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a b s t r a c t 

Drug repurposing consists in identifying additional uses for known drugs and, since these new findings are built 
on previous knowledge, it reduces both the length and the costs of the drug development. In this work, we 
assembled an automated computational pipeline for drug repurposing, integrating also a network-based analysis 
for screening the possible drug combinations. The selection of drugs relies both on their proximity to the disease 
on the protein-protein interactome and on their influence on the expression of disease-related genes. Combined 
therapies are then prioritized on the basis of the drugs’ separation on the human interactome and the known 
drug-drug interactions. We eventually collected a number of molecules, and their plausible combinations, that 
could be proposed for the treatment of Huntington’s disease and multiple sclerosis. Finally, this pipeline could 
potentially provide new suggestions also for other complex disorders. 
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Discovering a new drug and bringing it to the market is a process
oth money and time consuming. Instead, relying on established drugs,
omputational drug repositioning offers a valuable alternative approach
or providing promising treatments for disorders without a cure [ 1 , 2 ].
n recent years, a plethora of computational approaches to drug repur-
osing have been proposed and applied to a wide variety of therapeu-
ic areas [3] . Most of such approaches rely either on machine learn-
ng or on the traditional methods of computational drug design, even
hough some conceptually innovative ideas have brought to the light
he possibility of taking new paths towards the prediction of potentially
epurposable drugs. One of such ideas is based on a system view and
akes the human protein-protein interactome as a reference network to
uantify the relatedness between drugs and diseases by calculating the
istance between drug targets and disease-associated proteins. This dis-
ance has been proposed as a suitable metrics to measure the "proximity"
etween drugs and diseases [4] . Recently, leveraging on the concept of
rug-disease proximity [5] , novel drug indications for the treatment of
ardiovascular diseases [ 5 , 6 ], cancers [7] , COVID-19 [8] , Alzheimer’s
isease [9] have been proposed, demonstrating how a network-based
pproach could successfully assist the selection of drugs to be repur-
osed. 

In this work, we assembled an automated computational pipeline by
ntegrating a recently developed scheme to screen repurposable drugs
hat combines a network-based technique with an analysis of biologi-
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al and experimental data [ 10 , 11 ], with a strategy for filtering all the
ossible drug combinations [6] . Initially, the procedure estimates the
roximity between the disease-related proteins and the drug targets on
he protein-protein interactome, performing a first selection of candi-
ates. Then, only those drugs that significantly influence the expression
f disease-related genes are considered plausible for repurposing. Fi-
ally, evaluating the separation of these drugs’ targets on the human
nteractome and taking into consideration the known drug-drug inter-
ctions, combined therapies are prioritized. The workflow of the pro-
edure is schematically illustrated in Fig. 1 . The entire process is au-
omated in order to reduce human intervention, thus accelerating the
hole procedure and limiting execution errors. 

We applied this pipeline to Huntington’s disease (HD) and multiple
clerosis (MS) because, despite the fact that they are both neurologi-
al disorders, their different nature could represent a challenge for our
trategy, and the outcomes could give us insights into its methodolog-
cal strengths and limitations. HD, is reported as a typical monogenic
isease, even though many other genes are known to influence its pro-
ression [12] , while for MS a single genetic cause has not been found
et, probably because many factors play an important role in the etiol-
gy. Indeed, MS fits well the definition of complex disease to be consid-
red in the framework of network medicine. On the other hand, HD was
ncluded in our study in order to test the capabilities of the proposed
ethod in a case where different clinical phenotypes might be related

o a disease module eventually influenced by genetic modifiers leading
o different pathophysiological states [12–14] . 
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Fig. 1. Pipeline Flowchart. The flowchart shows the sources and the steps of the automated procedure to screen repurposable drug candidates and prioritize their 
combinations. 
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HD is the most common monogenic neurological disorder. The on-
et is typically in the early stage of adult life, and it is characterized
y motor dysfunction, cognitive impairment, and neuropsychiatric fea-
ures [ 12 , 15 ]. The autosomal dominant mutation that causes HD is lo-
ated in the HTT gene, and it consists in a cytosine-adenosine-guanine
rinucleotide repetition (CAG, encoding glutamine) leading to an over-
xpansion of the polyglutamine (polyQ) tail in the huntingtin protein.
he mutated protein tends to aggregate and accumulate, forming inclu-
ion bodies that have deleterious consequences for the neural cell. Both
he inclusion bodies and the length of the CAG expansion are proven
o play an important role in the development of the disease. The clear-
nce of the first ones slows the HD progression, while the longer the
AG expansion, the earlier the disease may manifest [15] . The remain-

ng uncertainty on the course of HD can be ascribed to other genetic
ifferences in the genome of the patients [ 12 , 14 ]. 

MS is both the most frequent non-traumatic disabling disease in
oung adults [16] and the commonest demyelinating disease [17] . The
tiology and the mechanism causing its worsening progression are still
nclear, nevertheless it has been proven that a complex interplay of ge-
etic and environmental factors is important [ 18 , 19 ]. The main known
isk factors are smoking, childhood obesity, infection with the Epstein-
arr virus, and low vitamin D levels [19] . MS is generally viewed as a
wo-phases autoimmune disease, in which initially focal inflammatory
rocesses cause a relapsing-remitting form of the disease, and subse-
uently demyelinating plaques (lesions resulted by the previous immune
esponse) and oligodendrocyte damage lead to neurodegeneration and
on-relapsing progressive course [ 17 , 19 ]. MS is commonly character-
zed by progressive spastic paraparesis, cognitive impairment, and sen-
ory and cerebellar dysfunctions[19]. 

Both HD and MS are still lacking resolutive treatments [ 20 , 21 ],
hose development needs a deeper knowledge of the underlying mech-
nisms [22] . To this aim, network-based models, as the ones we utilized
n this study, could be adequate theoretical tools for investigating such
ultifactorial disorders. They would allow us to take into account the

atent complex structure of these diseases without losing a comprehen-
ive view [23] . Through the methodology presented here, we were able
o collect a number of approved drugs and their plausible combinations
hat could be proposed for the treatment of HD and MS. 

aterials and methods 

The workflow of this study can be outlined in the following steps
 Fig. 1 ): (1) collection of disease-related genes; (2) gene sets validation
hrough enrichment analysis; (3) collection of drugs, targets, protein
nteraction data, and construction of protein-protein interactome; (4)
2 
omputation of drug-disease proximity on the human protein-protein
nteractome; (5) estimation of drug-induced gene expression signature
nrichment; (6) calculation of drug-drug separation on the human in-
eractome. Except for the collection of the disease-related genes, each
peration is performed by a Python 3 script, and the entire procedure is
rought together and coordinated by a main file in the same program-
ing language. 

ollection of disease-related genes 

For each of the two considered diseases, a set of related genes
as retrieved from KEGG [24] ( https://www.genome.jp/kegg/ ), OMIM

25] ( https://www.omim.org/ ), PheGenI [26] ( https://www.ncbi.nlm.
ih.gov/gap/phegeni ), DISEASES [27] ( https://diseases.jensenlab.org/
earch ), and DisGeNET [28] ( https://www.disgenet.org/ ). 

