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Decomposition, Condensation Defects, and Fusion

Ling Lin, Daniel G. Robbins, and Eric Sharpe*

In this paper we outline the application of decomposition to condensation
defects and their fusion rules. Briefly, a condensation defect is obtained by
gauging a higher-form symmetry along a submanifold, and so there is a
natural interplay with notions of decomposition, the statement that
d-dimensional quantum field theories with global (d − 1)-form symmetries are
equivalent to disjoint unions of other quantum field theories. We will also
construct new (sometimes non-invertible) defects, and compute their fusion
products, again utilizing decomposition. An important role will be played in all
these analyses by theta angles for gauged higher-form symmetries, which can
be used to select individual universes in a decomposition.

1. Introduction

Decomposition[1] is now understood as the statement that a d-
dimensional quantum field theory with a global (d − 1)-form
symmetry is equivalent to a disjoint union of other d-dimensional
quantum field theories, known as universes (see e.g. [2] for a re-
cent review). Typical examples include two-dimensional gauge
theories with trivially-acting subgroups of the gauge group.[3–5] It
is also known[6,7] that unitary two-dimensional topological field
theories are equvialent to disjoint unions of theories, a result
which was argued in [8, 9] to be a special case of decomposition
in the sense of [1], utilizing non-invertible symmetries.
Decomposition has been applied in a number of contexts, see

e.g. [2] for a recent overview. In this paper, we will apply decom-
position to condensation defects, defined in [10, 11] as follows.
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Consider a d-dimensional quantum field
theory with a global k-form symmetry,
and restrict to a (d − p)-dimensional sub-
manifold Σ. Along Σ, gauge the the re-
striction of that global symmetry (as-
suming there is no obstruction due
to anomalies). Along the worldvolume
Σ, this appears to be a gauged (k −
p)-form symmetry, obtained as a ‘con-
densation’ of the k-form symmetry de-
fects on the codimension p submani-
fold. Such a gauging is described as
a higher gauging or as p-gauging the
k-form symmetry, see also [12–25] for
other discussions. The resulting theory

along Σ, obtained by gauging the restriction of the higher-form
symmetry, is a condensation defect. Such defects may be non-
invertible under fusion, and serve as an explicit construction of
non-invertible symmetries in dimensions larger than two, which
has seen a surge of interest very recently, see, e.g. [26–41].
In this paper we outline how decomposition can be applied

to condensation defects and various analogues and their fusion
rules, following [10, 11, 20].
We begin in section 2 with a short review of decomposition,

focusing on examples of most direct relevance to this paper,
namely orbifolds and topological field theories. We also discuss
how one can recover individual universes by gauging the higher-
form symmetry (with a theta angle that distinguishes the com-
ponents). For ordinary orbifolds in two dimensions, this gauging
was discussed in [42].
In 3, we then illustrate, after a brief review of condensation

defects and higher gauging, a rather simple, but direct, appli-
cation of decomposition to condensation defects. Namely, we
discuss p-gauging the (d − 1)-form symmetry in a decomposing
theory. This results in condensation defects that are projectors
onto universes along their worldvolumes, and in fact are equiva-
lent to local projection operators. For completeness, and because
they are very much in the overall spirit of the rest of this pa-
per, we briefly discuss these ‘condensation defect projectors’ for-
mally and illustrate concrete computations in two-dimensional
orbifolds.
In section 4 we turn to a more intricate interplay between de-

composition and condensation defects. Specifically, we use de-
composition to observe, in section 4.1, that sometimes, fusion
ring coefficients described as topological field theories are equiva-
lent to integer multiplicities. For codimension-one condensation
defects in 3d, these TFTs have a one-form symmetry responsible
for decomposition, which only emerges as two defects collide. In
section 4.2 we illustrate in examples how these originate from
potential one-form symmetries of the individual defects, which
are obstructed from bulk-defect interactions. In section 4.3 we
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illustrate how the requisite topological point operators arise in
the cases where decomposition occurs.
Finally, in section 5 we propose other defects, which are mo-

tivated by condensation defects, but which are not themselves
condensation defects. On a worldvolume of codimension p, in
a theory with a global k = (d − p − 1)-form symmetry, these pro-
posed defects are obtained by gauging a k-form symmetry along
the worldvolume. To be clear, this is not the same as p-gauging
the k-form symmetry, as that results in a gauging which, along
the worldvolume, looks like a (k − p)-form gauging, instead of
the k-form symmetry gauged here. These proposed defects are
therefore not the same as condensation defects, and need not be
topological; nevertheless, we argue that, at least formally, they ap-
pear to have similar properties, as evidenced by e.g. their fusion
rings, which we compute in examples. Our examples include de-
fects in ordinary orbifolds as well as in orbifolds by 2-groups. As
part of our analysis, we discuss gauging 2-form symmetries in
three-dimensional orbifolds,[43] extending results of [42] on gaug-
ing 1-form symmetries in two-dimensional theories.
In passing, when gauging higher-form symmetries, we will

use corresponding theta angles to select particular universes
from a decomposition. Theta angles for gauged higher-form sym-
metries in other contexts have also been discussed in e.g. [44].
To summarize, in this paperwewill give several examples illus-

trating the interplay between decomposition, condensation de-
fects, and their fusion products.
As this paper was nearing publication, we were informed that

related results will also appear in [45, 46].

2. Decomposition and Gauging Higher-form
Symmetries

In this section we will review pertinent aspects of decomposi-
tion, which is the observation that d-dimensional theories with
global (d − 1)-form symmetries are equivalent to disjoint unions
of quantum field theories. Decomposition has been studied in
numerous examples, see e.g. [2] for a recent review. In this paper,
we will frequently utilize examples in two-dimensional ordinary
orbifolds and in topological field theories, in which there aremul-
tiple dimension-zero operators (and hence a global (d − 1)-form
symmetry), and our review will focus on examples of this form.

2.1. Orbifolds in Two Dimensions

Orbifolds in which a subgroup of the orbifold group acts trivially1

are common examples in which decomposition arises, andwhich

1 Gauging a trivially-acting group or a noneffectively-acting group (in
which a subgroup acts trivially) may seem counterintuitive, but was
extensively studied in two-dimensional orbifolds and gauge theories
(such as abelian theories with nonminimal charges) in e.g. [3–5],
which covered material ranging from existence and possible unitar-
ity issues to massless spectra, mirrors, and quantum cohomology
rings, and whose conclusions formed the basis of the original work on
decomposition.[1] Themeaning of the related notion of ‘trivially-acting
one-form symmetries’ in three dimensions was recently discussed in
[43, 48]. A discussion in the language of topological defect lines will
appear in [49].

we shall utilize later in this paper. In this subsection we will re-
view examples of this form, and how the global one-form symme-
try can be gauged to select out a universe in the decomposition,
results which we shall utilize later.
Briefly, in an orbifold [X∕Γ] in two dimensions (meaning, a

sigma model into target X with gauged Γ action on X ), with

1 ←→ K ←→ Γ ←→ G ←→ 1, (2.1)

where K acts trivially on X , it was argued in [1] that

QFT([X∕Γ]) = QFT
([

X × K̂
G

]
�̂�

)
, (2.2)

where 𝜔 denotes discrete torsion, and K̂ the set of irreducible
representations of K. (See e.g. [47] for a generalization to the case
that the orbifold [X∕Γ] has discrete torsion.)
In the special case that Γ is a central extension of G by K, so

that K lies within the center of Γ, the G action on K̂ is trivial, and
the expression above simplifies to

QFT([X∕Γ]) =
∐
𝜌∈K̂

QFT
(
[X∕G]𝜌(𝜔)

)
, (2.3)

where 𝜔 ∈ H2(G,K) classifies the extension (2.1) and 𝜌(𝜔) ∈
H2(G,U(1)) defines discrete torsion in the corresponding orb-
ifold [X∕G].
For example, consider the orbifold [X∕D4], where the center

of D4, which is ℤ2, acts trivially. This example was studied in [1,
section 5.2]. Since the group D4 is a central extension

1 ←→ ℤ2 ←→ D4 ←→ ℤ2 × ℤ2 ←→ 1, (2.4)

we can apply decomposition in the form (2.3) to see that

QFT
(
[X∕D4]

)
= QFT

(
[X∕ℤ2 × ℤ2]

) ∐
QFT

(
[X∕ℤ2 × ℤ2]d.t.

)
.

(2.5)

We will apply this example to condensation defects in e.g. sec-
tion 5.1.3.
A non-central extension example is [X∕ℍ], whereℍ is the eight-

element group of unit quaternions {±1,±i,±j,±k}, and ⟨i⟩ ≅ ℤ4
acts trivially. This example was studied in [1, section 5.4]. In this
case, ℍ can be expressed as a non-central extension

1 ←→ ℤ4 ←→ ℍ ←→ ℤ2 ←→ 1. (2.6)

Since this extension is not central, we apply decomposition in the
more general form (2.2) to get

QFT([X∕ℍ]) = QFT(X)
∐

QFT
(
[X∕ℤ2]

) ∐
QFT

(
[X∕ℤ2]

)
.

(2.7)

(Of the four irreducible representations of ℤ4, two are invariant
under G = ℤ2, and G interchanges the remaining two.) We will
apply this example to condensation defects in section 5.1.4.
In [42], gauging the 1-form symmetry in a decomposing two-

dimensional orbifold was described. By picking a theta angle for
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the gauging, one can select out individual universes in a decom-
position. To make this paper self-contained, we briefly outline
those methods here, as we will use such gaugings later.
For simplicity, we take the worldsheet Σ = T2, and consider an

orbifold [X∕Γ] as above, which has a global 2 BK = K [1] symmetry.
We shall describe partition functions in which the BK̃ symmetry
is gauged. First, recall that the partition function of a more nearly
ordinary orbifold [X∕Γ] on worldsheet Σ = T2 has the standard
form (see e.g. [50, section 8.3])

(2.8)

where the sum is over commuting pairs of elements g, h ∈ Γ,
and

(2.9)

denotes the contribution to the path integral from maps from
Σ = T2 into X with branch cuts along distinct cycles defined by
g, h (equivalently, maps from rectangles into X such that the im-
ages of one pair of sides are related by g and the images of the
other pair of sides are related by h). The fact that K acts trivially
simplifies this sum; the sectors

(2.10)

map to corresponding sectors of an orbifold [X∕G], and the parti-
tion function of the decomposition can be derived by simplifying
the result, as described in e.g. [1].
Gauging aBK̃ symmetry, for K̃ ⊂ K, has partition function[42]

(2.11)

where the sum is over g, h ∈ Γ such that gh = hgz, the figure

(2.12)

denotes maps into X with branch cuts along g, h, twisted by z as
above, and 𝜖 ∈ Hom(K̃, U(1)) is the theta angle arising in gaug-
ing BK̃, which selects out the universe(s) appearing in the result.
We briefly summarize here two examples, also discussed in

[42].
First, consider the orbifold [X∕D4], where K = ℤ2 ⊂ D4 acts

trivially. As discussed in [42], depending upon the choice of 𝜖,
one finds

Z
([
[X∕D4]∕Bℤ2

])
=

{
Z
(
[X∕ℤ2 × ℤ2]

)
𝜖(−1) = +1,

Z
(
[X∕ℤ2 × ℤ2]d.t.

