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Chapter 1

Regularity results for nonlocal minimal
surfaces

Eleonora Cinti

Abstract
In this note, we present some recent results in the study of nonlocal min-

imal surfaces. The notion of nonlocal minimal surface was introduced by
Caffarelli, Roquejoffre, and Savin, they are boundaries of sets which mini-
mize the nonlocal (or fractional) perimeter. In the last years, much interest
has been devoted to the study of their regularity properties. Similarly to the
classical local setting, a crucial ingredient in the study of regularity, is the
classification of minimal cones. In the nonlocal setting, only partial results
are available, dealing mainly with the low-dimensional case. We describe the
main achievements in the field, focusing in particular on the difference with
respect to the classical theory and in the difficulties which arise due to the
nonlocal character of the problem.

1.1 Introduction

We describe some recent results in the study of regularity properties of non-
local, or fractional, minimal surfaces. These geometric objects were defined
by Caffarelli, Roquejoffre, and Savin in [5], as the boundaries of sets whose
characteristic functions minimize a fractional Sobolev norm.

More precisely, in [5] the following notion of fractional perimeter was in-
troduced.

Let s ∈ (0, 1). Given E a bounded subset of Rn, the fractional s-perimeter
of E is given by
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Pers(E) = cs

∫
E

∫
Rn\E

1

|x− y|n+s
dx dy = cs[χE ]W s,1(Rn), (1.1)

where χE denotes the characteristic function of the set E, [ · ]W s,1(Rn) denotes
the seminorm in the fractional Sobolev space W s,1, and cs is a constant
depending on s which behaves like (1− s) as s ↑ 1. To be more precise, in [5]
the definition of Pers was given in terms of the squared W s/2,2−seminorm
of χE , but it is easily seen that their definition coincide with the one given
above.

Written as in (1.1), one can better appreciate the analogy with the notion
of classical perimeter in the sense of De Giorgi, defined as

Per(E) = [χE ]BV (Rn),

where [ · ]BV (Rn) denotes the seminorm in the space BV . In (1.1) we are
considering a fractional order derivative of the characteristic function of a set
and the two notions are consistent in the sense that Pers → Per as s ↑ 1 (see
e.g. [1, 7, 11]).

Roughly speaking, the s-perimeter captures the interactions between a set
E and its complement, these interactions take place in the whole Rn and are
weighted by a kernel with polynomial decay. Due to its nonlocal character,
the s-perimeter has several applications, for example in image reconstruction
and nonlocal capillarity models, see e.g. [3, 14].

A set E which is a minimizer for the fractional perimeter is called a frac-
tional (or nonlocal) minimal set, and its boundary is referred to as a nonlocal
minimal surface.

As it happens for the classical notion of area-minimizing surfaces, if the set
E is not bounded, in order to give the notion of minimizer for the perimeter
functional, one needs to introduce a localized version of perimeter, since the
perimeter of an unbounded set E in the whole Rn could be infinite.

The localized notion of s-perimeter is the following: let Ω be a bounded
domain in Rn, we define the fractional s-perimeter of a measurable set E ⊂
Rn relative to Ω as

Pers(E,Ω) :=

∫
E∩Ω

∫
Ec

1

|x− y|n+s
dx dy +

∫
E\Ω

∫
Ω\E

1

|x− y|n+s
dx dy,

(1.2)
where Ec denotes the complement of E in Rn.

The choice of the set of integration in the definition of the fractional
perimeter is the natural one which does not change the variational struc-
ture of the functional, once we have fixed the set E outside of Ω. We can
now give the definition of minimizer for Pers in Ω.

Definition 1. We say that a set E is a minimizer for the s-perimeter in Ω
if

Pers(E,Ω) ≤ Pers(F,Ω), for all F such that E \Ω = F \Ω.
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Moreover, we say that E is a minimizer for the s-perimeter in Rn, if E is
a minimizer in a ball BR, for all radii R > 0.

Said in other words, a nonlocal minimal surface in Ω is the boundary of a
set E, whose characteristic function minimize the W s,1-seminorm, among all
sets which coincide with E in the complement of Ω.