Briefly, for HD, 306 genes were retrieved from the KEGG Hunting-
on Disease pathway “hsa05016 ”; 152 querying OMIM for “Huntington
isease ”; 1 from the DISEASES database and 17 were those associated

o “Huntington Disease ” on DisGeNET and having an Evidence Index
 https://www.disgenet.org/dbinfo#section36 ) of at least 0.95. 

On the other hand, for MS, 160 genes were the result of querying
MIM for “Multiple Sclerosis ”; 89 were collected from PheGenI with
HGRI (National Human Genome Research Institute) genome-wide as-

ociation study as source and a p-value < 1 × 10 − 8 ; 5 were retrieved
rom the DISEASES database; 30 gathered from DisGeNET with the same
onditions applied to HD. 

The genes were mapped to official gene symbols taking advantage
f the NCBI database and then combined. 

ntology (GO, HPO) enrichment analysis 

Functional enrichment analysis is often employed to perform a pre-
iminary analysis on an investigated gene set. Examining the Gene Ontol-
gy [29] (GO, http://geneontology.org/ ) and the Human Phenotype On-
ology [30] (HPO, https://hpo.jax.org/ ) associations, we gained insights
n biological processes, molecular functions, cellular components and
henotypes most frequently associated to those genes. We conducted
he functional enrichment analysis using the Python library GOATOOLS
31] and considered significantly enriched only those terms with a false
iscovery rate (FDR, p-value corrected for multiple comparisons using
he Benjamini-Hochberg procedure [32] ) lower than 1 × 10 − 4 . We then
ooked at the first 20 terms ranked on the basis of their fold enrichment
computed as the ratio of the percentage of genes in the study set re-
ated to a specific term, divided by the corresponding percentage in the
ackground, i.e., the entire human proteome). 

https://www.genome.jp/kegg/
https://www.omim.org/
https://www.ncbi.nlm.nih.gov/gap/phegeni
https://diseases.jensenlab.org/search
https://www.disgenet.org/
https://www.disgenet.org/dbinfo\043section36
http://geneontology.org/
https://hpo.jax.org/
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rugs and targets collection, gene expression profiles retrieval and 

rotein-protein interactome construction 

Drugs information was collected from DrugBank [33] (version
.1.9). Only those molecules having at least one human protein as target
re considered, obtaining 5 798 drugs and 2 755 corresponding targets.

Drug-induced gene expression profiles were retrieved from the Li-
rary of Integrated Network-based Cellular Signatures [34] (LINCS, pro-
les “GSE70138 ” and “GSE92742 ”), downloaded from Gene Expres-
ion Omnibus [35] (GEO, http://www.ncbi.nlm.nih.gov/geo ). Due to
he fact that we are inspecting neurological disorders, those signatures
ested on neural cell lines (NEU, NPC, SHSY5Y) were examined for both
iseases. Additionally, in order to consider disease-specific features, also
uscular cell lines (SKB, SKL) were included for HD, and haematopoi-

tic and lymphoid tissue cell lines (L60, JURKAT, NOMO1, PL21, SKM1,
HP1, U937, WSUDLCL2) for MS. Furthermore, to guarantee maximum
eliability of the results, only the data about the Best Inferred Genes
BING) in every dataset (drug signature) in these profiles was kept. The
ING subset includes 978 landmark genes and 9 196 inferred genes,
hich are identified among the 12 328 genes in the L1000 assay by
ubramanian et al. [36] evaluating the most reliable inference predic-
ions. 

Extensive interactions among proteins are a key factor in accom-
lishing many biological processes and functions. For this reason,
e opted for a network-based approach to evaluate the correlation
etween drugs and diseases or drugs and other drugs. We built a human
rotein-protein interaction (PPI) network combining data from eight
ublicly available resources: Agile Protein Interactomes DataServer
37] (APID, http://cicblade.dep.usal.es:8080/APID/init.action ),
iological General Repository for Interaction Datasets [38] (Bi-
GRID, https://thebiogrid.org/ ), The Human Reference Interac-
ome [39] (HuRI, http://www.interactome-atlas.org/ ), InnateDB
40] ( https://www.innatedb.com/ ), INstruct [41] ( http://instruct.
ulab.org/ ), IntAct [42] ( https://www.ebi.ac.uk/intact/home ), Sig-
aLink [43] ( http://signalink.org/ ), and Search Tool for the Retrieval
f Interacting Genes/Proteins [44] (STRING, https://string-db.org/ ).
upplementary Table 1 gives additional info about the interactions
eported in the databases and the applied filters. 

The retrieved interactions were then combined, obtaining a net-
ork (available in the Supplementary Information) consisting of 20 445
odes (genes/proteins) and 1 125 173 edges (interactions). Consistency
s granted by the fact that all listed proteins are mapped to official
ene symbols taking advantage of the NCBI database. Since the protein-
rotein interactome is the supporting pillar of the whole procedure, we
ssessed its validity comparing the results of the entire analyses based
n two other interactomes. The first rerun was carried out on the widely
ecognized interactome from Cheng et al. [5] (16 677 unique proteins
nd 243 603 experimentally confirmed protein–protein interactions).
he second one was performed on a drastically restricted version of our
wn interactome (16 954 proteins and 246 080 interactions), in which
nly interactions from low throughput studies (listing less than 20 in-
eractions) were included. 

etwork proximity 

Proteins related to a specific disease are unlikely to be scattered
hroughout the interactome, rather, they tend to group together forming
he so-called disease module [45] . The relationship between a drug and
 disease could be estimated by means of an unsupervised and unbiased
etwork-based approach [4] , which quantifies the interplay of drug tar-
ets and disease-related genes measuring a network proximity. Here we
sed a recently modified version of such method [10] that includes a
erm ( 𝑤 ) for taking into account the degree of the drug targets directly
nto the distance calculation. Given 𝐺, the set of disease-related genes;
 , the set of drug targets; and 𝑑( 𝑔, 𝑡 ) , the shortest path length between
odes 𝑔 ( 𝑔 ∈ 𝐺) and 𝑡 ( 𝑡 ∈ 𝑇 ) in the human protein-protein interactome;
3 
he distance 𝑑( 𝐺, 𝑇 ) between each drug and the disease was calculated
s: 

 ( 𝐺, 𝑇 ) = 

1 
|𝑇 |

∑
t∈𝑇 

min 
𝑔∈𝐺 

( 𝑑 ( 𝑔, 𝑡 ) + 𝑤 ) (1) 

here 𝑤 weights the targets based on their node degree in the interac-
ome ( 𝑤 = − ln ( 𝐷 + 1 ) if the target is related to the disease, 𝑤 = 0 oth-
rwise). 𝐷 is the degree of the target in the PPI network. 

