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ABSTRACT

To efficiently tackle certain tumor types, finding new biomarkers for rapid and complete phenotyping of cancer cells is highly demanded.
This is especially the case for the most common pediatric solid tumor of the sympathetic nervous system, namely, neuroblastoma (NB).
Liquid biopsy is in principle a very promising tool for this purpose, but usually enrichment and isolation of circulating tumor cells in such
patients remain difficult due to the unavailability of universal NB cell-specific surface markers. Here, we show that rapid screening and phe-
notyping of NB cells through stain-free biomarkers supported by artificial intelligence is a viable route for liquid biopsy. We demonstrate the
concept through a flow cytometry based on label-free holographic quantitative phase-contrast microscopy empowered by machine learning.
In detail, we exploit a hierarchical decision scheme where at first level NB cells are classified from monocytes with 97.9% accuracy. Then we
demonstrate that different phenotypes are discriminated within NB class. Indeed, for each cell classified as NB its belonging to one of four
NB sub-populations (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH) is evaluated thus achieving accuracy in the range 73.6%–89.1%. The
achieved results solve the realistic problem related to the identification circulating tumor cell, i.e., the possibility to recognize and detect
tumor cells morphologically similar to blood cells, which is the core issue in liquid biopsy based on stain-free microscopy. The presented
approach operates at lab-on-chip scale and emulates real-world scenarios, thus representing a future route for liquid biopsy by exploiting
intelligent biomedical imaging.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159399

INTRODUCTION

Neuroblastoma (NB), the most common pediatric solid tumor of
the sympathetic nervous system, represents a biological and clinical
heterogeneous cancer that ranges from tendency for spontaneous
regression to a highly aggressive metastasized tumor phenotype that
could be unresponsive to standard treatment.1 This malignancy, which

develops anywhere along the sympathetic chain, exhibits early age of
onset, with a median age at the diagnosis of about 19months and
accounts for approximately 15% of children cancer-related mortality.1

In the last few years, the identification of diverse genomic markers has
contributed to the risk stratification and improvement of NB patients’
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survival rate.2 Indeed, several recurrent segmental chromosomal alter-
ations have been demonstrated to discriminate between low-risk and
high-risk patients.2,3 Additionally, genome-wide association studies,
high-throughput sequencing, and microarray gene expression-based
studies have identified multiple genetic changes that characterize NB
both hereditable and somatically acquired4–6 and that are promising
prognostic predictors and therapeutic targets. Genetic alterations
occurring in non-coding DNA such as TERT rearrangements7 and
point mutations in regulatory elements of transcription factor binding
sites8,9 also contribute to NB development. Despite these advances in
genomic research, treatment of NB is still unsuccessful in half of the
patients diagnosed with the high-risk form. To date, for NB diagnosis
and monitoring, tumor biopsy followed by serial imaging scans and
blood and urine catecholamine tests are used.10 Although tissue biopsy
is considered to be the gold standard for biomarkers identification for
personalized medicine, it seems to be unable to capture the complexity
underlying NB heterogeneity. Moreover, besides the limitations linked
to costs and risks for patients, this test is representative only of the
sampling site and most importantly it does not allow the monitoring
of cancer progression and therapy adjustment.11 Therefore, in pediat-
ric patients, the risks linked to tissue biopsy sometimes may exceed
benefits.

Over the last few years, the sampling and analysis of non-solid
biological tissue (e.g., blood) named “liquid biopsy” (LB) has been
aimed to overcome these limitations. Peripheral blood from cancer
patients may contain tumor-derived and tumor-associated compo-
nents.12 Recently, it has been showed that the deep targeted sequenc-
ing approach to identify tumor-specific alterations in cell-free tumor
DNA can be a valid tool for improving diagnosis and monitoring dis-
ease progression.13 In addition to cell-free tumor DNA, circulating
tumor cells (CTCs) represent a snapshot of overall tumor bulk (pri-
mary tumor and metastases).14 CTCs detach from the primary tumor
and disseminate to distant sites via blood singularly or in clusters.15

Moreover, undergoing epithelial-to-mesenchymal transition (EMT),
these cells lose cell contacts and acquire more motile and less differen-
tiated phenotype.16,17 The identification of CTCs constitutes a
well-validated and reproducible technology with several potential
applications in early cancer diagnosis and prognosis, which may pro-
vide a direct measure of tumor spatial and temporal heterogeneity.14

Moreover, CTCs can be cultured ex vivo to perform single-cell analysis
and functional assays (e.g., drug sensitivity assays) leading to discovery
of new therapeutic targets or resistance mechanisms.18,19 However,
because of their low representativeness within the peripheral blood
(1–10 cells per 1ml), isolation and efficient enrichment of these CTCs
represent a great challenge to date. Current technologies for CTCs iso-
lation and enumeration are label-dependent (affinity-based) methods,
based on cell selection by using antibodies against cell-surface tumor
antigens, such as adhesion molecules of epithelial cells (EpCAM) and
cytokeratin (CK).20 Among them, CellSearchVR system, the only FDA-
approved clinical application platform, selects CTCs expressing
EpCAM and CK, which do not exhibit the leukocyte marker CD45 on
their cell surface. Given label-dependent strategies limitations, label-
free methods have been developed to improve the CTCs enrichment
and isolation. To date, EpCAM-independent assay combined with
immunostaining-fluorescence in situ hybridization has been used to
CTCs detection and enrichment in NB patients, demonstrating that
the number of these cells is significantly correlated with overall

survival.21 Moreover, another approach based on the use of Amnis
Image Stream Imaging Flow Cytometer, which combines flow cytome-
try with fluorescence microscopy, highlighted the clinical utility of
CTCs as novel therapeutic biomarkers in high-risk NB patients under
chemotherapy treatment.22 However, CTCs enrichment and isolation
in NB patients remain challenging because of the unavailability of uni-
versal and specific cell-surface markers for NB cells. In this context,
many advanced technologies combining microfluidic platforms with
label-free imaging techniques and artificial intelligence (AI) may rep-
resent a useful tool to efficiently discriminate tumor cells from other
cell types or within a background of blood cells.23,24