)
𝜖(−1) = −1,

(2.13)

2 We use the notation BqK for q-form symmetries, as this is standard in
mathematics; other references use instead K [q].

corresponding to the two universes in the decomposition (2.5) of
[X∕D4].
A second example studied in [42], and which we will use later,

involves the non-central extension [X∕ℍ] orbifold.Here, although
a ℤ4 ⊂ ℍ acts trivially, only a ℤ2 subgroup is central, and only
that part corresponds to an invertibly-realized one-form symme-
try. Gauging that Bℤ2 in the form above, from [42] we recall3

Z
([
[X∕ℍ]∕Bℤ2

])
=

{
Z
(
[X∕ℤ2]

∐
[X∕ℤ2]

)
𝜖(−1) = +1,

Z(X ) 𝜖(−1) = −1.

(2.14)

2.2. Topological Field Theories

So far we have discussed orbifolds in two-dimensional theo-
ries, in which a subgroup of the gauge group acts trivially. That
trivially-acting subgroup is responsible for the appearance of a
global (d − 1)-form symmetry, implemented by topological point-
like operators.
Now, any theory with such topological point-like operators

should also have a global (d − 1)-form symmetry, possibly real-
ized non-invertibly, and hence decompose. Examples that will
play an important role later in this paper include some topological
field theories. Specifically, unitary topological field theories with
semisimple local operator algebras have multiple dimension-
zero operators, and hence decompose, into disjoint unions of
what are known as invertible field theories, meaning theories
whose Fock spaces are one-dimensional. This was first discussed
in e.g. [6, 7], and the later works[8,9] observed that this is a spe-
cial case of decomposition, by virtue of presence of non-invertible
dimension-zero operators.
For example, consider two-dimensional Dijkgraaf-Witten the-

ory for a finite groupG. This is a unitary toppological field theory
with a semisimple local operator algebra, which by the criteria
above should decompose, and in fact there is a second way of un-
derstanding it: it is also an orbifold of a point. Specifically, it is of
the form [X∕G] where X is a point and the entire orbifold group
G acts trivially, and so it has a decomposition, from our previous
discussion. In particular, this theory decomposes into a disjoint
union of invertible field theories, indexed by irreducible projec-
tive4 representations ofG (see e.g. [47] for a more general discus-
sion). For example, if G = ℤ2, and the Dijkgraaf-Witten theory is
untwisted, the theory is equivalent to two invertible field theories
– essentially, trivial field theories defined solely by Euler countert-
erms.
To be clear, not every topological field theory so decomposes.

• For one, the theorymust admit a local operator algebra. Chern-
Simons theories in three dimensions, unless noneffectively
gauged as in [43, 48], do not admit such an algebra, and so
do not decompose.

3 In point of fact, the reference[42] formally tried to discuss gauging the
Bℤ4. However, the only possible contributions to the partition func-
tion are from z ∈ ℤ2 ⊂ ℤ4, and so gauging a Bℤ2 instead can be ac-
complished by just a factor of 2.

4 Projective with respect to the element of H2(G,U(1)) that defines the
twisting of the Dijkgraaf-Witten theory.
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• Even if there is a local operator algebra, we also emphasize that
we only speak of decomposition in unitary cases. For example,
the topological subsector of the A model with target ℙn for-
mally may be equivalent to a disjoint union; however, the full
quantum field theory with that target does not decompose. As
we are interested in the full quantum field theory, not just a
topological subsector, we emphasize the importance of unitar-
ity.

So far we have discussed orbifolds and topological field the-
ories, but we emphasize that results on decomposition are not
remotely restricted to these families of examples, but in fact have
been studied much more widely in gauge theories.

3. Condensation Defect Projectors

In this section we will construct ‘condensation defect projectors,’
special cases of condensation defects obtained by p-gauging a
(d − 1)-form symmetry. We begin with a short overview of con-
densation defects.

3.1. Overview of Condensation Defects

In this subsection we will briefly review the notion of condensa-
tion defects and p-gauging k-form symmetries, following [10].
Consider a d-dimensional system with an (invertible) k-form

symmetry BkK. Then, p-gauging this symmetry on a codimen-
sion p ≤ k + 1 subspace Σ amounts to summing over insertions
of (or, ‘condensing’) the (d − k − 1)-dimensional topological de-
fects, which generate the k-form symmetry, on all (d − k − 1)-
cycles of Σ. The resulting defect along Σ is known as a condensa-
tion defect. Formally, if we let 𝜂(𝛾) denote a symmetry operator of
BkK along a (d − k − 1) cycle 𝛾 , then for compact Σ the condensa-
tion defect along Σ is5[10]

S𝜖(Σ) =
|Hk−p−1(Σ, K)||Hk−p(Σ, K)| |Hp−k−3(Σ, K)|⋯|Hk−p−2(Σ, K)|⋯ ∑

𝛾∈Hd−k−1(Σ,K)
𝜖(𝛾) 𝜂(𝛾).

(3.1)

In the expression above, 𝜖(𝛾) is an analogue of a theta an-
gle for the gauging. In general, when gauging a k-form symme-
try BkK on a space X , one can add a theta angle, determined
by an element of cohomology of the classifying space for BkK,
namely B(BkK) = Bk+1K. In the path integral, the correspond-
ing gerbes on X are equivalent to maps 𝜙 : X → Bk+1X , so given
𝜔 ∈ HdimX

sing (B
k+1K,U(1)), we can associate a phase

∫X
𝜙∗𝜔 ∈ U(1). (3.2)

For example, if this is an ordinary gauge theory (meaning k = 0),
in which case K need not be abelian, then ordinary theta angles

5 The form of the numerical factor follows from the fact that, along Σ,
one is gauging a (k − p)-form symmetry, and the factors take into ac-
count various levels of gauge transformations, gauge transformations
of gauge transformations, and so forth.) We would like to thank S.-
H. Shao for an explanation of this point.

can be understood this way. In that case, 𝜔 ∈ HdimX(BK,U(1))
corresponds essentially to a characteristic class, and then the
phase (3.2) is implemented as

exp
(
i𝜃 ∫X

TrF ∧⋯ ∧ F
)
, (3.3)

in the usual fashion.
In the present case, we are p-gauging a k-form symmetry,

which along the codimension-p defect Σ, is equivalent to gauging
a (k − p)-form symmetry. As a result, the theta angles are classi-
fied by elements of

Hd−p
sing

(
Bk−p+1K,U(1)

)
. (3.4)

In principle, one expects that the phases 𝜖(𝛾) should then be given
by analogues of Chern-Simons forms computed using a form of
descent. For example, if p = k and K is finite, these theta angles
correspond to elements of discrete torsion on Σ, in

Hd−p
sing(BK,U(1)) = Hd−p

group(K,U(1)). (3.5)

(Compare.[51,52]) This was utilized in e.g. [10, 11]. However, in
general theta angles will be different, and may, for example, cor-
respond to other modular-invariant-type phases such as momen-
tum/winding lattice shift factors[53,54] that play an important role
in asymmetric toroidal orbifolds, and also arise from equivariant
structures on tensor field potentials.
In passing, there is a map

Ω : Hp(BqK,U(1)) ←→ Hp−1(Bq−1K,U(1)), (3.6)

the loop space functor discussed in e.g. [43, section 3.3]. In gen-
eral, Ω is not an isomorphism. For example, from the universal
coefficients theorem, the fact that BkG = K(G, k), and results in
[55, appendix C], one finds

H4
sing(B

2ℤ4, U(1)) = ℤ8, (3.7)

which Ωmaps toH3
sing(Bℤ4, U(1)) = ℤ4, which is clearly not iso-

morphic. That said, we will see in section 3.2.1 that in the special
case of matching degrees,

Hn
sing(B

nK,U(1)) = H1
sing(BK,U(1)) = Hom(K,U(1)). (3.8)

Just as in an ordinary gauging procedure, which in this lan-
guage would be an instance of 0-gauging, there can be obstruc-
tions in form of anomalies to p-gauging. For example, the ob-
structions to 1-gauging a 1-form symmetries in a 3d theory would
be non-trivial crossing relations between the topological line de-
fects which generate the 1-form symmetry.[10] In the following,
we will always assume that such obstructions are absent when
we talk about condensation defects.
When two such codimension p condensation defects collide

along a common worldvolume Σ, one can compute the fusion
product from the fusion rules of the topological defects 𝜂(𝛾) gen-
erating the k-form symmetry that has been p-gauged. In general,
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the result is a non-invertible fusion rule,[10]

S(Σ) × S′(Σ) =
∑
i

ciSi(Σ) . (3.9)

In concrete examples, it may also be possible to give a ‘mi-
croscopic’ description of condensation defects, in terms of a La-
grangian field theory on Σ coupled to the d-dimensional bulk —
an approach that we will utilize in Section 4. In such cases, the
fusion coefficients ci in (3.9) can sometimes be described as topo-
logical field theories.[10] However, as also noted implicitly in [11,
footnote 3], sometimes those topological field theory coefficients
are equivalent to numbers, a simple multiplicity. We will discuss
this in greater detail in section 4.