Then, for each drug, the significance of its association to the inves-
igated disease was assessed comparing the measured distance to that
f a dummy reference distribution. This reference was obtained com-
uting 10 000 times the distance ( 𝑑( 𝐺, 𝑅 ) , defined by Eq. (1) ) between
he disease-related genes and randomly selected (from the human inter-
ctome) sets of proteins ( 𝑅 ) matching the number of the drug targets.
ince the degree of the drug targets is already taken into consideration
n the distance calculation, the sampling of the randomly selected pro-
eins is facilitated having to match only the number and not also the
egree distribution of the drug targets. The mean 𝜇𝑑( 𝐺,𝑅 ) and standard
eviation 𝜎𝑑( 𝐺,𝑅 ) of the reference distribution were used to normalize
he observed distance into a proximity value (z-score): 

 ( 𝐺, 𝑇 ) = 

𝑑 ( 𝐺, 𝑇 ) − 𝜇𝑑 ( 𝐺,𝑅 ) 

𝜎𝑑 ( 𝐺,𝑅 ) 
(2)

nverted gene set enrichment analysis 

Starting from the hypothesis that effective drugs should be able to
estore the healthy expression of genes deregulated by a disease, the
rugs with signatures most enriched in disease-related genes should also
e the most promising ones in treating such disease. In order to gain this
nowledge, an Inverted Gene Set Enrichment Analysis [10] (IGSEA) on
he datasets (drug signatures) of LINCS was performed, looking for the
isease-related genes under study. For each analyzed dataset, the nor-
alized enrichment score and the p-value (estimated comparing the en-

ichment score with those of a null distribution generated from 100 000
ermutations) were computed for measuring the enrichment magnitude
nd its statistical significance, respectively. The resulted p-values were
hen corrected for multiple comparison using the Benjamini-Hochberg
rocedure [32] , obtaining the FDR. If the dataset was significantly en-
iched (FDR < 0.25), the corresponding drug was considered a potential
rug candidate. 

etwork separation 

An important aspect in investigating drug combinations is to eval-
ate whether the two drug-target modules are overlapped (overlap-
ing exposure) or separated (complementary exposure) on the human
rotein-protein interactome [6] . In the case of overlapping exposure,
here is a higher similarity in chemical, biological, functional, and clin-
cal profiles. The desired combinations, instead, are those with comple-
entary exposure, both drugs being topologically and pharmacologi-

ally distinct. In the latter case, the two drugs synergistically cooperate
n treating the disease, yet each one in its own way. 

As we did for computing the drug-disease proximity, also for mea-
uring drug-drug separation 𝑠 𝐴𝐵 in drug combinations, we employed a
etwork-based approach [ 6 , 45 ]: 

 AB = ⟨𝑑 AB ⟩ − 

⟨𝑑 AA ⟩ + ⟨𝑑 BB ⟩
2 

(3) 

here 𝐴 is the target module of one drug and 𝐵 that of the other. Here,
he mean shortest distances (calculated with Eq. (1) with the weight 𝑤
xed to 0) between the target modules of each drug ( ⟨𝑑 𝐴𝐴 ⟩ and ⟨𝑑 𝐵𝐵 ⟩,
omputable only for drugs with at least two targets) are compared to
he mean shortest distance between all possible A-B target pairs ( ⟨𝑑 𝐴𝐵 ⟩).

hen computing the distances between A-B target pairs, if a protein is
argeted by both drugs, its distance is zero by definition. A drug combi-
ation exposure is deemed complementary if 𝑠 𝐴𝐵 ≥ 0 , overlapping oth-
rwise. 

http://www.ncbi.nlm.nih.gov/geo
http://cicblade.dep.usal.es:8080/APID/init.action
https://thebiogrid.org/
http://www.interactome-atlas.org/
https://www.innatedb.com/
http://instruct.yulab.org/
https://www.ebi.ac.uk/intact/home
http://signalink.org/
https://string-db.org/
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Fig. 2. Enriched Biological Processes. The bubbleplots display the top 20 most enriched Gene Ontology terms relative to biological processes for Huntington’s disease 
(A) and multiple sclerosis (B). On the horizontal axis, the fold enrichment is shown. The color encodes the negative of the false discovery rate logarithm, and the 
size represents the gene ratio (computed as the ratio of the percentage of genes in the study set related to a specific term, divided by the corresponding percentage 
in the background, i.e., the entire human proteome). 
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omputational framework 

In this study, we automated the pipeline shown in Fig. 1 for screening
epurposable drug candidates and prioritizing their combinations. In or-
er to run, the script only requires the disease name, the disease-related
enes, and the cell lines of interest as inputs. This procedure consists
f: collecting, cleaning and organizing the source data (disease-related
enes, drugs, targets, protein interactions, drug-induced gene expres-
ion signatures); identifying repurposable drug candidates evaluating
oth their proximity to the disease and their effect on the expression of
he disease-related genes; screening the possible drug combinations on
he basis of their relative exposure and known interactions. The output
f the routine is a collection of tables (tab-separated values files) and
lots, recording both intermediate and final results. 

Compared to previous related works [ 10 , 11 ], such a systematic strat-
gy should be more efficient and have an improved reproducibility
hanks to the organization and standardization of both the overall study
nd results. Additionally, it takes a step forward since it evaluates also
ossible combined therapies. 

The single steps and the outcomes of the application of the frame-
ork to HD and MS are presented and discussed in the follow-

ng. 

isease-related genes collection and validation 

We gathered the disease-related genes as described in the Methods
ection: this resulted in 451 and 217 genes associated to HD and MS,
4 
espectively. In order to evaluate whether these genes were representa-
ive of the investigated diseases, we performed an enrichment analysis
n GO and HPO terms. This allowed us to check if the most enriched
iological processes, molecular functions, cellular components and phe-
otypes were in accordance with previous knowledge. 

Prior studies relate HD to dysfunctions in transcription, intracellular
ignaling, intracellular transport, endocytic recycling, and mitochondria
12] . This knowledge is consistent with the biological processes, cellu-
ar components and molecular functions that we found to be enriched
 Fig. 2 A and Supplementary Figure 1 A, B). The same holds for the phe-
otypes, which are associated to negativism, social and occupational
eterioration, mitochondrial and nervous issues (Supplementary Figure
 C) [ 12 , 15 ]. 