In [5] the Euler-Lagrange equation for this functional has been derived:
similarly to the classical case, a nonlocal minimal set E must have vanishing
fractional mean curvature Hs, where Hs is given by the following expression

Hs(x) = cs lim
ε→0+

∫
Rn\Bε(x)

χRn\E(y)− χE(y)

|x− y|n+s
dy. (1.3)

Here cs denotes again a constant depending on s which behaves like (1− s)
as s ↑ 1.

The first example of a surface with zero nonlocal mean curvature is a half-
space. Other examples of sets with vanishing nonlocal mean curvature have
been studied in the recent contributions [8, 12]. In [12], the nonlocal analogue
of catenoids are constructed, but they differ from the standard catenoids
since they approach a singular cone at infinity instead of having a logarith-
mic growth. These surfaces are constructed using perturbative methods, by
performing small perturbation along the normal vector to ∂E. Instead in [8]
it is proven, just by an easy symmetry argument, that the standard helicoids
are surfaces with zero nonlocal mean curvature.

In [5], the study of regularity of nonlocal minimal surfaces has been started.
More precisely, Caffarelli, Roquejoffre, and Savin established density esti-
mates, the improvement of flatness for minimizers, a monotonicity formula,
a blow-up and a dimension reduction argument. Nevertheless, the regularity
theory for minimizers of the fractional perimeter is still widely open. In the
following sections we describe the main results and the main open questions
in the field.

1.2 Classification of s-minimal cones in low dimensions

We start by recalling the following well-known results in the regularity theory
for classical area-minimizing surfaces.

Every minimal cone in Rn is a hyperplane, whenever n < 8. The condition
on the dimension is optimal, indeed in R8 the Simons cone defined as

C := {x ∈ R8 |x21 + · · ·+ x24 = x25 + · · ·+ x28}

is a minimizer for the perimeter functional.
The classification of minimal cones is one of the main ingredients in both

the classification of entire minimal surfaces (that is surfaces that are min-
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imizer of the perimeter functional in the whole Rn) and in the study of
regularity for minimizers of the perimeter in a bounded set Ω. Indeed, the
classification of minimal cones leads, on the one hand, to the classification of
any entire area minimizing surfaces via a blow-down argument. On the other
hand the nonexistence of singular minimal cones in space dimension n ≤ 7
implies, via blow-up and a dimension reduction argument, that any minimal
surface is smooth outside a singular set of Hausdorff dimension n− 8 . More-
over, again the classification of minimal cones leads to the classification of
entire minimal graphs (the so called Bernstein problem): If E is a minimizer
of the perimeter functional and ∂E is a graph, then E is a half-space, when-
ever n < 9. Note that the critical dimension for a graph to be flat is one more
than the one for a general set. The main ingredients in the proof of these
results are given by density estimates, perimeter estimates, improvement of
flatness for minimizers and a monotonicity formula.

As already mentioned in the Introduction, many of these ingredients in the
nonlocal setting were established in [5]. With these tools, Caffarelli, Roque-
joffre and Savin could reduce the study of regularity for nonlocal minimal
surfaces to the classification of nonlocal minimal cones. More precisely they
proved that, if the blow-up, around the origin, of an s-minimal set E is flat,
then ∂E is C1,α in a neighborhood of the origin (see [5, Theorem 9.4]). As a
consequence of a dimension reduction argument, they proved C1,α regularity
outside a singular set of Hausdorff dimension at most n− 2 (see [5, Theorem
10.4]). The bound n−2 on the dimension of the singular set was not optimal
due to the fact that in [5] the classification of nonlocal minimal cones was
not known, not even in R2.

Later, in [16] Savin and Valdinoci proved that in R2 an s-minimal cone is
necessarily a half-plane. As a consequence they could improve the bound on
the Hausdorff dimension of the singular set from n−2 to n−3 and via a blow-
down argument they obtained the classification of any s-minimal surface in
R2.

Moreover, in [2] Barrios, Figalli, and Valdinoci showed that if E is an s-
minimal set such that ∂E ∈ C1,α, then ∂E is in fact C∞ (such a result holds
in every dimension). This is a consequence of a more general regularity result
for solutions to integro-differential equations via a bootstrap argument. In
[13], Figalli and Valdinoci addressed the fractional version of the Bernstein
problem and proved that, if there are not s-minimal singular cones in Rn,
then the only entire s-minimal graphs in Rn+1 are the hyperplanes.

