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Abstract: Osmotic adjustment (OA) is a major component of drought resistance in crops. The genetic
basis of OA in wheat and other crops remains largely unknown. In this study, 248 field-grown durum
wheat elite accessions grown under well-watered conditions, underwent a progressively severe
drought treatment started at heading. Leaf samples were collected at heading and 17 days later. The
following traits were considered: flowering time (FT), leaf relative water content (RWC), osmotic
potential (ψs), OA, chlorophyll content (SPAD), and leaf rolling (LR). The high variability (3.89-fold)
in OA among drought-stressed accessions resulted in high repeatability of the trait (h2 = 72.3%).
Notably, a high positive correlation (r = 0.78) between OA and RWC was found under severe drought
conditions. A genome-wide association study (GWAS) revealed 15 significant QTLs (Quantitative
Trait Loci) for OA (global R2 = 63.6%), as well as eight major QTL hotspots/clusters on chromosome
arms 1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS, where a higher OA capacity was positively associated
with RWC and/or SPAD, and negatively with LR, indicating a beneficial effect of OA on the water
status of the plant. The comparative analysis with the results of 15 previous field trials conducted un-
der varying water regimes showed concurrent effects of five OA QTL cluster hotspots on normalized
difference vegetation index (NDVI), thousand-kernel weight (TKW), and/or grain yield (GY). Gene
content analysis of the cluster regions revealed the presence of several candidate genes, including bidi-
rectional sugar transporter SWEET, rhomboid-like protein, and S-adenosyl-L-methionine-dependent
methyltransferases superfamily protein, as well as DREB1. Our results support OA as a valuable
proxy for marker-assisted selection (MAS) aimed at enhancing drought resistance in wheat.

Keywords: drought; durum wheat; osmotic adjustment; QTL

1. Introduction

Drought is one of the most devastating abiotic stressors limiting crop yield, adaptabil-
ity, and quality [1,2]. Recent global climate models predict a consistent rainfall reduction in
temperate drylands [3–5], hence destabilizing food systems and global food security [6].
The plant reaction to drought is mediated by complex molecular systems linked to the
transcriptome [7–10], as well as hormone signaling and metabolism [11–13]. In partic-
ular, drought is the major abiotic stress curtailing yield and lowering quality [14,15] in
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durum wheat (Triticum turgidum ssp. durum; 2n = 28, AABB), the most cultivated wheat
in the Mediterranean regions [16], whose genome sequence was recently assembled de
novo [17]. Among the strategies adopted by plants to withstand water scarcity [18,19],
osmotic adjustment (OA) plays a major role in enhancing drought resistance through an
active accumulation of solutes in response to a water potential reduction, thereby preserv-
ing cellular turgor [18,20–27]. Active OA maintains relative water content at low leaf water
potential in order to sustain plant growth without impairing normal cellular functions [28].
Plants accumulate low-molecular weight organic solutes, such as soluble sugars [24,29]
and proline [27,30–32], both of which increase under water stress, hence enhancing OA
and contributing to maintain photosynthesis, as well as stomatal conductance, at lower
water potentials. To date, the dissection of the genetic basis of OA has received limited
attention, mainly due to the difficulty in measuring this trait in more than a limited number
of accessions [33], an essential prerequisite to properly map and characterize the effects of
the QTLs [34–36] underscoring OA variability. In cereals, the dissection of the OA QTLome
has been attempted in rice [37,38] and barley [39,40] based on the evaluation of biparental
recombinant inbred lines (RIL) populations, hence surveying only a limited amount of
genetic variability as compared to that surveyed in GWAS studies. Herein, we report the
results of the first large-scale genetic dissection of the OA QTLome in wheat via GWAS
based on the field evaluation of 248 durum wheat elite accessions grown under conditions
of progressively increasing drought and previously tested for grain yield in 15 field trials
carried out under a broad range of water regimes in Mediterranean countries [41]. Three
major QTL clusters were identified, where OA was unrelated to flowering time while being
positively associated with the water status of the plant and grain yield as reported in [41],
supporting the beneficial role of OA in enhancing drought resistance, most likely through
an avoidance strategy. A comparative analysis with the sequence information available for
these regions in durum [17] and bread wheat [42] revealed a number of putative candidate
genes.

2. Materials and Methods
2.1. Plant Material and Field Management

For this study, 248 durum wheat elite accessions (Durum Panel) were chosen at the
University of Bologna (Table S1). Most (189) of these accessions were originally assembled
by [43] to represent a large portion of the genetic diversity (Table S2) present in the major
improved durum wheat gene pools adapted to Mediterranean environments. The field
trial was conducted at the University of Arizona Maricopa Agricultural Center (33.070
◦N, 111.974 ◦W, elevation 360 m) on a Casa Grande Soil (fine-loamy, mixed, superactive,
hyperthermic Typic Natrargids) (Figure S1). The Durum Panel was planted on 28 November
2017 according to a row-column experimental design with two replicates. Each accession
was evaluated in two-row plots (3.5-m long, 0.76-m row spacing) with an average plant
density of 22 plants/m2. Orita and Tiburon, both representing the Arizona’s “Desert-
Durum”® wheat, were chosen as border plots. Before planting, granular nitrogen at 112 kg
ha−1 was incorporated into the soil. Sprinkler irrigation was used to germinate seeds and
establish the crop, followed by subsurface drip irrigation matching evapotranspiration for
optimal plant growth, once or twice a week as needed. The pressurized subsurface drip
irrigation system was installed before planting when one dripline with emitters spaced
every 0.30 m was buried at ~0.10 m depth along each seed row. The final irrigation event
was on 11 March 11 2018 (i.e., 103 days after sowing, DAS), when ~50% of the accessions
had flag leaf sheaths opened (i.e., at Zadoks growth stage 47) [44]. From here on, the whole
experiment was subjected to a progressive water deficit until 2–3 April 2018, when plants
at the anthesis halfway stage (Zadoks growth stage 65, on average) were harvested to
measure total above-ground biomass.
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2.2. Meteorological Data and Soil Moisture Monitoring