MS is an autoimmune disorder whose inflammatory infiltrates con-
ain T-lymphocytes and B-cells, and leads to oligodendrocyte damage
nd demyelination [19] . This is coherent with the enriched terms in our
nalysis ( Fig. 2 B and Supplementary Figure 2). 

The fact that the obtained results were confirmed by the literature
uggested that the gathered genes were representative of the diseases
nder study. 

Furthermore, as in Menche et al. [45] , the disease modules were
ested to be nonrandom gene aggregates. The size of the largest con-
ected component of the disease module was compared to the size of
he one obtained by randomly picking the proteins (matching the num-
er of the disease-related genes) from the interactome (the comparison
s shown in Supplementary Figure 3). For both diseases, the disease mod-
le resulted to be significantly larger than the random counterpart, al-
owing us to state that they cannot be attributed to a casual aggregation
f genes. 
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Fig. 3. Distance Distributions. The distribution of the distance between drug targets and disease-related proteins (solid blue line) compared to that of a reference 
collection (dashed orange line), for Huntington’s disease (A) and multiple sclerosis (B). On the vertical axis, the kernel density estimation of the distribution is shown. 
The plot is divided into two parts by the chosen distance threshold (green line, see Methods). 
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epurposable drugs selection 

The network-based proximity analysis, leveraging on the potential
f a system view, could suggest valuable drugs able to interfere with
he disease molecular determinants in a non-trivial way (i.e., not only
irectly targeting disease-related genes). The idea behind this method
s that drugs proximal to the disease module should be more effec-
ive than distant ones, as shown by Guney et al. in an extensive anal-
sis that considered known diseases and disease-associated genes, as
ell as drugs and their targets [4] . Following Peng’s protocol [10] ,

he procedure compares the distribution of the distances between drug
argets and disease-related proteins to that of a reference collection
see Methods and Fig. 3 ). For both diseases, it was possible to iden-
ify a distance value below which the two density curves (drugs and
eference) drop dramatically. In particular, the reference density as-
umes negligible values for distances below this point ( Fig. 3 , green
art of the plot). We elected such distance value ( Fig. 3 , vertical
reen line) as the threshold to discriminate drugs associated to the dis-
ases. These distances are 0.68 and 0.71 (corresponding to proximity:
 0.53 and –0.98) for HD and MS, respectively. From this analysis, 685

11.8%) out of the 5798 drugs collected from DrugBank were consid-
red significantly proximal medicaments for HD, and 475 (8.2%) for
S. 

In order to evaluate the impact of a drug on the disease, we examined
he effect of its administration on the expression of the disease-related
enes in relevant cell lines (see Methods). We pursued this objective
y performing an Inverted Gene Set Enrichment Analysis (IGSEA) on
96 drugs, observed in 6 212 LINCS expression datasets for HD and 960
rugs in 5 579 datasets for MS. This analysis resulted in 843 and 600
ignificantly enriched drugs, for HD and MS respectively. 

The drugs that were both significantly enriched and proximal to
he disease were deemed to be repurposable drug candidates: 138 for
D and 38 for MS (Supplementary Tables 2, 3). The interactions be-

ween the MS-related-genes, the drug targets, and the repurposable drug
andidates are visualized in Fig. 4 (and Supplementary Figure 4 for
D), showing how drugs can be related to the disease through their

argets. 
Unfortunately, only a small portion of the proximal drugs has data

n the LINCS database (21.9% for HD and 13.7% for MS). Even though
he IGSEA analysis increases the reliability of the results, it dramatically
educes the number of molecules that can be investigated and possibly
roposed. This has to be taken into account when evaluating the out-
omes of the study. 
5 
To be more confident on the pool of predicted repurposable drugs,
e replicated the entire procedure using three different interactomes.
ur original one and the two networks used to validate it differ both in

ize and in listed interactions (see Methods). Despite these differences,
he repurposable drug sets suggested for both investigated diseases re-
ulted fairly consistent. In the case of HD, 138 drugs were prioritized
ased on the original interactome, 110 on Cheng’s one, 133 on our re-
tricted interactome. It is noteworthy that all the molecules retrieved
rom the two smaller interactomes are included among those of the first
ne. A very similar conclusion could be drawn for MS, for which the pro-
edure predicted 39 drugs with the large interactome, 26 with Cheng’s
ne, and 29 with the severely constrained version of our interactome. 

rug combinations 

Combined therapies and multi-targeted agents have proven to offer
ignificant advantages over monotherapy, presenting higher efficacies
nd less adverse reactions [ 6 , 46 ]. Due to combinatorial explosion, how-
ver, it is generally not feasible to test all theoretically possible asso-
iations. For this reason, we adopted a recent methodology proposed
y Cheng et al. [6] , which is based on the estimation of target neigh-
orhoods separation on the human protein-protein interactome. Taking
dvantage of that, the investigated combinations may be screened on
he basis of the pharmacological relationship between drugs (see Meth-
ds). Additionally, we looked in DrugBank for approved associations
nd interactions that increase the risk or severity of adverse effects. In
his way, we ended up having an assortment of plausible combinations
isted in Supplementary Tables 4, 5 and identifiable in the annotated
eatmaps of Fig. 5 for HD and of Supplementary Figure 5 for MS. 

iscussion 

rotein-Protein interactomes 

For both diseases, the repurposable drug pools predicted using the
hree interactomes are in reasonable concordance. However, it is signif-
cant that the execution of the pipeline on our interactome, compared
o the same procedure on Cheng’s interactome, improves the prediction
dding 7 drugs with evidence from clinical trials, 9 from in vivo studies,
 from in vitro experiments for HD, and 5 clinically tested drugs and 1
nvestigated in an animal model for MS. 

This outcome seems to suggest that injecting more input data in
he procedure (still maintaining high reliability standards) leads to in-
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Fig. 4. Multiple Sclerosis Gene-Target-Drug Network. The Sankey diagram illustrates the interconnections between disease-related genes, drug targets, and drugs. 
Each drug (right column) is connected to its reported targets (middle column), which, in turn, are proximal on the human interactome to some of the disease-associated 
proteins (left column). Drugs are colored by the respective ATC code, and the FDR of the IGSEA analysis (see Methods) is reported in the label. 
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reased performance, which is perfectly in line with the Big Data per-
pective [47] . 

epurposable drugs 

Among the drugs selected to tackle HD (138), several (17) have been
linically tested and suggested, many show strong evidence from in vivo
ests (35) or promising results from in vitro assays (9). All the references
re reported in the Supplementary Table 2, the most noticeable exam-
6 
les being selisistat [48] , lisuride [49] , valproic acid [50] , and risperi-
one [20] . 