Digital holography (DH) has recently shown a great potential
as optical microscopy technique. In fact, it allows collect the whole
information (i.e., both the amplitude and phase) about a wavefront
transmitted through a biological specimen. Such information takes
the form of a 2D image by means of the light interference princi-
ples,25 thus avoiding any exogenous label to assure proper phase-
contrast imaging. Most of the morphological information related
to each cell is embedded into the quantitative phase map (QPM)
retrieved from the recorded digital hologram.26 The possibility of
measuring label-free quantitative features, e.g., dry mass and bio-
volume, related to the cell biophysical properties27 has made quan-
titative phase imaging (QPI) a powerful tool increasingly exploited
in biomedicine and biomedical imaging.28–32 Moreover, DH has
the unique capability of neglecting the time-consuming placement
of the imaged sample in the correct focal plane before every acqui-
sition, since it can be numerically refocused after the experiment.33

Also due to the simpler sample’s preparation protocols, DH can be
easily combined to flow cytometry,34–36 thus allowing for biomedi-
cal applications requiring the high-throughput property. Many
applications based on DH in flow cytometry have been developed
for the identification of cancer cells,37–43 thanks to its ability of
quickly screening large volumes. They are mostly based on the AI,
since DH in flow cytometry allows answering to its increasing
demand for huge training datasets by collecting large amounts of
single-cell quantitative information in very short times.44 Recently,
it has been also demonstrated the possibility to classify healthy and can-
cer cell lines acquired by quantitative phase imaging exploiting a small
training set, i.e., the TOP-GAN algorithm.45 Furthermore, the combina-
tion between holographic flow cytometry and AI has been also demon-
strated fruitful in the environmental field. For example, deep learning
has been exploited for the fast reconstruction of ocean samples’ images
recorded by a field-portable holographic flow cytometer,46 and the same
system has been exploited for the deep learning-based label-free pheno-
typing of marine microalgae populations.47

Here, we show, for the first time, that phenotyping different sub-
populations of the same type of cancer is possible by means of QPI
operating in flow-cytometry modality. In fact, thanks to the combina-
tion of AI with a holographic microscope coupled to a microfluidic
channel, we classify, as a first step of a hierarchical approach, NB cells
from monocytes in label-free mode. This is a key issue, worth to be
pointed out, as monocytes are the most similar white blood cells
(WBCs) that can be failed to be filtered out by existing sorting technol-
ogies. The second task of the processing pipeline is remarkably more
challenging to tackle. Following the hierarchical classification scheme,
we developed a smart strategy to identify, with high degree of confi-
dence and for each single cell judged as NB at the first step, the four
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different NB subtypes considered here, i.e., CHP212, SKNBE2,
SHSY5Y, and SKNSH. We selected two cell lines with (CHP212 and
SKNBE2) and without (SHSY5Y and SKNSH) MYCN amplified and
1p36 deletion, well-known genomic markers of unfavorable clinical
outcome. The cell line SHSY5Y is a subline of SKNSH, thus having
similar phenotypes, and these cell lines are a good control for assessing
the classification ability of our proposed method. The more complex
sample conceived herein in our investigation aims to emulate a case
quite close to what might be found in a real-world liquid biopsy test.
One of the key points that allowed us to reach the goal shown in this
paper is linked to the quite common behavior of suspended cells flow-
ing along a microfluidic channel. In fact, a profitable case for imaging
purposes occurs when cells experience rotation while they flow inside
the FOV. Rotation allows to collect a very large dataset of QPMs where
the system offers different views of each cell. Hence, we can avoid the
common paradigm of data augmentation, employed in all the conven-
tional AI-based classification approaches, in which the rotation of
images is implemented numerically. Tumbling of cells during flow
along a microfluidic channel is well known and it allows to get also
their full tomograms, provided that a uniform angular rotation around
a fixed axis is assured.48–53 Recently, identification of tumor cells
against white blood cells has been demonstrated by the AI-powered
tomographic phase imaging flow cytometry system with a success rate
higher than 97% in the recognition of tumor cells. Moreover, the sys-
tem was able to distinguish by two different cancer cell types, i.e., NB
and ovarian cancer, with accuracy over 97%.54 In the case considered
here, the big advantage is that we do not need to meet such demanding
experimental constrains, which leads to a considerable simplification
of the opto-fluidic recording system. This allows collecting hundreds
of angular digital holograms for each cell by a quite fast recording step.

To solve the classification problem, three image analysis concepts
are introduced in this work, each of them providing a significant boost
to the classification performance. (i) We build an ad hoc three-level
hierarchical classifier fed by the thousands of collected QPMs; (ii)
from the QPMs, we extract a new set of features based on the fractal
geometry framework; and (iii) a max-voting strategy is implemented,
exploiting the experimental conditions of the proposed system. The
fractal features are shown to define a more distinctive fingerprint
about the analyzed cell lines. Indeed, fractal geometry was introduced
to provide a full insight of nature, more complete than the classical
Euclidean one.55 The advantages of fractal geometry have been also
demonstrated in biology and medicine,56 and recently, it has been
applied to solve the challenging task of discerning microplastics from
microalgae in water samples by machine learning and QPI.57 For the
first time, here we show the advantageous use of fractal analysis to
classify human circulating cells. As for the max-voting strategy, this is
based on the physical data augmentation discussed above and is
exploited here to reduce the random classification error obtained in
case each cell is represented by one single QPM. The methodology
proposed here opens a new path toward the realization of the liquid
biopsy paradigm.58

RESULTS
Data collection and inspection

To solve the problem of identifying the NB cells among the most
similar WBCs, i.e., the monocytes, and to further distinguish NB can-
cer subtypes (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH), the

holographic imaging flow cytometry system sketched in Fig. 1(a)
has been employed to collect a suitable image dataset (see the
description of the setup in the Methods section). In particular, for
each cell, several digital holograms like that in Fig. 1(b) are
acquired along a fixed beam direction at multiple viewing angles.
Then, their corresponding QPMs are numerically retrieved, as
shown in Fig. 1(c) (see the description of the holographic process-
ing in the Methods section). For this reason, we collected 82 594
QPMs related to 563 cells, distributed among different cell lines as
reported in Table I. A QPM is an image dense of quantitative
information despite its 2D form. In fact, the phase values encoded
inside a QPM can be interpreted as27