Daily and hourly meteorological reports for the growing season were obtained from the
Arizona Meteorological Network [45]. In addition, high temporal resolution meteorological
data, particularly air temperature, relative humidity, and photosynthetic photon flux
density (PPFD), for the experimental site were recorded at 5-s intervals with an automated
weather station (Clima Sensor US, Adolf Thies GmbH & Co. KG, Göttingen, Germany)
and a quantum sensor (SQ-214, Apogee Instruments, Inc., Logan, UT, USA). These data
were made available by the TERRA Phenotyping Reference Platform [46]. Vapor pressure
deficit (VPD) was calculated as the difference between the saturation and actual vapor
pressure [47]. The soil volumetric water content (VWC) was monitored in and between
seed rows with time-domain reflectometry (TDR) sensors (True TDR-315, Acclima, Inc.,
Meridian, ID, USA) installed at three locations within the experiment at 1, 10, and 50 cm
depths at each location. Additional soil sensors were installed between rows at 15 cm
depth to measure the soil matric potential (Tensiomark, ecoTech Umwelt-Meßsysteme
GmbH, Bonn, Germany). All soil sensors recorded data at 15-min intervals throughout the
entire growing season. Based on the characterization of the soil hydraulic and physical
properties of the experimental site under the TERRA-REF project, the volumetric water
contents corresponding to the permanent wilting point (θPWP) and the field capacity (θFC)
at 10–15 cm depth were approximately 0.110 and 0.282 m3/m3, respectively. The VWC
dynamics at the three measurement locations, for the entire growing season, are depicted
in Figure S2. The Durum Panel accessions were monitored regularly for above-ground
diseases and pests, which remained below threshold levels, hence not requiring control
treatments, while growing degree days (GDD) were monitored until harvest (3-4 April
2018) at 125 days after sowing (DAS) (Table S3). Growth stages of each accession were
defined based on the basis of the Zadoks scale [44] at 92, 93, 98, 101, 111, and 118 DAS, and
flowering time (FT) was recorded when more than 50% of ears in the plot had flowered
(anthesis half-way). Plants were harvested 125 days (DAS) to allow for planting the next
phenotyping experiment; therefore, biomass data indicate the status at a point in time
rather than direct estimates of final yields.

2.3. Evaluation of RWC, ψs, OA, LR, Leaf Chlorophyll Content (SPAD), and Biomass

The entire Durum Panel was evaluated for leaf relative water content (RWC) and
osmotic potential (ψs) in well-watered (12 March 2018, 104 DAS) and severe drought
(27 March 2018, 119 DAS) conditions. At the first sampling (fully-irrigated conditions)
awns were visible on approximately 50% of accessions, while the second sampling was
carried out under severe drought conditions when most accessions were at early grain-
filling (Figure S3). Fully expanded flag leaves of eight different plants were sampled in
each plot (experimental unit) at dawn from 6:00 to 7:00 a.m. Leaves were immediately
placed in sealed plastic bags, stored in portable coolers (4 ◦C) to minimize water loss due
to evaporation, and transported to the lab where leaves were removed from the bags.
After cutting the leaf tips (5 cm), the remaining leaf portion (average length 15 cm) was
cut in the middle to obtain two homogeneous pieces of similar weight, then mixed and
stored in Falcon (50 ml) conical centrifuge tubes. One batch was used to measure OA
following the “Rehydration method” described in Reference [23]. Leaves were rehydrated
for 4 h in distilled water to reach full turgor, then dried, and stored in a freezer (−20 ◦C).
After thawing, the cell sap was collected using a garlic press, and 10 µl were transferred
onto a paper sample disc covering the sampling cuvette of a vapor pressure osmometer
(Wescor 5520, Logan, UT, US), previously calibrated using the 290, 1000, and 100 mmol kg−1

standards. After each measurement, the osmometer cuvette was rinsed using deionized
water. Finally, the resulting osmolality (mosmol kg−1) was converted to osmolarity (MPa)
using the following formula: ψs (MPa) = −c (mosmol kg−1) × 2.58 × 10−3 [48], and OA was
measured as the difference between the ψs at full turgor in control and in water-stressed
conditions: ψs (control)—ψs (water stress). The other batch was used to measure RWC.
Fresh leaves were weighed (FW) then submerged in distilled water in the Falcon tubes
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and stored at 4 ◦C for rehydration (10 h). Rehydrated leaves were wiped thoroughly with
blotting paper and weighed (turgid weight: TW). Then, leaves were oven-dried at 65 ◦C for
three days prior to measuring the dry weight (DW). In the end, RWC values were computed
as follows: [(FW-DW)/(TW-DW)] × 100 [49] (Figure 1). Leaf rolling (LR) was visually
estimated at midday (112 DAS) with a 0 (no leaf rolling) to 9 (all leaves severely rolled) score
when the majority of the accessions showed a LR > 5. Finally, the chlorophyll content was
assessed (114 DAP) based on Soil-Plant Analysis Development (SPAD) estimates obtained
with a non-destructive chlorophyll meter SPAD-502Plus (Konica Minolta Sensing, Inc.,
Osaka, Japan) as an indicator of leaf chlorophyll content and nitrogen (N) status. At the
end of the field trial, plants within the entire two-row plots were cut on 3–4 April 2018
with mechanical harvester (Carter Mfg. Co. equipment, Donalsonville, GA, US), while
subsamples of 2–3 plants were collected to evaluate moisture content in order to estimate
dry biomass.

Figure 1. Major “Rehydration method” steps used at the Maricopa Agricultural Center (MAC) to
measure osmotic adjustment (OA) and leaf relative water content (RWC): (A) Sampling of eight fully
expanded homogeneous flag leaves before dawn. (B) Stacking the eight leaves and cutting off the
tips. The remaining leaf parts (ca. 15 cm long) were cut in the middle to obtain two homogeneous
pieces of similar weight, then mixed and inserted in Falcon 50 ml Conical Centrifuge Tubes. (C)
Weighing of the leaf samples for RWC. (D) Collection of leaf cell sap for OA analysis using a garlic
press. (E) Calibration of the osmometer (Wescor 5520) with sodium chloride solution of increasing
concentration. (F) Pipetting ca. 10 µl of leaf cell sap onto a paper disc placed on the sampling cuvette
of the osmometer (Wescor 5520).

2.4. Statistical Analysis

The lme4 package (r-project) and custom R scripts were used to conduct a spatial
adjustment analysis considering row and column as random effects, as well as a moving
mean of specific size. R-project was used to calculate repeatability values (h2) and Pearson’s
correlation r coefficients among traits. Minitab 18 software [50] was used to calculate the
global percentage of phenotypic variation (global QTL model, R2%) explained by all QTLs
for each trait.

