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Abstract 

Policymakers around the world impose some form of capital gains taxes to foster the 

stability of financial markets. Unfortunately, there is no clarity on the effects of capital gains 

taxes. Based on a stylized behavioral asset-pricing model highlighting the trading activity 

of extrapolating speculators, we show that policymakers may involuntary destabilize 

financial markets by imposing capital gains taxes. Most importantly, we find that the 

imposition of capital gains taxes may trigger endogenous cyclical asset price dynamics 

occurring around inflated price levels. A number of robustness checks in which we allow 

for interactions between speculators who use extrapolative and regressive expectation 

rules confirm our main results. 
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1 Introduction 

Littlewood and Elliffe (2017) report that almost all countries around the world impose some 

form of capital gains tax. By taxing capital gains, policymakers seek to foster the stability 

of financial markets by taming speculators’ trading activity. Unfortunately, there is no 

clarity on the effects of capital gains taxes. According to the capitalization hypothesis, 

capital gains taxes reduce asset prices because speculators demand a lower price when 

buying assets on which they will have to pay capital gains taxes some time in the future. 

In contrast, the lock-in hypothesis states that capital gains taxes increase asset prices 

because speculators require higher prices to sell assets on which they must pay capital 

gains taxes. See Klein (1999), Poterba and Weisbenner (2001), Ayers et al. (2003) and 

Dai et al. (2008) for a discussion of the equilibrium effects of capital gains taxes 

surrounding these opposing demand and supply arguments. We are particularly 

interested in the dynamic consequences of capital gains taxes. Based on a stylized 

behavioral asset-pricing model, we show that capital gains taxes may endanger the 

stability of financial markets. Most importantly, we find that policymakers may create 

excess volatility and systematic mispricing around inflated price levels by imposing capital 

gains taxes. 

To study the effects of capital gains taxes, we adapt the seminal asset-pricing model by 

Brock and Hommes (1998), assuming that speculators can invest in a safe asset and in a 

risky asset. Moreover, speculators are myopic mean-variance maximizers who are 

interested in their end-of-period wealth and rely on an extrapolative expectation rule to 

predict the price of the risky asset. In the absence of capital gains taxes, the price of the 

risky asset is due to the iteration of a two-dimensional linear map, and converges towards 

its fundamental value, given by the discounted value of expected future risk-adjusted 

dividend payments, provided that certain stability conditions are met. However, 

speculators’ optimal demand for the risky asset is state-dependent in the presence of 

capital gains taxes. In particular, speculators’ demand for the risky asset depends on the 

tax rate imposed on capital gains when they expect an increase in the price of the risky 

asset. Otherwise, they do not expect to make capital gains, and their demand for the risky 

asset is independent of capital gains taxes. Accordingly, a two-dimensional piecewise 

linear map with two branches determines the price of the risky asset when policymakers 
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impose capital gains taxes: a tax branch, relevant in upward trending markets, and a non-

tax branch, relevant in downward trending markets. 

To be able to understand the destabilizing nature of capital gains taxes, it is crucial to 

realize that each of the two branches of the model’s map is associated with a different 

fixed point – a real fixed point and a virtual fixed point. When speculators expect a 

downturn, their demand for the risky asset is independent of capital gains taxes. The real 

fixed point price of the risky asset then corresponds to the discounted value of expected 

future risk-adjusted dividend payments – as in a world without capital gains taxes. When 

speculators expect an upturn, however, their demand for the risky asset depends on 

capital gains taxes, and the price of the risky asset possesses a further virtual fixed point 

that is located above the real (fundamental) fixed point price of the risky asset. The 

difference between the two fixed points depends on the state-dependent risk premium of 

the risky asset. In a nutshell, the economic intuition for this result may be grasped as 

follows. Note first that capital gains taxes reduce fluctuations in speculators’ wealth, an 

outcome that diminishes the risk associated with holding the risky asset. Since this makes 

– ceteris paribus – the risky asset more attractive, speculators’ increased demand 

pressure elevates the virtual fixed point price of the risky asset above its real fixed point 

price. The reason why the second fixed point is a virtual fixed point is that speculators do 

not pay capital gains taxes when the risky asset market is at rest.1 

Capital gains taxes may endanger the stability of financial markets in several ways. In the 

following, we preview one of our most intriguing results by outlining how the imposition of 

capital gains taxes may create endogenous cyclical asset price dynamics, in spite of the 

fact that the model’s parameters imply that both fixed points are stable foci. In the absence 

of capital gains taxes, this furthermore implies that such a model parameterization would 

yield an oscillatory convergence towards the risky asset’s fundamental value. We also 

observe such dynamics when policymakers impose capital gains taxes, albeit – and this 

is crucial – only as long as the price of the risky asset decreases. However, the oscillatory 

nature of the risky asset’s price dynamics implies that its price will fall below its real fixed 

                                                           
1 Technically speaking, a virtual fixed point of a branch of a piecewise-defined map is a fixed point that exists 
outside the domain for which the branch is defined. Nevertheless, a virtual fixed point may have a significant 
impact on the overall dynamics of the model. 
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point during the adjustment phase, and then start to reverse its direction. Consequently, 

a regime change occurs. Since speculators then start to expect a price recovery, the 

virtual fixed point begins to attract the price of the risky asset. Since the virtual fixed point 

is a stable focus, we observe overshooting during the adjustment phase and, again, a 

reversal of the risky asset’s price direction, the triggering point where the next regime 

change takes place and where the real fixed point price of the risky asset becomes the 

relevant attractor for its dynamics again. As a result, permanent endogenous asset price 

fluctuations around an elevated price level are set in motion. We remark that empirical 

studies by Blouin et al. (2003), Jin (2006), George and Hwang (2007) and Jacob (2018) 

also report that capital gains taxes tend to inflate asset prices.  Moreover, the transition 

from fixed-point dynamics to cyclical dynamics may be dramatic. The moment when the 

aforementioned cycles emerge, they may already possess a significant amplitude, i.e. we 

observe a sharp jump in volatility and mispricing. A number of robustness checks in which 

we allow for interactions between speculators who rely on extrapolative and regressive 

expectation rules confirm our main results. 

Our work is related to a line of literature that regards financial markets as expectation-

driven feedback systems. See Zeeman (1974), Beja and Goldman (1998), Day and Huang 

(1990), Lux (1995) and Brock and Hommes (1998) for pioneering contributions, and 

Chiarella et al. (2009), Hommes (2013), Dieci and He (2018) and He et al. (2019) for 

surveys. To gain deeper analytical insights into the functioning of such systems, a part of 

this flourishing literature stream started to consider simplified financial market models that 

– technically speaking – take the form of piecewise linear maps. See, for instance, the 

seminal work by Huang and Day (1993) and the follow-up papers by Huang et al. (2010, 

2012) and Tramontana et al. (2010, 2013). Note that these contributions operate at the 

intersection of economics and mathematical sciences, offering new mathematical results 

that facilitate our understanding of the behavior of piecewise maps. See Avrutin et al. 

(2019) for an overview. The same is true for our paper. From a mathematical perspective, 

our paper advances the analytical and numerical treatment of two-dimensional piecewise 

linear maps that are characterized by change-dependent branches. Finally, we note that 

expectation-driven financial market models have proven quite valuable in evaluating and 

assessing the effectiveness of regulatory policies in the recent past. See Westerhoff 



5 
 

(2008) and Westerhoff and Franke (2018) for reviews. In this respect, we note that the 

effects of capital gains taxes described in our paper are, at least in a broader sense, 

reminiscent of those of short-selling constraints found in Anufriev and Tuinstra (2013) and 

Dercole and Radi (2020). Short-selling constraints may imply state-dependent restrictions 

on speculators’ demand schedules, too, resulting in endogenous asset price fluctuations 

occurring around elevated price levels.   

We continue as follows. In Section 2, we introduce a stylized behavioral asset-pricing 

model in which extrapolating speculators may be subject to capital gains taxes. In Section 

3, we present our main results. In Section 4, we conduct a number of robustness checks. 

In particular, we consider that speculators may switch between extrapolative and 

regressive expectation rules. In Section 5, we conclude our paper.  

 

2 A stylized behavioral asset-pricing model 

We adapt the seminal asset-pricing framework by Brock and Hommes (1998) to study a 

number of intriguing effects of capital gains taxes. To make our arguments on the 

destabilizing nature of capital gains taxes as stark as possible, we simplify their framework 

by assuming that speculators rely on an extrapolative expectation rule to predict the price 

of the risky asset.2 Moreover, we assume that speculators address their rather 

complicated wealth allocation problem by considering only two possible future regimes: a 

capital gains tax regime, relevant when they expect the price of the risky asset to increase, 

and a regime with no capital gains tax, relevant when they expect the price of the risky 

asset to decrease. Finally, we assume that dividend payments from the risky asset create 

no additional risk for speculators, i.e. its random dividend component has already been 

realized for the period in which they make their investment decisions. Hence, the only risk 

speculators face stems from the uncertainty surrounding the price dynamics of the risky 

asset.  

Let us turn to the details of our model. Speculators can invest in a safe asset, paying the 

risk-free interest rate 𝑟𝑟, and in a risky asset, paying dividend 𝐷𝐷𝑡𝑡. Dividend payments from 

                                                           
2 Note that Glaeser and Nathanson (2017) make a similar simplifying assumption to be able to study the 
dynamics of speculative housing markets. 
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the risky asset are represented by an IID dividend process with a constant mean, i.e. 𝐷𝐷𝑡𝑡 =

𝐷𝐷� + 𝛿𝛿𝑡𝑡, with 𝛿𝛿𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝛿𝛿2). The safe asset is perfectly elastically supplied, an assumption 

that fixes its price. The price of the risky asset changes with respect to speculators’ trading 

activity, which we model in the following. Let 𝑃𝑃𝑡𝑡 be the price of the risky asset at time 𝑡𝑡; 𝑍𝑍𝑡𝑡𝑖𝑖 

speculator 𝑖𝑖’s demand for the risky asset, measured in terms of the (positive) number of 

shares acquired in period 𝑡𝑡; and 0 ≤ 𝜏𝜏 < 1 the tax rate imposed by policymakers on 

speculator 𝑖𝑖’s capital gains. Speculator 𝑖𝑖’s wealth in period 𝑡𝑡 + 1 then reads  

𝑊𝑊𝑡𝑡+1
𝑖𝑖 = �

(1 + 𝑟𝑟)𝑊𝑊𝑡𝑡
𝑖𝑖 + 𝑍𝑍𝑡𝑡𝑖𝑖(𝑃𝑃𝑡𝑡+1 + 𝐷𝐷𝑡𝑡 − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡) − 𝜏𝜏(𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡)𝑍𝑍𝑡𝑡𝑖𝑖    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡 > 0

(1 + 𝑟𝑟)𝑊𝑊𝑡𝑡
𝑖𝑖 + 𝑍𝑍𝑡𝑡𝑖𝑖(𝑃𝑃𝑡𝑡+1 + 𝐷𝐷𝑡𝑡 − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡)                                     𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡 ≤ 0

, (1) 

where the term 𝜏𝜏(𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡)𝑍𝑍𝑡𝑡𝑖𝑖 reflects his capital gains tax payments, due if the price of 

the risky asset increases between periods 𝑡𝑡 and 𝑡𝑡 + 1. Note that speculator 𝑖𝑖 regards 𝑃𝑃𝑡𝑡+1, 

and consequently 𝑊𝑊𝑡𝑡+1, as random variables. Brock and Hommes (1998) assume that 

speculator 𝑖𝑖 is a myopic mean-variance maximizer who derives his demand for the risky 

asset from solving the optimization problem  

𝑚𝑚𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡𝑖𝑖  �𝐸𝐸𝑡𝑡
𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � − 𝜆𝜆
2
𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 ��.                                                                                        (2) 

Here, 𝐸𝐸𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1
𝑖𝑖 � and 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � denote speculator 𝑖𝑖’s subjective beliefs about the conditional 

expectation and conditional variance of his wealth, respectively, and 𝜆𝜆 is a positive risk 

aversion parameter.  