3.2. Condensation Defect Projectors

In this section we will discuss ‘condensation defect projectors,’
which are defined to be the condensation defects arising from p-
gauging a (d − 1)-form symmetry in a d-dimensional quantum
field theory. We will see that the result has a simple univer-
sal form.
In a d-dimensional quantum field theory with a global (d −

1)-form symmetry, the corresponding symmetry generators are
pointlike, and their linear combinations can be used to build pro-
jectors, as we shall discuss shortly. (This is one reason why such
a quantum field theory decomposes into distinct universes, and
gauging the (d − 1)-form symmetry projects onto one of the uni-
verses.)
An important consequence of the existence of these projectors

is that the (d − 1)-form symmetry is 0-gaugeable, i.e., there is no
obstruction to summing over insertions of those pointlike opera-
tors. Therefore, it is also p-gaugeable for any p > 0,[10] which pro-
duces condensation defects associated to submanifolds Σ of any
dimension (d − p). In fact, along Σ, the higher gauging is equiva-
lent to gauging a (d − 1) − p = (d − p − 1)-form symmetry, which
undoes the decomposition alongΣ. Put another way, this is equiv-
alent to the insertion of a projection operator for one of the uni-
verses of the ambient theory on Σ. As a result, this is a defect
which is invisible to one universe (the one projected onto), but
appears as an insertion of zero to every other universe. When Σ
is real codimension one (a domain wall), this is effectively akin
to a bandpass filter.
Now, condensation defects can sometimes be simplified6. For

example, if one p-gauges a global (d − q)-form symmetry, so that
the symmetry generators live on submanifolds of dimension q −
1 > 0, and the submanifold Σ is q-connected, then one expects
that condensation defects S(Σ) on Σ are trivial, asHq−1(Σ, K) = 0.
In the present case, the condensation defects we will construct

(for p-gauging a (d − 1)-form symmetry) will be equivalent to op-
erators on a collection of points, as many points as the number
of connected components of Σ (with an operator on one point in
each component ofΣ), corresponding to elements ofH0(Σ, K). As
a result, condensation defects corresponding to p-gauged global
(d − 1)-form symmetries will be equivalent to (collections of) lo-
cal projection operators, for any p.

6 We would like to thank Y. Choi for a useful discussion of this fact.

Nevertheless, we will find it instructive to quickly step through
the details and perform some consistency tests.

3.2.1. Formal Construction

Formally, to p-gauge a (d − 1)-form symmetry Bd−1K along Σ de-
fines a condensation defect, according to (3.1), of the form

SR(Σ) =
|Hd−p−2(Σ, K)| |Hd−p−4(Σ, K)|⋯|Hd−p−1(Σ, K)| |Hd−p−3(Σ, K)|⋯ ∑

𝛾∈H0(Σ,K)=K
𝜖R(𝛾) p(𝛾),

(3.10)

where 𝜖R ∈ K̂ = Hom(K,U(1)) is a theta angle for the symme-
try gauging, corresponding to universe R. It is straightforward to
check that|Hd−p−2(Σ, K)| |Hd−p−4(Σ, K)|⋯|Hd−p−1(Σ, K)| |Hd−p−3(Σ, K)|⋯ = |K|±𝜒|Hd−p(Σ, K)| , (3.11)

so as Σ has dimension d − p, if we assume it is compact and con-
nected, then up to Euler counterterms, we have that

SR(Σ) = 1|K| ∑
𝛾∈K

𝜖R(𝛾) p(𝛾). (3.12)

Now, let us describe the theta angles 𝜖 more explicitly. As dis-
cussed previously, theta angles 𝜖 appearing when p-gauging a
(d − 1)-form symmetry are classified by elements of

Hd−p
sing

(
B(d−1)−p+1K,U(1)

)
= Hd−p

sing

(
Bd−pK,U(1)

)
. (3.13)

Now, from the universal coefficients theorem and the fact that
Bd−pK = K(K, d − p) has no homology in nonzero degree less
than d − p,

Hd−p
sing

(
Bd−pK,U(1)

)
= Hom

(
Hd−p(B

d−pK), U(1)
)
, (3.14)

= Hom
(
K,U(1)

)
, (3.15)

using the Hurewicz theorem to compute

Hd−p
(
Bd−pK

)
= Hd−p

(
K(K, d − p)

)
= 𝜋d−p

(
K(K, d − p)

)
= K.

(3.16)

See also [56] for further discussion of this result. In any event, we
see that when p-gauging a (d − 1)-form symmetry Bd−1K, the pos-
sible theta angles 𝜖 are classified by elements of Hom(K,U(1)),
for any p.
The operators p(𝛾) are pointlike topological operators that gen-

erate the global (d − 1)-form symmetry in the d-dimensional the-
ory – they are the operators which, in some sense, are responsi-
ble for the decomposition of the theory. Assuming, for simplicity,
that the (d − 1)-form symmetry is realized invertibly with finite
and abelian K, they obey

p(𝛾) p(𝜆) = p(𝛾𝜆) (3.17)

for all 𝛾 , 𝜆 ∈ K.

Fortschr. Phys. 2022, 70, 2200130 2200130 (5 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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The projection onto the universe associated with an irreducible
representation R of K7 is implemented by the local operator8

ΠR = 1|K| ∑
𝛾∈K

𝜒R

(
𝛾−1
)
p(𝛾), (3.18)

where 𝜒R is the character associated to R. The sum corresponds
to gauging Bd−1K in the full spacetime, which ‘undoes’ the
decomposition.[42] For example, in a Lagrangian description, the
effect of each p(𝛾) is to twist the theory by a (higher) K-gerbe with
characteristic class 𝛾 , and summing over those (higher) gerbes
implements the projection, precisely as in [42].
As a result, for the Rth universe, if we identify the theta angle

with the coefficients appearing in (3.18),

𝜖R(𝛾) = 𝜒R

(
𝛾−1
)
, (3.19)

then we can write very simply

SR(Σ) = ΠR|Σ, (3.20)

which, as claimed, establishes the condensation defect associated
to irreducible representation R as insertions of the projector op-
erator ΠR along the defect Σ. (In fact, as noted earlier, SR(Σ) is
equivalent to an insertion of a local projection operator ΠR at a
point in each connected component of Σ.)
For observers in universe R, an insertion of SR(Σ) anywhere

is effectively invisible. However, correlation functions between
operators in any other universe different from Rwill vanish if the
defect SR(Σ) is inserted along any submanifoldΣ, just as inserting
a local projection operator will annihilate correlation functions in
different universes. (Decomposing theories do not obey cluster
decomposition,[1] and as the condensation defect is topological,
we cannot avoid this conclusion simply by moving the defect Σ
far away from observables.)
Fusion rules are now easy to compute. In principle, they follow

immediately from the basic property of projectors:

ΠRΠS = 𝛿R,SΠR. (3.21)

In this context, we can repeat this directly from the definition of
the defect above. To avoid Euler counterterms, let us work on a
defect Σ = T2.
Then, we compute

SR(Σ) × SS(Σ) =
1|K|2 ∑

𝛾 ,𝜆∈K
𝜒R

(
𝛾−1
)
𝜒S

(
𝜆−1
)
p(𝛾)p(𝜆), (3.22)

= 1|K|2 ∑
𝛾 ,𝜆∈K

𝜒S

(
𝜆−1𝛾

)
𝜒R

(
𝛾−1
)
p(𝜆), (3.23)

7 The observation that universes are associated with irreducible repre-
sentations of K, and not representations of a higher-form analogue
such as BpK for some p, was discussed in [48, appendix B].

8 Ultimately this is a consequence of Wedderburn’s theorem in mathe-
matics. In two-dimensional theories, projectors formore general cases
were given in [29, section 2.2]. The fact that universes are associated
with irreducible representations of K, and not a higher-form analogue
such as BpK for some p, was discussed in [48, appendix B].

=
𝛿R,S|K| ∑

𝜆∈K
𝜒R

(
𝜆−1
)
p(𝜆) = 𝛿R,S SR(Σ), (3.24)

using the identity (see e.g. [29, appendix B])

1|G| ∑g∈G𝜒R(ag)𝜒S(g
−1b) =

𝛿R,S

dimR
𝜒R(ab) (3.25)

for G a finite group and R, S irreducible representations of G.
This also is exactly as expected from the fact that the condensation
defect SR(Σ) is equivalent to a collection of local operatorsΠR, one
at a point of each connected component of Σ.

3.2.2. Orbifolds in d = 2

Next, to be completely thorough, let us make this more explicit
in two dimensions in a concrete family of examples. Consider an
orbifold [X∕Γ], where

1 ←→ K ←→ Γ ←→ G ←→ 1 (3.26)

is a central extension of the finite group G by another finite (and
abelian) group K. Assume that K acts trivially on X , so that the
orbifold has a global one-form symmetry, and so decomposes.
Now, let us imagine computing the partition function of a two-

dimensional theory on worldsheet Σ with a condensation defect
inserted along a line L, corresponding to 1-gauging the global
one-form symmetry BK (with theta angle 𝜖R, corresponding to
universe R in the decomposition of [X∕Γ]). In principle, the par-
tition function of the orbifold [X∕Γ] itself is a sum over contribu-
tions from the constituent universes. Inserting a condensation
defect projector along L should project out the contributions from
all but one of those universes, as we shall see explicitly.
In the spirit of [10, section 6], if we break up the worldsheet

Σ into regions to the left and right of the line L, and imagine
orbifolds over each of those regions independently (to the extent
that the global geometry allows), we are led to a partition function
which, for Σ = T2 for simplicity, has the form

(3.27)

(3.28)

In effect, we break the T2 into a pair of T2’s, joined along L, with
the orbifold partition function of one T2 corresponding to a sum
over g, h1, and that of the other T

2 corresponding to a sum over
g, h2, where h1, h2 are split at the location of the defect L. Graphi-
cally, if we identify the defect L with an edge of holonomy v, then

Fortschr. Phys. 2022, 70, 2200130 2200130 (6 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 1. We illustrate the computation of a T2 correlation function in the orbifold theory [X∕Γ] with one-cycle L wrapped by a condensation defect, as
shown in (a). In (b)-(d) the cycle is shaded gray for visualization purposes, but the only insertions along the cycle are the point operators shown. The
prescription is to insert a projection point operator Π at every vertex point in some sufficiently fine triangulation of L, as in (b). Since L is connected, it
is sufficient to insert Π at a single point, and we can write Π as a sum over twist fields p(z), shown in (c). Finally, to compute these correlation functions
in terms of the parent theory [X], we lift each diagram and sum over all consistent ways of inserting Γ lines. In the lift, the p(z) operator becomes an
operator 𝜎(z) sitting on the end of a z line. We can choose where that line joins the other lines. One choice (where they all meet at a junction of degree
five) is shown in (d) and it is implicit in our lift that the product of lines around the junction should be the identity, giving the requirement gh = hgz

from demanding that both squares close, and that one is twisted
by z ∈ K as in [42] and section 2.1, we have the two conditions

gh1vh
−1
1 = 1, gzh2vh

−1
2 = 1, (3.29)

and eliminating v implies

gh1h
−1
2 = h1h

−1
2 gz. (3.30)

(The reader could also reach this conclusion by inspection of the
diagram in (3.27).)
Now, write h = h1h

−1
2 . One of those two group elements h1, h2

is now redundant, and summing over its values gemerates a fac-
tor of |Γ|. This implies

(3.31)

= Z
(
Σ,
[
[X∕Γ]∕BK

])
, (3.32)

= Z(universe R) (3.33)

using the description of gauged one-form symmetries in orb-
ifolds in [42], as reviewed in section 2.1. An illustration of this
defect and the conclusion above is in Figure 1.

