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Multimode trapped interferometer with noninteracting Bose-Einstein condensates
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We experimentally demonstrate a multimode interferometer comprising a Bose-Einstein condensate of 39K
atoms trapped in a harmonic potential, where the interatomic interaction can be canceled exploiting Feshbach
resonances. Kapitza-Dirac diffraction from an optical lattice coherently splits the BEC in multiple momentum
components equally spaced that form different interferometric paths, with trajectories closed by the trapping har-
monic potential. We investigate two different interferometric schemes, where the recombination pulse is applied
after a full or half oscillation in the confining potential. We find that the relative amplitudes of the momentum
components at the interferometer output are sensitive to external forces, through the induced displacement of
the harmonic potential with respect to the optical lattice. We show how to calibrate the interferometer, fully
characterize its output, and discuss perspective improvements.
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I. INTRODUCTION

Developed over three decades, atom interferometry repre-
sents the state of the art for the measurements of accelerations
[1,2] and rotations [3] with unparalleled resolution, for the
precise determination of fundamental constants [4–6], and for
testing the equivalence principle [7,8]. In these interferom-
eters, atomic samples are split into two separate paths and
recombined by multiple photon transitions. Since most of
those experiments are based on free-falling atomic samples,
the resolution typically scales as the square of the interroga-
tion time, i.e., linearly with the length of the interferometer.
However, on one hand, lengthy interferometers are technically
demanding, since they require managing the spread of atomic
wave packets and controlling external perturbations over large
regions of space; on the other hand, their spatial resolution is
obviously limited.

Interferometry with trapped atoms offers the distinct ad-
vantage of extended interrogation times in compact setups,
measuring forces and local fields with spatial resolution of
a few micrometers [9]. Several experiments have been per-
formed using Bose-Einstein condensates (BECs) trapped in
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magnetic traps [10,11], generated near the surface of an atom
chip [12], and in optical double-well potentials [13,14]. In
these works the main effort was directed toward engineering
the external potential used to coherently split and recombine
the wave function into two spatially separated modes. In ad-
dition to exploiting long interrogation times, trapped atom
interferometers can increase the interferometric phase in a
direct way by enlarging the spatial separations between the
paths. This goal has been pursued by different methods, e.g.,
by implementing double-well potentials with separations of
several microns [14], by coupling Wannier-Stark states that
are several lattices sites distant [15], by holding the two paths
in a vertical lattice separated by large distances [16], or by
splitting a single condensate in the two traps formed by a
transverse mode of an optical cavity [17]. A recent proposal
has also suggested to exploit the spread of the wave func-
tion during the Bloch dynamics in a horizontal lattice in
the presence of a weak force as a simple way to increase
the spatial separations of the atoms and consequently increase
the sensitivity of the interferometer [18].

The present work demonstrates an interferometric method
for trapped quantum gases based on a multimode configu-
ration, with more than two interferometric paths, where the
coherent splitting and recombination of a BEC into multiple
momentum components are realized by means of Kapitza-
Dirac (KD) diffraction from a pulsed optical lattice. With
this configuration, proposed theoretically for noninteracting
systems by Li et al. [19], the harmonic potential forgoes the
need of the “mirror” light pulses to close the trajectories and
prevents the spatial spread of wave packets, instead occurring
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in free space. KD interferometers have been implemented
experimentally either in the Mach-Zehnder two-mode config-
uration in a waveguide [20], or in trap [21], still with only
two interfering modes and with 87Rb atoms for which the
interpretation of the interference fringes is complicated by
the interatomic interactions [22]. Like in the above-mentioned
interferometers, also our sensitivity on the measured accel-
eration increases with the spatial separation of the paths; it
reaches a level allowing the detection of the beam-pointing
instability of the optical trap.