Obviously, policymakers’ (nonlinear) capital gains taxation turns speculator 𝑖𝑖’s 

maximization problem into an intricate task.3 We address this issue via the following 

behavioral argument. Let us first recall that experimental evidence supports the notion of 

bounded rationality. As made clear by Simon (1955), Tversky and Kahneman (1974) and 

Hirshleifer (2001), human agents do not possess perfect knowledge, nor do they have the 

computational capacity to derive optimal actions. Instead, human agents rely on a limited 

number of heuristic principles, which help them to cope with complex decision tasks. Since 

                                                           
3 Unlike in the Brock and Hommes (1998) framework, in our model both 𝐸𝐸𝑡𝑡𝑖𝑖[𝑊𝑊𝑡𝑡+1

𝑖𝑖 ] and 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1
𝑖𝑖 � are nonlinear 

functions of the hypothetical price 𝑃𝑃𝑡𝑡. Even if we assume that 𝑃𝑃𝑡𝑡+1 is conditionally normally distributed in 
agents’ beliefs, 𝑊𝑊𝑡𝑡+1

𝑖𝑖  has a complicated non-Gaussian distribution function (it is related to a truncated normal 
distribution, in which the truncation point 𝑃𝑃𝑡𝑡 is itself a parameter that varies in speculators’ demand 
schedule), implying that 𝐸𝐸𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � and 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1
𝑖𝑖 � do not only depend on the first and second moment of 𝑃𝑃𝑡𝑡+1, 

but on its whole distribution. 
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people share similar heuristics, their aggregated impact is significant. Representativeness 

is one of the most salient heuristics. According to Tversky and Kahneman (1974), human 

agents following the representativeness heuristic classify things into discrete categories 

based on similarity considerations. Importantly, human agents typically use few 

observations to identify similarity. Due to the complexity of speculators’ optimization 

problem, we assume that speculators follow the representativeness heuristic. Accordingly, 

speculators simplify their decision problem by considering two polar opposite regimes: a 

capital gains tax regime, relevant when they expect the price of the risky asset to increase, 

and a regime with no capital gains tax, relevant when they expect the price of the risky 

asset to decrease.4  

More precisely, speculator 𝑖𝑖 forms his beliefs about the future price of the risky asset 

𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] based on information available up to period 𝑡𝑡 − 1, and sets his beliefs about the 

variance of the price of the risky asset equal to 𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] = 𝜎𝜎2. Furthermore, speculator 𝑖𝑖 

uses past price information as an indicator of whether the capital gains tax regime or the 

regime with no capital gains tax will unfold. If 𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] > 𝑃𝑃𝑡𝑡−1, speculator 𝑖𝑖 regards the 

regime with upward price adjustments and capital gain tax payments as the relevant future 

regime, and maximizes (2) subject to the upper branch of (1). If 𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] < 𝑃𝑃𝑡𝑡−1, speculator 

𝑖𝑖 regards the regime with downward price adjustments and no capital gains tax payments 

as the relevant regime, and maximizes (2) subject to the lower branch of (1). In the former 

case, speculator 𝑖𝑖’s demand for the risky asset is given by 𝑍𝑍𝑡𝑡𝑖𝑖 = (1−𝜏𝜏)𝐸𝐸𝑡𝑡
𝑖𝑖[𝑃𝑃𝑡𝑡+1]+𝐷𝐷𝑡𝑡−(1+𝑟𝑟−𝜏𝜏)𝑃𝑃𝑡𝑡
(1−𝜏𝜏)2𝜆𝜆𝑉𝑉𝑡𝑡

𝑖𝑖[𝑃𝑃𝑡𝑡+1] , 

and in the latter case by 𝑍𝑍𝑡𝑡𝑖𝑖 = 𝐸𝐸𝑡𝑡
𝑖𝑖[𝑃𝑃𝑡𝑡+1]+𝐷𝐷𝑡𝑡−(1+𝑟𝑟)𝑃𝑃𝑡𝑡

𝜆𝜆𝑉𝑉𝑡𝑡
𝑖𝑖[𝑃𝑃𝑡𝑡+1] .5 Hence, speculator 𝑖𝑖’s demand for the risky 

asset results in 

𝑍𝑍𝑡𝑡𝑖𝑖 = �
(1−𝜏𝜏)𝐸𝐸𝑡𝑡

𝑖𝑖[𝑃𝑃𝑡𝑡+1]+𝐷𝐷𝑡𝑡−(1+𝑟𝑟−𝜏𝜏)𝑃𝑃𝑡𝑡
(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2

    𝑖𝑖𝑖𝑖 𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] − 𝑃𝑃𝑡𝑡−1 > 0

𝐸𝐸𝑡𝑡
𝑖𝑖[𝑃𝑃𝑡𝑡+1]+𝐷𝐷𝑡𝑡−(1+𝑟𝑟)𝑃𝑃𝑡𝑡

𝜆𝜆𝜎𝜎2
                𝑖𝑖𝑖𝑖 𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] − 𝑃𝑃𝑡𝑡−1 ≤ 0

.                                                                     (3) 

                                                           
4 Clearly, the two regimes are two different categories, and price trends are used to identify them. 
5 Note that 𝐸𝐸𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � = (1 + 𝑟𝑟)𝑊𝑊𝑡𝑡
𝑖𝑖 + 𝑍𝑍𝑡𝑡𝑖𝑖�𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] + 𝐷𝐷𝑡𝑡 − (1 + 𝑟𝑟�𝑃𝑃𝑡𝑡) − 𝜏𝜏�𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] − 𝑃𝑃𝑡𝑡�𝑍𝑍𝑡𝑡𝑖𝑖 and 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � =
(1 − 𝜏𝜏)2𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1](𝑍𝑍𝑡𝑡𝑖𝑖)2 in the capital gains tax regime, implying that speculator 𝑖𝑖’s first-order condition reads 
(1 − 𝜏𝜏)𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] + 𝐷𝐷𝑡𝑡 − (1 + 𝑟𝑟 − 𝜏𝜏)𝑃𝑃𝑡𝑡 − 𝜆𝜆(1 − 𝜏𝜏)2𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1]𝑍𝑍𝑡𝑡𝑖𝑖 = 0. Moreover, capital gains taxes linearly 
decrease 𝐸𝐸𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 �, while they quadratically decrease 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1
𝑖𝑖 �. 
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Since speculator 𝑖𝑖 uses the extrapolative expectation rule  

𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1 + 𝜒𝜒(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2),                                                                                       (4) 

with 𝜒𝜒 as a positive extrapolation parameter, we can eventually express his demand for 

the risky asset by 

𝑍𝑍𝑡𝑡𝑖𝑖 = �
(1−𝜏𝜏)(𝑃𝑃𝑡𝑡−1+𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑃𝑃𝑡𝑡−2))+𝐷𝐷𝑡𝑡−(1+𝑟𝑟−𝜏𝜏)𝑃𝑃𝑡𝑡

(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2
    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2 > 0

𝑃𝑃𝑡𝑡−1+𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑃𝑃𝑡𝑡−2)+𝐷𝐷𝑡𝑡−(1+𝑟𝑟)𝑃𝑃𝑡𝑡
𝜆𝜆𝜎𝜎2

                   𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2 ≤ 0
.                                                      (5)  

Clearly, speculator 𝑖𝑖 selects the upper or the lower branch of his demand schedule, (5), 

depending on whether the last observable price change was positive or negative.  

Assuming that there are 𝑁𝑁 speculators in total, speculators’ aggregate demand for the 

risky asset amounts to  

𝑍𝑍𝑡𝑡 = ∑ 𝑍𝑍𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 .                                                                                                                   (6) 

Market equilibrium requires that the demand for the risky asset equals its supply. Thus, 

𝑍𝑍𝑡𝑡 = 𝑆𝑆𝑡𝑡,                                                                                                                                 (7) 

where the supply of the risky asset, i.e. the number of shares offered by firms, is constant 

and set at 

𝑆𝑆𝑡𝑡 = �̂�𝑆 = 𝑁𝑁𝑆𝑆̅.                                                                                                                                (8)  

For notational convenience, we introduce 𝑆𝑆̅ as the (average) number of shares of the risky 

asset available per speculator. Due to our assumption that speculators are homogenous, 

it is immediately apparent that the market-clearing price generated by equilibrium 

condition (7) will ensure that each speculator holds the same (positive) number of shares 

of the risky asset at each time step, namely 𝑍𝑍𝑡𝑡𝑖𝑖 = 𝑆𝑆̅ > 0. Hence, speculators do not engage 

in short selling in our model, as implicitly assumed by our setup of capital gains taxes in 

their wealth equations (1). 