Thus, we see that, formally, the partition function of the two-
dimensional orbifold [X∕Γ] with a condensation defect projector
along L is equivalent to the partition function of the BK-gauged
orbifold, which is the same as that of the universe corresponding
to R.

4. Decomposition in Fusion Coefficients

4.1. Formal Discussion

While the coefficients appearing in the fusion rules (3.9) of gen-
eral condensation defects are TFTs, many examples discussed in
[10] end up with coefficients that do have an interpretation as a
simple multiplicity.
The fundamental observation here is that in such examples,

the unitary topological field theories all come with semisimple
local operator algebras. As such, they decompose into disjoint
unions of invertible field theories, as reviewed earlier. For ex-
ample, in fusions of condensation defects of 3d Maxwell theory,
Chern-Simons theory, or discrete gauge theories, the coefficients
ci in (3.9) are all themselves 2d ℤn gauge theories for appropriate
n. Such a theory decomposes into n isomorphic universes,[1,57]

and hence, gives n identical copies of Si.
That said, as noted earlier, not every topological field theory de-

composes. In particular, the Chern-Simons theories appearing as
topological-field-theory coefficients in [11] are typically not equiv-
alent to integers.
We should also clarify that even when the topological field

theory decomposes, it still contains slightly more information

Fortschr. Phys. 2022, 70, 2200130 2200130 (7 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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than just an integer, in the form of Euler counterterms. As coun-
terterms, they can be shifted, but for some applications their
canonical values may be pertinent. We give here two examples
of those counterterms.
First, for two-dimensional untwisted Dijkgraaf-Witten theory

for a finite group G, the partition function on a connected Rie-
mann surface of genus g is

Zg (G) =
∑
R

(
dimR|G|

)2−2g

, (4.1)

where the sum is over (untwisted) irreducible representations R
of G. This form precisely reflects the decomposition: the uni-
verses into which two-dimensional Dijkgraaf-Witten theory de-
composes are indexed by the irreducible representations R, and
one can read off the Euler counterterms in universe R, given by

ln
(
dimR|G|

)
. (4.2)

Second, consider the G∕G model at level k, for G connected
and simply-connected. Here, the partition function equals the di-
mension of the corresponding Chern-Simons Hilbert space (see
e.g. [[58], section 3.4]]), which at genus g is [59, equ’n (3.15)], [60],
[8, equ’n (C.4)]

Zg =
∑
i

(
S0i
)2−2g

, (4.3)

where S0i is proportional to the quantum dimension of the inte-
grable representation i, and the sum is over integrable represen-
tations of the Kac-Moody algebra at level k.
In the following, we will elaborate on such multiplicities in

examples of condensation defects of three-dimensional theories,
and provide a ‘microscopic’ explanation for the appearance of a
decomposing TFT fusion coefficient. Namely, we will exhibit the
emergence of a one-form symmetry on the worldvolume as two
defects fuse, which can be understood as a cancellation of ob-
structions to have a one-form symmetry on each individual de-
fect.
In examples with Lagrangian descriptions, as discussed in [10,

section 6], the individual condensation defects have a 2d BF-type
worldvolume action,

in
2𝜋 ∫Σ

𝜙 dA (4.4)

As mentioned abve, these 2d ℤn gauge theories decompose by
themselves. When coupled to the 3d bulk, the one-form symme-
try is broken; but when bringing two defects close, there is a lin-
ear combination of the two individual one-form symmetries that
is unbroken.

4.2. Fusion Coefficients in ℤ2 Gauge Theories

To illustrate the above story, let us take a closer look at the fusion
process of condensation defects in 3d pure ℤ2 gauge theories,

which itself has a BF-type Lagrangian,

2i
2𝜋 ∫ AdÃ , (4.5)

with A and Ã two U(1) gauge fields.
Including a single condensation defect Se obtained from 1-

gauging the electric ℤ2 1-form symmetry on the codimension-1
surface Σ = {x = 0}, the total system is described by the action
[10, section 6.3.4]:

2i
2𝜋 ∫x<0

AL dÃL +
2i
2𝜋 ∫x>0

AR dÃR −
2i
2𝜋 ∫x=0

Φ d(ÃL − ÃR) ,

AL
|||x=0 = AR

|||x=0 = dΦ .

(4.6)

Naively, the worldvolume term,

− 2i
2𝜋 ∫x=0

Φ d(ÃL − ÃR) ≡ − 2i
2𝜋 ∫x=0

Φ dÃd, (4.7)

describes a 2dℤ2 gauge theory, and should, by itself, decompose.
Including the background field B ∈ H2(Σ,ℤ2) for the one-form
symmetry responsible for the decomposition, the 2d action takes
the form

i
2𝜋 ∫x=0

Φ (2dÃd − B) , (4.8)

where Ãd = ÃL − ÃR.
In general, a 2d BF-theory (4.4) with ℤn gauge symmetry has

a ℤn 1-form symmetry which is generated by topological point
operators : eik𝜙 :, where k is an integer and k ∼ k + n (see for in-
stance Appendix B of [57]). These operators are topological, i.e. do
not depend on the position of insertion, because theA equation of
motion implies that𝜙 is constant (at least locally; on disconnected
spacetimes it can in principle take different values on each com-
ponent). Moreover, in order for the action to be well-defined un-
der large gauge transformations of A, even in the presence of a
boundary, we require n𝜙 to be in 2𝜋ℤ. Combined with the 2𝜋 pe-
riodicity of 𝜙, this explains why k ∼ k + n, and why we have only
n distinct topological point operators.
However, in contrast to ordinary BF theory, the scalar Φ on

the condensation defect is related to the restriction of the bulk
gauge fields AL and AR, as noted in (4.6). In particular, as gauge
transformations in the bulk must still be allowed,

AL ∼ AL + d𝛼L , AR ∼ AR + d𝛼R , Φ ∼ Φ + 𝛼 ,(
𝛼 = 𝛼L

|||x=0 = 𝛼R
|||x=0). (4.9)

In the presence of a non-trivial background field B for the 2d
1-form symmetry, such a gauge transformation would lead to a
non-integer shift of the action (4.6), and, thus, to an ambiguity
for the partition function. As the bulk gauge symmetries must
remain intact, this ambiguity poses an obstruction which effec-
tively breaks the 1-form symmetry of the 2d BF-theory, and pre-
vents the condensation defect from decomposing into simpler
pieces. Put another way, in terms of the topological local opera-

Fortschr. Phys. 2022, 70, 2200130 2200130 (8 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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tors : exp(ikΦ) :, here the coupling to the bulkmeans thatΦ is not
gauge-invariant, and so those local operators are not well-defined.
Interestingly, given two condensation defects, each with a BF-

worldvolume theory, there is a partial cancellation between the
obstructions for the 1-form symmetries on each defect, in the
limit where they collide. To see this, we first start with the two
defects separated by distance 𝜖,

2i
2𝜋 ∫x<0

AL dÃL +
2i
2𝜋 ∫0<x<𝜖 AI dÃI +

2i
2𝜋 ∫x>𝜖

AR dÃR (4.10)

− i
2𝜋 ∫x=0

Φ1 [2d(ÃL − ÃI) − B1] −
i
2𝜋 ∫x=𝜖

Φ2 [2d(ÃI − ÃR) − B2] ,

(4.11)

where for the purpose of illustration, we have added the 1-form
symmetry backgrounds on each defect even though they must be
set to zero for consistency. The gauge symmetries of the system
include the variations

𝛿Φ1 = 𝛼1 , 𝛿Φ2 = 𝛼2 , 𝛿AI = d𝛼I ,

with 𝛼1 = 𝛼I
|||x=0 , 𝛼2 = 𝛼I

|||x=𝜖 . (4.12)

At finite 𝜖, 𝛼1 and 𝛼2 are independent, and each pose the obstruc-
tion to turning on non-vanishing B1∕2. However, as 𝜖 → 0, we
have the gauge variations 𝛿Φ1 = 𝛿Φ2 = 𝛼I, so that Φ = Φ1 − Φ2
is gauge invariant. Performing the analogous rearrangement of
(4.10) as in [10], but including the B-fields, we obtain the world-
volume Lagrangian of the fused defect,

− i
2𝜋 ∫x=0

×
[
−2(Φ1 − Φ2)d(ÃI − ÃL) + Φ1B1 + Φ2B2 + Φ2

(
dÃL − dÃR

)]
.

(4.13)

Now we see that, though generic values of (B1, B2) are still not
allowed, we can correlate the 1-form symmetries of the two indi-
vidual defects prior to fusion, by setting B1 = −B2 = B, in which
case the worldvolume Lagrangian becomes

− i
2𝜋 ∫x=0

[
−Φ [2d(ÃI − ÃL) − B] + Φ2

(
dÃL − dÃR

)]
. (4.14)

Because Φ = Φ1 − Φ2 is invariant under any gauge symmetries
of the system, there is no obstruction as above to turning on non-
trivial B.
This is of course just the same conclusion as the observation,

that in the fusion rule,[10]

Se × Se = (2)Se , (4.15)

the coefficient is a 2d ℤ2 gauge theory which does undergo
decomposition, by the existence of a 1-form symmetry on the
worldvolume with background field B. From the discussions of
this subsection, we see that this 1-form symmetry is the (anti-
)diagonal subgroup of the product of two 1-form symmetries
from separate defects, which by themselves are broken, but give
rise to an unbroken one in the limit as the two defects fuse.