More specifically, we report here on the realization of a
horizontal multimode trapped interferometer, where a non-
interacting Bose-Einstein condensate is KD diffracted by an
optical lattice into components with momenta equal to mul-
tiples of the lattice wave vector k, i.e., with p = mh̄k, with
m integer. A KD pulse initiates the oscillation of the dif-
ferent momentum orders which, after half an oscillation in
the harmonic trap, return to the initial position with oppo-
site momenta and are recombined using another KD pulse.
Importantly, all the momentum components spatially recom-
bine at the trap minimum only if the potential is harmonic
over their oscillation amplitude. This is easily the case for
magnetic traps generated by macroscopic coils [21], but it
represents a tight constraint for optical dipole traps (ODTs),
that are the most common choice when, e.g., the control of
interactions through Feshbach resonances is sought. Here we
use an optical trap and take advantage of a large-spacing
(∼5 μm) optical lattice, that reduces the recoil velocity, hence
the oscillation amplitude, by a factor of 10, with respect to
the commonplace lattice spacing of 0.5 μm. Specifically, we
create the periodic potential exploiting a recently developed
technique, named the “beat-note superlattice” [23], capable
of realizing lattices with a large effective period in a retrore-
flected configuration, with laser wavelengths of the order of
1 μm. In order to investigate experimentally the operation of
the KD interferometer in the presence of external perturba-
tions, we first observe the evolution of the different diffracted
orders in the ODT, confirming a harmonic and symmetric
evolution. Then, we calibrate the output distribution as a func-
tion of the time interval and the phase difference between
the two pulses after a full oscillation. These measurements
serve to set the right parameters during the operation. We then
apply a controlled horizontal force through a magnetic field
gradient and measure the momentum distribution after half
an oscillation, for different values of the gradient field. We
observe a clear dependence of the atomic populations in the
different momentum components on the external force and we
compare the observed results with analytical predictions.

II. THEORETICAL ANALYSIS

A KD interferometer in a harmonic trap of frequency ω

detects an unknown acceleration a through the induced dis-
placement of the trap minimum, d = a/ω2, measured with
respect to the wave front of the applied optical lattice. The
displacement is encoded in the phase factor eimφ , with φ = kd ,
imprinted by the KD pulses on the different momentum com-
ponents mh̄k.

The basic working principle of the interferometer can be
best visualized as follows: a KD pulse generates three mo-

FIG. 1. Sketch of the basic working of our trapped Kapitza-Dirac
interferometer. Starting from a single BEC (red), two KD pulses at
t = 0 and T/2 create and recombine the momentum components
that oscillate in the trap (purple) and are finally detected after a
free expansion (yellow). Colored arrows, indicating the momentum
vectors, are not shown at t = T/2 for clarity. We highlight the two
different paths A and B as identified in the text, from which the
m = +1 component emerges at the output of the interferometer.

mentum components m = 0,±1; after this pulse, the half
oscillation in the trap reverses the momentum of all compo-
nents, before the second KD pulse further splits each in three.
Thus, the m = +1 component emerges from the second KD
pulse through two distinct paths, as illustrated in Fig. 1: (A)
the m = −1 component is generated by the first KD pulse,
its momentum is reversed into m = +1 by the half-period
evolution, and then it is left unperturbed by the second KD
pulse; (B) the m = 0 component emerging from the first KD
pulse is scattered into m = +1 by the second. On path A the
phase factor e−iφ is imprinted by the first KD pulse, while
on path B e+iφ is imprinted by the second KD pulse: their
sum produces interference on the momentum population at
the interferometer output.

Indeed, like in any other light-pulse interferometer [24] the
interferometric phase accumulated on each path is obtained as
the sum of the terms originated during the light-atom interac-
tion and terms due to the evolution between the light pulses.
The latter are given by the action along the classical trajectory,
which vanishes whenever the time separation between the two
light pulses equals an integer multiple of the harmonic half
period, independently of the initial momentum.

Taking into account all the momentum components, the
wave function at the interferometer output is exactly calcu-
lated [19]. We consider that the initial wave function ψ0(x)
corresponds to the ground state of the harmonic oscillator,
that the lattice potential during the two KD pulses is given by
Vi(x) = V0 sin(kx + φi ) (i = 1, 2), and the pulse duration δt is
so short that only the wave function phase is affected (Raman-
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Nath limit [25]). Then, the wave function at the interferometer
output after half oscillation is

ψH (x) = ψ0(−x)e−i2β sin φ cos(kx+δ)

= ψ0(−x)
∑

m

Jm(2β sin φ)(−i)meimkxeimδ, (1)

where β = V0δt/h̄, φ = (φ1 + φ2)/2, and δ = (φ2 − φ1)/2
are the average and semidifference of the phases of the two
pulses, and Jm denotes the Bessel function of order m. Clearly
a displacement d of the harmonic potential is equivalent to a
translation of both phases by kd .

