environmental settings 717 in which coal is typically deposited may represent the key to understanding the composition of 718 vertebrate faunas in west-central Alberta during the during the time of relatively high sea levels that 719 encompasses the Bearpaw Gap (Dawson et al., 1994; Catuneanu et al., 1997, 1999; Eberth and Braman, 2012; Hathway, 2016). The Bearpaw transgressive-regressive cycles resulted in a 720 721 northward shift and expansion of low-land, waterlogged, low-energy depositional systems (see 722 Zubalich et al., 2021) that reached their maximum geographic extent and sediment accumulation 223 rate during the deposition of the Strathmore Member of the HSCHC Formation. WU3 is similar 724 from a palaeontological perspective to the Dinosaur Park Formation whereas but clearly differs both 725 lithologically and palaeontologically from the overlying deposits of Wapiti Unit 4 and from 726 correlative beds of the upper HSCHC Formation in central Alberta, which record terrestrial 727 deposition during progressive falling stages of the Bearpaw Sea (Fanti and Catuneanu, 2010; Eberth 728 and Braman, 2012; Eberth and Kamo, 2020). 729 Data presented here suggest that suitable habitat for continental vertebrate communities

730 extended, during Bearpaw times, at least about 5° to the north of the Dinosaur Provincial Park area,

731	and thus to the margin of the inferred Campanian polar regions (60° North palaeolatitude; Fig. 9).
732	Further investigation of the vertebrate fauna of older deposits in the study area (<i>i.e.</i> Wapiti Unit 2,
733	time-equivalent to the Oldman and Dinosaur Park formations of southern Alberta) is needed in
734	order to determine whether a fauna broadly resembling that of WU3 and the upper Belly River
735	Group already existed in the region prior to the Bearpaw gap, or whether such a fauna dispersed
736	into the region during the Bearpaw gap itself. Unquestionably, WU3 is crucial for testing recent
737	models and hypotheses regarding the impact on vertebrate thanatocoenoses of both spatiotemporal
738	biases and abiotic factors along the Western Interior Seaway (Lehman, 1987; Gates et al., 2010,
739	2012; Vavrek and Larsson, 2010; Loewen et al., 2013; Chiarenza et al., 2019). The fossil record
740	discussed in this study represents the only known major source of evidence regarding continental
741	vertebrate faunas inhabiting Alberta during this time interval.
742	In summary, the sedimentology and palynology of the DC Bonebed characterizepoint to a
742 743	In summary, the sedimentology and palynology of the DC Bonebed characterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition
742 743 744	In summary, the sedimentology and palynology of the DC Bonebed characterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial
742 743 744 745	In summary, the sedimentology and palynology of the DC Bonebed characterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, deposited situated at the edge of the Campanian polar region
742 743 744 745 746	In summary, the sedimentology and palynology of the DC Bonebed characterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, deposited situated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with
742 743 744 745 746 747	In summary, the sedimentology and palynology of the DC Bonebed eharacterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, deposited situated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with at least some charactersistics of the Belly River Group assemblage, during at a time when much of
742 743 744 745 746 747 748	In summary, the sedimentology and palynology of the DC Bonebed eharacterizepoint to a quiet ₅ freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, deposited situated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with at least some charactersistics of the Belly River Group assemblage, during at a time when much of southern Alberta was inundated by the Bearpaw Sea. The faunal compositions of parts of the Wapiti
742 743 744 745 746 747 748 749	In summary, the sedimentology and palynology of the DC Bonebed eharacterizepoint to a quiet _s freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, depositedsituated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with at least some charactersistics of the Belly River Group assemblage, during at a time when much of southern Alberta was inundated by the Bearpaw Sea. The faunal compositions of parts of the Wapita Formation that bracket WU3 are, however, still poorly known. and require fFurther exploration
742 743 744 745 746 747 748 749 750	In summary, the sedimentology and palynology of the DC Bonebed eharacterizepoint to a quiet; freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, depositedsituated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with at least some charactersistics of the Belly River Group assemblage, during at a time when much of southern Alberta was inundated by the Bearpaw Sea. The faunal compositions of parts of the Wapita Formation that bracket WU3 are, however, still poorly known. and require ffurther exploration will be required in order to examineunderstand the timing and dispersalbroader history of this fauna
742 743 744 745 746 747 748 749 750 751	In summary, the sedimentology and palynology of the DC Bonebed eharacterizepoint to a quiet; freshwater environment in the alluvial lowlands of WU3, contemporaneous with deposition of marine shales of the Bearpaw Formation in southern Alberta. The northerly terrestrial depositional environments of WU3, depositedsituated at the edge of the Campanian polar region (60° North palaeolatitude), provided suitable habitat that was colonized by a vertebrate fauna with at least some charactersistics of the Belly River Group assemblage, during at a time when much of southern Alberta was inundated by the Bearpaw Sea. The faunal compositions of parts of the Wapita Formation that bracket WU3 are, however, still poorly known. and require ffurther exploration will be required in order to examineunderstand the timing and dispersalbroader history of this fauna in the Grande Prairie region.

Formattato: Tipo di carattere: Corsivo

753 Conclusions

754 The Bearpaw Formation in Alberta—a northerly expression of the final major incursions of 755 the Western Interior Seaway—has stood as a substantial ~1.2-million-year-long gap separating the 756 well-studied terrestrial faunas of the Belly River and Edmonton groups. In west-central Alberta, the

757	continuous terrestrial deposits of the Wapiti Formation, and in particular Unit 3, offer an
758	opportunity to begin filling the 'Bearpaw gapGap'. The diverse WU3 vertebrate fauna documented
759	here from the DC Bonebed, together with previouslydescribed microvertebrates from Kleskun
760	Hill, shows a distinctive Belly River signature similar to those of the older upper Oldman and
761	Dinosaur Park formations, and demonstrates that a vertebrate community with this basic character
762	existed in west-central Alberta well after the classic Dinosaur Park Formation ecosystem had been
763	extirpated by the Bearpaw transgression. The presence of a probable possible endemic form (the
764	scincoid Kleskunsaurus grandeprairiensis) in the WU3 assemblage, and some unusual abundance
765	patterns relative to southern Belly River faunas (e.g., abundance of Myledaphus, acipenserids,
766	Champsosaurus and theseelosaurids; rarity of lissamphibians and crocodyliforms), likely reflect
767	some combination of high palaeolatitude and close proximity to the palaeocoastline. These findings
768	imply faunal composition along the margins of the Western Interior Seaway was influenced by a
769	complex, superimposed mosaic of palaeolatitudinal and palaeoenvironmental gradients, in addition
770	to evolutionary turnover.