2.5. SNP Genotyping, Population Structure, and GWAS Model

Durum panel genomic DNA was extracted using the NucleoSpin®8/96 Plant II Core
Kit from Macherey Nagel and sent for SNP genotyping to [51]. The Illumina iSelect 90K
wheat SNP assay [52] was used, and genotype calls were acquired as reported in [53].
Markers were assigned on the basis of the tetraploid wheat consensus map reported in [54].
Haploview 4.2 software [55] was used to calculate Linkage Disequilibrium (LD) decay
among markers for the A and B genomes, and only Single Nucleotide Polymorphisms
(SNPs) with minor allele frequency (MAF) > 0.05 were considered. LD decay pattern based
on the consensus genetic distances was inspected considering squared allele frequency
correlation (r2) estimates from all pairwise comparisons among intra-chromosomal SNPs in
TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) 5.2.37. The Hill and Weir
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formula [56] was used in R-project to define the confidence interval (CI) for QTLs in accor-
dance with the curve fit and the distance at which LD decays below r2 = 0.3 [57]. Haploview
4.2 tagger function set to r2 < 1.0 was used to calculate a kinship matrix (K) of genetic
relationships among individual accessions of the Durum Panel with all non-redundant
7,723 SNPs. Kinship based on Identity-by-State (IBS) among accessions was calculated in
TASSEL 5.2.37. In addition, a subset of non-redundant 2,382 SNP markers (r2 < 0.5) was
used to evaluate the population structure (Q) in STRUCTURE 2.3.4. software [58] using the
corresponding tagger function in Haploview 4.2 software [55]. Numbers of hypothetical
subpopulations ranging from k = 2 to 10 were assessed using 50,000 burn-in iterations,
followed by 100,000 recorded Markov-Chain iterations, in five independent runs for each k
in order to estimate the sampling variance (robustness) of population structure inference.
Then, the rate of change in the logarithm of the probability of likelihood (LnP(D)) value
between successive k values was considered (∆k statistics) [58], together with the rate of
variation (decline) in number of accessions clearly attributed to subpopulations (accessions
with Q membership’s coefficient ≥ 0.5). Finally, the level of differentiation among subpopu-
lations was measured using the Fixation Index (Fst) among all possible population pairwise
combinations [59]. Subsequently, 17,721 SNPs with MAF > 0.05, imputed with LinkImpute
(LDkNNi) [60,61], were used for GWAS-Mixed Linear Model [MLM; [62,63] in TASSEL.
MLM was specified as follows: y = Xβ + Zu + e [64], where y is the phenotype value, β
is the fixed effect due to the marker, and u is a vector of random effects not accounted for
by the markers; X and Z are incidence matrices that related y to β and u, while e is the
unobserved vector of random residual. In this study, both Kinship matrix (K) and Structure
Population (Q) were included as random effects in the model (MLM-Q+K), while flowering
time was included as a covariate considering GWAS QQ-plot results (Figures S4 and S5).
Then, GWAS p-values and r2 effects were analyzed, and QTL significance was determined
as follows: “highly significant” refers to p-value < 0.0001 and “significant” refers to p-value
< 0.001. The QTL confidence interval (CI, in cM) was measured on the basis of the average
genetic distance at which LD decayed below r2 of 0.3 [56], a threshold frequently adopted
in GWAS [54,57,65]. Considering a LD of r2 = 0.3, the corresponding inter-marker genetic
distance was 3.0 cM [57], and the CI of ± 3.0 cM based on map positions of QTL tag-SNPs
was chosen. Finally, Minitab 18 software [50] was used to calculate the proportion of
variance for phenotypic traits explained by selected SNPs.

2.6. Identification of Candidate Genes

The physical position of each QTL was determined by the position of the flanking
SNP markers after their alignment on the Triticum turgidum ssp. durum reference genome
of (cv. Svevo) [66]. Genes within the confidence intervals associated with the eight main
QTL hotspots were retrieved from the EnsemblPlants database [67], together with their
functional annotation and the amino acid sequences of putative proteins. Gene Ontology
(GO) term enrichment was determined by comparing the genes included in each QTL
to the number of genes annotated in each GO term with g:Profiler web software [68].
Statistical significance of terms for genes in the physical intervals was assessed using
the hypergeometric statistic for every term and the g:SCS correction method for multiple
testing. Durum wheat GO annotation was retrieved from the Ensembl plant genome
database. To identify the most important metabolic pathways associated to eight QTLs,
genes within cluster intervals were aligned to KEGG (Kyoto Encyclopedia of Genes and
Genomes) database using Reference [69]. Genes annotated within the intervals were
compared with their orthologs from Triticum aestivum (cv. Chinese Spring; IWGSC RefSeq
v1.0) [70]. Identification of candidate genes was further supported by a knowledge network
(proteins, biological pathways, phenotypes, and publications) created using the KnetMiner
program, using the bread wheat orthologs [71], and by the analysis of temporal and spatial
gene expression at the Wheat Expression Browser and ePLANT databases [72], as of
September 2021.
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3. Results
3.1. Population Structure

The Durum Panel showed a clear population genetic structure with an optimal number
of eight (k = 8) subpopulations on the basis of pairwise comparisons among and within
subgroups with 155 accessions (62.5%) clearly grouped into one of the eight main gene
pools at a Q membership coefficient ≥ 0.5, while the remaining 93 were considered as
admixed. The Fixation Index (Fst) and Neighbor Joining tree [73] highlighted a high genetic
diversity between the old Italian accessions (S1) and the modern French, North American,
Canadian and Australian cultivars (S8), while a considerable admixture among subgroups
characterized the ICARDA, CIMMYT, and Italian groups. Subgroups details are reported
in Table S2.

3.2. Phenotypic Analysis

Osmotic potential in well-watered (control) conditions (ψs-c; h2 = 0.57) ranged from
−1.44 to −0.74 MPa, with an average of −1.13 MPa, while, in water-stressed conditions,
(ψs-s; h2 = 0.58) ranged from −2.63 to −1.56 MPa, with an average of −2.00 MPa. The
difference between osmotic potential measured at full turgor in well-watered (control:
ψs-c) and in water stressed (ψs-s) conditions was considered to compute OA (h2 = 0.72),
which showed a normal distribution and ranged from 0.38 to 1.48 MPa, with an average of
0.95 MPa. Figure S3 reports flowering time distribution, while Figures S6 and S7 report
box plots and histogram distributions, for OA, ψs-c and ψs-s, RWC-c and RWC-s, LR, and
SPAD. RWC-c (h2 = 0.29) ranged from 89.9 to 101.3%, with an average of 95.7%, while
RWC-s (h2 = 0.78) ranged from 45.2 to 76.9%, with an average of 62.2% (Figures S6 and S7).
Leaf rolling (LR; h2 = 0.84) at 112 DAP ranged from 2.86 to 9.60, with an average of 6.13
(Table 1), while leaf chlorophyll content (SPAD; h2 = 0.76) at 114 DAP ranged from 31.9 to
48.8, with an average of 42.0. The Pearson’s correlation coefficient was positive between
OA and RWC-s (r = 0.78), while a negative association was found between OA and LR
(r = −0.25), RWC-s and ψs-s (r = −0.49), and RWC-s and LR (r = −0.30) (Table 2, Figure 2).