The acceleration, that gives rise to the displacement d ,
can be measured considering various observables constructed
from the output populations. One notable example, on which
we will focus in the following, is the fraction of atoms remain-
ing in the initial m = 0 component, O1 = N0/N : due to the
multimode interference, varying d this observable is expected
to display a peak that narrows as the number of interfer-
ing components increases. The half-width at half-maximum
(HWHM) phase, corresponding to J2

0 (2β sin φHWHM) = 1/2,
is φHWHM = kdHWHM � 0.56/β. This is similar to light inter-
ference with multiple beams occurring, e.g., in a high-finesse
optical cavity: in the very same way, the resolution of the KD
interferometer increases with β at the expense of its dynamic
range [19]. More specifically, the resolution of the measured
acceleration a is

δa =
∣∣∣∣
dO1

da

∣∣∣∣
−1

�O1

= |2J0(2β sin φ)J1(2β sin φ)2β cos φ|−1 ω2

k
�O1, (2)

where �O1 is the experimental uncertainty associated with
the observable. The resolution is maximum, i.e., δa is min-
imum, when the lattice position is such that φ is close to
an integer multiple of π . In this case, since the function
|4J0(2β sin φ)J1(2β sin φ) cos φ| takes a maximum value ap-
proximately equal to 1.2, weakly dependent on β for β > 1,
we have

δa ≈ ω2

k

1

β
�O1. (3)

Therefore, the resolution increases with β, that is proportional
to the number of momentum components significantly popu-
lated, showing the benefit of multimode interference. This is
consistent with the analysis based on the Fisher information
and the Cramér-Rao bound [19,26]. Experimentally, the O1

peak can be centered at any chosen value of acceleration by
controlling the position of the minima of the lattice, extend-
ing the dynamic range of this kind of interferometer for the
measurements of small forces around a = 0.

As an alternative to O1, we can fit the measured values of
the fractional populations at the interferometer output with the
squared Bessel functions, having the phase φ as the single fit
parameter. This approach lacks a clear analogy with multiple-
beam optical interferometers, but has the advantage of using
all populations on the same footing. From a practical point
of view we verified that the two approaches yield the same
sensitivity.

FIG. 2. (a) Sketch of the optical and magnetic potentials applied
on the atoms. (b) In situ absorption images of the diffracted orders
m = ±1 during a complete oscillation; (c) corresponding positions
as a function of time. Plot data are the outcome of individual
measurements; we observe two sinusoidal oscillations with average
frequency of ω = 2π × 31.7(0.8) Hz and amplitude of 8.6(0.6) μm
obtained from the displayed fit.

Finally, for the following it is useful to derive also the
output wave function for an interferometer where the two KD
pulses are separated by a full-period evolution:

ψF (x) = ψ0(x)
∑

m

Jm(2β cos δ)e−imkxe−imφ, (4)

showing that the populations of the momentum components in
this full-period interferometer are sensitive only to the relative
displacement of the two KD pulses, i.e., to δ and not to φ. We
will exploit this property to calibrate the displacement of the
lattice and investigate its stability.

III. EXPERIMENTAL SETUP

In order to realize the interferometer, we use a Bose-
Einstein condensate of 104 39K atoms in the | f = 1, m f = 1〉
state, that features a broad Feshbach resonance around
400 G [27]. Setting the magnetic field to B = 350.5(0.5) G
effectively cancels the interatomic interactions since the cor-
responding s-wave scattering length is |a| < 0.05a0, a0 being
the Bohr radius.

We prepare the BEC in a crossed dipole trap created by
two red-detuned laser beams, as sketched in Fig. 2(a): with a
waist of 17 μm, the horizontal beam provides a tight radial
confinement, along y and z, of ωr ∼ 2π × 200 Hz, while the
vertical beam provides the longitudinal harmonic potential,
along x, with ω = 2π × (31.7 ± 0.8) Hz. The comparatively
large waist of the vertical beam (100 μm) ensures that the
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FIG. 3. Absorption image (top) of the momentum distribution and corresponding integrated density profile together with the multi-
Gaussian fit (bottom) after the first KD pulse (left) and after the second KD pulse (right) for a time interval between the two pulses equal
to half period, i.e., approximately 16 ms. In both cases a quarter period of in-trap evolution occurs between the last KD pulse and imaging.

deviation from the harmonicity of the potential is below 1%
at a distance of 10 μm from the center.