771

772 Acknowledgements

773 The authors wish to thank the many volunteers who have helped collect specimens in the 774 Grande Prairie Region over the years. We thank Northwest Polytechnic (formerly Grande Prairie 775 Regional College) for logistical support during fieldwork. We thank A. Fiorillo, R. Rogers and two 776 anonymous reviewers for valuable comments on this manuscript. Funding was provided by the 777 Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN-2017-778 06246), an endowment associated with the Philip J. Currie Professorship at the University of 779 Alberta, and start-up funds awarded to CS by the University of Alberta. We thank S. Hamilton and 780 M. Hudgins for providing photographs of specimens, and many individuals, but particularly A. 781 Murray (UALVP), D. Brinkman, J. Gardner, and C. Scott (all TMP), for help identifying 782 specimens. We acknowledge that the land on which the fossil sites described in this paper are

783	situated is Treaty 8 territory, the traditional lands of the Cree, Beaver, Dene Tha' and the Métis	
784	people.	
785		
1 786		
787	Author Contributions	
788	Conceptualization: FF, CS, MW, NC, PB, RS; Methodology: FF, AL, DL, CS; Investigation: FF,	
1 789	CS, RLS, DL, EK; Resources: FF, PRB, MV, DL, RLS, NEC, CS; AL; Writing – original draft: FF,	
790	CS, PRB; Writing – Review and Editing: FF, PRB, RLS, <u>NEC, CS</u> ; Visualization: FF, RLS;	
791	Funding acquisition: CS, FF, NEC, MV.	Commentato [NC2]: Site was found under our DRI grant
 792		Commentato [C3R2]: Sounds like the DRI grant should be mentioned in the Acknowledgements.
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		

809	
810	
811	
812	
813	
814	References
815	Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., Martineau, F., 2004. Latitudinal
816	temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: $^{\delta 18}$ O
817	record of continental vertebrates. Earth and Planetary Science Letters 226, 255-272.
 818	Barbi, M., Bell, P., Fanti, F., Dynes, J., Kolaceke, A., Buttigieg, J., Coulson, I., Currie, P., 2019.
819	Integumentary structure and composition in an exceptionally well-preserved hadrosaur
820	(Dinosauria: Ornithischia). PeerJ 7, e7875. http://doi.org/10.7717/peerj.7875.
821	Beavan, N., Russell, A., 1999. An elasmobranch assemblage from the terrestrial-marine transitional
822	Lethbridge Coal Zone (Dinosaur Park Formation: Upper Campanian), Alberta, Canada.
823	Journal of Palaeontology 73(3), 494–503.
824	Behrensmeyer, A., 2007. Bonebed through time, in: Rogers, R., Eberth, D., Fiorillo, T. (Eds.),
825	Bonebeds. Genesys, Analysis and paleobiological significance. University of Chicago Press.
826	<u>p. 65-102</u>
 827	Bell, P., Snively, E., 2008. Polar dinosaurs on parade: a review of dinosaur migration. Alcheringa
828	32, 271–284.
829	Bell, P., Currie, P., 2016. A high-latitude dromaeosaurid, Boreonykus certekorum, gen. et sp. nov.
830	(Theropoda), from the upper Campanian Wapiti Formation, west-central Alberta. Journal of
831	Vertebrate Palaeontology, DOI: 10.1080/02724634.2015.1034359
832	Bell, P., Fanti, F., Acorn, J., Sissons, R., 2013a. Fossil mayfly larvae (Ephemeroptera, cf.
833	Heptageniidae) from the Late Cretaceous Wapiti Formation, Alberta, Canada. Journal of
834	Palaeontology 87(1), 146–149.

- 835 Bell, P., Fanti, F., Sissons, R., 2013b: A possible pterosaur manus track from the Late Cretaceous of
- 836 Alberta. Lethaia 46, 274–279.
- 837 Bell, P., Fanti, F., Currie, P., Arbour, V., 2014. A mummified duck-billed dinosaur with a soft-
- tissue cock's comb. Current Biology 24, 1–6.
- Braman, D.R. 2013. Triprojectate pollen occurrence in the Western Canada sedimentary basin and
 the group's global relationships. Contribution Series Number 1. Royal Tyrrell Museum of
- 841 Palaeontology Drumheller, Alberta.
- 842 Braman, D., 2018. Terrestrial palynostratigraphy of the Upper Cretaceous (Santonian) to lowermost
- Palaeocene of southern Alberta, Canada. Palynology 42, 102–147.
- 844 Brannick, A. L., Wilson, G.P., 2020. New specimens of the late Cretaceous metatherian *Eodelphis*
- and the evolution of hard-object feeding in the stagodontidae. Journal of Mammalian
 Evolution 27 (1), 1–16.
- 847 Brinkman, D., 1990. Palaeoecology of the Judith River Formation (Campanian) of Dinosaur
- 848 Provincial Park, Alberta, Canada: evidence from vertebrate microfossil localities.
- Palaeogeography, Palaeoclimatology, Palaeoecology 78, 37–54.
- 850 Brinkman, D., 2003. A review of nonmarine turtles from the Late Cretaceous of Alberta. Canadian
- Journal of Earth Sciences 40, 557–571.
- 852 Brinkman D., Eberth, D., 2006. Turtles of the Horseshoe Canyon and Scollard formations—further
- evidence for a biotic response to Late Cretaceous climate change. Fossil Turtle Research 1,
- 854 11–18.
- 855 Brown, C., and Druckenmiller P., 2011. Basal ornithopod (Dinosauria: Ornithischia) teeth from the
- Prince Creek Formation (early Maastrichtian) of Alaska. Canadian Journal of Earth Sciences
 48, 1342–1354.
- 858 Burgener, L., Hyland, E., Griffith, E., Mitášová, H., Zanno, L., 2021. An extreme climate gradient-
- 859 induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North
- 860 America. Geological Society of America Bulletin, doi.org/10.1130/B35904.1