A similar story applies also to 3d Chern-Simons theory with
level 2N. There, the condensation defects Sn, with n|N, con-
structed in [10, section 6.2] also admit a Lagrangian description
that has a BF-type term, namely

in
2𝜋 ∫x=0

d𝜙(AL − AR). (4.16)

However, gauge invariance of the bulk system require the pres-
ence of an additional term,

iN
2𝜋 ∫x=0

ALAR, (4.17)

which does not admit a 1-form symmetry on the worldvol-
ume {x = 0}. Consequently, there are no ‘simpler’ pieces into
which these condensation defects decompose. However, given
two such condensation defects, an unobstructed 1-form sym-
metry emerges in the limit where these collide, resulting in a
decomposable TFT sector. This is again the fusion coefficient,
Sn × Sn = nSn, which admits a simple interpretation as a mul-
tiplicity.

4.3. Topological Point Operators in Fusion Coefficients

It is worthwhile to refine the discussion by taking a closer look
at the local, or point operators, on the individual condensation
defects and in their fusion. These can be used to build projection
operators onto the different universes of the decomposition as-
sociated to a global (d − 1)-form symmetry, provided they are not
bound to topological defect lines.
In the 2dBF-theory (4.4), the objects charged under these point

operators are Wilson loops, exp(i𝓁 ∮ A). When a Wilson line en-
circles one of our topological point operators (TPOs) eik𝜙, it picks
up a phase relative to the configuration where the TPO is out-
side the loop. (For the projection operators, this means that one
projection operator will transform into another when it crosses
a Wilson line, so the Wilson lines have an interpretation as in-
terfaces between different universes.) We can also interpret the
Wilson lines as the topological lines which generate the globalℤn
0-form symmetry, which the 2d theory (4.4) possesses.
Now consider instead a condensation defect obtained by 1-

gauging a 1-form symmetry in a 3d theory. Though the La-
grangian description superficially takes the form of 2d BF theory
coupled to a 3d bulk, the story can change in a subtle, but impor-
tant way. To be concrete, let us consider the condensation defects
in 3d free Maxwell theory.[10] This 3d theory has action

S = 1
g2 ∫ F ∧ ⋆F. (4.18)

Since the classical equation of motion is simply d ⋆ F = 0, we
can introduce a dual scalar 𝜎 by (the factor of i comes from the
Euclidean signature)

4𝜋i
g2

⋆ F = d𝜎. (4.19)

The Dirac quantization of F implies that 𝜎 ∼ 𝜎 + 2𝜋. This theory
has point operators (’t Hooftmonopoles) ei𝛼𝜎 .When 𝛼 ∈ ℤ, this is

Fortschr. Phys. 2022, 70, 2200130 2200130 (9 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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a good local operator. When 𝛼 ∉ ℤ such operators can still make
sense when they are attached to the endpoint of an electric 1-form
symmetry line exp( 4𝜋i𝛼

g2
∫
𝛾
⋆F). However, none of these point op-

erators are topological, since d𝜎 ≠ 0 in general. There are TPOs
in the theory, but they are not free; they only occur at junctions
of topological line operators. For instance, a collection of K elec-

tric symmetry lines, exp(
4𝜋i𝛼j
g2

∫ ⋆F), j = 1,… , K, can meet at a

topological junction provided that
∑

j 𝛼j ∈ ℤ.
We can create a condensation defect SN by 1-gauging aℤN sub-

group of the U(1) electric 1-form symmetry. For the case of a de-
fect on a surface x = 0, we can write an action[10]

S = 1
g2 ∫x<0

FL ∧ ⋆FL +
1
g2 ∫x>0

FR ∧ ⋆FR

+ iN
2𝜋 ∫x=0

𝜙
(
dAL − dAR

)
. (4.20)

By taking theAL andAR equations ofmotion and integrating over
an infinitesimal interval in x around the defect9 we learn that

4𝜋i
g2

⋆F|x=0 = Nd𝜙 ⇒ d𝜎|x=0 = Nd𝜙. (4.23)

The 2d theory on the defect admits monopole operators eik𝜙. If
N|k, then this is equivalent to a bulk monopole operator and the
operator can leave the defect, but for k not zeromoduloN this op-
erator is bound to the defect. However these are not topological,
and we do not have decomposition on the single defect SN . To get
a TPO we again need a nontrivial junction. We can for instance
have a bulk ℤN electric symmetry line exp( 4𝜋ik

g2N
∫ ⋆F) which ends

on the defect (hooking on to the network of lines from the 1-
gauging), but no free TPOs.
On the other hand, consider the fusion of two such defects

SN and SN′ . We have the possibility of an electric symmetry line
that starts on one defect and ends on the other, connecting topo-
logically to both networks. This will only work if the line is both
ℤN valued and ℤN′ valued. In other words it must have the form
exp( 4𝜋ik

g2 gcd(N,N′)
∫ ⋆F) and we have gcd(N,N′) such configurations

in total. In the limit where we take the two defects to be coin-
cident, these become a pair of topological point operators con-
nected by a line along the defect. Shrinking the line and taking
the ends to be coincident produces a TPO which is bound to the
defect but otherwise free. The theory on the fusion project thus
does have a ℤgcd(N,N′) 1-form symmetry on the defect, resulting

9 Explicitly we can rewrite (4.20) as

S = ∫
[
1
g2
FL ∧ ⋆FLΘ(−x) +

1
g2
FR ∧ ⋆FRΘ(x)

+ iN
2𝜋

𝜙
(
dAL − dAR

)
∧ 𝛿(x)dx

]
, (4.21)

where Θ(x) is the Heaviside function. This results in an equation of
motion for AL

0 = 2
g2
d ⋆ FΘ(−x) + 2

g2
⋆ F ∧ 𝛿(x)dx + iN

2𝜋
d𝜙 ∧ 𝛿(x)dx. (4.22)

in decomposition. Of course this is just the decomposition of the
TFT coefficient gcd(N,N′) in the fusion

SN × SN′ =
(gcd(N,N′)

)
Slcm(N,N′). (4.24)

We could gauge this 1-form symmetry on the defect, essentially
inserting a projector built out of the TPOs, and project onto a
single Slcm(N,N′) defect.
Similar considerations apply in other theories. For instance,

in U(1)2N Chern-Simons theory there is a non-1-anomalous ℤN
1-form symmetry generated by the Wilson line 𝜂 := exp(2i ∫ A),
and for any divisor n of N we can 1-gauge a ℤn subgroup gen-
erated by 𝜂m, where N = nm, to create a condensation defect Sn.
In the bulk theory the only TPOs are at junctions of Wilson lines
exp(iaj ∫ A) such that aj ∈ ℤ and

∑
j aj ≡ 0 (mod 2N). Again the

Sn defect has no free TPOs on it, and hence no 1-form symme-
try and no decomposition. We can once more look for the pos-
sibility of a bulk symmetry line ending on the defect at a topo-
logical point. In order to attach on to the network of lines from
the 1-gauging, the bulk line must be of the form exp(2ikm ∫ A),
i.e. it must be (𝜂m)k for some integer k. However, now there is
an additional twist relative to the Maxwell case. Since these Wil-
son lines have non-trivial braiding, an 𝜂m line along the defect
can produce a phase if it encircles the point where the bulk line
meets the defect. When we 1-gauge we sum over all such config-
urations and the phases will cancel out unless the meeting point
is invariant (essentially we project onto ℤn-invariant bulk lines),
and this will happen if and only if the bulk line has the form 𝜂n𝓁

for some integer 𝓁. In summary then, the only way for a bulk
line 𝜂a to meet the defect topologically is if m|a and n|a, where
N = nm. Now if we want to fuse a pair of defects Sn and Sn′ , with
N = nm = n′m′, then there can be a bulk line 𝜂a between them if
and only if a is a multiple of n, of m, of n′, and of m′. There will
be g := gcd(n,m, n′, m′) such configurations in total, generating a
ℤg 1-form symmetry on the fusion product (again corresponding
to a g TFT coefficient). This matches the results in [10, 61, 62].

5. Proposal for Additional Defects

So far in this paper we have discussed condensation defects. In
this section, we will propose a related set of objects, which are
not, to our knowledge, condensation defects, but which in some
respects seem analogous.
Let us outline our proposed defects formally. Suppose a d-

dimensional quantum field theory has a k-form symmetry, and
restrict to a (d − p)-dimensional submanifold Σ. (To be clear,
when we speak of restricting to Σ, we imagine working locally on
Σ ×ℝp, and dimensionally-reducing to Σ.) If k = d − p − 1, then
the restriction of the theory to Σ will decompose (as the restric-
tion to Σ is a (d − p)-dimensional theory with a (d − p − 1)-form
symmetry).
Now, given any quantum field theory in d dimensions,

schematically with action

S0 = ∫X
ddx, (5.1)

we are free to introduce new fields that propagate along a sub-
manifolds Σ ⊂ X . Specifically, in our proposed defects, we intro-
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duce tensor field potentials and couplings along Σ which gauge
the k-form symmetry on Σ, giving a total theory with action of the
form

S = S0 + 1
g2 ∫Σ

dd−px1, (5.2)

where 1∕g2 is related to the tension of the defect, and 1 is the
Lagrangian density for fields along the defect.
AlongΣ, the result of this gauging is to project to a subset of the

universes of the decomposition along Σ, as in [42]. To define the
gauging we pick a theta angle, whose choice determines which
subset is projected onto by the gauging. The resulting theories
define our proposal for a class of defects.
In this section, we will make that proposal explicit in exam-

ples, both for these defects themselves as well as for their fusion
products, computed in a limit in which the defect is massive, to
minimize interactions with bulk fields.
Although the construction will be analogous to a higher gaug-

ing, the result will not be precisely the same as a condensation de-
fect. For example, in a condensation defect along a codimension
p submanifold Σ, p-gauging a k-form symmetry of the ambient
theory looks, along Σ, like gauging a (k − p)-form symmetry. By
contrast, in this section we consider gauging a k-form symmetry
along Σ, not a (k − p)-form symmetry.
Since these defects are not condensation defects, they need not

be topological, for example. Nevertheless, we believe they may
be of interest, so we define them and propose computations of
fusion rules.