The beat-note superlattice potential along x is gen-
erated by overlapping two standing waves V1 cos2 k1x +
V2 cos2 k2x with wave vectors k1 = 2π/1.013 μm−1 and k2 =
2π/1.12 μm−1, and V1,V2 are the lattice depths. For V1,V2 of
the order of a recoil energy the BEC experiences an effective
lattice potential:

Veff (x) = Ve0[1 + sin(kx + φ)]/2, (5)

with Ve0 = V1V2M/h̄2(k1 + k2)2, where M is the atomic mass,
the spatial period 2π/k = π/(k1 − k2) equals 5.3 μm, and
the phase φ depends on the relative phase between the two
combined lattices [23,28]. Both lasers are frequency locked
to the same optical reference cavity with a relative stability
of ∼10 kHz, via sideband-locking that allows us to tune φ

dynamically by adjusting the radio frequency of one sideband
[29]. Additionally, to investigate the effect of an external force
along the x direction we apply a magnetic field gradient,
corresponding to an acceleration up to 10−3g, that displaces
the minimum of the resultant harmonic potential in a region
of few microns.

In order to measure the longitudinal frequency and confirm
that the potential is harmonic, at t = 0 we shine a pulse
of the optical lattice with an effective depth Ve0 � 30ER for
120 μs, where ER = h̄2k2/2M = kB × 8.7 nK. The pulse is
long enough to completely deplete the m = 0 component.
We record the images of the two components m = ±1 via
absorption imaging (line of sight along the y direction) and we
report their position as a function of time: in Figs. 2(b) and
2(c), both components display clear sinusoidal oscillations
with an amplitude of 8.6(0.6) μm, in reasonable agreement
with the expected value h̄k/Mω = 9.7(0.2) μm. Then, we set
the KD pulse duration to 80 μs in order to transfer almost 50%
of the atoms in the m = ±1 orders and we shine the second
KD pulse after a half (or full) period to complete the inter-
ferometric sequence. We then image the different momentum
orders after allowing an additional quarter oscillation in the
trap to maximize their spatial separation. We get the atom

number in each components, Nm, fitting the profiles with a
multi-Gaussian function, shown in Fig. 3.

A peculiarity of the beat-note superlattice is represented by
the fact that the number of interfering atoms N is coupled to β.
Indeed, beyond the effective potential approximation, the KD
pulses diffract atoms also at momentum components associ-
ated with the two fundamental optical lattices, i.e., at integer
multiples of 2h̄k1,2 [23], and the atoms of these components
are effectively lost for the purpose of the interferometer: due
to their large momenta, they are driven in the anharmonic
region of the ODT (if not outside). In practice, increasing
β reduces N , the total number of atoms contributing to the
interferometer signal; for this reason we work with β < 2
[28].

IV. CALIBRATION OF THE INTERFEROMETER

As shown in Fig. 3 and in agreement with Eq. (1), the
final momentum distribution is an even function of m, in-
dependently of the phases φ and δ, for both the half- and
the full-period interferometer; thus, 〈p〉 = 0. However, this
symmetry breaks if the time separation of the two KD pulses
is not exactly half period, i.e., �t = (1/2 + ε)T . In this
case, the mth momentum component acquires an extra phase,
exp(iε2πm2ER/h̄ω), given by the classical action in the time
interval between the KD pulses. We exploit this sensitivity
to precisely determine the oscillation period, using the full-
period interferometer, that is inherently more stable, since it is
insensitive to the relative displacement between the trap and
the lattice (and thus to external forces). We identify the period
as the time separation �t that yields a symmetric momentum
distribution; indeed Fig. 4 shows that measuring the average
momentum 〈p〉 as a function of �t allows us to find the
oscillation period with a precision of 10−4, a factor 27 more
accurate than what was possible by measuring the oscillation
of the spatial displacement of the wave packets, shown in
Fig. 2. Then this value is used to set the time separation equal
to T/2, in the half-period interferometer which is sensitive to
external forces.
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FIG. 4. Average momentum at the output of the full-period inter-
ferometer as a function of the time separation between the two KD
pulses, �t . The fit parameter is the harmonic period, identified as the
zero-crossing time: T = (31.38 ± 0.03) ms. The error bars indicate
the standard error on the mean of repeated measurements (N ∼ 5).