QPM x; yð Þ ¼
2p
k
OPL x; yð Þ

OPL x; yð Þ ¼
ð
z
n x; y; zð Þ � n0½ �dz;

8>><
>>: (1)

where OPL is the optical path length, k is the central wavelength,
n x; y; zð Þ is the 3D spatial distribution of the cell RI, n0 is the RI of the
surrounding medium, and z is the optical axis. Therefore, both the 3D
morphology and the 3D RI spatial distribution of a cell are gathered
inside its 2D QPM without the need for exogenous labels, unlike fluo-
rescence imaging. Due to the possibility of measuring label-free quan-
titative features related to the cell biophysical properties,28 the QPMs
have been exploited for detecting the NB cells and their subtypes. To
this aim, we have followed the pipeline sketched in Fig. 1(c). After
reconstructing the N QPMs of a flowing and rolling cell, 37 features
are measured from each of them and are fed to a hierarchical machine
learning classifier. The classes predicted for QPMs of a single cell are
combined by means of a max-voting strategy in order to infer the cell
line it belongs to.

In particular, for each QPM, we started from computing a set of
24 features [see the 24 features listed in the first three columns of the
table in Fig. 1(c) and the corresponding description in the Methods
section], selected among those usually measured in QPI-based
machine learning problems and termed here conventional features.
Among them, 11 features are strictly related to the OPL, 9 features
derive from the cell 2D morphology, and the remaining 4 features are
based on the Gray-Level Co-occurrence Matrix (GLCM). In Figs.
2(a)–2(c), we report the histograms of the dry mass (OPL-based,
defined as the amount of non-aqueous content inside the cell27) the
area (morphology-based), and the energy (GLCM-based), measured
on monocytes and NB cells.

In addition, we have considered a set of other 13 features, com-
puted by applying the principles of fractal geometry [see the 13 fea-
tures listed in the last column of the table in Fig. 1(c) and the
corresponding description in the Methods section]57 and termed here
fractal features. The histograms of some of these, i.e., the fractal
dimension, the lacunarity index, and the regularity index, measured
on monocytes and NB cells, are displayed in Figs. 2(d)–2(f).

We further deepened the data investigation by carrying out the
principal component analysis (PCA) over the whole dataset, i.e., con-
sidering both conventional and fractal features. In Fig. 2(g), the first
two PCA components are shown by highlighting the monocytes vs all
the NB cells, while in Fig. 2(h), the first two PCA components of
the four NB subtypes are represented. The existence of two distinct
groupings inside the NB family is evident in Fig. 2(h), i.e.,
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CHP212þSKNBE2 and SHSY5YþSKNSH, as indicated by the circles.
This is quantitatively confirmed by the distance between all the possi-
ble groups of two classes computed by means of the Fisher’s criterion59

over the first two PCA components, that is, 0.000 02 for CHP212
þSHSY5Y vs SKNBEþSKNSH, 0.000 03 for CHP212þSKNSH vs
SKNBE2þSHSY5Y, and 0.001 44 for CHP212þSKNBE2 vs
SHSY5YþSKNSH. We interpret this first result as a sort of negative
control, i.e., the capability of the system as a whole in recognizing sub-
types expected to be similar from dissimilar phenotypes. Indeed, this
grouping is also suggested by the genomic and phenotypic features,

FIG. 1. Holographic imaging flow cytometry for distinguishing several subtypes of NB cells (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH) from monocytes. (a) Sketch of the
holographic imaging flow cytometer. HWP: half-wave plate; PBS: polarizing beam splitter; L1, L2: Lens; M: mirror; MO: microscope objective; MC: microfluidic channel; TL:
tube lens; BS: beam splitter; CMOS: camera. (b) Digital hologram recorded by the holographic imaging flow cytometer, with cells imaged while flowing along the y-axis and
rotating outside the image plane. (c) Overall pipeline of the proposed strategy. N QPMs (200� 200 square pixels size, 5 lm scale bar) for each cell are numerically retrieved
from the recorded digital holograms, and 37 features are measure for each of them. The extracted features are fed to a hierarchical classifier (see the sketch with fake class
names). The N predicted outputs are used to infer the cell line of the analyzed cell by means of max-voting.

TABLE I. Dataset collected by the Holographic imaging flow cytometer.

Cell line No. of cells No. of QPMs

Monocyte THP-1 247 30 291
Neuroblastoma CHP212 115 12 108

SKNBE2 106 11 959
SHSY5Y 66 9416
SKNSH 151 18 820
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because both CHP212 and SKNBE2 carry 1p36 deletion and MYCN
amplified while SHSY5Y and SKNSH cells are both wild-type for the
same genomic alterations, and moreover, SHSY5Y is a subclone of
SKNSH. Following the clues provided by the first-cut data inspection,
we designed the hierarchical classifier sketched in Fig. 2(i). It is made
of a cascade of three levels of classification, having single classifiers in
the first two levels and two alternative classifiers in the last one [L1, L2,
L3.1, and L3.2 in Fig. 2(i)]. In the first level L1, the NB cells are identi-
fied with respect to the monocytes. Once a NB cell is found, the second
level L2 is accessed, in which two intermediate NB classes are discrimi-
nated, namely, NB1 (i.e., CHP212 and SKNBE2) and NB2 (i.e.,
SHSY5Y and SKNSH), consisting of cells lines herein artificially
grouped inspiring by the Fig. 2(h). Finally, we access the third level L3

in which, if the NB1 class is detected, the classification L3.1 between
the CHP212 and SKNBE2 cells is performed, whereas upon detection
of NB2, the classification L3.2 is realized between the SHSY5Y and
SKNSH cells. In order to cope with these classification tasks, we cre-
ated a training set and a test set, as summarized in Table II. In particu-
lar, the training set for the classification L1 is made of 10 000
monocytes QPMs and 10 000 NB QPMs. The latter are used to create
the training set for the classification L2, i.e., 5000 NB1 QPMs and 5000
NB2 QPMs.