- 861 Butler, R., Benson, R., Carrano, M., Mannion, P., Upchurch, P., 2010. Sea level, dinosaur diversity
- and sampling biases: investigating the 'common cause' hypothesis in the terrestrial realm.
- Proceedings of the Royal Society B 278, 1165-1170.
- 864 Butler, R., Barrett, P., 2008. Palaeoenvironmental controls on the distribution of Cretaceous
- herbivorous dinosaurs. Die Naturwissenschaften 95, 1027–1032.
- 866 Catuneanu, O., Sweet, A., Miall, A., 1997. Reciprocal architecture of Bearpaw T-R sequences,
- uppermost Cretaceous, Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum
 Geology 45, 75–94.
- Catuneanu, O., Sweet, A., Miall, A., 1999. Concept and styles of reciprocal stratigraphies: Western
 Canada foreland system. Terra Nova 11, 1–8.
- 871 Chiarenza, A., Mannion, P., Lunt, D., Farnsworth, A., Jones, L., Kellard, S., Allison, P., 2019.
- 872 Ecological niche modelling does not support climatically-driven dinosaur diversity decline
- before the Cretaceous/Palaeogene mass extinction. Nature Communications 10.1: 1-14.
- 874 Cockx, P., McKellar, R., Tappert, R., Vavrek, M., Muehlenbachs, K., 2020. Bonebed amber as a
- 875 new source of paleontological data: The case of the Pipestone Creek deposit (Upper
- 876 Cretaceous), Alberta, Canada. Gondwana Research 81, 378–389.
- 877 Cullen, T., Evans, D., 2016. Palaeoenvironmental drivers of vertebrate community composition in
- 878 the Belly River Group (Campanian) of Alberta, Canada, with implications for dinosaur
- biogeography. BMC Ecology 16, 52.
- 880 Currie, P.J., Koppelhus, E.B. (Eds.), 2005. Dinosaur Provincial Park: a Spectacular Ancient
- 881 Ecosystem Revealed. Indiana University Press. https://doi.org/10.1086/ 523131.
- 882 Currie, P. J., Evans, D., 2020. Cranial anatomy of new specimens of Saurornitholestes langstoni
- (Dinosauria, Theropoda, Dromaeosauridae) from the dinosaur park formation (Campanian) of
 Alberta. The Anatomical Record 303, 691-715.
- 885 Currie, P., Langston, W., Tanke, D., 2008. A new horned dinosaur from an Upper Cretaceous
- bonebed in Alberta. NRC Research Press, Ottawa, Ont., 144 pp.

887	Dawson, F., Evans, C., Marsh, R., Richardson, R., 1994. Uppermost Cretaceous and Tertiary strata	
888	of the Western Canada Sedimentary Basin, in: Mossop, G., Shetsen, I. (Eds.)., Geological	
889	Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists	
890	and Alberta Research Council, Special Report 4, p. 387-406.	
891	Dodson, P., 1971. Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur	
892	Provincial Park, Alberta (Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 10,	
893	21–74.	
894	Dodson, P., 1990. On the status of the ceratopsids Monoclonius and Centrosaurus. In Dinosaur	
895	Systematics-approaches and perspectives. Edited by K. Carpenter and P.J. Currie.	
896	Cambridge University Press, New York. pp. 231–243	
897	Drakare, S., Lennon, J. J., Hillebrand, H., 2006. The imprint of the geographical, evolutionary and	
898	ecological context on species-area relationships. Ecology Letters 9 (2), 215-227.	
899	Dubois, A., Frétey, T., 2019. The status of the generic nomina Hedronchus Cope, 1877, Hemitrypus	
900	Cope, 1877 and Scapherpeton Cope, 1877 and of the related specific nomina (Amphibia,	
901	Urodela). Alytes, 37(1-2), 67–72.	
902	Eberth, D., 2005. The Geology, in: Currie, P., Koppelhus, E. (Eds.) Dinosaur Provincial Park: a	
903	spectacular ancient ecosystem revealed. Indiana University Press, Bloomington and	
904	Indianapolis, pp 54–82.	
905	Eberth, D., Shannon, M., Noland, B., 2007. A bonebeds database:classification, biases, and patterns	
906	of occurrence, in: Rogers, R., Eberth, D., Fiorillo, T. (Eds.), Bonebeds. Genesys, Analysis and	
907	paleobiological significance. University of Chicago Press. p. 103-220	
908	Eberth, D., Braman, D., 2012. A revised stratigraphy of and depositional history for the Horseshoe	
909	Canyon Formation (Upper Cretaceous), southern Alberta plains. Canadian Journal of Earth	
910	Sciences 49, 1053–1086.	
9 11	Eberth, D.A., Hamblin, A.P., 1993. Tectonic, stratigraphic, and sedimentologic significance of a	Formattato

912 regional discontinuity in the upper Judith River Group (Belly River wedge) of southern

Formattato: Colore carattere: Blu

Alberta, Saskatchewan, and northern Montana. Canadian Journal of Earth Sciences, 30, 174-	
200	Formattato: Colore carattere: Blu, Inglese (Canada)
Eberth, D., Kamo, S., 2020. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of	
the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian-	
Maastrichtian), Red Deer River valley, Alberta, Canada. Canadian Journal of Earth Sciences	
57, 1220–1237 https://doi.org/10.1139/cjes-2019-0019	
Eberth, D., Evans, D., Brinkman, D., Therrien, F., Tanke, D., Russell, L., 2013. Dinosaur	
biostratigraphy of the Edmonton Group (Upper Cretaceous), Alberta, Canada: evidence for	
climate influence. Canadian Journal of Earth Sciences 50, 701-726 dx.doi.org/10.1139/cjes-	
2012-0185	
Eberth, D.A., Ramezani, J., Roberts, E.M., Bowring, S. 2016. New CA-TIMS U-Pb geochronology	
from the Belly River Group (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada,	
and implications for dinosaur biostratigraphy of the Western Interior Basin. Geological	
Society of America, Annual Meeting (Denver), Abstracts with Programs, 48: doi:	
10.1130/abs/2016AM-281038.	
Enriquez, N.J., Campione, N.E., Brougham, T., Fanti, F., White, M.A., Sissons, R.L., Sullivan, C.,	
Vavrek, M.J., Bell, P.R., 2020. Exploring possible ontogenetic trajectories in tyrannosaurids	
using tracks from the Wapiti Formation (upper Campanian) of Alberta, Canada. Journal of	
Vertebrate Paleontology, 40 (6), p.e1878201.	
Enriquez, N. J., Campione, N. E., Sullivan, C., Vavrek, M., Sissons, R. L., White, M. A., Bell, P. R.	
2021. Probable deinonychosaur tracks from the Upper Cretaceous Wapiti Formation (upper	
Campanian) of Alberta, Canada. Geological Magazine, 158 (6), 1115–1128.	Formattato: Italiano (Italia)
Enriquez, N.J., Campione, N., White, M., Fanti, F., Sissons, R., Sullivan, C., Vavrek, M., Bell. P.,	
2022. The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of	
the Wapiti Formation (upper Campanian), Alberta, Canada. PLOS ONE 17: e0262824.	
	 Alberta, Saskatchewan, and northern Montana. Canadian Journal of Earth Sciences, 30, 174–200, Eberth, D., Kamo, S., 2020. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian–Maastrichtian), Red Deer River valley, Alberta, Canada. Canadian Journal of Earth Sciences 57, 1220–1237 https://doi.org/10.1139/cjes-2019-0019 Eberth, D., Evans, D., Brinkman, D., Therrien, F., Tanke, D., Russell, L., 2013. Dinosaur biostratigraphy of the Edmonton Group (Upper Cretaceous), Alberta, Canada: evidence for climate influence. Canadian Journal of Earth Sciences 50, 701–726 dx.doi.org/10.1139/cjes-2012-0185 Eberth, D.A., Ramezani, J., Roberts, E.M., Bowring, S. 2016. New CA-TIMS U-Pb geochronology from the Belly River Group (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada, and implications for dinosaur biostratigraphy of the Western Interior Basin. Geological Society of America, Annual Meeting (Denver), Abstracts with Programs, 48: doi: 10.1130/abs/2016AM-281038. Enriquez, N.J., Campione, N.E., Brougham, T., Fanti, F., White, M.A., Sissons, R.L., Sullivan, C., Vavrek, M.J., Bell, P.R., 2020. Exploring possible ontogenetic trajectories in tyrannosaurids using tracks from the Wapiti Formation (upper Cretaceous Wapiti Formation (upper Campanian) of Alberta, Canada. Geological Magazine, 158 (6), 1115–1128. Enriquez, N.J., Campione, N. E., Sullivan, C., Vavrek, M., Sissons, R. L., White, M. A., Bell, P. R. 2021. Probable deinonychosaur tracks from the Upper Cretaceous Wapiti Formation (upper Campanian) of Alberta, Canada. Geological Magazine, 158 (6), 1115–1128. Enriquez, N.J., Campione, N. White, M., Fanti, F., Sissons, R., Sullivan, C., Vavrek, M., Bell, P. R. 2021. Probable deinonychosaur tracks from the Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada. <i>JPLOS ONE</i> 17: e0262824.