In addition, with the full-period interferometer we in-
vestigate the stability of the relative position of the lattice
between the two KD pulses. Equation (4) shows that, at
the output of the full-period interferometer, the fraction of
population at zero momentum equals J2

0 (2β cos δ). First, we
verify this relation thanks to the dynamical control of the
lattice position obtained by frequency-shifting one of the two
standing waves. We frequency-shift the k2 standing wave by
δ f2 = c δk2/(2π ), which displaces the beat-note superlattice
by δxo = Lδk2/(k1 − k2), where L is the distance of the atoms
from the retroreflecting mirror. We have calibrated the dis-
placement δxo by in situ imaging of the position of atoms
trapped in the lattice minima, and we obtained δxo/δ f2 =
(10 ± 1) nm/MHz. Thus, during the full-period oscillation
we displace the lattice potential by applying the frequency
shift δ f2, which modifies φ2 by kδxo, and we measure O1 as a
function of δ f2: as shown in Fig. 5 data are well in agreement
with the predicted behavior. Since repeated measurements
with the full-period, unshifted interferometer show that the
O1 is constant within 0.017 (standard deviation; see Fig. 6),
we conclude that the relative displacement between the two
KD pulses, over the timescale of one oscillation period, i.e.,
approximately 30 ms, is bounded to be below 0.2 μm.

V. MEASUREMENT OF THE APPLIED FORCE

With these results in hand, we proceed to measure a real
force or acceleration. Since the 39K atoms feature a mag-
netic moment approximately equal to 0.95 μB (μB being the
Bohr magneton) around 350 G, we impart a force along
the direction of the lattice by applying an external magnetic
field gradient produced with a pair of coils in anti-Helmholtz
configuration and a magnitude of about 3 × 10−2 G/cm/A.
The resulting uniform force induces a displacement of the
harmonic trap proportional to the coil current, which affects
the momentum populations at the interferometer output: the
displacement-versus-current conversion has been separately
calibrated to be η = (1.08 ± 0.13) μm/A, via the in situ po-
sition of atoms trapped in the ODT.

FIG. 5. Fraction of atoms in m = 0 momentum component,
O1 = N0/N , at the output of the full-period interferometer as a func-
tion of the frequency shift of k2 standing wave during the second
KD pulse. The shaded band is the uncertainty due to the calibration
of the beat-note superlattice displacement versus the frequency shift,
i.e., (10 ± 1) nm/MHz; the error bars indicate the standard error on
the mean.

In Fig. 6 we report the measured O1 observable as a
function of the coil current, with error bars corresponding
to the statistical standard deviation for typically 5 repetitions
of each data point. The peak identifying the configuration of
zero force is not located at I = 0 due to the presence in our
setup of a spurious magnetic field gradient that is canceled
by the gradient applied with a current I = 2.8 A. The error
bar of �O1 = 0.1, at the maximum slope of the fit curve,
yields a resolution of �I = 0.05 A, from which we obtain
�a = η�Iω2 = 2.19(0.26) × 10−4g, where the uncertainty is
actually dominated by the systematic error due to calibration
factor η.

FIG. 6. Fraction of atoms in m = 0 momentum component at the
interferometer output as a function of the magnetic-gradient current,
with a trap frequency ω = 2π × 31.7 Hz for the half-period (red,
solid points) and full-period (black, open) interferometer. The red
line shows the theoretical prediction from Eq. (1), with β = 1.12 and
an offset phase as fit parameters; the shaded band is the uncertainty of
the displacement-versus-current calibration; the error bars represent
the standard error on the mean.
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FIG. 7. Interferometric phase φ derived from fitting the mo-
mentum fractional populations of momentum components with
J2

m(2β sin φ), for harmonic frequencies equal to 31.7 Hz (red, solid
points) and 40.5 Hz (orange, open); lines are linear fits with slopes
(1.18 ± 0.09) rad/A (red, solid, excluding extreme points) and
(0.68 ± 0.08) rad/A (orange, dashed). The error bars represent the
standard error on the mean.