We summarize all these results in the following Theorem.

Theorem 1. The following facts hold:

1. Every s-minimal cone in R2 is a hyperplane ([16]);
2. If E is a minimizer of the s-perimeter in the whole R2, then E is a half-plane

([16]);
3. If E is a minimizer of the s-perimeter in Rn and ∂E is a graph, then E is a

half-space, whenever n ≤ 3 ([13]);
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4. If E is a minimizer of the s-perimeter, then ∂E is C∞ outside a singular set
Σ of Hausdorff dimension n− 3 ([2, 5, 16]).

In addition, when s is close to 1 Caffarelli and Valdinoci proved that all
the regularity results that hold in the classical setting are inherited, by a
compactness argument, by s-nonlocal minimal surfaces (see [6, 7]).

Theorem 2 (Theorem 5 in [7]). There exists ε0 ∈ (0, 1) such that if s ≥ 1−
ε0, then any s-minimal surfaces is C∞ outside a singular set Σ of Hausdorff
dimension n− 8.

Finally, in the very recent contribution [4], Cabré, Serra and the author
proved flatness for nonlocal s-minimal cones in R3 for s close to 1. We empha-
size that in [4], differently from [7], the proof is not based on a compactness
argument and it permits to quantify how much s must be close to 1. This
last result holds not only for cones that are minimizers for the s-perimeter,
but for the more general class of stable cones. Stability here has to be under-
stood in the variational sense, i.e. it corresponds to the fact that the second
variation of the s-perimeter is nonnegative (we will comment on the notion
of stability in the next section). The following is the main result in [4].

Theorem 3 (Theorem 1.2 in [4]). There exists s∗ ∈ (0, 1) such that for
every s ∈ (s∗, 1) the following statement holds.

Let Σ ⊂ R3 be a cone with nonempty boundary of class C2 away from 0.
Assume that Σ is a stable set for the s-perimeter. Then, Σ is a half-space.

The proof of this result uses two crucial ingredients: the fractional Hardy
inequality in R2 (with the precise behavior of its sharp constant as s ↑ 1) and
the perimeter estimates for stable sets contained in [9] and that we describe
in the next Section.

1.3 Quantitative flatness results and perimeter
estimates for stable sets

We now focus on the two-dimensional result proven by Savin and Valdinoci in
[16] (see Theorem 1, point 1.). The proof of this result relies on the following
idea: given a minimal cone E in the whole Rn (i.e. a cone which is a mini-
mizer in BR for any R > 0), one considers perturbations E+

R that are small
translations, in some direction, of E inside the half ball BR/2 (and which
coincide with E outside of BR). A computation shows that the difference
between the s-perimeter of E+

R and the s-perimeter of E is controlled in the
following way:

Pers(E
+
R , BR)− Pers(E,BR) ≤ CRn−2−s.
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Hence, when n = 2, this difference can be made arbitrarily small as R→∞.
On the other hand, if E was not a half-plane, it could be modified in such a
way to decrease its s-perimeter by a small but fixed amount and this leads to
a contradiction. It is clear that this argument works only in dimension n = 2
(we are using that Rn−s−2 goes to 0 as R → ∞). We emphasize that the
factor Rn−s comes from an optimal bound for the s-perimeter of minimizers.
Indeed, by a comparison argument one can show that if E is an s-minimal
set in BR, then

Pers(E,BR) ≤ CRn−s,

and this bound is optimal.
These ideas were recently used in [9] to prove a quantitative version of this

2-dimensional flatness result, where quantitative has to be understood in the
following sense.

Suppose that E is a minimizer for Pers in a ball BR for some R large
enough (and not for all R). Is it true that E is “close” to be a half-plane in
B1? Moreover, can we give an estimate on this closeness depending on R?
The following result, contained in [9], gives an answer to these questions.

Theorem 4 (Theorem 1.3 in [9]). Let n = 2. Let R ≥ 2 and E be a
minimizer for the s-perimeter in the ball BR ⊂ R2.