938	Estes, R., 1964. Fossil vertebrates from the Late Cretaceous Lance Formation, eastern Wyoming.
939	University of California Publications in the Geological Sciences 49, 1–197.
940	Fanti, F., 2009. Bentonite chemical features as proxy of Late Cretaceous provenance changes: a

- 941 case study from the Western Interior Basin of Canada. Sedimentary Geology 217, 112–127.
- 942 Fanti, F., Currie, P., 2007. Unfolding the geological history of the North: new comprehensive
- 943 survey of the Wapiti Formation, Alberta, Canada. In: Braman, D., Therrien, F., Koppelhus,
- 944 E., Taylor, W. (Eds.) Dinosaur Park Symposium Short Papers, Abstracts and Program.
- 945 Special Publication of the Royal Tyrrell Museum, 33–38.
- 946 Fanti, F., Catuneanu, O., 2009. Stratigraphy of the Upper Cretaceous Wapiti Formation, west-
- 947 central Alberta, Canada. Canadian Journal of Earth Sciences 46, 263–283.
- 948 Fanti, F., Catuneanu, O., 2010. Fluvial sequence stratigraphy: the Wapiti Formation, west-ce
- 949 ntral Alberta, Canada. Journal of Sedimentary Research 80, 320-338.
- 950 Fanti, F., Miyashita, T. 2009. A high latitude vertebrate fossil assemblage from the Late Cretaceous
- 951 of west-central Alberta, Canada: evidence for dinosaur nesting and vertebrate latitudinal
- gradient. Palaeogeography, Palaeoclimatology, Palaeoecology 275, 37–53.
- 953 Fanti, F., Bell, P., Sissons, R., 2013: A diverse, high-latitude ichnofauna from the Late Cretaceous
- 954 Wapiti Formation, Alberta, Canada. Cretaceous Research 41, 256–269.
- 955 Fanti, F., Currie, P.J., Burns, M.E., 2015. Taphonomy, age, and palaeoecological implications of a
- 956 new Pachyrhinosaurus (Dinosauria: Ceratopsidae) bonebed from the Upper Cretaceous
- 957 (Campanian) Wapiti Formation of Alberta, Canada. Canadian Journal of Earth Sciences 52,
- 958 250–260. dx.doi.org/10.1139/cjes-2014-0197
- 959 Fiorillo, A.R., 2018. Alaska Dinosaurs: An Ancient Arctic World. CRC Press, 240 pp.
- 960 Fox, R., Scott, C., 2010. Comment on "A high latitude vertebrate fossil assemblage from the Late
- 961 Cretaceous of west-central Alberta, Canada: Evidence for dinosaur nesting and vertebrate
- 962 latitudinal gradient" By F. Fanti and T. Miyashita. Palaeogeography, Palaeoclimatology,
- 963 Palaeoecology 285, 35–-356.

- 964 Fox, R., Naylor, B., 2006. Stagodontid marsupials from the Late Cretaceous of Canada and their
- 965 systematic and functional implications. Acta Palaeontologica Polonica 51, 12–36.
- 966 Friedman, M., Tarduno, J. A., Brinkman, D. B., 2003. Fossil fishes from the high Canadian Arctic:
- 967 further palaeobiological evidence for extreme climatic warmth during the Late Cretaceous
- 968 (Turonian–Coniacian). Cretaceous Research 24 (6), 615–632.
- 969 Funston, G., Currie, P., 2020. New material of Chirostenotes pergracilis (Theropoda,
- 970 Oviraptorosauria) from the Campanian Dinosaur Park Formation of Alberta, Canada.
- 971 Historical Biology 33, 1671–1685 https://doi.org/10.1080/08912963.2020.1726908
- 972 Gao, K., Fox, R., 1998. New choristoderes (Reptilia: Diapsida) from the Upper Cretaceous and
- 973 Palaeocene, Alberta and Saskatchewan, Canada, and phylogenetic relationships of
- 974 Choristodera. Zoological Journal of the Linnean Society 124, 303–353.
- 975 Gates, T., Sampson, S., Zanno, L., Roberts, E., Eaton, J., Nydam, R., Hutchinson, J., Smith, J.,
- 976 Loewen, M., Getty, M., 2010. Biogeography of terrestrial and freshwater vertebrates from the
- P77
 Late Cretaceous (Campanian) Western Interior of North America. Palaeogeography,
- P78 Palaeoclimatology, Palaeoecology 291, 371–387
- Gates, T. A., Prieto–Márquez, A., Zanno, L. E., 2012. Mountain building triggered Late Cretaceous
- 980 North American megaherbivore dinosaur radiation. PLoS ONE 7, e42135.
- 981 Gilbert, M., Bamforth, E., 2017. Paleoecology of a vertebrate microfossil assemblage from the
- 982 easternmost Dinosaur Park Formation (Upper Campanian) Saskatchewan, Canada:
- 983 Reconstructing diversity in a coastal ecosystem. Vertebrate Anatomy Morphology
- Palaeontology 4, 1–57.
- 985 Gilbert, M., Bamforth, E., Buatois, L., Renaut, R., 2018. Paleoecology and sedimentology of a
- 986 vertebrate microfossil assemblage from the easternmost Dinosaur Park Formation (Late
- 987 Cretaceous, Upper Campanian,) Saskatchewan, Canada: Reconstructing diversity in a coastal
- 988 ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 495, 227–244.