3 Main insights 

3.1 Preliminary observations 

Since we are interested in the properties of the model’s deterministic skeleton, we abstract 

in the following from dividend shocks, i.e. we set 𝐷𝐷𝑡𝑡 = 𝐷𝐷�. Combining (5) to (8) and 

introducing the auxiliary variable 𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 then reveals that our model may be 

represented by the two-dimensional piecewise linear map 
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𝐶𝐶:

⎩
⎨

⎧
𝑃𝑃′ = �

(1−𝜏𝜏)(𝑃𝑃+𝜒𝜒(𝑃𝑃−𝑋𝑋))+𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟−𝜏𝜏

    𝑖𝑖𝑖𝑖 𝑃𝑃 > 𝑋𝑋
𝑃𝑃+𝜒𝜒(𝑃𝑃−𝑋𝑋)+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆

1+𝑟𝑟
                         𝑖𝑖𝑖𝑖 𝑃𝑃 ≤ 𝑋𝑋

𝑋𝑋′ = 𝑃𝑃                                                                         

  ,                                                       (9) 

where the prime symbol denotes the unit time advancement operator. For 𝜏𝜏 = 0, the 

model’s complete map 𝐶𝐶 simplifies to the reduced map 

𝑅𝑅: �𝑃𝑃′ = 𝑃𝑃+𝜒𝜒(𝑃𝑃−𝑋𝑋)+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟

𝑋𝑋′ = 𝑃𝑃                            
.                                                                                              (10) 

To facilitate the analysis, let us subdivide the complete map of the model into two sub-

maps. For 𝑃𝑃 ≤ 𝑋𝑋, we obtain the sub-map 

𝑇𝑇𝑢𝑢: �𝑃𝑃′ = 𝑃𝑃+𝜒𝜒(𝑃𝑃−𝑋𝑋)+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟

𝑋𝑋′ = 𝑃𝑃                            
,                                                                                            (11) 

which is relevant above and on the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane. For 𝑃𝑃 > 𝑋𝑋, 

we obtain the sub-map 

𝑇𝑇𝑙𝑙: �
𝑃𝑃′ = (1−𝜏𝜏)(𝑃𝑃+𝜒𝜒(𝑃𝑃−𝑋𝑋))+𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆

1+𝑟𝑟−𝜏𝜏
𝑋𝑋′ = 𝑃𝑃                                                 

,                                                                         (12) 

which is relevant below the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane. Note that sub-map 

𝑇𝑇𝑢𝑢 is identical to the model’s reduced map 𝑅𝑅, except, of course, with respect to their 

domains of definition. 

Let us first study sub-map 𝑇𝑇𝑢𝑢. Straightforward computations reveal that this sup-map has 

a real fixed point, given by  

𝐹𝐹 ≔ 𝑃𝑃� = 𝑋𝑋� = 𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
𝑟𝑟

.                                                                                                             (13) 

The corresponding Jacobian matrix reads 

𝐽𝐽𝑢𝑢 = �
1+𝜒𝜒
1+𝑟𝑟

− 𝜒𝜒
1+𝑟𝑟

1 0
�,                                                                                                                (14) 

with 𝑇𝑇𝑟𝑟𝑢𝑢: = 1+𝜒𝜒
1+𝑟𝑟

 and 𝐷𝐷𝐷𝐷𝑡𝑡𝑢𝑢: = 𝜒𝜒
1+𝑟𝑟

. As is well known, the stability of a fixed point of a two-

dimensional linear map depends on the set of inequalities (i) 1 + 𝑇𝑇𝑟𝑟 + 𝐷𝐷𝐷𝐷𝑡𝑡 > 0, (ii) 1 −

𝑇𝑇𝑟𝑟 + 𝐷𝐷𝐷𝐷𝑡𝑡 > 0 and (iii) 1 − 𝐷𝐷𝐷𝐷𝑡𝑡 > 0.6 The first two conditions are always satisfied, while the 

                                                           
6 See Medio and Lines (2001), Gandolfo (2009) and Puu (2013) for excellent introductions to the field of 
nonlinear (economic) dynamics. 
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third one requires that  

𝜒𝜒 < 1 + 𝑟𝑟.                                                                                                                          (15) 

Assume that (15) holds. The real fixed point 𝐹𝐹 is then a stable focus for 𝑇𝑇𝑟𝑟2 < 4𝐷𝐷𝐷𝐷𝑡𝑡, 

leading to 
(1+𝜒𝜒)2

4𝜒𝜒
< 1 + 𝑟𝑟,                                                                                                              (16) 

or, equivalently, (1 − 𝜒𝜒)2 < 4𝜒𝜒𝑟𝑟. If (15) holds and if the inequality sign in (16) is reversed 

or binding, the real fixed point 𝐹𝐹 is a stable node. In this case, the real eigenvalues 

associated with the stable node are always positive and can be expressed by 

𝜆𝜆± = 1
2(1+𝑟𝑟)

[(1 + 𝜒𝜒) ± �(1 − 𝜒𝜒)2 − 4𝑟𝑟𝜒𝜒],                                                                        (17) 

with eigenvectors that are straight lines 𝑉𝑉± running through the coordinates of the real 

fixed point 𝐹𝐹 with slopes 

𝑠𝑠± = 2(1+𝑟𝑟)
(1+𝜒𝜒)±�(1−𝜒𝜒)2−4𝑟𝑟𝜒𝜒

.                                                                                                    (18) 

In the (𝑃𝑃,𝑋𝑋)-phase plane, the straight lines have equations 

 𝑋𝑋 = 𝐹𝐹 + 𝑠𝑠±(𝑃𝑃 − 𝐹𝐹),                                                                                                   (19) 

with 𝑠𝑠+ < 𝑠𝑠−. Recall that a stable node with positive eigenvalues is monotonically 

approached via the straight lines defined by its eigenvectors.  

Let us now turn to sub-map 𝑇𝑇𝑙𝑙, which possesses the fixed point 

𝑃𝑃𝑣𝑣: = 𝑃𝑃� = 𝑋𝑋� = 𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆
𝑟𝑟

.                                                                                                      (20) 

We call (20) a virtual fixed point since it is not defined for the model’s complete map 𝐶𝐶. 

Since the Jacobian matrix of sub-map 𝑇𝑇𝑙𝑙 reads 

𝐽𝐽𝑙𝑙 = �
(1−𝜏𝜏)(1+𝜒𝜒)
1+𝑟𝑟−𝜏𝜏

− (1−𝜏𝜏)𝜒𝜒
1+𝑟𝑟−𝜏𝜏

1 0
�,                                                                                           (21) 

with 𝑇𝑇𝑟𝑟𝑙𝑙: = (1−𝜏𝜏)(1+𝜒𝜒)
1+𝑟𝑟−𝜏𝜏

 and 𝐷𝐷𝐷𝐷𝑡𝑡𝑙𝑙: = (1−𝜏𝜏)𝜒𝜒
1+𝑟𝑟−𝜏𝜏

, we can conclude that stability conditions 1 + 𝑇𝑇𝑟𝑟 +

𝐷𝐷𝐷𝐷𝑡𝑡 > 0 and 1 − 𝑇𝑇𝑟𝑟 + 𝐷𝐷𝐷𝐷𝑡𝑡 > 0 always hold. However, it follows from the remaining stability 

condition 1 − 𝐷𝐷𝐷𝐷𝑡𝑡 > 0 that the virtual fixed point is attracting in the case of 

𝜒𝜒 < 1+𝑟𝑟−𝜏𝜏
1−𝜏𝜏

.                                                                                                                       (22) 

Assume that (22) holds. It then follows from 𝑇𝑇𝑟𝑟2 < 4𝐷𝐷𝐷𝐷𝑡𝑡 that the virtual fixed point is a 

stable focus if  
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(1+𝜒𝜒)2

4𝜒𝜒
< 1+𝑟𝑟−𝜏𝜏

1−𝜏𝜏
,                                                                                                                  (23) 

being equivalent to (1 − 𝜏𝜏)(1 − 𝜒𝜒)2 < 4𝜒𝜒𝑟𝑟, or a stable node, provided that the inequality 

sign in (23) is reversed or binding. Once again, the real eigenvalues associated with the 

stable node are always positive and can be written as 

𝜆𝜆± = 1
2(1+𝑟𝑟−𝜏𝜏)

[(1 − 𝜏𝜏)(1 + 𝜒𝜒) ± �(1 − 𝜏𝜏)2(1 − 𝜒𝜒)2 − 4𝑟𝑟𝜒𝜒(1 − 𝜏𝜏)],                                         (24) 

with eigenvectors that are straight lines 𝑉𝑉𝑃𝑃± running through the coordinates of virtual 

fixed point 𝑃𝑃𝑣𝑣 with slopes 

𝑠𝑠𝑠𝑠± = 2(1+𝑟𝑟−𝜏𝜏)
(1−𝜏𝜏)(1+𝜒𝜒)±�(1−𝜏𝜏)2(1−𝜒𝜒)2−4𝑟𝑟𝜒𝜒(1−𝜏𝜏)

.                                                                                 (25) 

In the (𝑃𝑃,𝑋𝑋)-phase plane, the straight lines 𝑉𝑉𝑃𝑃± have equations 

 𝑋𝑋 = 𝑃𝑃𝑣𝑣 + 𝑠𝑠𝑠𝑠±(𝑃𝑃 − 𝑃𝑃𝑣𝑣),                                                                                              (26) 

with 𝑠𝑠𝑠𝑠+ < 𝑠𝑠𝑠𝑠−, determining the monotonic adjustment path towards the stable node. 

A few comments are in order:  

• For 𝜏𝜏 = 0, i.e. in the absence of capital gains taxes, the price of the risky asset is driven 

by the reduced map (10). It possess a unique fundamental fixed point, given by 𝐹𝐹 =
𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆

𝑟𝑟
, at which the price of the risky asset is equal to the discounted value of expected 

future risk-adjusted dividend payments, referred to as the fundamental value of the risky 

asset. Moreover, this fixed point is globally stable, provided that 𝜒𝜒 < 1 + 𝑟𝑟. Accordingly, 

the risky asset market may become unstable if speculators extrapolate past price 

changes too strongly, although a reduction in the interest rate may also compromise its 

stability. Finally, if the fundamental fixed point 𝐹𝐹 is stable, then it is either a stable focus 

(with complex eigenvalues) or a stable node (with positive eigenvalues), depending on 

whether (1+𝜒𝜒)2

4𝜒𝜒
 is smaller than 1 + 𝑟𝑟 or not. In the former case, the price of the risky asset 

approaches its fundamental value in the form of cycles with decreasing amplitude. In 

the latter case, the price of the risky asset monotonically approaches its fundamental 

value. 