Selisistat was found to be safe, well tolerated, and capable of reach-
ng a plasma concentration compatible with the SirT1 inhibition, which
as been shown to restore transcriptional dysregulation in models of HD
48] . Lisuride is able to induce a temporary yet significant improvement
n the motor performance of patients with hyperkinesia caused by HD
49] . Valproic acid was shown to be a possible alternative treatment for
D patients suffering from myoclonic hyperkinesia [50] . Risperidone
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Fig. 5. Huntington’s Disease Drug Combinations. The annotated heatmap provides info about possible combinations of the selected drugs. A combination is marked 
with × if an interaction is reported in DrugBank, and with ○ if it is present in an approved formulation. The lower-left part of the heatmap shows the separation 
of the inspected drugs, color coded from blue (no separation) to red (strongly separated). The upper-right portion, instead, displays the kind of exposure: violet if 
overlapping and green if complementary. At the leftmost part, the ATC codes of the drugs are reported along with a dendrogram of their hierarchical clustering. 
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as beneficial effects in the treatment of psychiatric manifestations and
tabilization of motor symptoms in patients with HD [20] . 

Inspecting the drugs screened for MS (38), we obtained a comparable
utcome: 7 of them are clinically studied and 9 experimented on animal
odels. All the evidence is listed in the Supplementary Table 3. Most
7 
f the drugs in clinical trials aim to alleviate the symptoms, while the
nly one we found to be capable of reducing relapses is Escitalopram
51] for which there is evidence suggesting it may be an effective and
ell-tolerated treatment for preventing stress-related relapses in women
ith MS [51] . 



L. Menestrina and M. Recanatini Artificial Intelligence in the Life Sciences 2 (2022) 100042 

 

r  

l  

d  

d  

l  

c  

i  

s  

h
 

a  

t  

t  

r

D

 

F  

h  

a  

g  

o
 

a  

s  

s  

r  

p  

s  

m  

i  

c  

o  

A  

s  

o  

g  

s  
Examining the Anatomical Therapeutic Chemical (ATC) codes of the
epurposable drugs, the first thing to notice is the predictable preva-
ence of drugs associated to the ATC code N (Nervous System) for both
iseases. Apart from this, the most common codes for HD repurposable
rugs are C (Cardiovascular) and L (Antineoplastic and Immunomodu-
ating Agents). The first group is mainly represented by statins, used to
ope with the cholesterol impairment typical of HD patients [52] . The
mmunomodulating agents are principally immunosuppressants and hi-
tone deacetylases inhibitors, the last ones aimed at recovering from the
istone hypoacetylation common in neurological disorders [53] . 

For MS, instead, the second most frequent code is L (Antineoplastic
nd Immunomodulating Agents). Some relevant examples are ruxoli-
inib, paclitaxel, tamoxifen, and thalidomide, which are capable of at-
enuating experimental autoimmune encephalomyelitis and of inducing
emyelination [54–58] . 

rug combinations 

Observing the obtained results (depicted as annotated heatmaps in
ig. 5 for HD and Supplementary Figure 5 for MS) it is interesting to
8 
ighlight that drugs that do not have ATC codes associated to them are
lso those with few (or nothing at all) reported interactions. This sug-
ests that they are not sufficiently characterized and additional studies
n them are needed before further consideration. 

The collected plausible combinations are numerous, but the associ-
tion of orphenadrine (DB01173) and caffeine (DB00201) for HD de-
erves to be highlighted. These molecules are present along with acetyl-
alicylic acid (ASA) in an FDA approved formulation for muscular pain
elief. This medication is noteworthy for many reasons. First of all,
ain is a known issue in HD and could be an important non-motor
ymptom [ 59 , 60 ] thus, its treatment should not be neglected. Further-
ore, orphenadrine showed to be effective in preventing neurotoxicity

n rats with a chemically-induced condition that mimics the histologi-
al and neurochemical features of HD [61] . Additionally, low dosages
f caffeine showed to be beneficial in HD animal models [62] . Finally,
SA was included in the formulation for relieving pain and decreasing
welling. Even though ASA was proximal to HD, it was not included in
ur results because its data was not available in LINCS for the investi-
ated cell lines. However, it is actually profitable for the present aim,
ince it showed to prevent protein aggregation in several neurodegen-
Fig. 6. Escitalopram and Tofacitinib Comple- 
mentary Exposure. The network displays the 
proteins associated to MS (circles) and high- 
lights those targeted by escitalopram and tofac- 
itinib (dark green and dark blue, respectively). 
Targets that are not related to MS are indicated 
as triangles. In order to better illustrate the in- 
fluence of these two molecules given by the 
tight interconnection of the proteome, the first 
neighbors of the drug targets are depicted in 
a lighter color (light green for neighbors of tar- 
gets of escitalopram, and light blue tofacitinib’s 
ones). 
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rative diseases [63] . Further assessments are needed, but this could be
n interesting point where to start. 

A reasonable hypothesis for treating MS might be an association
f two drugs sufficiently separated from each other as escitalopram
DB01175) and tofacitinib (DB08895) or ruxolitinib (DB08877), capa-
le of affecting complementary parts of the disease module. Fig. 6 shows
he network of the interactions among proteins associated to MS (all cir-
les) and highlights those targeted by escitalopram and tofacitinib (dark
reen and dark blue, respectively). Among these targets, two of them,
amely HRH1 for escitalopram (dark green circle) and TYK2 for tofac-
tinib (dark blue circle), belong to the MS disease module, while those
hat are not directly related to MS are depicted as triangles (maintain-
ng the same color coding). In order to better illustrate the influence on
he disease module of the two drugs in terms of protein-protein inter-
ctions, the first neighbors of the drug targets are colored lighter (light
reen for neighbors of targets of escitalopram, and light blue for tofaci-
inib’s ones). It can be seen that overall the targets of both escitalopram
nd tofacitinib or their first neighbors can influence a reasonable part of
he disease module without redundantly interfering with the same MS
roteins. In fact, our analysis showed that these drugs are proximal to
S and significantly influence proteins associated to this disease. Addi-

ionally, no interactions between them have been reported in DrugBank.
oreover, we found experimental evidence supporting this inference.
scitalopram is a selective serotonin re-uptake inhibitor (ATC code: N,
ervous) that in humans proved to prevent stress-related relapses [51] .
ofacitinib and ruxolitinib showed promising effects in animal models:
he first one enhancing remyelination and improving myelin integrity
64] , and the second one ameliorating the severity of the disease [54] .
urthermore, they are Janus kinase (JAK) inhibitors (ATC code: L, Anti-
eoplastic and Immunomodulating Agents) and the JAK/STAT pathway
s aberrantly activated in MS [ 21 , 65 ]. 