Formattato: Spagnolo (Uruguay)

989	Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. The American
990	Naturalist 163 (2), 192–211.
991	Hilton, E., Grande, L., 2006. Review of the fossil record of sturgeons, family Acipenseridae
992	(Actinopterygii: Acipenseriformes), from North America. Journal of Paleontology 80, 672-
993	683.
994	Hathway, B., 2016. Regional TR sequence stratigraphy and lithostratigraphy of the Bearpaw
995	Formation (Upper Campanian), west-central and southwestern Alberta plains. Bulletin of
996	Canadian Petroleum Geology 64 (3), 449–466.
997	Haubold, H., 1989. Dinosaurs and fluctuating sea levels during the Mesozoic. Historic Biology 4,
998	75–106.
999	Head. M.J., 1992. Zygospores of the Zygnemataceae (Division Chlorophyta) and other freshwater
1000	algal spores from the Uppermost Pliocene St. Erth Beds of Cornwall, Southwestern England.
1001	Micropalaeontology 38 (3), 237–260.
1002	Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. The American
1003	Naturalist 163, 192–211.
1004	Holland, S., Loughney, K., 2021. The stratigraphic palaeobiology of nonmarine systems.
1005	Cambridge University Press.
1006	Holland, B., Bell, P.R., Fanti, F., Hamilton, S.M., Larson, D.W., Sissons, R., Sullivan, C., Vavrek,
1007	M.J., Wang, Y. and Campione, N.E., 2021. Taphonomy and taxonomy of a juvenile
1008	lambeosaurine (Ornithischia: Hadrosauridae) bonebed from the late Campanian Wapiti
1009	Formation of northwestern Alberta, Canada. PeerJ, 9, p.e11290.
1010	Horner, J., Varricchio, D., Goodwin, M., 1992. Marine transgressions and the evolution of
1011	Cretaceous dinosaurs. Nature 358, 59-61,
1012	Joyce, W. G., Brinkman, D. B., Lyson, T. R., 2019. A new species of trionychid turtle, Axestemys
1013	infernalis sp. nov., from the Late Cretaceous (Maastrichtian) Hell Creek and Lance

1014 formations of the Northern Great Plains, USA. Palaeontologia Electronica, 22, 1–28.

1015	Koppelhus, E., Fanti, F., 2019. Rare, non-marine deposits during the deposition of the Bearpaw	
1016	Formation: Interpreting the Palaeoenvironment of the DC bonebed (Wapiti Formation) using	
1017	palynology and palaeobotany. Canadian Society of Vertebrate Palaeontology, P.J. Currie	
1018	Museum, Grande Prairie (Alberta), May 10-13, 2019, 25-26.	
1019	Larson, D., Brinkman, D., Bell, P., 2010. Faunal assemblages from the upper Horseshoe Canyon	
1020	Formation, an early Maastrichtian cool-climate assemblage from Alberta, with special	
1021	reference to the Albertosaurus sarcophagus bonebed. Canadian Journal of Earth Sciences 47,	
1022	1159–1181	
1023	Lehman, T., 1987. Late Maastrichtian palaeoenvironments and dinosaur biogeography in the	
1024	western interior of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 60,	
1025	189–217.	
1026	Lehman T., 2001. Late Cretaceous dinosaur provinciality. In: Tanke, D.H., Carpenter, K. (Eds.)	
1027	Mesozoic vertebrate life. Bloomington: Indiana University Press. pp 310-328.	
1028	Lyson, T. R., Joyce, W. G., 2009. A revision of Plesiobaena (Testudines: Baenidae) and an	
1029	assessment of baenid ecology across the K/T boundary. Journal of Paleontology 83 (6), 833-	
1030	853.	
1031	Loewen, M., Irmis, R., Sertich, J., Currie, P., Sampson, S., 2013. Tyrant dinosaur evolution tracks	
1032	the rise and fall of late Cretaceous oceans. PLoS ONE 8(11), e79420.	
1033	Longrich, N., Barnes, K., Clark, S., Millar, L., 2013. Caenagnathidae from the Upper Campanian	
1034	Aguja Formation of West Texas, and a Revision of the Caenagnathinae. Bulletin of the	
1035	Peabody Museum of Natural History 54 (1), 23-49 http://dx.doi.org/10.3374/014.054.0102	
1036	Lucas, S., Sullivan, R., Lichtig, A., Dalman, S., Jasinski, S., 2016. Late Cretaceous dinosaur	
1037	biogeography and endemism in the Western Interior Basin, North America: a critical re-	
1038	evaluation. In: Khosla, A., Lucas, S. (Eds.), Cretaceous period: biotic diversity and	
1039	biogeography. New Mexico Museum of Natural History and Science Bulletin 71, 195–213.	

1010 Manon, 5., Evans, D., Ryan, M., Anaerson, 5., 2012. Meganerororous amosaar tarnover m a	1040	Mallon, J.	, Evans, D	., Ryan,	M., Anderson.	, J., 2012.	Megaherbivorou	s dinosaur turnover	in the
--	------	------------	------------	----------	---------------	-------------	----------------	---------------------	--------

- 1041 Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeography,
- 1042 Palaeoclimatology, Palaeoecology 350, 124–138.
- 1043 Mannion, P., Benson, R., Upchurch, P., Butler, R., Carrano, M., Barrett, P., 2012. A temperate
- palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical
 partitioning. Global Ecology and Biogeography 21, 898–908.
- Mannion, P., Upchurch, P., Benson, R., Goswami, A., 2014. The latitudinal biodiversity gradient
 through deep time. Trends in Ecology Evolution 29 (1), 42–50.
- 1048 Markwick, P. J., 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates:
- implications for using palaeontological data in reconstructing paleoclimate. Palaeogeography,
 Palaeoclimatology, Palaeoecology 137 (3-4), 205–271.
- Matthews, K., Maloney, K., Zahirovic, S., Williams, S., Seton, M., Müller, R., 2016. Global plate
 boundary evolution and kinematics since the late Palaeozoic. Global and Planetary Change
 146, 226–250.
- Nagy, E., 1966. Investigations into the Neogene microplankton of Hungary. Palaeobotanist 15, 38–
- 1055 46.
- 1056 Neuman, A.G., Brinkman, D.B., 2005. Fishes of the fluvial beds, in: Currie, P.J., Koppelhus, E.B.
- 1057 (Eds.) Dinosaur Provincial Park: a Spectacular Ancient Ecosystem Revealed. Indiana
- 1058 University Press, Bloomington and Indianapolis. pp. 167–185.
- 1059 Nydam, R., 2013. Squamates from the Jurassic and Cretaceous of North America.
- 1060 Palaeobiodiversity and Palaeoenvironments 93, 535–565. 10.1007/s12549-013-0129-5
- 1061 Nydam, R., Caldwell, M., Fanti, F., 2010. Upper Campanian Borioteiioidean lizards from Kleskun
- 1062 Hill, west-central Alberta (Wapiti Formation). Journal of Vertebrate Palaeontology 30 (4),
- 1063 1090–1099.