• For 𝜏𝜏 > 0, i.e. in the presence of capital gains taxes, the price of the risky asset is jointly 

driven by sub-maps (11) and (12); it therefore possesses a real (fundamental) fixed 

point and an additional virtual fixed point. Note that the virtual fixed point implies a higher 
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level of the risky asset’s price than the real fixed point. The economic rationale for this 

result is as follows. First, we can interpret ∆= 𝜆𝜆𝜎𝜎2𝑆𝑆̅ as the pre-tax risk premium of the 

risky asset. Comparing 𝐹𝐹 = 𝐷𝐷�−∆
𝑟𝑟

 and 𝑃𝑃𝑣𝑣 = 𝐷𝐷�−(1−𝜏𝜏)2∆
𝑟𝑟

 immediately reveals that capital 

gains taxes reduce the actual (effective) risk premium of the risky asset, driving up its 

price.7 To say it in more detail, speculators’ demand for the risky asset at 

a hypothetical fixed point 𝑃𝑃∗, given by 𝑍𝑍∗ = 𝐷𝐷�−𝑟𝑟𝑃𝑃∗

(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2
, increases with the tax rate imposed 

by policymakers on speculators’ capital gains, via the above-mentioned 

reduction of the risk premium (1 − 𝜏𝜏)2∆. Since, by construction, 𝑍𝑍∗ must remain constant 

and equal to 𝑆𝑆̅ for any tax rate 𝜏𝜏, an increase in 𝜏𝜏 necessarily implies – via the relation 

𝑍𝑍∗ = 𝑆𝑆̅ – an increase in 𝑃𝑃∗ such that 𝑃𝑃∗ = 𝐷𝐷�−(1−𝜏𝜏)2∆
𝑟𝑟

= 𝑃𝑃𝑣𝑣. Hence, the speculative 

demand pressure induced by higher capital gains taxes is offset by higher prices. 

• Since  𝐷𝐷𝐷𝐷𝑡𝑡𝑙𝑙 = (1−𝜏𝜏)𝜒𝜒
1+𝑟𝑟−𝜏𝜏

< 𝐷𝐷𝐷𝐷𝑡𝑡𝑢𝑢 = 𝜒𝜒
1+𝑟𝑟

, stability condition (15) is more binding than stability 

condition (22), i.e. the real fixed point becomes unstable before the virtual fixed point 

becomes unstable as the interest rate parameter 𝑟𝑟 decreases or the extrapolation 

parameter 𝜒𝜒 increases. The same is true for the inequality that marks their transition 

from a stable node to a stable focus.  

As we will see in the sequel, the transition of real and virtual fixed points from a stable 

node to a stable focus and their eventual loss of stability play a crucial role in the behavior 

of the model’s complete map 𝐶𝐶. In Figure 1, we thus depict conditions (15), (16), (22) and 

(23) in (𝜒𝜒, 𝑟𝑟)-parameter space, setting 𝜏𝜏 = 0 (red, real fixed point) and 𝜏𝜏 = 0.35 (blue, 

virtual fixed point), subdividing the parameter space into seven distinct regions. For 𝜏𝜏 = 0, 

parameter combinations from Regions R1, R2 and R3 imply that the price of the risky 

asset approaches its fundamental value, while parameter combinations from Regions R4, 

R5a, R5b and R5c imply divergent price paths. In the following, we show that parameter 

combinations from Region R3 may yield endogenous cyclical dynamics for 𝜏𝜏 > 0, an 

outcome that highlights the potentially destabilizing nature of capital gains taxes. Note that 

                                                           
7 A further implication of the relation 𝑃𝑃𝑣𝑣 > 𝐹𝐹 is that the return of the risky asset at the virtual fixed point, say 𝜌𝜌𝑣𝑣 = 𝐷𝐷�

𝑃𝑃𝑣𝑣
=

𝑟𝑟
1−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2𝑆𝑆̅/𝐷𝐷�

, is smaller than its return at the real fixed point, namely 𝜌𝜌𝐹𝐹 = 𝐷𝐷�
𝐹𝐹

= 𝑟𝑟
1−𝜆𝜆𝜎𝜎2𝑆𝑆̅/𝐷𝐷�

. Moreover, the return of the 
risky asset at the virtual fixed point decreases with the tax rate imposed on capital gains, shifting 𝑃𝑃𝑣𝑣 upwards. 
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the borders of Region R3 depend only on parameters 𝜒𝜒 and 𝑟𝑟, i.e. the size and existence 

of the area of Region R3 are independent of the tax rate imposed on speculators’ capital 

gains taxes.8 However, Regions R1 and R2 may also give rise to significant asset-price 

fluctuations induced by capital gains taxes, provided that the dynamics is subject to 

occasional small shocks. Interestingly, a small part of Region R4 yields bounded 

dynamics, although the price of the risky asset would be divergent in the absence of 

capital gains taxes. Hence, there is a small chance that capital gains taxes may indeed 

have a stabilizing effect on the dynamics of risky asset markets, as intended by 

policymakers, although the parameter space that guarantees such a stabilizing effect 

seems to us to be negligible. In Regions R5a, R5b and R5c, we always encounter 

diverging asset price dynamics.  
 

 
Figure 1: Regions in (𝜒𝜒, 𝑟𝑟)-parameter space. The panel shows the conditions for stability versus instability 
and node versus focus for the model’s real and virtual fixed points, assuming 𝜏𝜏 = 0 (red, real fixed point) 
and 𝜏𝜏 = 0.35 (blue, virtual fixed point), subdividing the parameter space into seven distinct regions. 
  
Before we continue, a few additional comments on our choice of model parameters in the 

remainder of our paper are in order. First, our parameter selection for each of the different 

regions we discuss seeks to optimally visualize our results. Second, taxes on capital gains 

may be quite substantial in actual markets, which is why we consider tax rates up to 35 

                                                           
8 Obviously, higher tax rates increase the size of the area of Regions R2 and R4 at the expense of Regions 
R1 and R5a, respectively. 
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percent. See Littlewood and Elliffe (2017) for an international comparison of how countries 

tax capital gains. Third, exploring laboratory data from asset-pricing experiments, 

Hommes et al. (2005), Heemeijer et al. (2009) and Anufriev and Hommes (2012) conclude 

that human agents follow simple extrapolative expectation rules, as specified by (4), with 

extrapolation parameters ranging between 0.4 and 1.3. Hence, all regions depicted in 

Figure 1 are of relevance and need our attention.  
 
3.2 Region R1 

In Region R1, both the real fixed point and the virtual fixed point attract the price of the 

risky asset and possess a basin of attraction with positive measure. While both fixed points 

cannot be called “attractors” in the usual topological sense – there are points in their 

neighborhood that belong to the basin of attraction of the other fixed point – they may be 

regarded as Milnor attractors (Milnor 1985). As an example, Figure 2 shows the basin of 

attraction of the real fixed point 𝐹𝐹 (in red) and the basin of attraction of the virtual fixed 

point 𝑃𝑃𝑣𝑣 (in blue) for the parameter setting 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.05, 𝜒𝜒 = 0.3 and 𝜏𝜏 =

0.35. The figure also shows the path of two trajectories of the price of the risky asset, one 

converging towards the real fixed point 𝐹𝐹 = 2 and the other towards the virtual fixed point 

𝑃𝑃𝑣𝑣 ≈ 3.16. 

 
Figure 2: Example of the basins of attraction of the real fixed point 𝐹𝐹 (red) and the virtual fixed point 𝑃𝑃𝑣𝑣 
(blue) for Region R1, together with the points of two trajectories. Parameter setting: 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 
𝑟𝑟 = 0.05, 𝜒𝜒 = 0.3 and 𝜏𝜏 = 0.35, implying that 𝐹𝐹 = 2 and 𝑃𝑃𝑣𝑣 ≈ 3.16.  
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In the following, we first state and prove our main analytical results with respect to Region 

R1, and then comment on their economic implications.  

Proposition (R1). In Region R1, the basins of attraction of the real fixed point 𝐹𝐹 and the 

virtual fixed point 𝑃𝑃𝑣𝑣 are separated by the segment connecting (𝐹𝐹, 𝐹𝐹) and (𝑃𝑃𝑣𝑣, 𝑃𝑃𝑣𝑣), the 

upper eigenvector 𝑉𝑉− issuing from the real fixed point 𝐹𝐹, and the lower eigenvector 𝑉𝑉𝑃𝑃− 

issuing from the virtual fixed point 𝑃𝑃𝑣𝑣. 

Proof: For parameters that belong to Region R1, the real fixed point 𝐹𝐹 and the virtual fixed 

point 𝑃𝑃𝑣𝑣 are attracting nodes with two positive eigenvalues, and 𝐹𝐹 < 𝑃𝑃𝑣𝑣. It is clear from 

the equations of the eigenvalues and eigenvectors of the real fixed point 𝐹𝐹 that the 

trajectories converge to the real fixed point 𝐹𝐹 in the upper region of the (𝑃𝑃,𝑋𝑋)-phase plane, 

close to the half-line of eigenvector 𝑉𝑉+ (associated with the highest positive eigenvalue). 

Points on the right side of eigenvector 𝑉𝑉− in the upper half-plane have a trajectory 

converging to the real fixed point 𝐹𝐹. Points on the left side of eigenvector 𝑉𝑉− in the upper 

half-plane (tending to the lower half-line of 𝑉𝑉+) have a trajectory which enters the lower 

half-plane, and thus ultimately converge to the virtual fixed point 𝑃𝑃𝑣𝑣, tangentially to 𝑉𝑉𝑃𝑃+. 

A similar reasoning reveals that points below the diagonal on the left side of eigenvector 

𝑉𝑉𝑃𝑃− converge to the virtual fixed point 𝑃𝑃𝑣𝑣, while those on the right converge to the real 

fixed point 𝐹𝐹.□ 

Figure 3, based on the same parameter setting as Figure 2, illustrates a number of 

economic implications associated with parameter combinations that belong to Region R1. 

The black line depicts the evolution of the risky asset price for 200 time steps, the blue 

line marks its real fixed point 𝐹𝐹 = 2 and the green line stands for its virtual fixed point 𝑃𝑃�𝑣𝑣 ≈

3.16. In addition, we assume that small exogenous shocks hit the risky asset market every 

40 periods. Initially, due to a positive shock in period 1, the risky asset price monotonically 

moves towards its virtual fixed point 𝑃𝑃�𝑣𝑣 ≈ 3.16. After a negative shock in period 40, 

however, the real fixed point 𝐹𝐹 = 2 attracts the price of the risky asset, until a further 

positive shock in period 80 reverses the path of the risky asset price once again. Recall 

that in the absence of capital gains taxes, the real fixed point would be globally stable and 

monotonically attract the price of the risky asset. Obviously, tiny infrequent shocks may – 
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in the presence of capital gains taxes – create pronounced swings in the price of the risky 

asset that are, on average, located above its fundamental value. Clearly, this is not in the 

interest of policymakers seeking to stabilize the dynamics of financial markets.  

 

 
Figure 3: Time series dynamics of the risky asset price for Region R1. The black, blue and green lines show 
the evolution of the risky asset price, its real fixed point 𝐹𝐹 = 2 and its virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 3.16, 
respectively. Parameter setting: 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.05, 𝜒𝜒 = 0.3 and 𝜏𝜏 = 0.35. Tiny exogenous 
shocks hit the dynamics in periods 1, 40, 80, 120 and 160. 