In the other drug combinations, which are sufficiently separated (see
ethods, green on the heatmaps) and for which no adverse interactions

re reported (not annotated with an × in the heatmaps), valuable clues
or polypharmacological interventions could be found. A working hy-
othesis might be to choose two drugs tackling different aspects of a
isease, for instance featuring distinct ATC codes. 

imitations 

Despite our best efforts, this study is not exempt from some short-
omings that are common in data analysis, and regard mainly the data
vailability and quality. This could have led us to miss some promis-
ng compounds and, at the same time, it may compromise some of the
nalyses. 

A complete characterization of all available drugs and human pro-
eins is surely not at hand, and this has repercussions on many aspects
f the study, like, e.g., the human protein-protein interactome con-
truction, drug association to biological processes, cellular components,
olecular functions and phenotypes, and drug induced gene expression
rofiles retrieval. Only sometimes, this issue could be partially mitigated
y an extensive integration of data from a wider variety of databases.
oteworthy, puzzling examples could be the drug-target association and

he availability of expression data in LINCS. The number of targets as-
ociated to a specific drug could considerably depend on the amount
f research carried out on that medicine rather than on the actual bi-
logical interactions it has. This influences the drug-disease proximity
valuation. Additionally, as stated above, the LINCS database does not
rovide expression profiles for all the drugs selected by network prox-
mity, limiting by far the choice space for drug repurposing. 

Furthermore, if the knowledge we have about drugs is incomplete,
he one we have on their combination is even sparser. This, obviously,
ffects our ability to screen and judge plausible associations. 

Moreover, it could be argued that, even though the drug-disease
roximity is evaluated with a rigorous geometrical approach, the choice
9 
f the distance threshold we use for discriminating drug efficacy is quite
iscretionary. 

onclusions 

Here, we extended an unsupervised computational framework for
rug repurposing with a network-based analysis for screening the pos-
ible drug combination therapies. Applying this pipeline to HD and MS,
e identified several repurposable drug candidates, some of which have
lready been studied in humans. Eventually, we ended up with 138 po-
ential drugs for HD and 38 for MS. Their plausible combinations are
umerous, but this work can help to prioritize them. While these re-
ults are exploratory and should be experimentally verified before fur-
her consideration, they could provide valuable clues for improving the
anagement of HD and MS. 

Finally, this pipeline demonstrated to be effective on both investi-
ated diseases, even though they have a different nature. For this rea-
on, it could potentially provide new suggestions also for other complex
isorders. 
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The most relevant results are included in this article (and its supple-
entary information files). The whole generated data is publicly avail-

ble from the GitHub repository https://github.com/LucaMenestrina/
nsupervisedComputationalFrameworkForDrugRepurposing , as well as

he full code for the collection, building and analysis. A detailed ref-
rence of the source data is provided in the file “data/sources/sources.
son ” of the aforementioned repository (for every database are reported:
ame, version, license, employed files, URL and date of access). 

eclaration of Competing Interest 

The authors declare no competing interests. 

unding 

This research received no specific grant from any funding agency in
he public, commercial, or not-for-profit sectors. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.ailsci.2022.100042 . 

eferences 

[1] Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and
recommendations. Nat Rev Drug Discov 2018;18:41–58. doi: 10.1038/nrd.2018.168 .

[2] Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: find-
ing strategies to find alternative uses of therapeutics. Expert Opin Drug Discov
2020;15:397–401. doi: 10.1080/17460441.2020.1704729 . 

[3] Choudhury C, Arul Murugan N, Priyakumar UD. Structure-based drug repurpos-
ing: traditional and advanced AI/ML-aided methods. Drug Discov Today 2022.
doi: 10.1016/j.drudis.2022.03.006 . 

[4] Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy
screening. Nat Commun 2016;7:10331. doi: 10.1038/ncomms10331 . 

[5] Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction
and population-based validation of in silico drug repurposing. Nat Commun
2018;9:2691. doi: 10.1038/s41467-018-05116-5 . 

[6] Cheng F, Kovács IA, Barabási AL. Network-based prediction of drug combinations.
Nat Commun 2019;10:1197. doi: 10.1038/s41467-019-09186-x . 

[7] Cheng F, Lu W, Liu C, et al. A genome-wide positioning systems net-
work algorithm for in silico drug repurposing. Nat Commun 2019;10:3476.
doi: 10.1038/s41467-019-10744-6 . 

[8] Zhou Y, Hou Y, Shen J, et al. A network medicine approach to investigation and
population-based validation of disease manifestations and drug repurposing for
COVID-19. PLOS Biol 2020;18:e3000970. doi: 10.1371/JOURNAL.PBIO.3000970 . 

[9] Fang J, Zhang P, Zhou Y, et al. Endophenotype-based in silico network
medicine discovery combined with insurance record data mining identifies silde-
nafil as a candidate drug for Alzheimer’s disease. Nat Aging 2021;1:1175–88.
doi: 10.1038/s43587-021-00138-z . 

https://github.com/LucaMenestrina/UnsupervisedComputationalFrameworkForDrugRepurposing
https://github.com/LucaMenestrina/UnsupervisedComputationalFrameworkForDrugRepurposing/blob/master/data/sources/sources.json
https://doi.org/10.1016/j.ailsci.2022.100042
https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1080/17460441.2020.1704729
https://doi.org/10.1016/j.drudis.2022.03.006
https://doi.org/10.1038/ncomms10331
https://doi.org/10.1038/s41467-018-05116-5
https://doi.org/10.1038/s41467-019-09186-x
https://doi.org/10.1038/s41467-019-10744-6
https://doi.org/10.1371/JOURNAL.PBIO.3000970
https://doi.org/10.1038/s43587-021-00138-z


L. Menestrina and M. Recanatini Artificial Intelligence in the Life Sciences 2 (2022) 100042 

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

 

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

 

10] Peng Y, Yuan M, Xin J, Liu X, Wang J. Screening novel drug candidates for
Alzheimer’s disease by an integrated network and transcriptome analysis. Bioinfor-
matics 2020;36:4626–32. doi: 10.1093/bioinformatics/btaa563 . 

11] Quan P, Wang K, Yan S, et al. Integrated network analysis identifying potential
novel drug candidates and targets for Parkinson’s disease. Sci Rep 2021;11:13154.
doi: 10.1038/s41598-021-92701-2 . 

12] Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Prim
2015;1:15005. doi: 10.1038/nrdp.2015.5 . 

13] Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic
era: a complex systems approach to human pathobiology. Mol Syst Biol 2007;3:124.
doi: 10.1038/MSB4100163 . 

14] Wright GEB, Black HF, Collins JA, et al. Interrupting sequence variants and age of
onset in Huntington’s disease: clinical implications and emerging therapies. Lancet
Neurol 2020;19:930–9. doi: 10.1016/S1474-4422(20)30343-4 . 