We also assess the acceleration resolution in a complemen-
tary manner, i.e., by extracting the interferometric phase φ

from a fit of the populations of all momentum components,
for each value of the applied force. This phase is expected
to depend linearly on the force, hence on the current: indeed
this is what we observe in Fig. 7. From the average error
bar of these data, 〈�φ〉 = 0.06, we obtain the acceleration
sensitivity �a = (ω2/k)〈�φ〉 = 2.2 × 10−4g, consistent with
the one above.

These values must be compared to the Cramér-Rao bound
reported in [19], i.e., �aCR = (ω2/βk)1/(

√
8pN ), where N is

the number of atoms, and p is the number of repeated mea-
surements. In our experiment, N � 5 × 103 and p is typically
4, thus 1/

√
8pN = 2.5 × 10−3, which is approximately a fac-

tor 40 smaller than our experimental �O1. In other words,
our resolution does not reach the standard quantum limit cor-
responding to �aCR = 4 × 10−6g. While a more systematic
investigation is needed, we believe that the main cause for
the suboptimal performance is the pointing instability of the
ODT beams. Indeed, any technical displacement of the trap
minimum is indistinguishable from those induced by external
accelerations; the interferometric sequence lasts only 16 ms
but the sample preparation (dead time) takes approximately
half a minute, and slow drifts of the ODT beams occur over
this timescale. The measured sensitivity is equivalent to a
displacement of 0.2 μm, reasonably of the same order of the
slow drifts of the ODT position.

The above discussion shows that lowering the harmonic
frequency improves the resolution. However, in our setup we
can only marginally increase—and not decrease—the trap-
ping frequency, to keep under control the anharmonicity of
the potential [28]. Thus, we repeated the measurement with
ω = 2π × (40.5 ± 0.5) Hz and, as expected, the measured
interferometric phase is less sensitive to the applied force (see
Fig. 7).

VI. CONCLUSIONS

In conclusion, we have performed a proof-of-principle
demonstration of a multimode interferometer in a harmonic
trap based on KD diffraction pulses. We have shown that
external accelerations are detected from the displacement in-
duced on the harmonic trap with respect to the KD lattice.
With a relatively low number of atoms N � 5 × 103 and a
harmonic frequency of approximately 32 Hz, we showed a
sensitivity δa � 2 × 10−4g. Our result is a factor 40 away
from the Cramér-Rao bound due to instabilities of the position
of the harmonic potential with respect to the lattice.

For a better insight on the potential performance of the KD
interferometer, we rewrite Eq. (3) as

δa

a
� h̄ω

MaA
�O1, (6)

to show that the relative sensitivity is inversely proportional
to the potential energy difference of the external force at dis-
tances equal to the oscillation amplitude of the atoms with the
largest momentum, A = β h̄k/(Mω). This expression shows
that our method represents a simple way to enhance the sensi-
tivity of a trapped atom interferometer by enlarging the spatial
separation between the modes involved. In particular this is
done by (i) reducing the harmonic trapping frequency, and (ii)
increasing the number of momentum components with KD
pulses of enhanced intensity and/or duration [30].

In the future it will be interesting to explore the perfor-
mance of the sensor using a harmonic magnetic confinement
along the direction of the lattice, that is more stable in po-
sition than the ODT and features a harmonic region much
larger. For example, using 105 atoms in a magnetic trap with
frequency ≈1 Hz and with oscillation amplitudes of ≈1 mm,
we expect an improvement of the sensitivity by several orders
of magnitude, up to ∼10−8g. In a magnetic trap, the inho-
mogeneous magnetic field experienced by the atoms along
the oscillation is a concern since it changes the interatomic
interaction strength: for 39K atoms, the above combination of
magnetic confinement and oscillation amplitudes implies that
the variation of magnetic field is ≈10 mG, corresponding to
a negligible variation of the scattering length ≈0.006a0. In-
terestingly, the KD interferometer could be also implemented
with spin-polarized fermionic atoms that, at low temperature,
are naturally noninteracting, provided that the KD lattice spac-
ing is chosen smaller than the coherence length of the atomic
sample [31].
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