 
3.3 Region R2 

With respect to the parameter space that belongs to Region R2, we are able to state the 

following result. 

Proposition (R2). In Region R2, the real fixed point F is globally attracting (in a topological 

sense). 

Proof: For parameters that belong to Region R2, the real fixed point 𝐹𝐹 is an attracting 

node with two positive eigenvalues, while the virtual fixed point 𝑃𝑃𝑣𝑣 is an attracting focus, 

and 𝐹𝐹 < 𝑃𝑃𝑣𝑣. It follows that any point below the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane 

has a trajectory that – in order to converge to the virtual fixed point 𝑃𝑃𝑣𝑣 – enters the region 

above this diagonal in a rotating manner in a finite number of steps, from which the 

trajectory monotonically converges to the real fixed point 𝐹𝐹.□ 
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Figure 4: Time series dynamics of the risky asset price for Region R2. The black, blue and green lines show 
the evolution of the risky asset price, its real fixed point 𝐹𝐹 = 1 and its virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 1.58, 
respectively. Parameter setting: 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜒𝜒 = 0.5 and 𝜏𝜏 = 0.35. Tiny exogenous shocks 
hit the dynamics in periods 1, 40 and 80. 
 

Despite being globally attracted (in a topological sense) by the real fixed point 𝐹𝐹, the price 

of the risky asset may nevertheless display surprisingly wild fluctuations. For instance, 

Figure 4 shows the development of the risky asset price for 100 periods, assuming the 

parameter setting 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜒𝜒 = 0.5 and 𝜏𝜏 = 0.35. The blue line marks 

the real fixed point 𝐹𝐹 = 1 of the risky asset and the green line its virtual fixed point 𝑃𝑃𝑣𝑣 ≈

1.58. Note that tiny exogenous shocks affect the risky asset market in periods 1, 40 and 

80. After an initial (positive) shock in period 1, the price of the risky asset is about to 

converge towards its virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 1.58. However, its oscillatory price path 

implies that the price of the risky asset must reverse its direction at some point. From then 

on, it monotonically moves towards its real fixed point 𝐹𝐹 until the risky asset market is hit 

by the next (positive) shock in period 40. Recall that in the absence of capital gains taxes, 

the real fixed point would still be globally stable and would monotonically attract the price 

of the risky asset. Hence, the fluctuations we have just encountered are a consequence 

of capital gains taxes. In contrast to Region R1, we now observe that the price of the risky 

asset (slightly) overshoots its virtual steady state and does not necessitate a further 
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(negative) exogenous shock to reverse its direction.9 Similar to Region R1, the price of 

the risky asset appears to be excessively volatile and, by fluctuating above its fundamental 

value, displays systematic mispricing. 

3.4 Region R3 

Our main results concern the dynamics of the model in Region R3. In particular, we are 

able to prove the following (surprising) statement. 

Proposition (R3). In Region R3, neither the real fixed point 𝐹𝐹 nor the virtual fixed point 

𝑃𝑃𝑣𝑣 are attracting for the complete map 𝐶𝐶, despite being attracting foci for their respective 

sup-maps 𝑇𝑇𝑙𝑙 and 𝑇𝑇𝑢𝑢. 

Proof: To prove this result, recall that both fixed points 𝐹𝐹 and 𝑃𝑃𝑣𝑣 are attracting foci of their 

respective sup-maps and located on the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane, the line 

at which the complete map 𝐶𝐶 changes its definition. See panel (a) of Figure 5. Under sup-

map 𝑇𝑇𝑙𝑙, the images of the real fixed point 𝐹𝐹 belong to an arc of spiral up to a point in the 

upper region, intersecting the diagonal at point a. Under sup-map 𝑇𝑇𝑢𝑢, the images of the 

virtual fixed point 𝑃𝑃𝑣𝑣 belong to an arc of spiral ending at a point below the diagonal, 

intersecting the diagonal at point b. Note that this point is mapped under sup-map 𝑇𝑇𝑙𝑙 on 

points belonging to an arc of spiral up to the upper region, intersecting the diagonal at 

point c > a. Apparently, this leads to a neighborhood of the real fixed point 𝐹𝐹 from which 

trajectories are escaping in a finite number of iterations, represented by the yellow 

region.□ 

While a complete characterization of the dynamics that occurs in Region R3 is beyond the 

scope of our paper, we can at least verify the existence of an attracting set. This is due to 

the fact that – although the dynamics close to the real fixed point 𝐹𝐹 is necessary as 

described above, leading to an escape region 𝐸𝐸𝐹𝐹 – we can numerically observe the 

existence of a point A on the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane, with A > 𝑃𝑃𝑣𝑣, whose 

images under map 𝑇𝑇𝑢𝑢 belong to an arc of spiral up to a point below this diagonal (red point 

in panel (b) of Figure 5), after which map 𝑇𝑇𝑙𝑙 applies up to a point above this diagonal (blue 

                                                           
9 Stronger overshooting occurs for higher tax rates. However, it is clear that there is overshooting, followed by an 
endogenous reversal of the price direction, independently of the size of the (positive) tax rate.  
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point in panel (b) of Figure 5), located below the arc of spiral issuing from point 𝐴𝐴. This 

leads to a region 𝐴𝐴𝐹𝐹 that is attracting from outside and mapped into itself. It follows that 

the annular region 𝑁𝑁𝐹𝐹 = 𝐴𝐴𝐹𝐹\𝐸𝐸𝐹𝐹 is attracting and mapped into itself (indicated by the pink 

region in panel (b) of Figure 5). Thus, an attracting set must necessarily exist in the 

invariant set 𝒜𝒜 defined as 𝒜𝒜 =∩𝑛𝑛≥0 𝑇𝑇𝑛𝑛(𝑁𝑁𝐹𝐹).10 The fact that 𝒜𝒜 includes at least an 

attracting cycle will be numerically demonstrated in the next four figures.  

 

 

Figure 5: Qualitative sketch of escape regions and attracting sets in the (𝑃𝑃,𝑋𝑋)-phase plane for Region R3. 
The yellow area depicted in panel (a) visualizes a neighborhood of the real fixed point 𝐹𝐹 from which 
trajectories are escaping in a finite number of iterations. The pink region depicted in panel (b) indicates a 
region that contains an attracting cycle. 

 
To discuss the economic consequences associated with Region R3 in more detail, let us 

assume the following base parameter setting: 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜒𝜒 = 0.9 and 

𝜏𝜏 = 0.01. Figure 6 presents the evolution of the price of the risky asset in the time domain 

for 𝜏𝜏 = 0.01 (black) and 𝜏𝜏 = 0 (red). The corresponding real fixed point 𝐹𝐹 = 1 and the 

virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 1.02, both being stable foci, are plotted in blue and green, 

respectively. In the absence of capital gains taxes, the dynamics of the model is globally 

stable, i.e. the price of the risky asset oscillates around its fundamental value with 

decreasing amplitude and reaches its fundamental value after about 40 periods. In 

contrast, everlasting cyclical asset price dynamics emerge for 𝜏𝜏 = 0.01.  

                                                           
10 Besides containing an attracting cycle, this set may also include coexisting attracting cycles. 
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To understand the functioning of the model in Region R3, we reiterate that cyclical asset 

price motion implies that the risky asset market either goes up or down, i.e. there are two 

(competing) regimes: 

•  Regime 1 (no capital gains taxes): When the price of the risky asset decreases, 

speculators expect not to have to pay capital gains taxes. Consequently, the dynamics 

is driven by sub-map 𝑇𝑇𝑢𝑢, setting a cyclical convergence towards 𝐹𝐹 = (𝐷𝐷� − 𝜆𝜆𝜎𝜎2𝑆𝑆̅)/𝑟𝑟 in 

motion. However, a cyclical convergence means that the downward movement of the 

price of the risky asset continues for a while, but then changes direction. Importantly, 

this triggers a regime change. 

• Regime 2 (capital gains taxes): When the price of the risky asset eventually goes up, 

speculators expect to have to pay capital gains taxes. Then, sup-map 𝑇𝑇𝑙𝑙 and its virtual 

fixed point, 𝑃𝑃�𝑣𝑣 = 𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆
𝑟𝑟

> 𝐹𝐹, determine the fate of the dynamics, at least for a 

while. Of course, the cyclical adjustment path of the price of the risky asset implies that 

a downturn will eventually occur, such that the other sub-map becomes relevant again.  

Hence, the dynamics of the risky asset market is kept alive by the constant switching 

between regimes (i) and (ii), i.e. speculators’ alternating beliefs about the future direction 

of the risky asset market and their associated beliefs about their tax duties.  

 

 
Figure 6: Time series dynamics of the risky asset price in Region R3. The black, blue and green lines show 
the evolution of the risky asset price, its real fixed point 𝐹𝐹 = 1 and its virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 1.02, 
respectively. Parameter setting: 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜒𝜒 = 0.9 and 𝜏𝜏 = 0.01. The red line shows the 
evolution of the risky asset price for 𝜏𝜏 = 0. 
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Note that the emergence of such regime-dependent asset price fluctuations are 

independent of the size of the risky asset’s risk premium, and thus of parameters 𝜆𝜆, 𝜎𝜎2 

and 𝑆𝑆̅. While both the size of the risk premium and the tax rate imposed by policymakers 

on speculators’ capital gains affect the distance between the real and the virtual fixed point 

of the risky asset price and therefore the amplitude of its oscillatory price motion, it is not 

crucial for the emergence of such dynamics.11 Since the price of the risky asset oscillates 

around the fixed points 𝐹𝐹 and 𝑃𝑃𝑣𝑣, it is furthermore clear that the average price level of the 

risky asset gets upward biased, i.e. capital gains taxes do not only generate excess 

volatility, but also systematic mispricing, an outcome that Blouin et al. (2003), Jin (2006), 

George and Hwang (2007) and Jacob (2018) have also found for actual asset markets 

that are subject to capital gains taxes.12 

The bifurcation diagram depicted in Figure 7 rests on our base parameter setting for 

Region R3, except that we vary parameter 𝜏𝜏 as indicated on the axis. Apparently, a tax 

imposed on speculators’ capital gains has a destabilizing impact on the dynamics of the 

model. In particular, we observe the emergence of endogenous dynamics immediately 

when parameter 𝜏𝜏 becomes positive. Moreover, the risky asset’s volatility, average price 

and (systematic) mispricing increase in line with the tax rate imposed by policymakers on 

speculators’ capital gains. Note also that the periodicity of the cycles may change as 

parameter 𝜏𝜏 increases. 