15] Finkbeiner S, disease Huntington’s. Cold Spring Harb Perspect Biol 2011;3:a007476.
doi: 10.1101/cshperspect.a007476 . 

16] Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the
burden and costs of multiple sclerosis in Europe. Mult Scler 2017;23:1123–36.
doi: 10.1177/1352458517694432 . 

17] Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev
Neurol (Paris) 2016;172:3–13. doi: 10.1016/j.neurol.2015.10.006 . 

18] Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk fac-
tors, prodromes, and potential causal pathways. Lancet Neurol 2010;9:727–39.
doi: 10.1016/S1474-4422(10)70094-6 . 

19] Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol 2019;26:27–40.
doi: 10.1111/ene.13819 . 

20] Duff K, Beglinger LJ, O’Rourke ME, et al. Risperidone and the treatment of psychi-
atric, motor, and cognitive symptoms in Huntington’s disease. Ann Clin Psychiatry
2008;20:1–3. doi: 10.1080/10401230701844802 . 

21] Hamid KM, Isiyaku A, Kalgo MU, Yahaya IS, Mirshafiey A, Lodges in JAK-STAT.
Multiple sclerosis: pathophysiology and therapeutic approach overview. Open Ac-
cess Libr J 2017;4:e3492. doi: 10.4236/oalib.1103492 . 

22] Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and
a new hope. DMM Dis Model Mech 2017;10:499–502. doi: 10.1242/dmm.030205 . 

23] Recanatini M, Cabrelle C. Drug research meets network science: where are we? J
Med Chem 2020;63:8653–66. doi: 10.1021/acs.jmedchem.9b01989 . 

24] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives
on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45:D353–61.
doi: 10.1093/nar/gkw1092 . 

25] Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowl-
edge across phenotype-gene relationships. Nucleic Acids Res 2019;47:D1038–43.
doi: 10.1093/nar/gky1151 . 

26] Ramos EM, Hoffman D, Junkins HA, et al. Phenotype-genotype integrator (PheGenI):
synthesizing genome-wide association study (GWAS) data with existing genomic
resources. Eur J Hum Genet 2014;22:144–7. doi: 10.1038/ejhg.2013.96 . 

27] Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ. DISEASES: text
mining and data integration of disease-gene associations. Methods 2015;74:83–9.
doi: 10.1016/j.ymeth.2014.11.020 . 

28] Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Res 2020;48:D845–55.
doi: 10.1093/nar/gkz1021 . 

29] Carbon S, Douglass E, Good BM, et al. The Gene Ontology resource: enriching a GOld
mine. Nucleic Acids Res 2021;49:D325–34. doi: 10.1093/nar/gkaa1113 . 

30] Köhler S, Gargano M, Matentzoglu N, et al. The human phenotype ontology in 2021.
Nucleic Acids Res 2021;49:D1207–17. doi: 10.1093/nar/gkaa1043 . 

31] Klopfenstein DV, Zhang L, Pedersen BS, et al. GOATOOLS: a python library for gene
ontology analyses. Sci Rep 2018;8:10872. doi: 10.1038/s41598-018-28948-z . 

32] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x . 

33] Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update
to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074–82.
doi: 10.1093/nar/gkx1037 . 

34] Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression
signatures to connect small molecules, genes, and disease. Science 2006;313:1929–
35. doi: 10.1126/science.1132939 . 

35] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics
data sets - Update. Nucleic Acids Res 2013;41:D991–5. doi: 10.1093/nar/gks1193 . 

36] Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity
map: L1000 platform and the first 1,000,000 profiles. Cell 2017;171:1437–52.
doi: 10.1016/j.cell.2017.10.049 . 

37] Alonso-López Di, Campos-Laborie FJ, Gutiérrez MA, et al. APID database: redefin-
ing protein-protein interaction experimental evidences and binary interactomes.
Database 2019;2019:baz005. doi: 10.1093/database/baz005 . 

38] Oughtred R, Rust J, Chang C, et al. The BioGRID database: a comprehensive biomed-
ical resource of curated protein, genetic, and chemical interactions. Protein Sci
2021;30:187–200. doi: 10.1002/pro.3978 . 

39] Luck K, Kim DK, Lambourne L, et al. A reference map of the human binary protein
interactome. Nature 2020;580:402–8. doi: 10.1038/s41586-020-2188-x . 
10 
40] Breuer K, Foroushani AK, Laird MR, et al. InnateDB: systems biology of innate im-
munity and beyond - Recent updates and continuing curation. Nucleic Acids Res
2013;41:D1228–33. doi: 10.1093/nar/gks1147 . 

41] Meyer MJ, Das J, Wang X, Yu H. INstruct: a database of high-quality 3D struc-
turally resolved protein interactome networks. Bioinformatics 2013;29:1577–9.
doi: 10.1093/bioinformatics/btt181 . 

42] Orchard S, Ammari M, Aranda B, et al. The MIntAct project - IntAct as a com-
mon curation platform for 11 molecular interaction databases. Nucleic Acids Res
2014;42:D358–63. doi: 10.1093/nar/gkt1115 . 

43] Csabai L, Fazekas D, Kadlecsik T, et al. SignaLink3: a multi-layered resource to
uncover tissue-specific signaling networks. Nucleic Acids Res 2022;50:D701–9.
doi: 10.1093/nar/gkab909 . 

44] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein as-
sociation networks with increased coverage, supporting functional discovery
in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–13.
doi: 10.1093/nar/gky1131 . 

45] Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships
through the incomplete interactome. Science 2015;347:1257601. doi: 10.1126/sci-
ence.1257601 . 

46] Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations: interaction and network
perspectives. Nat. Rev. Drug Discov. 2009;8:111–28. doi: 10.1038/nrd2683 . 

47] Zhu H. Big data and artificial intelligence modeling for drug discovery.
Annu Rev Pharmacol Toxicol 2020;60:573–89. doi: 10.1146/annurev-pharm-
tox-010919-023324 . 

48] Süssmuth SD, Haider S, Landwehrmeyer GB, et al. An exploratory double-blind, ran-
domized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s
disease, Br. J Clin Pharmacol 2015;79:465–76. doi: 10.1111/bcp.12512 . 

49] Frattola L, Albizzati MG, Alemani A, et al. Acute treatment of Huntington’s chorea
with lisuride. J Neurol Sci 1983;59:247–53. doi: 10.1016/0022-510X(83)90042-4 . 

50] Saft C, Lauter T, Kraus PH, Przuntek H, Andrich JE. Dose-dependent improvement of
myoclonic hyperkinesia due to valproic acid in eight Huntington’s Disease patients:
a case series. BMC Neurol 2006;6:11. doi: 10.1186/1471-2377-6-11 . 