Then, there exists a half-plane h such that

|(E4h) ∩B1| ≤ CR−s/2. (1.4)

Moreover, after a rotation, we have that E ∩B1 is the subgraph of a mea-
surable function g : (−1, 1)→ (−1, 1) with oscillation osc g ≤ CR−s/2 outside
a “bad” set B ⊂ (−1, 1) with measure CR−s/2.

As mentioned above, the proof of this result is based on the technique
developed in [16] which uses perturbations given by small translations of
the minimizer E (inside the ball BR) and introducing quantitative elements
which allow to keep track of the dependence on the radius R.

The ideas developed in [9] to prove Theorem 4 above have also been used
to prove an optimal estimate for the classical perimeter of an s-minimal
set E. Of course, such an estimate cannot be deduced just by a comparison
argument (indeed, it is a genuine regularity estimate which improves the order
of differentiability of χE) and needs a more sophisticated argument. More
interestingly, this estimate holds true in the more general class of stable sets.
Here stability has to be understood in the variational sense, that is we require
the set to be a minimizer among small perturbations, which corresponds, for
smooth objects, to the fact that the second variation of the s-perimeter is
nonnegative. For the precise notion of stability that we use, we refer to [9,
Definition 1.6] and [4, Section 2]. Once one has an estimate for the classical
perimeter of E, by a standard interpolation, one can deduce an estimate
for its s-perimeter. As already explained, for minimizers the upper bound
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on the s-perimeter comes easily by comparison, but for stable sets is highly
nontrivial.

In order to explain the interest in perimeter estimates for stable objects,
we recall some known facts in the classical local setting.

Stable minimal cones (for the classical perimeter) are completely classified:
they are hyperplanes in space dimensions n ≤ 7. In R8, the Simons cone is
an example of stable cone which is singular (i.e., the classification that we
have presented in the previous section for classical minimal surfaces holds
true for stable cones). Once one has a complete classification of stable cones,
using a blow-down technique, one can obtain the classification of any stable
surface in the whole Rn. A crucial tool needed for this argument is an optimal
estimate for the perimeter of stable sets. It is well known that any minimizer
of the classical perimeter in a ball BR satisfies the estimate

Per(E,BR) ≤ CRn−1. (1.5)

Unfortunately, an estimate like (1.5) is not known to hold for stable sets,
unless we are in dimension n = 3 and we require some topological assumptions
on the set E (see [10, 15] ). The difficulty in proving perimeter estimates for
stable sets relies on the fact that, when using a comparison argument, we
are allowed to consider only competitors which are small perturbations of the
given set E.

In dimension n > 3 the search for a perimeter estimate for stable sets is
still completely open. As explained above, having a universal bound for the
classical perimeter of embedded minimal surfaces in every dimension n > 3
would be a decisive step towards proving the following well-known and long
standing conjecture: The only stable embedded minimal (hyper)surfaces in Rn
are hyperplanes as long as the dimension of the ambient space is less than or
equal to 7.

Surprisingly, in the fractional setting, the nonlocal character of the perime-
ter functional gives somehow more rigidity and allows to obtain the following
result (which holds in every dimension):

Theorem 5 (Theorem 1.1 in [9]). Let s ∈ (0, 1), R > 0 and E be a stable
set in the ball B2R ⊂ Rn for the nonlocal s-perimeter functional. Then,

Per(E,BR) ≤ C Rn−1,

and
Pers(E,BR) ≤ CRn−s.

As a consequence of Theorem 5, in [9] the quantitative flatness result in
R2 was proven to hold also for stable set (and not only for minimizers) .

In a similar way to what described for the classical case, once one has a
complete classification for s-minimal stable cones, the s-perimeter estimates
of Theorem 5 would allow to classify any stable s-minimal surface. In this
respect, the difficulties in the nonlocal setting are, in some way, dual to the
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ones in the local setting: in the first case, we have perimeter estimates in
any dimensions but only the classification of stable cones in low dimensions
is known; in the second the situation is reversed, since stable cones are com-
pletely classified but perimeter estimates are still missing in dimension n > 3.

Having in mind this picture, an interesting motivation in the study of
nonlocal minimal surfaces is whether nonlocal techniques and nonlocal results
could lead to give an answer to some important open questions in the local
setting, such as, for example, the complete classification of stable surfaces.
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