Figure 8 shows a bifurcation diagram for the base parameter setting of Region R3 in which 

we vary parameter 𝜒𝜒 as indicated on the axis. Note that the risky asset price converges 

towards its real fixed point 𝐹𝐹 = 1 for 𝜒𝜒 < 0.537, as can be computed from (16). As 

parameter 𝜒𝜒 enters Region R3, however, the price of the risky asset abruptly displays 

cycles with significant amplitudes. Similar to the dynamics depicted in Figure 7, the price 

of the risky asset is excessively volatile and fluctuates, on average, above its real fixed 

point. Clearly, the volatility and mispricing of the risky asset display a discrete jump as 

speculators’ trend extrapolation strength exceeds the critical bifurcation value 𝜒𝜒 = 0.537. 

                                                           
11 We stress this point to make it clear that it is irrelevant whether speculators’ risk perception, which we 
fixed to 𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] = 𝜎𝜎2 in Section 2, is accurate or not. What really matters here is that there are two 
coexisting fixed points, one real and one virtual, both of which are stable foci. 
12 Note that the dynamics we observe in Regions 1 and 2 are also associated with inflated price levels. 
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Figure 7: Bifurcation diagram for parameter 𝜏𝜏. The panel shows how the price of the risky asset reacts to 
an increase in the tax rate on capital gains. Base parameter setting for Region R3, except that parameter 𝜏𝜏 
is varied as indicated on the axis. 
 
 

 
Figure 8: Bifurcation diagram for parameter 𝜒𝜒. The panel shows how asset prices react to an increase in 
speculators’ extrapolation strength. Base parameter setting for Region R3, except that parameter 𝜒𝜒 is varied 
as indicated on the axis. 
 

Figure 8 reveals that the periodicity of the risky asset’s price cycles may change as 

parameter 𝜒𝜒 increases. To delve deeper into this issue, we present in Figure 9 a two-

dimensional bifurcation diagram in which we vary parameters 𝑟𝑟 and 𝜒𝜒 as indicated on the 
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axis (the remaining parameters are as in our base parameter setting for Region R3, except 

that 𝜏𝜏 = 0.35). Note that different colors indicate different periodicities. It is immediately 

apparent from the superimposed bifurcation curves (15), (16), (22) and (23) that Region 

R3 is filled with cycles of different length (for clarity, see Figure 2, also based on 𝜏𝜏 = 0.35). 

Without going into too much detail, we remark that the periods of the attracting cycles 

change due to border collision bifurcations associated with the cycles. In other words, a 

border collision bifurcation, changing the period of a cycle, occurs when a periodic point 

of an attracting cycle merges with the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑃𝑃,𝑋𝑋)-phase plane, either 

from above or from below. The yellow area in the left part of the bifurcation diagram stands 

for fixed-point dynamics, occurring in Regions R1 and R2, while the gray area in the right 

part of the bifurcation diagram indicates divergent dynamics, occurring in large parts of 

Region R4 and throughout Regions R5a, R5b and R5c.   

 

 

Figure 9: Two-dimensional bifurcation diagram for parameters 𝑟𝑟 and 𝜒𝜒. Different colors denote cycles with 
different periods. The yellow (gray) area in the left (right) part of the bifurcation diagram stands for fixed-
point (divergent) dynamics. Bifurcation curves (15), (16), (22) and (23) have been superimposed. Base 
parameter setting for Region R3, except that 𝜏𝜏 = 0.35; parameters 𝑟𝑟 and 𝜒𝜒 are varied as indicated on the 
axis. 
 

3.4 Regions R4 and R5 

What is remarkable is that we may also detect attracting cycles in Region R4 – a region 

in which the real fixed point 𝐹𝐹 is an expanding focus, but the virtual fixed point 𝑃𝑃𝑣𝑣 is still 
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an attracting focus – at least as long as the parameters are close to the bifurcation curve 

(16) of the real fixed point 𝐹𝐹. We are able to explain this puzzling outcome as follows. 

When the real fixed point 𝐹𝐹 becomes unstable, it is locally repelling, and a region 𝐸𝐸𝐹𝐹 can 

be constructed as described above. However, as long as it is possible to find a point A on 

the diagonal 𝑋𝑋 = 𝑃𝑃 in the (𝑋𝑋,𝑃𝑃)-phase plane whose images belong to two arcs of spirals 

ending at a point below the initial arc issuing from A, as described in panel (b) of Figure 

5, then an annular absorbing region exists, leading to an attracting set.  

An example of such an outcome is shown in Figure 10, resting on 𝐷𝐷� = 2.6, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 

𝑟𝑟 = 0.1, 𝜒𝜒 = 1.11 and 𝜏𝜏 = 0.3. As can be seen, the price of the risky asset fluctuates 

around 𝑃𝑃� = 25 (blue) and 𝑃𝑃𝑣𝑣 ≈ 25.5 (green), and does not explode as it would for 𝜏𝜏 = 0. 

It is therefore possible, in principle, that capital gains taxes will stabilize the dynamics of 

financial markets, as intended by policymakers. Unfortunately, the parameter space that 

guarantees such dynamics appears to us to be relatively small. Moreover, we consider 

the associated amplitudes of the cycles to be generally quite large. Of course, it may be 

argued that such a volatile outcome is better than divergent dynamics. 

 

 

Figure 10: Time series dynamics of risky asset prices in Region R4. The black, blue and green lines show 

the risky asset price, its real fixed point 𝑃𝑃� = 25 and its virtual fixed point 𝑃𝑃𝑣𝑣 ≈ 25.5, respectively. Parameter 

setting: 𝐷𝐷� = 2.6, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜒𝜒 = 1.11 and 𝜏𝜏 = 0.3.  
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As the parameters change in Region R4 such that any point A on the diagonal has a 

trajectory belonging to two arcs of spirals ending above the initial arc, all trajectories are 

divergent. This is what occurs in Region R5a, when the real fixed point 𝐹𝐹 and the virtual 

fixed point 𝑃𝑃𝑣𝑣 are repelling foci. In this region, any initial condition different from the real 

fixed point 𝐹𝐹 has a trajectory spiraling away from the real fixed point 𝐹𝐹 and the virtual fixed 

point 𝑃𝑃𝑣𝑣, and is thus divergent. Moreover, all parameter combinations in Region R5b 

(where the real fixed point 𝐹𝐹 is a repelling node and the virtual fixed point 𝑃𝑃𝑣𝑣 is a repelling 

focus) and in Region R5c (where the real fixed point 𝐹𝐹 and the virtual fixed point 𝑃𝑃𝑣𝑣 are 

both repelling nodes) cause divergent dynamics, too. 

 

4 Robustness checks 

We now show that our main results carry over to an asset-pricing model in which 

speculators consist of chartists, who rely on an extrapolative expectation rule, and 

fundamentalists, who use a regressive expectation rule. In Section 4.1, we keep the 

market shares of chartists and fundamentalists constant. In Section 4.2, we consider that 

speculators endogenously switch between an extrapolative and a regressive expectation 

rule, subject to an evolutionary fitness measure, as in Brock and Hommes (1998).13 Due 

to our model extensions, the price of the risky asset is driven by piecewise maps with four 

branches, which are either linear or nonlinear. Since these maps preclude a deeper 

analytical penetration, we focus our attention on numerical investigations.  

 
4.1 Chartists and fundamentalists: constant market shares 

Let us again assume that a chartist applies the extrapolative expectation rule  

𝐸𝐸𝑡𝑡𝐶𝐶[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1 + 𝜒𝜒(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2),                                                                                       (27) 

with extrapolation parameter 𝜒𝜒 > 0, and that his risky asset demand is given by  

𝑍𝑍𝑡𝑡𝐶𝐶 = �
(1−𝜏𝜏)𝐸𝐸𝑡𝑡

𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1+𝑟𝑟−𝜏𝜏)𝑃𝑃𝑡𝑡
(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2

    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2 > 0

𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡

𝜆𝜆𝜎𝜎2
                𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2 ≤ 0

.                                                           (28) 

                                                           
13 Martin et al. (2021) provide preliminary simulations on how capital gains taxes may affect the dynamics 
of a housing market model, assuming that speculators switch between heterogeneous expectation rules, 
subject to an evolutionary fitness measure. 
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A fundamentalist believes that the price of the risky asset will move towards 𝐹𝐹 = 𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
𝑟𝑟

. 

Let us capture the regressive expectation rule of fundamentalists by 

𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1 + 𝜙𝜙(𝐹𝐹 − 𝑃𝑃𝑡𝑡−1),                                                                                            (29) 

with mean reversion parameter 0 < 𝜙𝜙 ≤ 1. Consistent with this expectation rule, a 

fundamentalist’s risky asset demand results in  

𝑍𝑍𝑡𝑡𝐹𝐹 = �
(1−𝜏𝜏)𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1+𝑟𝑟−𝜏𝜏)𝑃𝑃𝑡𝑡

(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2
    𝑖𝑖𝑖𝑖 𝐹𝐹 − 𝑃𝑃𝑡𝑡−1 > 0

𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡
𝜆𝜆𝜎𝜎2

                𝑖𝑖𝑖𝑖 𝐹𝐹 − 𝑃𝑃𝑡𝑡−1 ≤ 0
.                                                                  (30) 

Clearly, a fundamentalist believes that he need (not) pay capital gains taxes when the 

risky asset is currently undervalued (overvalued), projecting a price recovery (decline).  

Let 0 < 𝑛𝑛𝐶𝐶 < 1 and 𝑛𝑛𝐹𝐹 = 1 − 𝑛𝑛𝐶𝐶 stand for the constant market shares of chartists and 

fundamentalists, respectively, and let 𝑁𝑁 denote the total number of speculators. 

Speculators’ aggregate demand for the risky asset then amounts to  

𝑍𝑍𝑡𝑡 = 𝑁𝑁(𝑛𝑛𝐶𝐶𝑍𝑍𝑡𝑡𝐶𝐶 + 𝑛𝑛𝐹𝐹𝑍𝑍𝑡𝑡𝐹𝐹 ).                                                                                                        (31) 

As before, market equilibrium requires that  

𝑍𝑍𝑡𝑡 = 𝑆𝑆𝑡𝑡,                                                                                                                                 (32) 

where the supply of the risky asset is set to 

𝑆𝑆𝑡𝑡 = �̂�𝑆 = 𝑁𝑁𝑆𝑆̅.                                                                                                                                (33)  

Combining (27) to (33) reveals that the price of the risky asset adheres to 

𝑃𝑃𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

(1−𝜏𝜏)(𝑛𝑛𝐶𝐶𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1])+𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆

1+𝑟𝑟−𝜏𝜏
                        𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1

(1−𝜏𝜏)𝑛𝑛𝐶𝐶𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝐶𝐶𝐷𝐷�+(1−𝜏𝜏)2𝑛𝑛𝐹𝐹(𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�)−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆

𝑛𝑛𝐶𝐶(1+𝑟𝑟−𝜏𝜏)+(1−𝜏𝜏)2𝑛𝑛𝐹𝐹(1+𝑟𝑟)
    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1

(1−𝜏𝜏)2𝑛𝑛𝐶𝐶(𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�)+(1−𝜏𝜏)𝑛𝑛𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝐹𝐹𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆

(1−𝜏𝜏)2𝑛𝑛𝐶𝐶(1+𝑟𝑟)+𝑛𝑛𝐹𝐹(1+𝑟𝑟−𝜏𝜏)
    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1

𝑛𝑛𝐶𝐶𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆

1+𝑟𝑟
                                              𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1

,      (34)  

i.e. its dynamics depends on the interaction of four linear branches.  