51] Mitsonis CI, Zervas IM, Potagas CM, et al. Effects of escitalopram on stress-
related relapses in women with multiple sclerosis: an open-label, randomized,
controlled, one-year follow-up study. Eur Neuropsychopharmacol 2010;20:123–31.
doi: 10.1016/j.euroneuro.2009.10.004 . 

52] Karasinska JM, Hayden MR. Cholesterol metabolism in Huntington disease. Nat Rev
Neurol 2011;7:561–72. doi: 10.1038/nrneurol.2011.132 . 

53] Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative dis-
eases, neuroprotection and neuronal differentiation. Front Pharmacol 2020;11:537.
doi: 10.3389/FPHAR.2020.00537/BIBTEX . 

54] Hosseini A, Gharibi T, Mohammadzadeh A, et al. Ruxolitinib attenuates experimen-
tal autoimmune encephalomyelitis (EAE) development as animal models of multiple
sclerosis (MS). Life Sci 2021;276:119395. doi: 10.1016/j.lfs.2021.119395 . 

55] Moscarello MA, Mak B, Nguyen TA, et al. Paclitaxel (Taxol) attenuates clinical dis-
ease in a spontaneously demyelinating transgenic mouse and induces remyelination.
Mult Scler J 2002;8:130–8. doi: 10.1191/1352458502ms776oa . 

56] Gonzalez GA, Hofer MP, Syed YA, et al. Tamoxifen accelerates the repair
of demyelinated lesions in the central nervous system. Sci Rep 2016;6:1–13.
doi: 10.1038/srep31599 . 

57] Rankin KA, Mei F, Kim K, et al. Selective estrogen receptor modulators enhance
cns remyelination independent of estrogen receptors. J Neurosci 2019;39:2184–94.
doi: 10.1523/JNEUROSCI.1530-18.2019 . 

58] Contino-Pépin C, Parat A, Patinote C, et al. Thalidomide derivatives for
the treatment of neuroinflammation. ChemMedChem 2010;5:2057–64.
doi: 10.1002/CMDC.201000326 . 

59] Underwood M, Bonas S, Dale M, Disease Huntington’s. Prevalence and
psychological indicators of pain. Mov Disord Clin Pract 2017;4:198–204.
doi: 10.1002/MDC3.12376 . 

60] Sprenger GP, Roos RAC, van Zwet E, et al. The prevalence of pain in Hunt-
ington’s disease in a large worldwide cohort. Park Relat Disord 2021;89:73–8.
doi: 10.1016/j.parkreldis.2021.06.015 . 

61] Pubill D, Verdaguer E, Canudas AM, et al. Orphenadrine prevents 3-nitropropionic
acid-induced neurotoxicity in vitro and in vivo. Br J Pharmacol 2001;132:693–702.
doi: 10.1038/sj.bjp.0703869 . 

62] Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurode-
generative diseases. CNS Neurosci Ther 2017;23:272–90. doi: 10.1111/cns.12684 . 

63] Ayyadevara S, Balasubramaniam M, Kakraba S, et al. Aspirin-mediated acetylation
protects against multiple neurodegenerative pathologies by impeding protein aggre-
gation. Antioxidants Redox Signal 2017;27:1383–96. doi: 10.1089/ars.2016.6978 . 

64] Günayd ı n C, Önger ME, Avc ı B, et al. Tofacitinib enhances remyelination and im-
proves myelin integrity in cuprizone-induced mice. Immunopharmacol Immunotox-
icol 2021;43:790–8. doi: 10.1080/08923973.2021.1986063 . 

65] Benveniste EN, Liu Y, McFarland BC, Qin H. Involvement of the Janus kinase/signal
transducer and activator of transcription signaling pathway in multiple sclerosis and
the animal model of experimental autoimmune encephalomyelitis. J Interf Cytokine
Res 2014;34:577–88. doi: 10.1089/jir.2014.0012 . 

https://doi.org/10.1093/bioinformatics/btaa563
https://doi.org/10.1038/s41598-021-92701-2
https://doi.org/10.1038/nrdp.2015.5
https://doi.org/10.1038/MSB4100163
https://doi.org/10.1016/S1474-4422(20)30343-4
https://doi.org/10.1101/cshperspect.a007476
https://doi.org/10.1177/1352458517694432
https://doi.org/10.1016/j.neurol.2015.10.006
https://doi.org/10.1016/S1474-4422(10)70094-6
https://doi.org/10.1111/ene.13819
https://doi.org/10.1080/10401230701844802
https://doi.org/10.4236/oalib.1103492
https://doi.org/10.1242/dmm.030205
https://doi.org/10.1021/acs.jmedchem.9b01989
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gky1151
https://doi.org/10.1038/ejhg.2013.96
https://doi.org/10.1016/j.ymeth.2014.11.020
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1038/s41598-018-28948-z
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1126/science.1132939
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/database/baz005
https://doi.org/10.1002/pro.3978
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1093/nar/gks1147
https://doi.org/10.1093/bioinformatics/btt181
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkab909
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1126/science.1257601
https://doi.org/10.1038/nrd2683
https://doi.org/10.1146/annurev-pharmtox-010919-023324
https://doi.org/10.1111/bcp.12512
https://doi.org/10.1016/0022-510X(83)90042-4
https://doi.org/10.1186/1471-2377-6-11
https://doi.org/10.1016/j.euroneuro.2009.10.004
https://doi.org/10.1038/nrneurol.2011.132
https://doi.org/10.3389/FPHAR.2020.00537/BIBTEX
https://doi.org/10.1016/j.lfs.2021.119395
https://doi.org/10.1191/1352458502ms776oa
https://doi.org/10.1038/srep31599
https://doi.org/10.1523/JNEUROSCI.1530-18.2019
https://doi.org/10.1002/CMDC.201000326
https://doi.org/10.1002/MDC3.12376
https://doi.org/10.1016/j.parkreldis.2021.06.015
https://doi.org/10.1038/sj.bjp.0703869
https://doi.org/10.1111/cns.12684
https://doi.org/10.1089/ars.2016.6978
https://doi.org/10.1080/08923973.2021.1986063
https://doi.org/10.1089/jir.2014.0012

	An unsupervised computational pipeline identifies potential repurposable drugs to treat Huntington’s disease and multiple sclerosis
	Introduction
	Materials and methods
	Collection of disease-related genes
	Ontology (GO, HPO) enrichment analysis
	Drugs and targets collection, gene expression profiles retrieval and protein-protein interactome construction
	Network proximity
	Inverted gene set enrichment analysis
	Network separation

	Results
	Computational framework
	Disease-related genes collection and validation
	Repurposable drugs selection
	Drug combinations

	Discussion
	Protein-Protein interactomes
	Repurposable drugs
	Drug combinations

	Limitations
	Conclusions
	Data and code availability
	Declaration of Competing Interest
	Funding
	Supplementary materials
	References