5.1. Two-Dimensional Defects in Orbifolds

5.1.1. Construction

Consider a three- or four-dimensional10 orbifold [X∕Γ], where

1 ←→ K ←→ Γ ←→ G ←→ 1, (5.3)

andK acts trivially. SinceK acts trivially, the theory has a BK sym-
metry – but not a decomposition, for which we would need a two-
or three-form symmetry, depending upon dimension.
Now, restrict the theory to a 2-submanifold Σ. The restriction

is a two-dimensional orbifold with a trivially-acting subgroup,
hence again a one-form symmetry, and now, a decomposition.
We can produce an analogue of a condensation defect by gaug-
ing that global one-form symmetry along Σ, which, following [42]
and as reviewed in section 2.1, selects out a universe (depending
upon the theta angle chosen).
So, for each 2-submanifold Σ, we now have a collection of de-

fects, one for each universe in the decomposition of the two-
dimensional orbifold [X∕Γ].
Now, let us compute fusion rules. Following [42], the defect is

obtained by gauging a 1-form symmetry BK on a theory on the
two-dimensional space Σ, which means the path integral

10 The dimension indicated is that of the space on which the quantum
field theory lives, and is not related to the dimension of the target space
X . Also, if X is not flat, then the orbifold theory should be understood
as a low-energy effective field theory, as also discussed in [48].

• sums over K gerbes, and then,
• for each K gerbe, sums over K-twisted bundles and maps into
X .

In principle, in the path integral of the fusion of two defects along
the same submanifold Σ, one would like to tensor together the K
gerbes and the K-twisted bundles.
We consider these two issues in turn. First, consider the

gerbes. Since K is abelian, K is a product of cyclic groups, so for
simplicity of presentation, and without loss of generality, let us
suppose that K is cyclic, and imagine computing a fusion prod-
uct of two such defects. Suppose one defect is defined by gauging
Bℤp, and the other by gauging Bℤk, where both ℤk,ℤ𝓁 ⊂ K. Let
us first consider the gerbes in the path integral. In the collision,
one has a product of a ℤp gerbe and a ℤk gerbe. This product is
a ℤpk gerbe, induced from a ℤlcm(p,k) gerbe. Note that ℤpk is not
necessarily a subgroup of K, so we cannot consistently extend
the gerbes on either side to ℤpk, as the groups are assumed to lie
within K. However, it will always be the case that ℤlcm(p,k) ⊂ K,
so we extend the gerbes on either side to ℤlcm(p,k) gerbes. Doing
that change of variables in the path integral on Σ × I will leave
the Bℤgcd(p,k) uncoupled.
More formally11,

1 ←→ ℤgcd(p,k) ←→ ℤp × ℤk ←→ ℤlcm(p,k) ←→ 1, (5.4)

which induces

H2(Σ,ℤgcd(p,k)) ←→ H2(Σ,ℤp × ℤk) ←→ H2(Σ,ℤlcm(p,k)) ←→ 0.(5.5)

For our purposes, this means that the product of ℤp and ℤk
gerbes can be described as ℤlcm(p,k) ⊂ K gerbes, and the mapping
to ℤlcm(p,k) gerbes has, as fiber, ℤgcd(p,k) gerbes.
Now that we have a picture of how to combine the gerbes, we

turn to the bundles. Unfortunately, if G is not abelian, we do not
know of a well-defined way to tensor two G bundles to get an-
otherG bundle. To make sense of this product, we borrow a trick
fromOPE computations of anomalies (see e.g. [63, section 19.1]),
where one repairs gauge invariance by connecting two opera-
tors, separated by a finite distance, by a Wilson line. Here, we
extend Σ to a box, Σ × I, for I an interval, with the two defects at
either end of the interval, where we shrink the interval to zero
size at the end of the computation. The path integral sums over
isomorphisms between the boundaries. For bundles, this means
the path integral sums over gauge fields in the interior, generat-
ing parallel transporters which explicitly identify boundary fields.
For gerbes, the gerbes on the ends are forced to be isomorphic,
and so we can identify them, following the gcd/lcm prescription
described above.
Let us make this more explicit. To compute a fusion product,

we extend Σ to a box, Σ × I, for I an interval, with the two de-
fects at either end of the interval. After doing the computation,
we then shrink the interval to zero size. For example, if Σ = T2,
we consider a box T2 × I

11 We would like to thank T. Pantev for a discussion of these products.
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with

(5.6)

at either end, where we now think of y, z ∈ ℤlcm(p,k).
Since I is contractible, these twisted bundles must be isomor-

phic, and the edges parallel to the interval provide parallel trans-
porters relating the holonomies around the edges. In particular,
for this box to be nonzero requires y = z and

g1 = 𝛾g2𝛾
−1, h1 = 𝛾h2𝛾

−1, (5.7)

for some 𝛾 ∈ Γ (corresponding to the edges parallel to I). To con-
tribute to a twisted sector, consistency requires

g1h1 = h1g1y, g2h2 = h2g2z, (5.8)

and it is straightforward to check that so long as (5.7) holds, and
K is in the center of Γ, the two conditions (5.8) are equivalent to
one another.
Now, let us assemble these pieces. In a limit of large mass

(e.g. g2 → 0), the partition function for a single defect, gauging
BK, on Σ = T2 is of the form [42, equ’n (6.9)]

(5.9)

where

(5.10)

denotes a twisted sector of the Γ orbifold which has been twisted
by a K gerbe with characteristic class z ∈ H2(Σ, K) = K, and 𝜖𝓁(z)
is a theta angle for the gauged one-form symmetry. (The choice of
𝜖𝓁 determines which universe, or collection of universes, in the
decomposition is selected by the one-form-symmetry gauging.)
In the same limit, the partition function of the fusion product

of two such defects on Σ = T2, one with a gauged ℤp, the other
with a gauged ℤk, is then of the form

(5.11)

where we sum over g1, h1, g2, h2, 𝛾 ∈ Γ such that

gihi = higiz, g1 = 𝛾g2𝛾
−1, h1 = 𝛾h2𝛾

−1. (5.12)

(The overall factor of the gcd reflects the uncoupledℤgcd(p,k) gerbe
in the path integral, and the fact that the denominator has a factor
of the order of ℤlcm(p,k) reflects the fact that the separate ℤp and
ℤk gerbes have been replaced by a gerbe of order lcm(p, k).) We
shall see in examples that in general this is a rather complicated
combinatorial condition.
In the next several subsections we will work through details of

examples of these computations. We will begin in sections 5.1.2,
5.1.5 with a pair of relatively simple examples, orbifolds in which

the entire orbifold group acts trivially, closely analogous to ex-
amples in [10]. Our later examples in sections 5.1.3, 5.1.4 discuss
more general cases, involving nonabelian orbifolds in which only
a subgroup acts trivially on the space.

5.1.2. Example: ℤ2 Gauge Theory

Consider the case that the three-dimensional orbifold is [X∕ℤ2]
with theℤ2 itself acting trivially, closely analogous to examples in
[10, section 6.3] and described earlier in section 4.2. (That said,
we emphasize again that in this section we are gauging a 1-form
symmetry along the defect, not a 0-form symmetry, so this is not
the same as the condensation defects studied there.) This theory
has a Bℤ2 symmetry, and its restriction to a two-dimensional Σ
therefore decomposes, in this case to two identical copies of a
sigma model on X . If we gauge Bℤ2 along Σ, then depending
upon the choice of discrete theta angle, we will recover each of
those two sigma models.
As before, suppose that Σ = T2, so that in the large tension

limit the partition function for Sk(Σ) is [42, equ’n (6.9)]

(5.13)

Here, however, there are no contributions when z ≠ 1, as all of
the group elements are abelian, and as 𝜖k(1) = +1 for all k, this
reduces to

(5.14)

for both values of k.
Now, let us compute the fusion product (5.11):

(5.15)

where K = Γ = ℤ2 in this case. Now, since Γ = ℤ2 is abelian, the
equation

gihi = higiz (5.16)

can only be solved when z = 1, and also since Γ = ℤ2 is abelian,

g1 = 𝛾g2𝛾
−1 = g2, h1 = 𝛾h2𝛾

−1 = h2, (5.17)

independent of Γ. Thus, g2 and h2 are uniquely determined by g1
and h1, and the sum over 𝛾 just contributes an overall factor of|Γ| = 2. Thus, we find

Fortschr. Phys. 2022, 70, 2200130 2200130 (12 of 20) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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(5.18)
(2)Z(X) (5.19)

for all 𝓁1,2, as 𝜖𝓁(+1) = +1 and, since the ℤ2 acts trivially,

(5.20)

for all (commuting) pairs g, h ∈ Γ.
In terms of the fusion product, we interpret the factor of 2 to

mean that two copies of the defect appear. In other words, our two
defects S0(Σ) ≅ S1(Σ), and if we write Se for either, the partition
function above implies

Se × Se = 2Se. (5.21)

This fusion product for closely analogous defects was also
computed in [10, section 6.3]. There, one single condensation de-
fect Se(Σ) was discussed, which here appears as a pair of defects
S0,1(Σ), and the fusion product computed there [10, equ’n (6.64)]
matches the result above, modulo describing a disjoint union of
two copies of Se as a TFT coupled to Se (as discussed earlier in
section 4.1).
In sections 5.1.3, 5.1.4 we will discuss more general examples

in which a Bℤ2 is gauged in an orbifold with a trivially-acting ℤ2,
and in those examples, the two defects S0,1(Σ) will no longer be
isomorphic, though we will find that they still obey a variation of
the fusion product above.