Formattato: Colore carattere: Blu

1064	Oreska, M., Carrano, M., 2018. Palaeocommunity mixing increases with marine transgression in	
1065	Dinosaur Park Formation (Upper Cretaceous) vertebrate microfossil assemblages.	
1066	Palaeobiology 45, 136–153 DOI: 10.1017/pab.2018.36	
1067	Peng, J.H., Russell, A.P., Brinkman, D.B., 2001. Vertebrate Microsite assemblages (exclusive of	Formattato: Colore carattere: Blu
1068	mammals) from the Foremost and Oldman Formations of the Judith River Group	
1069	(Campanian) of Southeastern Alberta: An Illustrated Guide. Provincial Museum of Alberta	
1070	Natural History Occasional Paper no. 25:1-54.	
 1071	Quinney, A., 2011. The Upper Cretaceous Horseshoe Canyon Formation: using palaeosols to	
1072	reconstruct ancient environments, climates, and record of climate change in a dinosaur-	
1073	dominated terrestrial ecosystem, Unpublished M.Sc. thesis, University of Calgary, Calgary,	
1074	Alberta, 145 pp.	
1075	Rogers, R., 1998. Sequence analysis of the upper Cretaceous Two Medicine and Judith River	
1076	formations, Montana: nonmarine response to the Claggett and Bearpaw marine cycles. Journal	
1077	of Sedimentary Research 68, 615-631.	
1078	Rogers, R., Kidwell, S., Deino, A., Mitchell, J., Nelson, K., Thole, J., 2016. Age, correlation, and	
1079	lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River Formation in its	
1080	type area (North-Central Montana), with a comparison of low- and high-accommodation	
1081	alluvial records. The Journal of Geology 124, 99–135	
1082	Russell, L., Chamney, T., 1967. Notes on the biostratigraphy of dinosaurian and microfossil faunas	
1083	in the Edmonton Formation (Cretaceous), Alberta. National Museum of Canada, Natural	Formattato: Spagnolo (Uruguay)
1084	History Papers, 35.	
1085	Rivera-Sylva, H., Carbot-Chanona, G., Vivas-Gonzalez, R., Nava-Rodriguez, L., Cabral-Valdez, F.,	
1086	2019. The first crocodyliforms remains from La Parrita locality, Cerro del Pueblo Formation	

(Campanian), Coahuila, Mexico. Boletín de la Sociedad Geológica Mexicana 71, 727-739.

1087

1088	Ryan, M., Evans, D., 2005. Ornithischian Dinosaurs. Pp. 312–348. In Dinosaur Provincial Park: A
1089	Spectacular Ancient Ecosystem Revealed (P. J. Currie and E. B. Koppelhus, eds), Indiana
1090	University Press, Bloomington.
1091	Sampson, S., Loewen, M., 2010. Unraveling a radiation: a review of the diversity, stratigraphic
1092	distribution, biogeography, and evolution of horned dinosaurs (Ornithischia: Ceratopsidae),
1093	in: Ryan, M.J., Chinnery-Allgeier, B., Eberth, D.A. (Eds.) New Perspectives On Horned
1094	Dinosaurs. Bloomington: Indiana University Press. pp 405-427.
1095	Sampson, S., Loewen, M., Farke, A., Roberts, E., Forster, C., Smith, J., Titus, A., 2010. New
1096	horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS
1097	ONE 5(9): e12292. doi:10.1371/journal.pone.0012292
1098	Schröder-Adams, C., 2014. The Cretaceous Polar and Western Interior seas: palaeoenvironmental
1099	history and palaeoceanographic linkages. Sedimentary Geology 301, 26-40.
1100	Scott, C., Fox, R., 2015. Review of Stagodontidae (Mammalia, Marsupialia) from the Judithian
1101	(Late Cretaceous) Belly River Group of southeastern Alberta, Canada. Canadian Journal of
1102	Earth Sciences 52, 682–695.
1103	Srivastava, S.K., Braman, D.R., 2013. The palynostratigraphy of the Edmonton Group (Upper
1104	Cretaceous) of Alberta, Canada Palynology 37(1), 1–27.
1105	Sternberg, C., 1951. The lizard Chamops from the Wapiti Formation of northern Alberta:
1106	Polyodontosaurus grandis is not a lizard. Bulletin of the National Museum of Canada 123,
1107	256–258.
1108	Straight, W., Eberth, D., 2002. Testing the utility of vertebrate remains in recognizing patterns in
1109	fluvial deposits: an example from the lower Horseshoe Canyon Formation, Alberta. Palaios
1110	17, 472–490.
1111	

- 1111 Sullivan, R., Lucas, S., 2006. The Kirtlandian land-vertebrate "age" faunal composition,
- 1112 Temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of
- 1113 western North America. New Mexico Museum of Natural History Science Bulletin 35, 7–29.

1114	Tarduno, J.A., Brinkman, D.B., Renne, P.R., Cottrell, R.D., Scher, H., Castillo, P., 1998. Evidence	
1115	for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282, 2241-	
1116	2244.	
1117	Upchurch, P. Hunn, C., Norman, D., 2002. An analysis of dinosaurian biogeography: evidence for	
1118	the existence of vicariance and dispersal patterns caused by biological events. Proceedings of	
1119	the Royal Society of B: Biological Sciences 269, 613-621.	
1120	Vandermark, D., Tarduno, J., Brinkman, D., 2007. A fossil champsosaur population from the high	
1121	Arctic: Implications for Late Cretaceous palaeotemperatures. Palaeogeography,	
1122	Palaeoclimatology, Palaeoecology 248, 49–59.	
1123	Vavrek, M., Larsson, H., 2010. Low beta diversity of Maastrichtian dinosaurs of North	
1124	America. Proceedings of the National Academy of Sciences 107, 8265-8268.	
1125	Vavrek, M.J., Murray, A.M., Bell, P.R., 2014. An early Late Cretaceous (Cenomanian) sturgeon	
1126	(Acipenseriformes) from the Dunvegan Formation, northwestern Alberta, Canada. Canadian	
1127	Journal of Earth Sciences 51 (7), 677–681.	
1128	Vitek, N. S., 2012. Giant fossil soft-shelled turtles of North America. Palaeontologia Electronica 15	
1129	(1), 13A.	
1130	Weishampel, D., Horner, J., 1987. Dinosaurs, habitat bottlenecks, and the St. Mary River	
1131	Formation. In Currie, P., Koster, E. (eds.) 4 th Symposium of Mesozoic terrestrial ecosystems.	Formattato: Apice
1132	Royal Tyrrell Museum of Paleontology, 224-229.	
1133	Whittaker, R. H., 1975. Communities and ecosystems. Communities and ecosystems. Macmillan,	
1134	New York. 158 pp.	