In the absence of capital gains taxes, the dynamics of the model obeys 

𝑅𝑅: �𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡−1+𝑛𝑛𝐶𝐶𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑋𝑋𝑡𝑡−1)+𝑛𝑛𝐹𝐹𝜙𝜙(𝐹𝐹−𝑃𝑃𝑡𝑡−1)+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟

𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1                                                               
,                                                            (35) 

where 𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 is an auxiliary variable. Note that map (35) possesses a unique fixed 
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point, given by 𝑃𝑃� = 𝑋𝑋� = 𝐹𝐹 = 𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
𝑟𝑟

, which is globally stable if 𝜒𝜒 < 1+𝑟𝑟
𝑛𝑛𝐶𝐶

 holds. In the 

presence of capital gains taxes, the dynamics of the model is due to  

𝐶𝐶:

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑃𝑃𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

(1−𝜏𝜏)((𝑛𝑛𝐶𝐶�𝑃𝑃𝑡𝑡−1+𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑋𝑋𝑡𝑡−1)�+𝑛𝑛𝐹𝐹�𝑃𝑃𝑡𝑡−1+𝜙𝜙(𝐹𝐹−𝑃𝑃𝑡𝑡−1)�)+𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2𝑆𝑆̅

1+𝑟𝑟−𝜏𝜏
                     𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑋𝑋𝑡𝑡−1  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1

(1−𝜏𝜏)𝑛𝑛𝐶𝐶(𝑃𝑃𝑡𝑡−1+𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑋𝑋𝑡𝑡−1))+𝑛𝑛𝐶𝐶𝐷𝐷�+(1−𝜏𝜏)2𝑛𝑛𝐹𝐹(𝑃𝑃𝑡𝑡−1+𝜙𝜙(𝐹𝐹−𝑃𝑃𝑡𝑡−1)+𝐷𝐷�)−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2𝑆𝑆̅

𝑛𝑛𝐶𝐶(1+𝑟𝑟−𝜏𝜏)+(1−𝜏𝜏)2𝑛𝑛𝐹𝐹(1+𝑟𝑟)
    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑋𝑋𝑡𝑡−1  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1

(1−𝜏𝜏)2𝑛𝑛𝐶𝐶(𝑃𝑃𝑡𝑡−1+𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑋𝑋𝑡𝑡−1)+𝐷𝐷�)+(1−𝜏𝜏)𝑛𝑛𝐹𝐹(𝑃𝑃𝑡𝑡−1+𝜙𝜙(𝐹𝐹−𝑃𝑃𝑡𝑡−1))+𝑛𝑛𝐹𝐹𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2𝑆𝑆̅
(1−𝜏𝜏)2𝑛𝑛𝐶𝐶(1+𝑟𝑟)+𝑛𝑛𝐹𝐹(1+𝑟𝑟−𝜏𝜏)

      𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑋𝑋𝑡𝑡−1  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1
𝑃𝑃𝑡𝑡−1+𝑛𝑛𝐶𝐶𝜒𝜒(𝑃𝑃𝑡𝑡−1−𝑋𝑋𝑡𝑡−1)+𝑛𝑛𝐹𝐹𝜙𝜙(𝐹𝐹−𝑃𝑃𝑡𝑡−1)+𝐷𝐷�−𝜆𝜆𝜎𝜎2𝑆𝑆̅

1+𝑟𝑟
                                                           𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑋𝑋𝑡𝑡−1  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1

𝑋𝑋𝑡𝑡 = 𝑃𝑃𝑡𝑡−1                                                                                                                                                                                

.               (36) 

In the following, we first present a simulation run of the model, indicating that the 

imposition of capital gains taxes may create endogenous asset price dynamics. We then 

present a two-dimensional bifurcation diagram suggesting that map (36) may produce 

similar dynamics to those of map (9). 

For the time series example, we assume that 𝑟𝑟 = 0.1, 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑛𝑛𝐶𝐶 = 0.8, 𝜒𝜒 =

0.9 and 𝜙𝜙 = 0.6, implying that 𝐹𝐹 = 1 and 𝑛𝑛𝐹𝐹 = 0.2. Moreover, the risky asset market is 

subject to a small exogenous shock in period 𝑡𝑡 = 1. As revealed by the red line in Figure 

11, the price of the risky asset quickly converges towards 𝐹𝐹 = 1 for 𝜏𝜏 = 0. However, 

endogenous cyclical asset price dynamics emerges for 𝜏𝜏 = 0.02, as evidenced by the 

black line. We note that while we face interactions between upward and downward 

trending regimes in the model with chartists, we now encounter four interdependent 

regimes in the model with chartists and fundamentalists. In fact, it can easily be verified 

that in the course of the asset price cycles depicted in Figure 11, we have that (i) the risky 

asset market increases and is overvalued, (ii) the risky asset market decreases and is 

overvalued, (iii) the risky asset market decreases and is undervalued and (iv) the risky 

asset market increases and is undervalued. Thus, all four linear branches of map (36) are 

relevant and visited repeatedly, implying that all of their fixed points, whether real or virtual, 

and their stability properties matter for the dynamics.  

A comparison of the two-dimensional bifurcation diagrams presented in Figures 9 and 12 

reveals that maps (9) and (36) produce similar dynamics. The underlying parameter 

setting for Figure 12 is given by 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝜏𝜏 = 0.35, 𝑛𝑛𝐶𝐶 = 0.8, 𝑛𝑛𝐹𝐹 = 0.2 and 𝜙𝜙 =

0.6, while parameters 𝑟𝑟 and 𝜒𝜒 are varied as indicated on the axis. With some liberty, we 

can conclude that both models produce fixed-point (divergent) dynamics when chartists’ 
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extrapolation parameter is relatively low (high), as indicated by the yellow (gray) area in 

the bottom left (right) part of the bifurcation diagrams. For intermediate values of 

parameter 𝜒𝜒, periodic motion with cycles that have different periods emerge, as indicated 

by the different colors in the center part of the bifurcation diagram. Since the model with 

chartists and fundamentalists depends on four rather than two branches, the areas where 

cycles change their periods appear more ragged. Qualitatively, however, there is a strong 

similarity between Figures 9 and 12.  
 

 
Figure 11: Time series dynamics of the risky asset price for the model with constant market shares of 
chartists and fundamentalists. The black line shows the evolution of the risky asset price, assuming 𝐷𝐷� =
0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜏𝜏 = 0.02, 𝑛𝑛𝐶𝐶 = 0.8, 𝜒𝜒 = 0.9, 𝑛𝑛𝐹𝐹 = 0.2 and 𝜙𝜙 = 0.6. The red line depicts the evolution 
of the risky asset price for the same parameter setting, except that 𝜏𝜏 = 0. The blue line marks 𝐹𝐹 = 1. 
 
4.2 Chartists and fundamentalists: endogenous market shares 

In this section, we assume that speculators display a boundedly rational learning behavior, 

as put forward by Brock and Hommes (1998). Accordingly, speculators choose between 

an extrapolative and a regressive expectation rule to forecast the price of the risky asset 

subject to an evolutionary fitness measure, given by the prediction accuracy of the 

expectation rules. With a view to the omnipresent wilderness-of-bounded-rationality 

critique, Glaeser (2013) and Hommes (2013) stress that a simple and plausible rule-

governed expectation formation scheme describes reality more accurate than a 

framework with fully rational expectations.  
 



29 
 

 

Figure 12: Two-dimensional bifurcation diagram for parameters 𝑟𝑟 and 𝜒𝜒. Different colors denote cycles with 
different periods. The yellow (gray) area in the left (right) part of the bifurcation diagram stands for fixed-
point (divergent) dynamics. Parameters 𝑟𝑟 and 𝜒𝜒 are varied, as indicated on the axis. Remaining parameters: 
𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝜏𝜏 = 0.35, 𝑛𝑛𝐶𝐶 = 0.8, 𝑛𝑛𝐹𝐹 = 0.2 and 𝜙𝜙 = 0.6. 
 

As a starting point, we use price equation (34) of the model developed in Section 4.1, 

except that we now consider that the market shares of chartists and fundamentalists, i.e. 

𝑛𝑛𝑡𝑡𝐶𝐶 and 𝑛𝑛𝑡𝑡𝐹𝐹, evolve over time. We thus have  

𝑃𝑃𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

(1−𝜏𝜏)(𝑛𝑛𝑡𝑡
𝐶𝐶𝐸𝐸𝑡𝑡

𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝑡𝑡𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1])+𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟−𝜏𝜏

                        𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1
(1−𝜏𝜏)𝑛𝑛𝑡𝑡

𝐶𝐶𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝑡𝑡

𝐶𝐶𝐷𝐷�+(1−𝜏𝜏)2𝑛𝑛𝑡𝑡𝐹𝐹(𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�)−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆
𝑛𝑛𝑡𝑡
𝐶𝐶(1+𝑟𝑟−𝜏𝜏)+(1−𝜏𝜏)2𝑛𝑛𝑡𝑡𝐹𝐹(1+𝑟𝑟)

    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 > 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1
(1−𝜏𝜏)2𝑛𝑛𝑡𝑡

𝐶𝐶(𝐸𝐸𝑡𝑡
𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�)+(1−𝜏𝜏)𝑛𝑛𝑡𝑡𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝑡𝑡𝐹𝐹𝐷𝐷�−(1−𝜏𝜏)2𝜆𝜆𝜎𝜎2�̅�𝑆

(1−𝜏𝜏)2𝑛𝑛𝑡𝑡
𝐶𝐶(1+𝑟𝑟)+𝑛𝑛𝑡𝑡𝐹𝐹(1+𝑟𝑟−𝜏𝜏)

    𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 > 𝑃𝑃𝑡𝑡−1
𝑛𝑛𝑡𝑡
𝐶𝐶𝐸𝐸𝑡𝑡

𝐶𝐶[𝑃𝑃𝑡𝑡+1]+𝑛𝑛𝑡𝑡𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−𝜆𝜆𝜎𝜎2�̅�𝑆
1+𝑟𝑟

                                              𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡−1 ≤ 𝑃𝑃𝑡𝑡−2  ⋀𝐹𝐹 ≤ 𝑃𝑃𝑡𝑡−1

.      (37) 

At the beginning of each time step, speculators have to determine which expectation rule 

to follow. To model the evolution of the market shares of chartists and fundamentalists, 

Brock and Hommes (1998) employ the discrete choice approach, resulting in 

𝑛𝑛𝑡𝑡𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡
𝐶𝐶]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝐴𝐴𝑡𝑡
𝐶𝐶�+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]

                                                                                                  (38) 

and  

𝑛𝑛𝑡𝑡𝐹𝐹 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]
𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝐴𝐴𝑡𝑡

𝐶𝐶�+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]
,                                                                                                (39) 

where 𝐴𝐴𝑡𝑡𝐶𝐶 and 𝐴𝐴𝑡𝑡𝐹𝐹 denote the fitness of the extrapolative and the regressive expectation 
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rule, respectively. Importantly, parameter 𝛽𝛽 > 0 measures how quickly the mass of 

speculators switches to the fitter expectation rule. For 𝛽𝛽 → 0, speculators do not observe 

any fitness differentials between the two expectation rules, implying that 𝑛𝑛𝑡𝑡𝐶𝐶 = 𝑛𝑛𝑡𝑡𝐹𝐹 = 0.5. 