Figure 2. Scatter plot showing Pearson correlation between (A) osmotic adjustment (OA) and relative
water content under drought (RWC-s), (B) OA and osmotic potential under drought (ψs-s), and (C)
ψs-s and RWC-s. R-project [74].
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Table 1. Summary statistics and heritability (%) for osmotic adjustment (OA), osmotic potential under
drought stress (ψs-s), osmotic potential under well-watered conditions (ψs-c), relative water content
under drought stress (RWC-s), relative water content under well-watered conditions (RWC-c), leaf
rolling (LR), and chlorophyll content (SPAD) in a panel of 248 durum wheat elite advanced lines and
cultivars from worldwide.

Trait Min. Max. Average St. Dev. h2

OA 0.38 a 1.48 0.95 0.22 0.76
ψs-s −2.63 a −1.56 −2.00 0.18 0.58
ψs-c −1.45 a −0.75 −1.13 0.12 0.57

RWC-s 45.21 b 76.88 62.10 7.11 0.78
RWC-c 89.9 b 100.0 95.7 1.56 0.29

LR 2.86 9.60 6.13 1.52 0.84
SPAD 31.9 48.8 42.0 3.20 0.76

a megapascal (MPa); b % RWC.

Table 2. Pearson’s correlation plot among osmotic adjustment (OA), osmotic potential (ψs) under full
(--c) and deficit irrigation (--s), relative water content (RWC) under full (--c) and deficit irrigation (--s),
leaf rolling (LR), and chlorophyll content (SPAD).

Trait OA ψs-s ψs-c RWC-s RWC-c LR SPAD

OA 1 −0.66 *** 0.33 *** 0.78 *** 0.11 −0.25 *** 0.04
ψs-s - 1 0.30 *** −0.49 *** −0.16 * 0.13 * −0.06
ψs-c - - 1 −0.08 0.02 −0.03 0.03

RWC-s - - - 1 0.13 * −0.30 *** −0.02
RWC-c - - - − 1 −0.08 0.20 **

LR - - - − − 1 −0.01
SPAD - - - − − − 1

*** p-value < 0.0001, ** 0.0001 < p-value < 0.001, * 0.001 < p-value < 0.01. R-project [74].

3.3. Genetic Analysis

The rate of linkage disequilibrium (LD) decay of the 248 durum wheat elite accessions
of the Durum Panel is reported in Figure 3. The average QTL confidence interval (CI) was
determined on the basis of the average genetic distance at which LD decayed below r2 of 0.3
multiplied by 2, corresponding to 2.12 cM (CI = ± 1.06 cM from the QTL tagSNP). Fifteen
flowering time QTLs were identified and are reported in Table S4. Major QTLs for flowering
time included those on chromosome arms 2AS (QFT.ubo-2A.1 and QFT.ubo-2A.2), on 4AS
(QFT.ubo-2A.1) and 6BL (QFT.ubo-6B.1). Among others, Ppd-A1 was clearly identified by
QFT.ubo-2A.2 = IWA2526. Using FT as covariate, GWAS analysis (MLM-Q+K) identified
70 significant QTLs (log p-value > 3.00) for ψs-c, ψs-s, OA, RWC-s, LR, and/or SPAD,
organized into QTL clusters. A larger portion of ψs QTLs were detected under drought
(62.5%) as compared to well-watered conditions (37.5%). In particular, two majorψs-s QTLs
were observed on chromosomes 1B (Qψsc.ubo-1B.2) and 6A (Qψsc.ubo-6A.1), with a log
p-value of 4.68 and 6.04, and with R2 of 5.84 and 7.88%, respectively. A total of 15 OA QTLs
were mapped on chromosome arms 1AL, 1BL, 2AS, 2AL, 2BL, 4AL, 4BS, 5AL, 6AL, 6BL,
and 7BS, with the three major ones being those on chromosomes 2B (QOA.ubo-2B.2) and 6A
(QOA.ubo-6A.1and QOA.ubo-6A.2) with a log p-value of 4.13, 4.01, and 4.45, and R2 of 4.37,
4.23, and 4.78%, respectively (Table 3). Adopting flowering time as a covariate effectively
removed the effects associated to FT on OA, except for QFT.ubo-2A.2 = QOA.ubo-2A.1 and
QFT.ubo-6B.1 = QOA.ubo-6B.1. Nine RWC-s loci were mapped on five chromosome arms
(1BS, 2AS, 4AL, 6AL, and 6BL), and two major QTLs were observed on 4AL (QRWCs.ubo-
4A.2 and QRWCs.ubo-4A.3), with a log p-value of 4.83 and 4.27, and R2 of 3.95 and 3.84,
respectively (Table 3).
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Table 3. Significant GWAS-QTLs for osmotic adjustment (OA) and RWC-s (p-value < 0.001). QTL
intervals were defined based on a confidence interval of ± 3.0 cM from the map position of the QTL
tagging-SNPs. The rows with grey background indicate the QTLs affecting both OA and RWC-s.
Position and peak marker of each QTL region are based on the tetraploid wheat consensus map [54].