- 1135 Wilson, A., Newbrey, M., Brinkman, D., Cook, T., Neuman, A., 2013. Age and growth in
- 1136 *Myledaphus bipartitus*, a Late Cretaceous freshwater guitarfish from Alberta, Canada.
- 1137 Canadian Journal of Earth Sciences 50, 930–944

1138	Worobiec, E., 2014. Fossil Zygospores of Zygnemataceae and other microremains of greshwater	
1139	algae from two Miocene palaeosinkholes in the Opole region, SW Poland. Acta	
1140	Palaeobotanica 54(1), 113–157.	
1141	Wu, X-C., Brinkman, D., 2015. A new crocodylian (Eusuchia) from the uppermost Cretaceous of	
1142	Alberta, Canada. Canadian Journal of Earth Sciences 52, 590-607	
1143	Wu, X. C., Brinkman, D. B., Russell, A. P., 1996. A new alligator from the Upper Cretaceous of	
1144	Canada and the relationship of early eusuchians. Palaeontology 39, 351-376.	
1145	Yi. S., 1997. Zygnematacean zygospores and other freshwater algae from the Upper Cretaceous of	
1146	the Yellow Sea Basin, southwest coast of Korea. Cretaceous Research 18, 515-544	
1147	Yi, H., Norell, M., 2013. New Materials of Estesia mongoliensis (Squamata: Anguimorpha) and the	
1148	evolution of venom grooves in lizards. American Museum Novitates 3767, 1-31.	Formattato: Inglese (Stati Uniti)
1149	Zubalich, R., Capozzi, R., Fanti, F., Catuneanu, O., 2021. Evolution of the Western Interior Seaway	
1150	in west-central Alberta (late Campanian, Canada): Implications for hydrocarbon exploration.	
1151	Marine and Petroleum Geology 124, 104779	
1152	https://doi.org/10.1016/j.marpetgeo.2020.104779	
1153		
1154		
1155		
1156		
1157		
1158		
1159		
1160		
1160 1161		
1160 1161 1162		

1164	
1165	
1166	
1167	
1168	
1169	
1170	
1171	Figure Caption
1172	Figure 1: A) Reference map of Alberta (western Canada) showing extent of major stratigraphic
1173	units discussed in this paper. B) Study area located in west-central Alberta, near the city of
1174	Grande Prairie. C) Location of the Dinosaur-Chelonian BdonebedBonebed.
1175	Figure 2: Campanian lithostratigraphy and stratigraphic nomenclature for the study area. Numbers
1176	in circles represent 1, DC Bonebed, 2, Kleskun Hill. Dinosaur Macrofossil Assemblage
1177	Zones are modified from Eberth et al. (2013); Palynostratigraphic Biozones are modified
1178	from Braman, 2018. Red lines indicate dated bentonites from the Wapiti Formation (see
1179	main text).
1180	Figure 3: A) Field photograph of the Dinosaur-Chelonian (DC) Bbonebed area (yellow box);
1181	overall, the DC bonebed occurs at the base of <u>a</u> laterally-isolated channel deposit. B)
1182	Measured stratigraphic sections along the Wapiti River with highlighted dated bentonitic
1183	beds indicated.
1184	Figure 4: Documented stratigraphic ranges (from Braman, 2018) of the various palynomorphs
1185	recovered at the DC Bonebed. Data presented in this study suggest the DC Bonebed
1186	assemblage belongs to the Pseudoaquilapollenites parallelus – Parviprojectus
1187	leucocephalus palyno-stratigraphic biozone, which ranges from 74.5 to 73.7 Ma.
1188	Figure 5: Chondrichthyan and osteichthyan specimens from the DC Bonebed. UALVP 60786

1189	Amphicoelous amiid centrum in A) dorsal and B) anterior views, with paired, elongate
1190	depressions for neural arch articulation visible in dorsal view. Deeply amphicoelous
1191	Myledaphus bipartitus centrum (UALVP 60802) in C) dorsal and D) anterior views.
1192	Myledaphus bipartitus shed crown (UALVP 59115) in E) lateral and F) occlusal views,
1193	which characteristic marginal vertical grooves seen in lateral view, and enamel folds (rather
1194	than tubercles seen in M. pustulosus) seen in occlusal view. G) Right Coriops dentary
1195	fragment (UALVP 60773) in lateral view, exhibiting deep ramus, lateral foramina, and one
1196	remaining conical tooth. H) Lepisosteid scale (UALVP 23122) exhibiting typical polygonal
1197	shape, enamelled surface, and weakly developed articular peg morphology. I) Anteriorly
1198	convex lepisosteid caudal vertebra (UALVP 70744) in right lateral view. Distinctive
1199	horizontal ridge, as in extant gar, is present on lateral surface. J) Conical, longitudinally
1200	striated lepisosteid tooth (UALVP 23117), with enameloid cap at apex. 'Holostean A' scale
1201	(UALVP 60812) in K) external and L) internal views, showing typical peg-and-depression
1202	morphology. M) Acipenserid dorsal scute (UALVP 59844) in dorsal view, (anterior to the
1203	left), showing characteristic pitted ornamentation. Largely Nearly complete Belonostomus
1204	upper mandiblefused premaxillae (UALVP 60781) in N) dorsal and O) ventral views,
1205	representing the left and right fused premaxillae, exhibiting two rows of closely packed
1206	tecooth-rows, and delicate ganoine ornamentation on the dorsal surface. Note that each
1207	boxed panel has own scale bar. Scale bars 3 cm.
1208	Chondrichthyan and osteichthyan specimens from the DC Bonebed. UALVP 60786
1209	Amiid centrum in A) dorsal and B) anterior views. Myledaphus bipartitus centrum (UALVP 60802)
1210	in C) dorsal and D) anterior views. Myledaphus bipartitus shed crown (UALVP 59115) in E) lateral
1211	and F) occlusal view. G) Right <i>Coriops</i> dentary fragment (UALVP 60773) in lateral view. H)
1212	Lepisosteid seale (UALVP 23122). I) Lepisosteid caudal vertebra (UALVP 70744) in right lateral
1213	view. J) Lepisosteid tooth (UALVP 23117). 'Holostean A' scale (UALVP 60812) in K) external
1214	and L) internal views. M) Acipenserid dorsal scute (UALVP 59844) in dorsal view, anterior to the