For 𝛽𝛽 → ∞, speculators observe fitness differentials perfectly, and all of them will choose 

the expectation rule that yields the higher fitness. Clearly, the higher parameter 𝛽𝛽 is, the 

more speculators will select the fitter expectation rule. 

The fitness of the two expectation rules depends on their prediction accuracy, modeled 

via their last observable (squared) prediction error. Hence,  

𝐴𝐴𝑡𝑡𝐶𝐶 = −(𝑃𝑃𝑡𝑡−1 − 𝐸𝐸𝑡𝑡−2𝐶𝐶 [𝑃𝑃𝑡𝑡−1])2 = −(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−3 − 𝜒𝜒(𝑃𝑃𝑡𝑡−3 − 𝑃𝑃𝑡𝑡−4))2                                              (40) 

and 

𝐴𝐴𝑡𝑡𝐹𝐹 = −(𝑃𝑃𝑡𝑡−1 − 𝐸𝐸𝑡𝑡−2𝐹𝐹 [𝑃𝑃𝑡𝑡−1])2 = −(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−3 − 𝜙𝜙(𝐹𝐹 − 𝑃𝑃𝑡𝑡−3))2,                                            (41) 

respectively. Note that both expectation rules make no forecast error when the risky asset 

market is at rest, a constellation that yields 𝑛𝑛𝑡𝑡𝐶𝐶 = 𝑛𝑛𝑡𝑡𝐹𝐹 = 0.5. 

Scrutiny of (37)-(41) reveals that the price of the risky asset is now due to a four-

dimensional piecewise map with four nonlinear branches, which is why we explore its 

dynamics numerically. Figure 13 displays time series dynamics of the risky asset price 

and the market share of chartists that result from a small exogenous shock that hit the 

risky asset market in period 𝑡𝑡 = 1. The black line in the top (bottom) panel shows the 

evolution of the risky asset price (market share of chartists), assuming 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ =

0.1, 𝑟𝑟 = 0.1, 𝜏𝜏 = 0.028, 𝜒𝜒 = 0.9, 𝜙𝜙 = 0.6 and 𝛽𝛽 = 10,000. The red line in the top (bottom) 

panel depicts the evolution of the risky asset price (market share of chartists) for the same 

parameter setting, except that 𝜏𝜏 = 0. The blue line in the top (bottom) panel marks 𝐹𝐹 = 1 

(𝑛𝑛𝐶𝐶��� = 𝑛𝑛𝐹𝐹���� = 0.5). We can conclude from this experiment that the price of the risky asset 

quickly approaches its fundamental value 𝐹𝐹 = 1 when policymakers do not impose capital 

gains taxes. In contrast, the price of the risky asset is subject to endogenous cyclical price 

changes that occur around inflated price levels when speculators face capital gains taxes, 

as we have already witnessed in the previous sections of our paper.  
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Figure 13: Time series dynamics of the risky asset price and the market share of chartists for the model with 

endogenous market shares of chartists and fundamentalists. The black line in the top (bottom) panel shows 

the evolution of the risky asset price (market share of chartists), assuming 𝐷𝐷� = 0.2, 𝜆𝜆𝜎𝜎2𝑆𝑆̅ = 0.1, 𝑟𝑟 = 0.1, 𝜏𝜏 =

0.028, 𝜒𝜒 = 0.9, 𝜙𝜙 = 0.6 and 𝛽𝛽 = 10,000. The red line in the top (bottom) panel depicts the evolution of the 

risky asset price (market share of chartists) for the same parameter setting, except that 𝜏𝜏 = 0. The blue line 

in the top (bottom) panel marks 𝐹𝐹 = 1 (𝑛𝑛𝐶𝐶��� = 𝑛𝑛𝐹𝐹��� = 0.5). 

 
Note also that speculators switch between the extrapolative and the regressive 

expectation rule. The extrapolative expectation rule becomes more popular when a bubble 

builds up, an outcome that tends to amplify the destabilizing effect of capital gains taxes. 

Fundamentalists briefly dominate the risky asset market when it crashes – during these 
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periods their predictions are more accurate than those of chartists. Of course, the price of 

the risky asset is now jointly determined by speculators’ boundedly rational learning and 

expectation formation behavior and by policymakers’ capital gains taxation. While it is 

difficult to disentangle the interactions between these two (destabilizing) components, it is 

clear that the risky asset market is stable for 𝜏𝜏 = 0, at least for the current model 

parameterization. Against this background, we may conclude that the nature of capital 

gains taxes is destabilizing. 

Let us try to generalize the latter observation. The left panel of Figure 14 reports the 

average price of the risky asset, defined as 1
𝑇𝑇
∑ 𝑃𝑃𝑡𝑡𝑇𝑇
𝑡𝑡=1 , as a function of the tax rate. We 

assume the same parameter setting as in Figure 13, except that we gradually increase 

the tax rate from 𝜏𝜏 = 0 to 𝜏𝜏 = 0.05, as indicated on the axis. For each tax rate, we use 𝑇𝑇 =

10,000 observations to compute the average price of the risky asset. As can be seen, the 

average price of the risky asset increases with the tax rate on capital gains. The right 

panel of Figure 14 displays the volatility of the risky asset, defined as 1
𝑇𝑇
∑ |𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1|𝑇𝑇
𝑡𝑡=1 , 

with 𝑇𝑇 = 10,000. Since the volatility of the risky asset also increases with the tax rate, we 

may conclude that capital gains taxes destabilize the dynamics of the risky asset market, 

even when speculators display a boundedly rational learning behavior. 

 
Figure 14: Average price and volatility as a function of parameter 𝜏𝜏. The left (right) panel depicts the average 

price of the risky asset (the volatility of the risky asset) as a function of the tax rate. Parameter setting as in 

Figure 13, except that parameter 𝜏𝜏 is varied as indicated on the axis. 
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5 Conclusions 

While policymakers around the world tax speculators’ capital gains, as documented in 

Littlewood and Elliffe (2017), the equilibrium and out-of-equilibrium effects of capital gains 

taxes remain unclear, as revealed by the contrasting views offered by Klein (1999), 

Poterba and Weisbenner (2001), Ayers et al. (2003) and Dai et al. (2008). In this paper, 

we are particularly interested in the dynamic consequences of capital gains taxes. Based 

on a stylized behavioral asset-pricing model along the lines of Brock and Hommes (1998), 

we find that the imposition of capital gains taxes causes a natural nonlinearity, which, in 

turn, may give rise to endogenous asset price dynamics. The driving force behind such 

dynamics is rooted in the coexistence of two different regimes – one relevant in upward 

trending markets, when speculators expect to make capital gains and thus anticipate 

having to pay capital gains taxes, and the other relevant in downward trending markets, 

when they do not expect to make capital gains. Each of the two regimes is associated 

with a (different) fixed point. Since the stability properties of the fixed points depend on 

the underlying parameter setting, a number of interesting results emerge. Most 

importantly, we find that the imposition of capital gains taxes may create excess volatility 

and systematic mispricing, although the price of the risky asset would converge towards 

its fundamental value in the absence of capital gains taxes. Note that the empirical studies 

by Blouin et al. (2003), Jin (2006), George and Hwang (2007) and Jacob (2018) suggest 

that the imposition of capital gains taxes may inflate the prices of risky assets, too. For 

completeness, we mention that capital gains taxes may also, in principle, yield bounded 

dynamics, instead of otherwise divergent dynamics, although the parameter space that 

guarantees such outcomes seems to us to be quite limited. Finally, even if the price of the 

risky asset converged towards its fundamental value in the presence of capital gains 

taxes, tiny exogenous shocks could initiate significant (temporary) swings in the price of 

the risky asset.   

Arguably, our conclusions with respect to the destabilizing nature of capital gains taxes 

rest on a stylized behavioral asset-pricing model. Due the simplicity of the model, 

however, we are able to derive a number of clear-cut analytical and numerical insights 

that may help us to better judge capital gains taxes. Despite the robustness checks we 

performed in our paper, more work is required in this exciting research direction – and we 
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hope that our study provides fresh stimulus for such endeavors. One avenue for future 

research could be to compare the effects of proportional versus progressive capital gains 

tax systems. Note also that speculators can only invest in one risky asset in our model. A 

multi-asset framework may be able to address this issue. Another avenue for future 

research could be to consider that speculators conduct year-end tax trading. Extending 

our model such that every period has two sub-periods – a “normal” mid-year period and a 

year-end period, where speculators consider their possible tax duties – may produce 

relevant insights. It might also be worth assuming that speculators must only pay capital 

gains taxes if their capital gains exceed a certain threshold. Relatedly, we consider only 

two possible regimes in our paper: a capital gains tax regime, relevant when speculators 

expect the price of the risky asset to increase, and a regime with no capital gains tax, 

relevant when speculators expect the price of the risky asset to decrease. An interesting 

model extension could be to consider a third possible regime, relevant when the price of 

the risky asset changes only moderately. Speculators’ demand for the risky asset could 

then be represented as an average of the demand for the risky asset they would hold in 

the other two regimes. Moreover, one could consider that not all speculators switch 

simultaneously from one demand schedule to another because they expect a reversal of 

the risky asset market’s direction, causing them to make capital gains taxes or not. For 

instance, their expectation rules could contain a random term that lends more 

heterogeneity to speculators’ behavior. The goal of our paper is to point out a number of 

destabilizing forces associated with capital gains taxes – there may also be stabilizing 

forces attached to such a policy, which may emerge from alternative modeling setups.   
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