5.1.3. Example: [X∕D4]

Consider an orbifold [X∕D4], whereD4 is the eight-element dihe-
dral group, and the ℤ2 center ofD4 acts trivially on X . The result-
ing three-dimensional orbifold has a global Bℤ2 symmetry. Let Σ
be a 2-submanifold, and restrict the orbifold to Σ. The restriction
to Σ decomposes:

[X∕D4]|Σ = [X∕ℤ2 × ℤ2]|Σ ∐ [X∕ℤ2 × ℤ2]d.t.|Σ, (5.22)

where the d.t. subscript indicates discrete torsion, as has been
discussed in e.g. [1, section 5.2]. If we gauge the Bℤ2 along Σ, as
discussed in [42, section 6.2] and reviewed in section 2.1, then
depending upon theta angles, we can get either [X∕ℤ2 × ℤ2] or
[X∕ℤ2 × ℤ2]d.t.. Let S0(Σ) denote theℤ2 × ℤ2 orbifold without dis-
crete torsion, and S1(Σ) the orbifold with discrete torsion:

S0(Σ) = [X∕ℤ2 × ℤ2]|Σ, S1(Σ) = [X∕ℤ2 × ℤ2]d.t.|Σ. (5.23)

Now, let us consider their fusion products. To be explicit, sup-
pose that Σ = T2. Then, in the limit of large mass, the partition
function for a single defect Sk(Σ) is [42, equ’n (6.9)]

(5.24)

where

(5.25)

denotes a twisted sector of theD4 orbifold which has been twisted
by a ℤ2 gerbe with characteristic class z ∈ H2(Σ,ℤ2) = ℤ2, and

𝜖k(z) = zk =

{
+1 z = 1 or k = 0,

−1 z = −1 and k = 1.
(5.26)

To compute the fusion, let us enumerate twisted sectors. Fol-
lowing the same notation as [1, 42], write

D4 = {1, z, a, b, az, bz, ab, ba = abz}, (5.27)

where a2 = 1 = z2, b2 = z generates the ℤ2 center, which is quo-
tiented to form ℤ2 × ℤ2. Also, write ℤ2 × ℤ2 = ⟨a, b⟩, where the
projection of a, az ∈ D4 is a ∈ ℤ2 × ℤ2, and the projection of
b, bz ∈ D4 is b ∈ ℤ2 × ℤ2. To help keep track of computations, let
A denote all of theD4 twisted sectors appearingwhen z = +1, and
B denote all of the D4 twisted sectors appearing for z = −1. As
discussed in [42], for z = +1, the D4 twisted sectors correspond
to ℤ2 × ℤ2 twisted sectors that lift to D4, which almost all do, ex-
cept for sectors of the form

(5.28)

The set above defines B.
Now, in the large mass limit, the partition function of the fu-

sion product is of the form (5.11), here

(5.29)

where we have already identified the gerbe characteristic classes
on either end as a single z ∈ H2(T2,ℤ2) = ℤ2, and where

g1 = 𝛾g2𝛾
−1, h1 = 𝛾h2𝛾

−1. (5.30)

Counting g1, h1, g2, h2, 𝛾 ∈ D4 such that, for any fixed z ∈ K ⊂

D4,

gihi = higiz, g1 = 𝛾g2𝛾
−1, h1 = 𝛾h2𝛾

−1 (5.31)

is a nontrivial combinatorial problem. For example, in the z = 1
sector, if we let L and R denote the diagrams on either end of the
box, then

(5.32)

are related by any 𝛾 ∈ D4, since both 1, z commute with every-
thing, but only 𝛾 ∈ {b, bz, ab, abz} can relate

(5.33)
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Table 1. Listed here are some prototypical examples of twisted sectors L, R
on the boundary of the box, 𝛾 ∈ D4 relating them,ℤ2 × ℤ2 twisted sectors
to which they project, and the total number of (g1, h1, g2, h2, 𝛾) ∈ D5

4 of this
form that project to the sameℤ2 × ℤ2 twisted sector, all for the case z = 1.

Table 2. Listed here are some prototypical examples of twisted sectors L, R
on the boundary of the box, 𝛾 ∈ D4 relating them,ℤ2 × ℤ2 twisted sectors
to which they project, and the total number of (g1, h1, g2, h2, 𝛾) ∈ D5

4 of this
form that project to the sameℤ2 × ℤ2 twisted sector, all for the case z ≠ 1.

and there are no 𝛾 ∈ D4 at all that can relate

(5.34)

In Table 1 we have compiled a list of prototypical examples
of L, R boundary configurations, ℤ2 × ℤ2 orbifold twisted sec-
tors to which they project, and a count of the total numer of
(g1, h1, g2, h2, 𝛾) of the form given, for the case z = 1. In Table 2
we have listed analogous examples for the case z ≠ 1.
Briefly, we find that in each case, for eachℤ2 × ℤ2 sector, there

are (4)(8) = 32 sets of (g1, h1, g2, h2, 𝛾) that realize that sector. The
details of how those sectors are implemented by (g1, h1, g2, h2, 𝛾)
vary considerably between cases, as the tables illustrate.
Now, we can simplify the partition function of the fusion prod-

uct (5.29, following the same analysis as in [42]. First,

𝜖k(z) 𝜖𝓁(z) = 𝜖k+𝓁(z). (5.35)

From the same reasoning as in [42], when k + 𝓁 = 0 mod 2, this
will simply add together the z = 1 and z = −1 sectors, but when
k + 𝓁 = 1 mod 2, this will have the effect of multiplying some
of theℤ2 × ℤ2 sectors by discrete torsion (as precisely the z = −1
sectors are the ones that are weighted by signs under ℤ2 × ℤ2
discrete torsion). Putting this together, we see that

{
2ZT2

(
[X∕ℤ2 × ℤ2]

)
= 2Z

(
S0(Σ)

)
k + 𝓁 ≡ 0 mod 2,

2ZT2
(
[X∕ℤ2 × ℤ2]d.t.

)
= 2Z

(
S1(Σ)

)
k + 𝓁 ≡ 1 mod 2,

(5.36)

where the d.t. subscript indicates that the ℤ2 × ℤ2 orbifold is
computed with discrete torsion.
The factor of 2 should be interpreted to mean that the fusion

product Si(Σ) × Sj(Σ), is two copies, either

[X∕ℤ2 × ℤ2]|Σ ∐ [X∕ℤ2 × ℤ2]|Σ (5.37)

or

[X∕ℤ2 × ℤ2]d.t.|Σ ∐ [X∕ℤ2 × ℤ2]d.t.|Σ (5.38)

along Σ, or in other words,

S0(Σ) × S0(Σ) = 2S0(Σ), (5.39)

S0(Σ) × S1(Σ) = 2S1(Σ), (5.40)

S1(Σ) × S1(Σ) = 2S0(Σ). (5.41)

These defects arose from gauging a Bℤ2 in an orbifold with
a trivially-acting ℤ2, closely related to the example discussed in
[10, section 6.3] and our section 5.1.2. There, as was previously
observed in our section 5.1.2, the analogue of the defect that is
labelled “Se” in [10, section 6.3] is here two distinct, albeit iso-
morphic, defects. In this example, the distinction between those
two defects S0(Σ), S1(Σ) is much more clear.
The fusion rule obtained in [10, section 6.3] for Se was simply

Se × Se = Se + Se. (5.42)

The fusion rules we have derived above for S0,1(Σ) are therefore
of the expected form, as they refine the fusion rule for Se in sec-
tion 5.1.2, analogous to fusion rules for condensation defects in
[10, section 6.3]. (The reader may find it useful to recall from sec-
tion 4.1 that Se + Se is equivalent to coupling Se to a particular
topological field theory.)

5.1.4. Example: [X∕ℍ]

Now, consider the three-dimensional orbifold [X∕ℍ], where ℍ is
the eight-element group of unit quaternions, and ⟨i⟩ ≅ ℤ4 ⊂ ℍ
acts trivially on X .
This three-dimensional theory has a one-form symmetry, and

its restriction to a two-dimensional submanifold Σ of spacetime
decomposes, as [1, section 5.4]

[X∕ℍ]|Σ = X|Σ ∐ [X∕ℤ2]|Σ ∐ [X∕ℤ2]|Σ. (5.43)

Becauseℤ4 is not in the center, part of that one-form symmetry is
realized non-invertibly, as discussed in [29]. That trivially-acting
ℤ4 contains the ℤ2 center of ℍ, and the Bℤ2 is realized linearly.
Consider gauging that Bℤ2 symmetry along Σ. Applying a

slight variant12 of the analysis in [42, section 6.3], reviewed in

12 Reference [42, section 6.3] formally considered gauging the Bℤ4, not
just the ℤ2. The analysis for Bℤ2 is nearly identical, the only real
change is to replace the 1∕|ℤ4| factor with 1∕|ℤ2|, as only z = ±1 con-
tribute to the sum over gerbes. The results of the Bℤ2 gauging are as
indicated above.
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Table 3. Some prototypical examples of twisted sectors on the boundary of
the box defining a fusion product of defects onΣ = T2 in [X∕ℍ], for z = +1.

(g1, h1) (g2, h2) 𝛾 ℤ2 sector Number

(±1,±1) same all (1,1) (4)(8)

(±1,±i) same ±1,±i (1,1) (4)(4)

(±1,±i) (±1,∓i) ±j,±k (1,1) (4)(4)

(±i,±1) same ±1,±i (1,1) (4)(4)

(±i,±1) (∓i,±1) ±j,±k (1,1) (4)(4)

(±i,±i) same ±1,±i (1,1) (4)(4)

(±i,±i) (∓i,∓i) ±j,±k (1,1) (4)(4)

(±j,±j) same ±1,±j (𝜉, 𝜉) (4)(4)

(±j,±j) (∓j,∓j) ±i,±k (𝜉, 𝜉) (4)(4)

(±k,±k) same ±1,±k (𝜉, 𝜉) (4)(4)

(±k,±k) (∓k,∓k) ±i,±j (𝜉, 𝜉) (4)(4)

section 2.1, by gauging a Bℤ2, one gets (depending upon the one-
form theta angle) either

[X∕ℤ2]|Σ ∐ [X∕ℤ2]|Σ (5.44)

(for 𝜖(z = −1) = +1) or

X|Σ (5.45)

(for 𝜖(z = −1) = −1). Denote the two resulting defects by S0,1(Σ):

S0(Σ) = [X∕ℤ2]|Σ ∐ [X∕ℤ2]|Σ, S1(Σ) = X|Σ. (5.46)

In this case, S0(Σ) is reducible, thoughwewill not utilize that fact.
Next, let us compute the fusion product of these defects. Take

Σ = T2, then from (5.11), we have that the partition function of
the fusion is of the form

(5.47)

where

g1 = 𝛾g2𝛾
−1, h1 = 𝛾h2𝛾

−1. (5.48)

As before, counting collections (g1, h1, g2, h2, 𝛾) satisfying the
conditions above for any fixed z is an exercise in combinatorics.
In Tables 3, 4 we have summarized results for some pertinent
cases, and a summary of the sector counting is given inTable 5. In
the tables, 𝜉 denotes the generator of the effectiveℤ2 = ℍ∕⟨i⟩ orb-
ifold.
Now, we can assemble these pieces. From table 5, we see that

the partition function of the fusion product is given by

Table 4. Some prototypical examples of twisted sectors on the boundary of
the box defining a fusion product of defects onΣ = T2 in [X∕ℍ], for z = −1.