Finally, training sets for the classifications L3.1 and L3.2 are
made of 2500 CHP212 QPMs and 2500 SKNBE2 QPMs, and 2500
SHSY5Y QPMs and 2500 SKNSH QPMs, respectively. To avoid data
redundancy, we have randomly selected 50 QPMs per cell for each cell

FIG. 2. Inspection of the dataset collected by the holographic imaging flow cytometer. (a)–(c) Box plots about some conventional features, i.e., dry mass, area, and GLCM
energy, respectively, computed from the QPMs for each single cell. (d)–(f) Box plots about some fractal features, i.e., fractal dimension, lacunarity index, and regularity index,
respectively, computed from the QPMs for each single cell. (g) Scatter plot of the first two PCA components computed from all the conventional and fractal features about
monocytes and NB cells. (h) Scatter plot of the first two PCA components computed from all the conventional and fractal features about the four NB subtypes. (i) Sketch of the
hierarchical classifier made of three levels (L1, L2, and L3) and four single classifiers (L1, L2, L3.1, and L3.2). The intermediate NB1 class includes CHP212 and SKNBE2 cells
[gray circle in (h)]. The intermediate NB2 class includes SHSY5Y and SKNSH cells [cyan circle in (h)].
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lines as highlighted in Table II. The remaining QPMs of the cells
belonging to the training set have been discarded and not added to the
test set, in order to avoid any bias in the evaluation of the classification
performances. Therefore, the test set is created using 29 851 QPMs of
cells not used for the training.

The above training set is further analyzed by using the t-
distributed stochastic neighbor embedding (t-SNE) to better inspect
the dataset by reducing its dimensionality. In particular, over the rows
of Fig. 3, we show the t-SNE results when this is applied to the training
sets of the four classifiers by considering the 24 conventional features
(first column), the 13 fractal features (second column), and the overall
37 features (third column), termed here hybrid features. Furthermore,
for each of the four classification tasks in Fig. 2(i), we computed the
Pearson correlation matrix60 about all the 37 hybrid features used to
train the corresponding classifiers. The results are presented in the
supplementary material. the first outcome is that several features are
highly correlated among them, as shown in Figs. S1(a), S2(a), S3(a),
and S4(a) corresponding to the four classification tasks. However, we
averaged the correlation coefficients of the features belonging to the
four groups described in Fig. 1(c) (i.e., the OPL-based features, the
morphology-based features, the GLCM-based features, and the fractal
features), thus obtaining the grouped correlation matrices reported in
Figs. S1(b), S2(b), S3(b), and S4(b) for each of the four classifiers,
respectively. Here, it can be inferred that the four groups of features
are not correlated among them, thus justifying the employment of fea-
tures with different origins to solve the proposed classification issues.
Finally, to understand the impact of different features, the Relief algo-
rithm61 has been implemented over the less correlated features (i.e.,
the features with correlation coefficient lower than 0.9). The rank
importance about the selected features is displayed in Figs. S1(c),
S2(c), S3(c), and S4(c) for each of the four classification problems. The
most distinctive features are the eccentricity in classifications L1 and
L3.2 and the area in classifications L2 and L3.1.

Enhancement of the classification performance
through max-voting

The holographic processing, the feature extraction, and the
machine learning problems have been solved in MatlabVR 2021b envi-
ronment over an IntelV

R

CoreTM i9–9900K CPU with a 64Gb RAM. In
particular, each binary classification task has been solved by training a
shallow neural network through conventional features, fractal features,

and hybrid features. This classifier has been chosen among the others
within the Classification Learner app in MatlabVR 2021b (namely, wide
neural network) due to its ability of generalizing better to data belong-
ing to the test set never seen before. In particular, it is made of one
fully connected layer with 100 nodes and ReLU activation function.
The softmax loss has been used as loss function, which is made of a
softmax activation followed by a cross-entropy loss. The network’s
parameters have been initialized through the Glorot method, and the
limited memory BFGS algorithm has been used to update the network
learnable parameters. The network has been trained by means of 1000
iterations through the Classification Learner app, in which a suitable
learning rate is searched automatically. Moreover, a fivefold cross-
validation has been used to improve the generalization property. The
prediction time of the trained neural network to infer the phenotype
of a single QPM is 2.6ms. To quantify its classification performance,
we measure the recall (REC) and the accuracy (ACC). Given a binary
classification problem between two classes A and B, the recall of class
A is defined as

RECA ¼ 100
TA

TA þ FB
; (2)

while the accuracy of the classifier is defined as

ACC ¼ 100
TA þ TB

TA þ TB þ FA þ FB
; (3)

where TA is the number of elements belonging to class A and correctly
classified as class A, TB is the number of elements belonging to class B
and correctly classified as class B, FA is the number of elements
belonging to class B and wrongly classified as class A, and FB is the
number of elements belonging to class A and wrongly classified as
class B. Therefore, the recall RECA is the percentage of elements
belonging to class A correctly classified as class A, while the accuracy
ACC is the overall percentage of elements correctly classified by the
model. In Figs. 4(a) and 4(b), respectively, the recall and the accuracy
related to the four classification problems reported in Fig. 2(i) have
been computed by using the conventional features, the fractal features,
and the hybrid features, measured over the QPMs of the test set. As
expected, the highest accuracies in Fig. 4(b) are reached with the
hybrid features. Moreover, according to what is observed in Fig. 3,
the worst accuracy is related to the classification problem L3.2
because of the intrinsic strong similarity between the SHSY5Y and
SKNSH NB cells. In this analysis, each QPM of the test set is used
separately to predict the class it belongs to. However, it is possible to
exploit the fact that multiple QPMs per cell have been collected by
implementing a max-voting strategy for each classification task of
the hierarchical classifier, thus leading to the performance reported
in Figs. 4(c) and 4(d).