Osmotic Adjustment (OA)

QTL Marker Chr. Position
(bp)

Position
(cM)

Log p-
Value R2 Allele Effect

QOA.ubo-1A.1 IWB27332 1A 508851821 88.3 3.07 3.10 C/T −1.550
QOA.ubo-1B.1 IWB65251 1B 582533506 93.3 3.17 3.19 C/T −0.097
QOA.ubo-2A.1 IWB34575 2A 36292525 46.6 3.11 3.11 A/G 0.128
QOA.ubo-2A.2 IWB39807 2A 768563743 206.8 3.08 3.31 C/T 0.090
QOA.ubo-2B.1 IWA2318 2B 656566640 133.0 3.89 4.07 C/T −0.117
QOA.ubo-2B.2 wPt-0049 2B 781813758 185.8 4.13 4.37 A/T 0.141
QOA.ubo-4A.1 IWB38918 4A 644103100 139.7 3.11 3.12 A/G −0.165
QOA.ubo-4A.2 IWB34029 4A 717060721 161.7 3.88 4.06 C/T 1.252
QOA.ubo-4B.1 IWB72203 4B 26616372 28.8 3.00 2.48 A/C 0.076
QOA.ubo-5A.1 IWB50381 5A 640718417 198.8 3.24 3.28 A/G 0.159
QOA.ubo-6A.1 wPt-2014 6A 505253000 91.2 4.01 4.23 A/T 0.162
QOA.ubo-6A.2 IWB70454 6A 596626025 117.1 4.45 4.78 C/T 0.181
QOA.ubo-6B.1 IWB33826 6B 437229717 75.3 3.12 3.13 A/G −0.105
QOA.ubo-6B.2 IWB71722 6B 644758469 114.3 3.21 3.24 A/G −0.086
QOA.ubo-7B.1 wPt-3147 7B 3571960 3.7 3.13 3.14 A/T −0.095

Relative Water Content under water stress (RWC-s)

QTL Marker Chr. Position
(bp)

Position
(cM)

Log p-
Value R2 Allele Effect

QRWCs.ubo-1B.1 IWB461 1B 628218198 45.3 3.70 3.24 C/T −4.29
QRWCs.ubo-2A.1 IWB22184 2A 7224905 9.4 3.33 2.86 A/G −4.25
QRWCs.ubo-4A.1 IWB66212 4A 687621664 140.7 3.02 2.53 A/C 2.74
QRWCs.ubo-4A.2 IWB56811 4A 697055522 147.2 4.83 3.95 C/T −5.51
QRWCs.ubo-4A.3 IWB55093 4A 707177021 156.9 4.27 3.84 A/G 5.24
QRWCs.ubo-4A.4 IWA3449 4A 720085814 161.7 3.90 3.45 C/T 4.66
QRWCs.ubo-6A.1 IWA4603 6A 597277894 117.7 3.39 2.92 A/G 3.15
QRWCs.ubo-6B.1 IWA7962 6B 454884102 78.8 3.04 2.56 A/G −6.92
QRWCs.ubo-6B.2 IWB71722 6B 644758469 114.3 3.00 2.44 A/G −2.46

Figure 3. The rate of linkage disequilibrium (LD) decay of the 248 durum wheat elite accessions
(Durum Panel). The Hill and Weir formula [56] was used to describe the LD decay of r2. The LD
among SNPs in the Durum Panel was estimated using Haploview 4.2 [54]. The blue curve represents
the model fit to LD decay (non-linear regression of r2 on distance). A confidence interval of 2.12 cM
for the QTLs is shown when LD (r2) is 0.3 (red line). R-project [74].

Nine LR loci were mapped on seven chromosome arms (1BL, 2AL, 3AS, 3AL, 3BL, 6AS,
and 6BL), and one major QTL was observed on chromosome arm 2AL (QLR.ubo-2A.1), with
a log p-value of 4.08, and R2 of 4.92. As to SPAD, 21 QTLs were mapped on 12 chromosome
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arms (1AL, 2AL, 2BS, 3BS, 3BL, 4AL, 4BS, 5AL, 6BS, 6BL, 7AL, and 7BS), and three major
QTLs were observed on chromosome arms 1AL (QSPAD.ubo-1A.1), 4BS (QSPAD.ubo-4B.1),
and 5AL (QSPAD.ubo-5A.1), with a log p-value of 6.08, 6.61, and 6.81, and R2 of 7.87, 8.69,
and 8.99, respectively. The global R2 of the multiple QTL model was 58.0% for ψs-c, 56.5%
for ψs-s, 63.6% for OA, 25.7% for RWC-s, 44.1% for LR, and 50.2% for SPAD. On the basis of
their concurrent allelic effects on OA and other related traits, eight major QTL clusters were
identified: (i) DR_QTL_cluster_1# (RWC-s and ψs-s) on 1B, (ii) DR_QTL_cluster_2# (OA and
ψs-c) on 2B, (iii) DR_QTL_cluster_3# (OA and RWC-s) on 4A, (iv) DR_QTL_cluster_4# (OA
and SPAD) on 5A, (v) DR_QTL_cluster_5# (OA and RWC-s) on 6A, (vi) DR_QTL_cluster_6#
(OA and RWC-s) on 6B, (vii) DR_QTL_cluster_7# (OA, RWC-s, and SPAD) on 6B, and (viii)
DR_QTL_cluster_8# (OA and SPAD) on 7B (Table 4 and Figure 4).

Table 4. List of GWAS-QTL clusters identified in the Durum Panel and significantly associated with
osmotic adjustment (OA), RWC under drought stress (RWC-s), osmotic potential under well-watered
conditions (ψs-c) and drought stress (ψs-s), and leaf rolling (LR). The co-localization with previously
known normalized difference vegetation index (NDVI), chlorophyll content (SPAD), root growth
angle (RGA), thousand kernel weight (TKW), and grain yield (GY) QTLs is reported.

QTL Cluster Chr. Position (cM) Trait QTLs from Literature
DR_QTL_cluster_1# 1B 45.3 RWC-s, ψs-s UAV-Red-Edge-NDVI a, TKW c, GY d

DR_QTL_cluster_2# 2B 185.3 OA, ψs-c Tractor-NDVI a, TKW c, NDVI c,
Chlorophyll content (SPAD) c, GY e,

DR_QTL_cluster_3# 4A 161.7 OA, RWC-s Tractor-NDVI a, UAV-Red-Edge NDVI a,
Chlorophyll content (SPAD) a, GYf

DR_QTL_cluster_4# 5A 198.8 OA, SPAD
DR_QTL_cluster_5# 6A 117.1 OA, RWC-s UAV-Red-Edge-NDVI a, RGA/TKW/GY b,
DR_QTL_cluster_6# 6B 75.3 OA, RWC-s
DR_QTL_cluster_7# 6B 114.3 OA, RWC-s GY f

DR_QTL_cluster_8# 7B 3.7 OA, SPAD
a Reference [60], b Reference [75], c Reference [76], d Reference [41], e Reference [77] and f Reference [78].