1215	left. Belonostomus upper mandible (UALVP 60781) in N) dorsal and O) ventral views. Note that
1216	each boxed panel has own scale bar. Scale bars 3 cm.
1217	Figure 6: Amphibia, turtle, squamate, Champsosaurus, and crocodyliform specimens from the DC
1218	Bonebed. A) Plesiobaena antiqua hypoplastron (UALVP 23092) in ventral view. B)
1219	Trionychid right hypoplastron fragment (UALVP 23101), exhibiting typical tryionychid
1220	ornamentation, though not referable to Aspideretoides foveatus. C) Baenidae indet. fFused
1221	hypoplastron and xiphiplastron (UALVP_59133) with D) inset of distinct, closely-pitted
1222	texture in area indicated by white box. E) Chelydrid costal (UALVP 59135), exhibiting deep
1223	sulci and relatively littlesubtle ornamentation. H) Amphicoelous Hedronchus sternbergii
1224	trunk vertebra (UALVP 59831) in right lateral view, exhibiting backswept neural spine. I)
1225	Conical erocodyliform tooth crown (UALVP 59811), with characteristic unserrated carinae
1226	visible running lengthwise from base to apex at the center of this view. F) Champsosaurus
1227	centrum (UALVP 57408) in dorsal view, exhibiting distinct hourglass shaped neural canal
1228	groove. G) Squamate astragalocalcaneum (UALVP 59947) in dorsal view, exhibiting tibial
1229	and fibular facets at top of view. Note specimens inset inthat each boxed panel hass at
1230	differentown scale bar. Scale bars 3 cm. Amphibia, turtle, squamate, Champsosaurus, and
1231	crocodyliform specimens from the DC
1232	Bonebed. A) Plesiobaena antiqua hypoplastron (UALVP 23092) in ventral view. B)
1233	Trionychid right hypoplastron fragment (UALVP 23101). C) Baenidae indet. hypoplastron
1234	and xiphiplastron (UALVP59133) with D) inset of texture indicated by white box. E)
1235	Chelydrid costal (UALVP 59135). H) <i>Hedronchus sternbergii</i> trunk vertebra (UALVP
1236	59831) in right lateral view. I) Crocodyliform tooth crown (UALVP 59811). F)
1237	Champsosaurus centrum (UALVP 57408) in dorsal view. G) Squamate astragalocalcaneum
1238	(UALVP 59947) in dorsal view. Note specimens inset in boxes at different scale. Scale bars
1239	3 cm.

Figure 7: Dinosaur specimens from the DC Bonebed. A) Ankylosaurid tooth crown (UALVP

1241	59116), exhibiting wear facet, constricted root, apicobasal ridges, and weak cingulum. B)
1242	Troodontid right pedal phalanx IV-1 in medial view (UALVP 60748), exhibiting depression
1243	on the proximoplantar corner (at lower right). C) Tyrannosaurid tooth crown (UALVP
1244	57805). D) Thescelosaurid left quadrate (UALVP 23114) in lateral view, exhibiting distinct
1245	notch for the quadrate foramen. E) Dromaeosaurid pedal phalanx (UALVP 59507).
1246	Hadrosaurid caudal centrum (UALVP 61239) in F) dorsal and G) left lateral views-with
1247	typical centrum and neural arch morphology. H) Partial ornithomimid left pubis (UALVP
1248	59798) in medial view, with fragmentary-damaged pubic apron visible at left. I)
1249	Caenagnathid left ilium (UALVP 60800) in medial view. A5 sacral rib facet can be noted
1250	seen off-center of near the broken dorsal margin, roughly above the pubic peduncle on the
1251	dorsal-most remaining area. Note specimens inset inthat each boxed panel has owns at
1252	different scale bar. Scale bars 3 cm. Dinosaur specimens from the DC Bonebed. A)
1253	Ankylosaurid tooth crown (UALVP
1254	59116). B) Troodontid right pedal phalanx IV-1 in medial view (UALVP 60748). C)
1255	Tyrannosaurid tooth crown (UALVP 57805). D) Thescelosaurid left quadrate (UALVP
1256	23114) in lateral view. E) Dromacosaurid pedal phalanx (UALVP 59507). Hadrosaurid
1257	caudal centrum (UALVP 61239) in F) dorsal and G) left lateral views. H) Ornithomimid left
1258	pubis (UALVP 59798) in medial view. I) Caenagnathid left ilium (UALVP 60800) in
1259	medial view. Note specimens inset in boxes at different scale. Scale bars 3 cm.
1260	Figure 8: A) Relative abundances at family level of vertebrate groupstaxonomy for various during
1261	the sites and stratigraphic units in the Campanian of an Alberta. Combined relative
1262	abundances total 100% for in each individual stratigraphic unitcase. B)
1263	relative abundances of aquatic and terrestrial taxa. OFm, Oldman Formation; DPFm,
1264	Dinosaur Park Formation; LCz, Lethbridge Coal Zone; DCB, Dinosaur-Chelonian Bonebed;
1265	KH, Kleskun Hill; HCFm, Horseshoe Canyon Formation. See SI for detailed
1266	accountsabundance data.

1267	Figure 9: Chart showing the documented stratigraphic distribution, in the Campanian of Alberta,
1268	for the Campanian of various vertebrate species and clades discussed in this paper (light
1269	blue boxes, Dinosaur Park Formation; red boxes, Wapiti Formation; green boxes, Horseshoe
1270	Canyon Formation). Pie diagrams represent the diversity of discussed microsite localities in
1271	Wapiti Unit 3 (in ascending order: DC bonebed, Kleskun Hill, and Red Willow River). C.z.,
1272	coal zone
1273	
1274	
1275	Supplementary material
1276	
1277	SI 1: Supplementary data discussing U-Pb dating procedures, and Systematic Palaeontology, of
1278	vertebrate fauna from the Dinosaur-Chelonian Bonebed (Wapiti Formation Unit 3, upper
1279	Campanian, Alberta, Canada).
1280	SI 2: Detailed faunal counts for microvertebrate taxa representative of the Dinosaur-Chelonian
1281	Bonebed, Oldman, Dinosaur Park (including the Lethbridge Coal Zone), Wapiti Formation
1282	(including Dinosaur-Chelonian \underline{B} bonebed and Kleskun Hill sites), and Horseshoe Canyon
1283	formations.