The max-voting strategy is sketched in Fig. 4(e) referring to a
generic binary classification between classes A and B. On the left,
some of the N QPMs of a single cell flowing and rotating along the
microfluidic channel are shown. Each QPM is given in input sepa-
rately to the trained model, thus obtaining N ¼ NA þ NB outputs,
whereNA is the number of QPMs classified as A and NB is the number
of QPMs classified as B. Finally, the max-voting strategy consists in
assigning a cell to the class most frequently predicted by the trained
model, i.e.,

TABLE II. Dataset used for training and testing the different levels of the hierarchical
classifier.

Cell line

Training set Test set

No. of
Cells

No. of
QPMs

No. of
Cells

No. of
QPMs

Monocyte THP-1 200 10 000 47 4032
Neuroblastoma CHP212 50 2500 65 5826

SKNBE2 50 2500 56 5880
SHSY5Y 50 2500 16 1717
SKNSH 50 2500 101 12 396

Total 400 20 000 285 29 851
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cell 2 A if NA > NB

cell 2 B if NB > NA:

(
(4)

By comparing the results without and with max-voting summarized in
Table III and reported in Figs. 4(a) and 4(b) and 4(c) and 4(d), respec-
tively, the enhancement brought by this strategy is evident in terms of

performance for each of the classification tasks within the hierarchical
model. In particular, by using the max-voting approach for classifiers
trained with hybrid features, the accuracy in discriminating monocytes
and NB cells (classification problem L1) increases from 89.2% to
95.4%, the accuracy in discriminating NB1 and NB2 cells (classifica-
tion problem L2) increases from 93.6% to 97.5%, and the accuracy in

FIG. 3. Representation of the training sets by means of the t-SNE algorithm for each classification problem (rows) and for each feature set (columns). (a)–(c) Training set for
discriminating monocyte vs NB cells by means of 24 conventional features, 13 fractal features, and 37 hybrid features, respectively. (d)–(f) Training set for discriminating NB1
vs NB2 by means of 24 conventional features, 13 fractal features, and 37 hybrid features, respectively. (g)–(i) Training set for discriminating CHP212 vs SKNBE2 by means of
24 conventional features, 13 fractal features, and 37 hybrid features, respectively. (j)–(l) Training set for discriminating SHSY5Y vs SKNSH by means of 24 conventional fea-
tures, 13 fractal features, and 37 hybrid features, respectively.
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discriminating CHP212 and SKNBE2 cells (classification problem
L3.1) increases from 83.5% to 90.1%. An even more remarkable incre-
ment is observed in the most difficult classification problem L3.2, con-
sisting in discriminating SHSY5Y and SKNSH cells, in which the best
accuracy obtained without max-voting (i.e., 67.1% by means of the

hybrid features) grows up to 80.3%. However, unlike the other cases,
the best accuracy is reached by the use of the sole fractal features that
outperform the hybrid set. This can be an interesting outcome from
the AI perspective, since the sole fractal geometry can handle the huge
informative power of a QPM and seems to be able of defining a so

FIG. 4. Classification performances within the hierarchical model. (a) and (b) Recall and accuracy, respectively, computed over the QPMs of the test set without max-voting by
using the conventional features, fractal features, and hybrid features. (c) and (d) Recall and accuracy, respectively, computed over the cells of the test set through max-voting
by using the conventional features, fractal features, and hybrid features. (e) Sketch of the max-voting strategy. For each cell flowing along the y-axis and rotating outside the
image plane, N QPMs are recorded. For each QPM, its features are extracted to feed a shallow neural network and predict its class (A or B). The cell is assigned to the class
that has occurred more times (N_A>N_B or N_B>N_A). (f) Sketch of the hierarchical model along with the best performances of each classifier obtained after using the
reported feature sets combined to max-voting.
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distinctive fingerprint for the analyzed cells that even adding the con-
ventional features to the fractal set ends up with a performance wors-
ening. Finally, the best performance obtained by max-voting for each
classifier within the hierarchical model is reported in Fig. 4(f). Notice
that the recall values reported in Fig. 4(f) are not the probabilities of
correctly classifying each cell line, since they refer separately to each
single classifier of the hierarchical model. Instead, to obtain the global
scores, the probabilities along the several paths of the hierarchical tree
must be multiplied. For example, the global probability PCHP212 of cor-
rectly classifying a CHP212 cell depends on the probability of correctly
classifying a NB cell in the problem L1 (i.e., 95.0%), the probability of
correctly classifying a NB1 cell in the problem L2 (i.e., 98.3%), and the
probability of correctly classifying a CHP212 cell in the problem L3.1
(i.e., 95.4%). Therefore, by multiplying them, the global probability
PCHP212 ¼ 89:1% is obtained. This concept is visually shown in Figs.
5(a)–5(e) for each of the cell lines under analysis with the aim to pro-
vide a global perspective of the expected classification accuracy in the
case of cell phenotypes identification in a completely blind case where
the whole hierarchical tree has to be crossed. The corresponding global
probabilities are summarized in Table IV. Furthermore, we compared
the global performance of the proposed hierarchical classifier with
those obtained through two other possible solutions, i.e., a nonhierar-
chical model and a hierarchical model with two levels of classification
[the intermediate level L2 shown in Fig. 4(f) is avoided], again follow-
ing the max-voting criterion and trained by using the hybrid features
(that yielded the best results). In particular, in the nonhierarchical
model, the shallow neural network is trained to directly solve a five-
class classification problem. Instead, the hierarchical model with
two levels of classification solves first a binary classification
problem between monocytes and NB cells and then a four-class classi-
fication problem among all the NB subtypes. However, as reported in

Table IV, the performance of the nonhierarchical and hierarchical
models with two levels of classification are lower than the hierarchical
model with three levels of classification proposed here, which strongly
supports the adopted approach.

In summary, we achieve 97.9% probability of correctly identifying a
monocyte, 89.1% probability of correctly identifying a CHP212 cell,
78.4% probability of correctly identifying an SKNBE2 cell, 74.5% proba-
bility of correctly identifying an SHSY5Y cell, and 73.6% probability of
correctly identifying an SKNSH cell. Despite the depth of the hierarchical
model has been increased, adding an artificial intermediate level has
proved to be the best solution. Moreover, an enhancement of the perfor-
mance has been possible, thanks to the application of the fractal geometry
theory for extracting distinctive cell features and thanks to the max-voting
strategy allowed by the holographic flow cytometer used for collecting the
data. Hence, the holographic imaging flow cytometry stands as a powerful
tool for the cell classification and its downstream analysis based on the
dense biophysical information contained in the label-free QPMs. In Figs.
5(f)–5(j), a QPM for each of the analyzed cell line is displayed.