Figure 4. Chromosome position on the durum consensus map [54] and R2 of the QTL hotspots
for osmotic adjustment (OA) and/or relative water content (RWC) on chromosome arms 2BL
(DR_QTL_cluster_2#), 4AL (DR_QTL_cluster_3#), and 6AL (DR_QTL_cluster_5#), as well as their
overlaps with QTLs previously reported in literature: a Reference [60], b Reference [75], c Refer-
ence [76], d Reference [41], e Reference [77], and f Reference [78]. The QTLs for flowering time (FT)
are shown in green.
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These regions were selected for a more detailed analysis and comparative analysis
with previously reported results on grain yield in both durum and bread wheat, as dis-
cussed hereafter. Durum wheat genes within the confidence intervals of the eight selected
QTL hotspots were retrieved from EnsemblPlants database, together with their functional
annotation (Table S5). Gene Ontology (GO) enrichment analysis (Figure 5) and KEGG
pathways reconstruction (Table 5) were used to further functionally characterize the genes
included in the eight QTL clusters. In parallel, the bread wheat orthologous genes were
identified, as well (see Table S5), for the comparison of genes annotated in the syntenic
regions of the two wheat species. KnetMiner [71] knowledge networks, constructed us-
ing bread wheat orthologs, were integrated to identify putative candidate gene(s) within
the confidence interval of each QTL. The confidence interval of DR_QTL_cluster_1# on
chromosome 1B corresponds to a physical interval of approximately 7.0 Mb with 46 high-
confidence (HC) genes in the Svevo genome (Table S5). Among the genes included in
the interval, no GO terms were significantly enriched, while KEGG mapping annotated
21 genes to nine functional categories (Table 5). The two most notable candidates in the
confidence interval are TRITD1Bv1G127690, which encodes a transmembrane protein with
transporter activity homologous of the Arabidopsis Major facilitator superfamily MEE15,
and TRITD1Bv1G126800, which encodes for a seven transmembrane MLO-like protein.
The confidence interval of the DR_QTL_cluster_2# on chromosome 2B corresponds to a
3.2 Mb interval, which contains 63 high-confidence (HC) genes. GO terms associated to
“stress response” and “antioxidant activity” were enriched among these genes (Figure 5),
due to the presence of 10 peroxidase encoding genes in the QTL interval. KEGG map-
ping confirmed their annotation in secondary metabolism pathway (Table 5), acting in
the phenylpropanoid biosynthesis. In addition to these peroxidase encoding genes that
could act in drought-stress response and adaptation, the two most notable candidates in
the interval are TRITD2Bv1G263980, encoding for a protein kinase and TRITD2Bv1G264060,
which encodes a DDB1- and CUL4-associated factor-like protein 1. Both genes are located
at the confidence interval boundaries and could be functionally related to OA-related
aspects (Table S5). Notably, the comparison of the syntenic physical region in T. aestivum
Chinese Spring evidenced several gaps in the corresponding Svevo region: for 30 HC
genes annotated in the Chinese Spring syntenic region, their Svevo orthologs are indeed
included in unmapped scaffolds and could, thus, be included among the list of putative
candidates. Even if none of these 30 missing genes are drought-stress responsive or OA-
related functional annotation, the presence of these gaps in T. durum genome assembly
and gene annotation could clearly impair candidate gene discovery. The confidence in-
terval of DR_QTL_cluster_3# on chromosome 4A corresponds to approximately 3.5 Mb
with 33 HC genes (Table S5), mapped to seven KEGG functional categories (Table 5) and
enriched in manganese transport-related GO terms (Figure 5). TRITD4Av1G256080 and
TRITD4Av1G256120 indeed encode for membrane protein of ER body-like proteins, likely
working as metal transporters. Additional genes annotated in the QTL interval include
TRITD4Av1G255460, TRITD4Av1G255480, and TRITD4Av1G255490, encoding for three
Glutathione S-transferases, TRITD4Av1G255990, encoding for an RNA-binding family
protein with RRM/RBD/RNP motifs, and TRITD4Av1G256200, which encodes for a 5’-
methylthioadenosine/S-adenosylhomocysteine nucleosidase. In addition, for this QTL
hotspot, a gap between T. durum and T. aestivum chromosome assemblies was found, hence
impairing a more proper identification of candidate genes. The confidence interval of
DR_QTL_cluster_4# on chromosome 5A spans a physical interval of approximately 4.0 Mb,
which contains 39 HC genes in the Svevo genome (Table S5). Lyase activity was the unique
GO term enriched among the genes within the QTL (Figure 5), while KEGG mapping
assigned 17 of them to eight functional groups (Table 5). Interestingly, TRITD5Av1G246840,
encoding for a putative Phospholipase D potentially implicated in multiple plant stress
responses, and TRITD5Av1G247330, a putative Lipoxygenase required for jasmonic acid
accumulation, were mapped to the “environmental information processing” category. In
addition, TRITD5Av1G247220, encoding for an UDP-N-acetylglucosamine (UAA) trans-
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porter family protein, could be involved in the osmosensory signaling pathway and cell
wall organization. The confidence interval of the DR_QTL_cluster_5# on chromosome 6A
spans approximately 2.0 Mb, with 32 HC genes (Table S5). While the “manganese bind-
ing” function was the only GO-enriched term (Figure 5), six of the genes included in the
region encode for putative Cinnamoyl CoA reductases and were mapped to the “secondary
metabolism”/“phenylpropanoid biosynthesis” pathways (Table 5). The two most notable
candidates in the interval are TRITD6Av1G217800 and TRITD6Av1G218080, which encode
for two F-box protein PP2, and TRITD6Av1G217670, encoding for DREB1, a CRT-binding
factor. The confidence interval of DR_QTL_cluster_6# on chromosome 6B spans a 5.9 Mb
interval, which contains 40 HC genes in the Svevo genome (Table S5). No GO term was
found significantly enriched, while KEGG mapping annotated 20 genes to 12 different
functional categories (Table 5). In particular, three genes encoding for MYB transcription
factors potentially regulating different aspects of stress response were assigned to the
“genetic information processing” category. Moreover, TRITD6Bv1G133070, orthologs of
the CCT motif-containing response regulator protein coding gene of Arabidopsis, appears
as an even more interesting candidate gene at this locus. The confidence interval of the
DR_QTL_cluster_7#, located on chromosome 6B, spans approximately 1.2 Mb, with 14 HC
genes, including TRITD6Bv1G207930, encoding for a protein kinase family protein/WD-
40 repeat family protein 3. Both GO-enrichment and KEGG mapping did not identify
other genes in this QTL interval (Table 5 and Figure 5). Finally, the confidence interval of
DR_QTL_cluster_8# on chromosome 7B corresponds to a physical interval of approximately
1.5 Mb, which contains 20 HC genes in the Svevo genome, lacking GO enrichment or
predominant KEGG annotations (Table 5 and Figure 5), but including TRITD7Bv1G002000,
a gene encoding for a photosynthetic NDH subcomplex B3 (Table S5).

Figure 5. Gene Ontology (GO) enrichment analysis. Dot plot shows GO terms of biological processes
(BP), molecular functions (MF) and cellular compartment (CC) identified using g:Profiler [68] to be
enriched (adjusted p-value < 0.05) among the genes included in each QTL interval. The size of the
dots is based on gene count enriched in the pathway, and the color of the dots represents the adjusted
p-values.
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Table 5. Summary of KEGG functional pathways mapped for genes included in each QTL interval,
grouped based on metabolic activities.

Functional Category QTL1 QTL2 QTL3 QTL4 QTL5 QTL6 QTL7 QTL8

Carbohydrate metabolism 2 1 1

Energy metabolism 1 1

Lipid metabolism 2 2 3 1 1

Nucleotide metabolism 1

Amino acid metabolism 1 1 4 3 1 1

Glycan biosynthesis and metabolism 1

Metabolism of cofactors and vitamins 3 1

Biosynthesis of other secondary metabolites 10 6

Genetic information processing 1 2 2 1 1

Environmental information processing 1 2 2 2 2 1

Organismal systems 1 2

Protein families: metabolism 5 2 1 1 1

Protein families: genetic information processing 6 2 1 1 5

Protein families: signaling and cellular processes 2 6 1 1 4 2 1 1

Unclassified: metabolism 1 3 1

KEGG mapped genes 21 23 13 17 12 20 6 4

Total genes 46 63 33 39 32 40 14 20

4. Discussion

A number of authors have proposed OA as an important adaptive mechanism to
support higher crop yield under stressful environmental conditions, as reviewed in [24,79].
Notably, grain yield differences have been shown to be positively correlated to OA in
cereals [21,30,80–83], hence indicating OA as a valuable proxy to predict grain produc-
tion [24]. This notwithstanding, the QTLome regulating OA in wheat and other crops
remains basically unknown, the main reason being the difficulty to adequately screen the
large number (>200) of (i) RILs of the mapping populations and/or (ii) accessions of GWAS
mapping panels required for a meaningful QTL discovery. In field conditions, the collection
of leaves and their processing must be completed rapidly to minimize the bias introduced
by the time of sample collection in an adequately large number of genotypes, an essential
prerequisite for identifying and accurately mapping QTLs [19,34]. The QTLome dissection
of OA in cereals was first attempted in rice [37,38] and barley [39,40]. In bread wheat,
Reference [84] mapped an osmoregulation gene locus [85] located on the short arm on
chromosome 7A. However, OA and osmoregulation differ and have different functional
meanings. While OA refers to a lowering of osmotic potential (ψs) due to an accumulation
of osmolytes in response to a water deficit, osmoregulation refers to the ψs regulation by
the addition/removal of osmolytes until the intracellular potential is approximately equal
to that of the medium surrounding the cell [20]. The gene described by Morgan regulates
turgor pressure and water content by osmotic adjustment [84,85], hence the term osmoreg-
ulation. In this study, OA was measured according to the “rehydration method” [23,86].
Although this method was criticized by [85], other authors consider it optimal for screening
large populations [20,26,86–89] in view of its merits in terms of labor and cost-effectiveness
as compared to the other methods [23]. In our experience, the rehydration of the leaf
samples greatly facilitated (i) the cell sap extraction especially in samples collected in
water-stressed plants and (ii) the OA screening of the 248 diverse accessions of the Durum
Panel. Collectively, this resulted in high OA repeatability (h2) and a positive and nega-
tive correlation with RWC-s and LR, respectively. The positive correlation between OA
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and RWC clearly indicates an active physiological role of the former to maintain a more
favorable water status of the plant, playing a key role for avoiding and mitigating the
negative effects of water loss under drought. Overall, our results validate the effectiveness
of the “Rehydration method” as an ideal option for handling the large number of samples
required for the genetic dissection of the OA QTLome.

4.1. GWAS Mapping and Comparative Analysis with Previous QTL Studies in Durum Wheat

Overall, eight major QTL hotspots were detected on the long arm of chromosomes,
1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS. The use of flowering time (FT) as covariate for the
GWAS analysis reduced the bias caused by the photoperiod-response (Ppd) locus and other
loci that affect FT, hence allowing a more accurate estimate of QTL effects on a per se basis
rather than due to effects related to variability in phenology. Notably, none of the eight
major QTL hotspots evidenced by GWAS analysis overlapped with the osmoregulation gene
locus described by Reference [85] in bread wheat. DR_QTL_cluster_1#, DR_QTL_cluster_2#,
and DR_QTL_cluster_5# overlapped with Normalized Difference Vegetation Index (NDVI)
loci identified in 2017 on the same Durum Panel under similar drought conditions using
Unmanned Aerial Vehicles (UAV-Sequoia and UAV-Red-Edge), as well as ground-based
platforms [60]. Additionally, DR_QTL_cluster_3# and DR_QTL_cluster_5# overlapped with
chlorophyll content (SPAD) loci under drought described in Reference [60]. Both NDVI
and SPAD have long been recognized for their ability to estimate crop biomass and predict
grain yield [90–94]. DR_QTL_cluster_2# overlapped with grain yield, thousand-kernel
weight, and NDVI loci previously reported in a durum wheat elite population tested in
contrasting thermo-pluviometric conditions [76]. DR_QTL_cluster_5# co-mapped with
QRga.ubo-6A.2, one of the most important loci for root growth angle in durum wheat [75],
with thousand-grain weight, particularly under low water availability environments, as
well as with grain yield, in the 183 elite accessions of the Durum Panel that were previously
evaluated in 15 field trails under a wide range of water regimes [41]. DR_QTL_cluster_3#
and DR_QTL_cluster_7# co-mapped with a major grain yield QTL reported by Reference [78]
in an RIL population developed from the hexaploid wheat cross between Chinese Spring ×
SQ1 evaluated across a broad combination of 24 site × treatment × year combinations. The
concurrent effects on grain-yield related traits reported herein fully support the conclusions
of Reference [24] on OA being a valuable proxy with a positive effect on crop yield under
water-limited conditions and not merely for survival under severe drought. These QTL
hotspots will further enhance drought tolerance in durum wheat.