DISCUSSION

The development of novel technologies for CTCs detection has
helped to deepen investigation into the biology of cancer cells and has
facilitated their clinical application. For instance, many works have
shown the relevance of CTC measurements to monitor treatment
response and for evaluating the prognosis of breast, pancreatic and
lung cancer patients.62 The detection of CTCs is usually dependent on
molecular markers, with adhesion molecules of epithelial cells
(EpCAM) being the most widely used, although molecular markers
vary between different types of cancer. However, these technologies
present several limitations, most important being they cannot be used
in tumors that are EpCAM-negative or -low. Furthermore, the

TABLE III. Performances of the trained classifiers evaluated over the single QPMs of the test sets without max-voting and over the single cells of the test sets with max-voting.
For each classification problem, the best score is given in bold. Values are expressed in %.

Classification problem Feature set

Recall (%) Accuracy (%)

No max-voting (QPMs) Max-voting (cells) No max-voting (QPMs) Max-voting (cells)

L1
Monocyte NB Monocyte NB

Conventional 88.9 85.1 97.9 88.2 85.6 89.8
Fractal 87.3 85.9 93.6 88.7 86.1 89.5
Hybrid 90.2 89.0 97.9 95.0 89.2 95.4

L2
NB1 NB2 NB1 NB2

Conventional 96.4 90.0 98.3 90.6 92.9 94.5
Fractal 94.9 90.3 96.7 94.9 92.4 95.8
Hybrid 95.6 92.1 98.3 96.6 93.6 97.5

L3.1
CHP212 SKNBE2 CHP212 SKNBE2

Conventional 85.6 78.9 93.8 83.9 82.2 89.3
Fractal 81.8 75.9 90.8 76.8 78.8 84.3
Hybrid 87.5 79.6 95.4 83.9 83.5 90.1

L3.2
SHSY5Y SKNSH SHSY5Y SKNSH

Conventional 69.7 64.4 75.0 70.3 65.1 70.9
Fractal 64.0 65.9 81.2 80.2 65.7 80.3
Hybrid 65.9 67.3 75.0 75.2 67.1 75.2
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samples may be contaminated by non-CTCs, such as tumor-
associated fibroblasts and endothelial clusters, which increases the false
positivity risk.62 Usually, these technologies are not designed to recover
CTCs for downstream analysis such as RNA or DNA sequencing.

Here, we setup a label-free approach, based on AI and holo-
graphic imaging flow cytometry, for rapid and efficient screening and
phenotyping of NB cells in the presence of monocytes background. In
fact, the implementation of QPI microscopy in combination with
flow-cytometry modality allowed us to collect rapidly huge amount of
measurement data to ensure the successful application of AI for the
problem under consideration. The achieved results represent a solu-
tion to the main issue in LB that is the discrimination of anomalous
cells into the blood stream, i.e., CTCs, by assessing a method to distin-
guish between tumor cell and monocytes that are the more similar
ones by a morphological point of view.

Furthermore, we can discriminate among four NB cellular types,
those with clinically unfavorable genomic aberrations. For the two cell
lines of the same origin, our method strongly supported their similari-
ties, but still discriminated the two entities classifying them with high
accuracy. These results suggest that the proposed technology could be
applied not only to detect CTCs but also to distinguish clinically

aggressive from more favorable types of cancers. In NB, a universal
and specific cell-surface marker for cells is currently unavailable,
even the expression of GD-2 on NB cells varies among studies. To
overcome this issue, a recent work has used an epithelial marker-
independent enrichment method combined with immunostaining-
fluorescence in situ hybridization (i-FISH) to detect CTCs from NB
patients.21 This method utilizes the characterization of centromere of
chromosome 8 probe (CEP8) to detect CTCs with hyperdiploidy of
chromosome 8 but not all NBs harbor this molecular alteration, and
thus, the risk of false negative remains high. One of the advantages of
our label-free microscopy-based strategy is that, if isolated by an effec-
tive microfluidic chip, CTCs could be used for downstream analysis,
such as genomics, transcriptomics, proteomics, and CTCs culture.

While the role of CTCs as biomarkers for diagnosis, prognosis,
and therapy monitoring in different cancers has been largely demon-
strated, their clinical utility in cancer detection or, in early cancer diag-
nosis, is still controversial. CTCs are considered a surrogate marker of
metastatic activity, but whether cancer intravasation and dissemina-
tion of CTCs in patients’ blood circulation occurs early during tumor
development is still a matter of debate. However, in mouse models,
early dissemination seeding metastasis has been identified in breast63,64

FIG. 5. Classification and QPM visualization of several cell lines by means of holographic flow cytometry. (a)–(e) Global probabilities P of correctly classifying monocytes and
CHP212, SKNBE2, SHSY5Y, and SKNSH NB cells, respectively, obtained after multiplying the recall values found along each corresponding path inside the best hierarchical
tree. (f)–(j) QPMs taken from dataset exploited for the max-voting-based classification of the cell lines in (a)–(e), respectively. Scale bar is 5 lm.

TABLE IV. Probability of correctly classifying a cell line by means of three different models combined to the max-voting strategy. For each cell line, the best score is given in
bold. Values are expressed in %.