4.2. Candidate Genes

By combining the physical confidence interval position of the QTL hotspots, functional
prediction of annotated genes, and biological data mining, we investigated candidate genes
from selected QTLs involved in OA and/or drought resistance. Putative drought candi-
date genes encoding for proteins involved in drought stress responses, as well as grain
development, were mapped within the eight major selected QTL hotspots, even if some
highlighted gaps in the Svevo genome assembly could hinder candidate gene identification
at two QTL hotspots. Among the identified candidates, the seven transmembrane MLO-like
protein (TRITD1Bv1G126800; DR_QTL_cluster_1#) was shown to act in drought and salt
stress responses through signaling of the phytohormone abscisic acid (ABA) [95], with
biological knowledge networks analysis strongly supporting its role in oxidative stresses,
salt, and drought tolerance (Figure 6A). Similarly, the phospholipase D (PLD) coding gene
(DR_QTL_cluster_4#) is also involved in ABA responses [96]. Interestingly, genes associated
with manganese transport and binding were identified in both DR_QTL_cluster_3# and
DR_QTL_cluster_5#. Moreover, exogenous application of Mn was recently shown to reduce
the negative effects caused by drought, harsh temperature, and salinity, increasing ROS
detoxification and secondary metabolism [97,98]. Despite the clear enrichment for stress
response-related GO terms among genes at DR_QTL_cluster_2#, the identification of 10
tandemly duplicated peroxidase encoding genes acting in the phenylpropanoid biosyn-
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thetic make the construction of a knowledge network and putative candidate gene more
complex and less reliable. Conversely, of considerable interest is, instead, the dehydration-
responsive element-binding protein DREB (DR_QTL_cluster_5#; Figure 6B), that belongs to
a family of plant-specific transcription factors that can specifically bind to DRE/CRT ele-
ments in the response to abiotic stresses, such as drought, salt, and low temperature [99,100],
reviewed in [101]. In addition, TRITD6Bv1G133070 (DR_QTL_cluster_6#), orthologs of the
Arabidopsis CCT motif-containing response regulator protein, was shown to be involved
in both the generation of circadian rhythms and long-term drought adaptation [102]. Fi-
nally, TRITD7Bv1G002000 (DR_QTL_cluster_8#, affecting both OA and SPAD) encodes for
chloroplast NAD(P)H dehydrogenase complex, involved in cyclic electron flow around
photosystem I to produce ATP [103].

Figure 6. KnetMiner network views displaying knowledge networks of selected candidate
genes Table S5. TRITD1Bv1G126800 (A), encoding for a seven transmembrane MLO-like protein
(DR_QTL_cluster_1#), and TRITD6Av1G217670 (B), which encodes for a dehydration-responsive
element-binding protein DREB (DR_QTL_cluster_5#). Networks were constructed using the Triticum
aestivum orthologous genes TraesCS1B02G216300 and TraesCS6A02G381200, respectively, and can be
accessed using the following links: https://knetminer.com/beta/knetspace/network/528cbd3a-52
d5-40b5-91be-f59323db55a3 (accessed on 1 April 2021) and https://knetminer.com/beta/knetspace/
network/44b31582-bfaa-495f-9272-87a4f06d40a6 (accessed on 1 April 2021).

https://knetminer.com/beta/knetspace/network/528cbd3a-52d5-40b5-91be-f59323db55a3
https://knetminer.com/beta/knetspace/network/528cbd3a-52d5-40b5-91be-f59323db55a3
https://knetminer.com/beta/knetspace/network/44b31582-bfaa-495f-9272-87a4f06d40a6
https://knetminer.com/beta/knetspace/network/44b31582-bfaa-495f-9272-87a4f06d40a6
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5. Conclusions

This study is the first to report QTLs for OA via GWAS mapping in wheat. From a
methodological standpoint, our results support the validity of the “Rehydration method”
as the fastest and most effective protocol for large-scale screening of OA under well-
watered and drought conditions. The genetic variants within the Durum Panel eval-
uated herein allowed for the detection of significant loci for OA, ψs, RWC, LR, and
SPAD, with eight multiple concurrent QTL hotspots, all unrelated to phenology, hence
being more valuable from a breeding standpoint. Importantly, five of these clusters
(DR_QTL_cluster_1#,DR_QTL_cluster_2#, DR_QTL_cluster_3#, DR_QTL_cluster_5#, and
DR_QTL _cluster _7#) co-located with QTLs for grain yield and/or grain yield-related traits
described in previous multi-environmental studies and, in one case (DR_QTL_cluster_5#),
co-located with a major QTL controlling root growth angle which has been demonstrated
to play a relevant role in maintaining the water access in deep soils during wheat ter-
minal drought [104]. The candidate genes identified within the confidence intervals of
selected drought response-specific QTL hotspots provide useful markers for future breed-
ing schemes. Our results support the role of OA as an important drought-stress adaptive
mechanism with beneficial effects on the plant water status in durum wheat.
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analysis for osmotic adjustment (OA), Figure S6: box plots for (A) relative water content (RWC) and
(B) osmotic potential (ψs) under full and deficit irrigation, Figure S7: histograms, Table S1: list of the
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Abbreviations

CI, confidence interval; DAS, days after sowing; DW, dry weight; Fst, fixation index; FT, flowering
time; FW, fresh weight; GDD, growing degree days; GO, Gene Ontology; GWAS, genome-wide
association study; GY, grain yield; K, kinship matrix; LD, linkage disequilibrium; LR, leaf rolling;
MAF, minor allele frequency; MAS, marker-assisted selection; MLM, mixed linear model; NDVI,
normalized difference vegetation index; OA, osmotic adjustment; PPFD, photosynthetic photon
flux density; Q, structure population; QTL, quantitative trait locus, RGA, root growth angle; RIL,
recombinant inbred lines; RWC, relative water content; SNP, single nucleotide polymorphism; SPAD,
soil plant analysis development; TDR, time-domain re-flectometry; TKW, thousand kernel weight; TW,
turgid weight; VPD, vapor pressure deficit; VWC, volumetric water content; ψs, osmotic potential;
θPWP, permanent wilting point; θFC, field capacity.
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