Classification model

Cell line

Monocyte CHP212 SKNBE2 SHSY5Y SKNSH

Hierarchical (3 classification levels) 97.9 89.1 78.4 74.5 73.6
Hierarchical (2 classification levels) 97.9 80.4 78.0 71.3 60.2
Nonhierarchical 78.7 83.1 69.6 56.2 73.3
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and pancreatic65 carcinogenesis, indicating that CTC circulation is
likely to be a very early event in cancer progression. Our preliminary
results reported here about the identification of NB cancer cells among
WBCs and their successive phenotyping in flow-cytometry modality
represent the basis to develop a CTC detection system able to intercept
the onset of the tumor in its early stages of development, thus paving
the way, in the next clinical practice, for a stain-free liquid biopsy to
examine CTC cells for this type of pediatric cancers. Future experi-
ments will be devoted to increase the collected dataset in order to train
deep neural networks fed directly by the QPM images instead of the
proposed shallow neural network trained as machine learning model
through handcrafted features extracted from the recorded QPMs.
Indeed, we expect that deep learning would allow increasing the range
of detectable NB subtypes and enhancing the classification accuracy
about the proposed biomedical issue, above all in the most difficult
classification tasks (e.g., L3.2 in the hierarchical classifier herein pre-
sented). Moreover, a strategy for enhancing the robustness of the pro-
posed approach could be a multicentric study for the creation of a very
large dataset made of holographic images collected in flow cytometry
conditions by different laboratories. In this way, the measurement data
variations could be better considered during the training step of the
proposed classification strategy, thus improving its generalization abil-
ity against the different experimental conditions due to the limited
possibilities for standardization. A further study will be focused on the
analysis of mixed samples at the aim to assess the whole sensitivity of
the technology in detecting the percentages of different cell popula-
tions, thus mimicking more realistic samples where multiple cell types
are present at different concentrations. Indeed, it is worth noting that
one limitation of the study is that primary tumor cells have higher var-
iability and diversity than established NB cell lines. However, the latter
have been demonstrated to be an important tool to obtain significant
advances in cancer research.66,67 To confirm that our label-free
approach is able to detect CTCs and to distinguish their different
tumor phenotypes, we have planned to apply this method to spiked
samples (NB cell lines mixed with blood at different concentrations)
and then directly to patient blood. We expect that our system would
be sufficiently sensitive to detect different types of NB cells in liquid
biopsies.

METHODS
Sample preparation

The human CHP212, SKNBE2, SHSY5Y, and SKNSH cell lines
were obtained from the American Type Culture Collection (ATCC
#CRL-2273, #CRL-2271, #CRL-2266, and #HTB-11, respectively).
CHP212 cells were grown in Minimal Essential Eagle Medium (MEM;
Sigma)/Nutrient Mixture F-12 (F-12), SKNBE2 in Dulbecco’s
Modified Eagle Medium (DMEM; Sigma)/F-12, SHSY5Y in DMEM,
and SKNSH in MEM at 37 �C, 5% CO2 in a humidified atmosphere.
The medium was supplemented with 10% heat-inactivated FBS
(Sigma), 1mmol/l L-glutamine, penicillin (100U/ml), and streptomy-
cin (100mg/ml; Invitrogen). The cell lines were authenticated and
early passage cells were used for all the experiments. THP-1 is a
human monocytic cell line, supplied by a third part. THP-1 was cul-
tured in suspension in 75 cm2 tissue-culture flasks (Corning, product
number 353018). To ensure the highest level of viability, they were
grown in RPMI 1640 Medium (Life Technologies, ref 31870–025),
supplemented with 10% FBS (Life Technologies 10270), 2mM L-

Glutamine (Lonza, Cat N.: BE17–605E), and 1% Penicillin/
Streptomycin (Lonza, Cat N. DE17–602E) and maintained at 37 �C in
a humidified atmosphere with 5% CO2.

To perform the in-flow experiments, CHP212, SKNBE2,
SHSY5Y, and SKNSH cell lines were washed twice with PBS 1� (Life
technologies 10010023) and incubated for 7min with 1.5ml of 0.05%
trypsin–EDTA solution (Sigma, T4049–100ML). Then, the cells were
resuspended in a PBS solution with 10% FBS, to neutralize the trypsin
effect. Instead, THP-1 cells were harvested from the cell culture flask,
and spin at approximately 125 � g for 5min. Then, they were resus-
pended with the same solution of PBS and 10% FBS. The viability was
assessed through Trypan Blue solution 0.4% (Sigma T8154) according
to the datasheet. Then, the cells were injected into the microfluidic
channel at final concentration of 4� 100 cells/ml.

Holographic imaging flow cytometer and numerical
processing

For the digital recording of holograms, we employed an off-axis
DH setup, based on a Mach–Zehnder optical interferometer. This
arrangement grants an angle between object and reference beams and
decouples spatially the different diffraction orders in the Fourier space.
In particular, as depicted in Fig. 1(a), a solid-state continuous wave
laser source (Laser Quantum Torus 532) of wavelength k ¼ 532 nm
emits the light beam which is split in object and reference beam by a
polarizing beam splitter (PBS). In order to adjust the splitting ratio of
the two beams, two half-wave plates (HWPs) are placed in front of
and behind the PBS. The object beam passes through the plane of the
microfluidic channel, where cells flow and rotate and the light weakly
scattered by the sample is collected by a microscope objective (MO1 –
Zeiss, oil immersion � 40� magnification, 1.3NA) and sent to a tube
lens (TL1). The reference beam follows a free path where passes
through another MO (MO2) and a tube lens (TL2). At the end of their
paths, object and reference beams are combined by a beam splitter
cube (BS) and their interference results in hologram formation digi-
tally recorded by a CMOS camera. The CMOS camera employed is a
well-performing camera (Genie Nano-CXP Camera), which
consists of an array of 5120� 5120 pixels, whose pixel size is
Dx ¼ Dy ¼ 4:5lm. The interferometric optical setup provides a mag-
nification of M ¼ 36, and thus, a FOV equal to 640� 640lm2 is
observable with a lateral resolution of 0:5lm. The experiment is per-
formed in a microfluidic environment in order to record different
viewing angles for each cell in flow. The uniform rotation is grant by a
technologically advanced system composed of a low pressure pump
module (Cetoni NEMESYS 290N). It provides a very careful flow rate
around 75 nl/s. This flow rate allows a rotation without deformations
of the flowing cells inside a commercial microfluidic channel
(Microfluidic—ChipShop 10000107). Thus, combining the large FOV
and the high throughput provided by the microfluidic environment,
our system is able to record hundreds of rotating cells in few minutes.
Each in-flow experiment was carried out by inserting into the micro-
fluidic circuit one single type of cell population at a time. A microflui-
dic protocol has been implemented to avoid contamination between
different cell populations by means of several washing steps of the
whole circuit (syringe pump, tubes, and microchannel). Such method-
ology allows accurate and reliable labeling of the cell images. The
experiments are performed at room temperature.
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For each cell flowing and rotating along the microfluidic channel,
hundreds of holograms are recorded, as shown in Fig. 1(b). For each
holographic frame, a region of interest (ROI) is selected around the
cell. The hologram is first demodulated by filtering the real diffraction
order within the Fourier spectrum thanks to the off-axis configura-
tion.26 The complex wavefront is then propagated along the optical z-
axis through the Angular Spectrum formula26 in order to compute the
in-focus distance by minimizing a contrast-based metric (i.e., the
Tamura Coefficient).33 The argument of the refocused complex field is
the wrapped phase map, from which the residual phase aberrations
are removed by means of a reference hologram,26 i.e., a hologram
without samples in the imaged FOV. After denoising the wrapped
phase map,68 an unwrapping algorithm69 is implemented to obtain
the QPM, as displayed in Figs. 5(f)–5(j).

The holographic experiments to record the dataset in Table I
took about 3 h (about 1 h for monocytes and about 30min for each
NB subtype). For each holographic ROI, the numerical processing for
reconstructing the corresponding QPM takes 7.71 s, which can be
reduced down to 0.17 s by means of deep learning.36

Feature extraction

In order to characterize the QPM dataset, 37 hybrid features have
been computed for each QPM, divided into 24 conventional features

and 13 fractal features, as summarized in Fig. 1(c). As regards the 24
conventional features, they are in turn made of 11 OPL-based features,
9 morphology-based features, and 4 GLCM-based features. The OPL-
based features are computed from the phase values of the cell seg-
mented in its QPM [see Figs. 6(a) and 6(b)]. In particular, they include
the mean value, the standard deviation, the maximum value, the skew-
ness, the entropy, the kurtosis, the median, the I quartile, the III quar-
tile, and the mode of the cell phase values. In addition, to measure the
amount of non-aqueous content inside the cell,27 the dry mass is com-
puted as

m ¼ k
2pc

ð ð
x;y

QPM x; yð Þdxdy ; (5)

where k ¼ 532 nm is the central wavelength and c ¼ 0:2ml=g is the
refractive increment.70 Instead, the morphological features are based
on the 2D cell morphology, thus including the cell area, the extent (i.e.,
the ratio between the cell area and the area of the bounding box, that
is the smallest box containing the segmented cell), the solidity (i.e., the
ratio between the cell area and the area of the convex hull that encloses
the cell), and the maximum diameter and minimum diameter (i.e.,
respectively the maximum and minimum distance between any two
boundary points on the antipodal vertices of convex hull that encloses
the segmented cell). Circularity is obtained as

FIG. 6. 2D images used for feature
extraction. (a) QPM (200� 200 square
pixels) of an SHSY5Y cell (yellow) and its
zero-padded 256� 256 version. (b)
Support map obtained by segmenting the
zero-padded QPM in (a). (c) Gradient
magnitude of the zero-padded QPM in (a)
normalized to its maximum value. (d) Hole
support map obtained by applying a 0.3
thresholding to the normalized gradient
magnitude in (c). Scale bar is 5lm.
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C ¼ 4pA
P2

; (6)

where A and P are the cell area and perimeter, respectively.
Moreover, let the equivalent ellipse be the ellipse having the same
second-order moments as the segmented cell. The major axis is the
length of the major axis of the equivalent ellipse, while the eccen-
tricity is the ratio of the distance between the foci of the equivalent
ellipse and its major axis length. Finally, normalized centroids dis-
tance is the distance between the centroid and the weighted cen-
troid of the segmented cell, normalized to its equivalent radius,
which is the radius of a circle having the same area of the seg-
mented cell. The GLCM-based features are then obtained from the
GLCM of the segmented cell. The GLCM takes into account the
different combinations of the gray levels within an image. Indeed,
the GLCM G i; j; h; dð Þmeasures how many times a pixel with value
i occurs along the direction h at distance d in respect to a pixel
with value j. Herein, among the different GLCMs depending on
the values of the offset d and the angle h, we have chosen the
parameters d ¼ 1 and h ¼ 0�, and we have measured its contrast,
correlation, energy, and homogeneity.71

As regards the characterization of the QPMs based on fractal
geometry, we computed the 13 fractal features defined in Ref. 55, i.e.,
the fractal dimension, lacunarity index, fill ratio, regularity index, ver-
tex density, vertex lacunarity index, vertex regularity index, fractal
dimension contrast, lacunarity contrast, vertex lacunarity contrast,
fractal dimension RMSE, lacunarity RMSE, and vertex lacunarity
RMSE. At this aim, as shown in Fig. 6(a), the QPM has been zero-
padded in order to pass from a 200� 200 square pixels size to a
256� 256 square pixels size, since the numerical implementation of
the fractal geometry principles requests a power of 2 size. Then, from
the zero-padded QPM, two auxiliary maps have been calculated, i.e.,
the support map and the hole support map. The support map corre-
sponds to the binary map with the segmented cell obtained from the
padded QPM, as displayed in Fig. 6(b).

Instead, to obtain the hole support map, the gradient magni-
tude is computed from the padded QPM and normalized to its
maximum value [see Fig. 6(c)], and then a 0.3 threshold is
applied, thus leading to the binary map in Fig. 6(d). The support
map and the hole support map are finally exploited to compute
the 13 fractal features.57

The calculation of all the 37 features about a single QPM was
obtained in 1.6 s.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details about the contribu-
tion of each feature to the four classification tasks.
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64H. Hosseini, M. M. Obradović, M. Hoffmann, K. L. Harper, M. S. Sosa, M.
Werner-Klein, L. K. Nanduri, C. Werno, C. Ehrl, M. Maneck, N. Patwary, G.
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