(g1, h1) (g2, h2) 𝛾 ℤ2 sector Number

(±1,±j) same ±1,±j (1, 𝜉) (4)(4)

(±1,±j) (±1,∓j) ±i,±k (1, 𝜉) (4)(4)

(±1,±k) same ±1,±k (1, 𝜉) (4)(4)

(±1,±k) (±1,∓k) ±i,±j (1, 𝜉) (4)(4)

(±i,±j) same ±1 (1, 𝜉) (4)(2)

(±i,±j) (±i,∓j) ±i (1, 𝜉) (4)(2)

(±i,±j) (∓i,±j) ±j (1, 𝜉) (4)(2)

(±i,±j) (∓i,∓j) ±k (1, 𝜉) (4)(2)

(±i,±k) same ±1 (1, 𝜉) (4)(2)

(±i,±k) (±i,∓k) ±i (1, 𝜉) (4)(2)

(±i,±k) (∓i,±k) ±k (1, 𝜉) (4)(2)

(±i,±k) (∓i,∓k) ±j (1, 𝜉) (4)(2)

(±j,±k) same ±1 (𝜉, 𝜉) (4)(2)

(±j,±k) (±j,∓k) ±j (𝜉, 𝜉) (4)(2)

(±j,±k) (∓j,±k) ±k (𝜉, 𝜉) (4)(2)

(±j,±k) (∓j,∓k) ±i (𝜉, 𝜉) (4)(2)

Table 5. A summary of the counting of twisted sectors appearing in the
fusion product of defects in [X∕ℍ] and their relation toℤ2 orbifold sectors.

ℤ2 sector Num. appearances in z = +1 Num. appearances in z = −1

(1,1) 128 0

(1, 𝜉) 64 64

(𝜉, 1) 64 64

(𝜉, 𝜉) 64 64

{
4ZT2

(
[X∕ℤ2]

)
= 2Z

(
S0(Σ)

)
𝓁1 + 𝓁2 = 0 mod 2,

2ZT2 (X) = 2Z
(
S1(Σ)

)
𝓁1 + 𝓁2 = 1 mod 2.

(5.49)

Put more simply, this implies the fusion rules

S0(Σ) × S0(Σ) = 2S0(Σ), (5.50)

S0(Σ) × S1(Σ) = 2S1(Σ), (5.51)

S1(Σ) × S1(Σ) = 2S0(Σ), (5.52)

of the form expected from results in sections 5.1.2, 5.1.3, and
similar to results for analogous condensation defects in [10, sec-
tion 6.3].

5.1.5. Example: ℤp Gauge Theory

Let us now consider the case that the three-dimensional orbifold
is [X∕ℤp] with all of the ℤp acting trivially, as in [10, section 6.4].
This theory has a Bℤp symmetry, and its restriction to a two-
dimensional Σ therefore decomposes, in this case to p identical
copies of a sigma model on X . If we gauge Bℤn along Σ, for n a
divisor of p, then depending upon the choice of one-form theta
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angle, we will recover subsets of that collection of sigma mod-
els, consisting of sums of p∕n copies of sigma models on X . We
will denote those defects Sp,n,k(Σ), where n divides p (correspond-
ing to the gauged Bℤn) and k ∈ {0,… , n − 1}, indexing the vari-
ous copies.
As before, suppose that Σ = T2, so that in the large tension

limit the partition function for Sp,n,k(Σ) is [42, equ’n (6.9)]

(5.53)

Here, as ℤp is abelian, there are no contributions when z ≠ 1,
and as 𝜖k(+1) = +1 for all k, this reduces to

(5.54)

for all values of k, corresponding to p∕n copies of a sigma model
on X . In particular, this suggests that

Sp,n,i(Σ) ≅ Sp,n,j(Σ) ≅ ⊕p∕nX|Σ (5.55)

for all i, j ∈ {0,… , n − 1}. Since the result is independent of the
last index, we will sometimes write each of these defects as
Sp,n(Σ), omitting the last index.
Now, let us compute the fusion product, when one defect has

a gauged Bℤn, and the other a gauged Bℤn′ . From (5.11), the par-
tition function of the fusion product is

(5.56)

In this case, since Γ is abelian, the only solutions of

gihi = higiz (5.57)

require z = 1, and as 𝜖𝓁(z = 1) = +1, the 𝜖 factors drop out. Fur-
thermore, since Γ is abelian,

g1 = 𝛾g2𝛾
−1 = g2, h1 = 𝛾h2𝛾

−1 := h2, (5.58)

so we see that g2, h2 are uniquely determined by g1, h1, and the
sum over 𝛾 merely contributes an overall factor of |Γ| = |ℤp|.
Putting this together, we find

(5.59)

(5.60)

The computation above suggests that the fusion product is

Sp,n × Sp,n′ = ⊕(p)gcd(n,n′)∕lcm(n,n′)X|Σ, (5.61)

which can be rewritten in terms of the Sp,m for variousm depend-
ing upon p, n, n′. The reader should note that since n and n′ both
divide p, the ratio

p
gcd(n, n′)
lcm(n, n′)

(5.62)

is a positive integer.
Now, let us compare to the results for analogous condensation

defects in [10, section 6.4], which also considered ℤp gauge the-
ories in three dimensions, for p prime. The defects above corre-
spond, in the language of [10, section 6.4], to gauging a single
cyclic factor, hence their m = ∞. If we take p to be prime and
n = n′ = p, so that, for example,

Sp,n(Σ) = Sp,n′ (Σ) = X|Σ, (5.63)

then our result (5.61) reduces to

Sℤ(∞)
p

× Sℤ(∞)
p

= pX|Σ = pSℤ(∞)
p
, (5.64)

in the notation of [10, section 6.4], which matches the perti-
nent piece of [10, equ’n (6.70)], after taking into account the re-
lation between topological field theory factors and multiplicities
explained in section 4.1.
To be clear, our analysis is somewhat orthogonal to that of [10,

section 6.4], both because the defects here are not, so far as we are
aware, condensation defects, and also because [10, section 6.4]
considers more general gaugings (and hence more general de-
fects) for the case of p prime than we have considered here.

5.2. Three-Dimensional Defects in Orbifolds by 2-Groups

In this section we discuss three-dimensional defects, in higher-
dimensional orbifolds by 2-groups. We begin with an overview
of three-dimensional orbifolds by 2-groups, their decomposition,
as well as previously unpublished results on gauging global two-
form symmetries in such theories, then we turn to a study of
defects specifically.

5.2.1. Orbifolds by 2-Groups in Three Dimensions

Decomposition in three-dimensional orbifolds by 2-groups
was discussed in [48]. Specifically, that work discussed three-
dimensional orbifolds [X∕Γ̃] where Γ̃ is a two-group extension
of an ordinary finite groupG by a trivially-acting one-form group
BK:

1 ←→ BK ←→ Γ̃ ←→ G ←→ 1. (5.65)

Since the gauged BK acts trivially, the theory has a global 2-
form symmetry, and hence decomposes. Specifically, it was
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argued that

QFT
(
[X∕Γ̃]

)
=
∐
𝜌∈K̂

QFT
(
[X∕G]𝜌(𝜔)

)
, (5.66)

where 𝜔 ∈ H3(G,K) corresponds to the extension class of (5.65),
𝜌(𝜔) ∈ H3(G,K) is the composition of 𝜌 ∈ K̂ with the extension
class 𝜔, and the orbifold [X∕G] is twisted by a three-dimensional
analogue of discrete torsion, as in e.g. [51, 52].
If the three-manifold Y = T3, then the partition function of

[X∕Γ̃] is [48, equ’n (4.18)]

ZT3
(
[X∕Γ̃]

)
=
|H0(T3, K)||H1(T3, K)| 1|H0(T3, G)|
×

∑
z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G

′
Z(g1, g2, g3),

= 1|K|2|G| ∑
z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G

′
Z(g1, g2, g3), (5.67)

where the prime (′) indicates that the sum over elements of G is
restricted to those such that

𝜖Y (g1, g2, g3) = 1, (5.68)

reflecting the fact that not all G bundles appear as images of Γ̃
orbifolds, as discussed in [48]. For Y = T3,

𝜖Y=T3 (g1, g2, g3) =
𝜔(g1, g2, g3)
𝜔(g1, g3, g2)

𝜔(g3, g1, g2)
𝜔(g3, g2, g1)

𝜔(g2, g3, g1)
𝜔(g2, g1, g3)

, (5.69)

where 𝜔 ∈ H3(G,K) is the class of the extension (5.65). Project-
ing toG bundles of that form is equivalent to working with a sum
over universes, and it was argued in [48] that

ZT3
(
[X∕Γ̃]

)
=
∑
𝜌∈K̂

ZT3

(
[X∕G]𝜖𝜌)

)
, (5.70)

reflecting the decomposition (5.66).
Just as in the case of decomposing two-dimensional theories

discussed in [42], where one gauges the global one-form sym-
metry to recover individual universes, in principle in a decom-
posing three-dimensional theory one should be able to gauge the
global two-form symmetry to recover individual universes. In this
section we will review results on decomposition in such three-
dimensional orbifolds, and also suggest a concrete mechanism
to gauge the global two-form symmetry so as to recover individ-
ual universes in the decomposition, results we shall be utilizing
later in this paper.
Let us describe the partition function of such a gauging explic-

itly. In general terms, the partition function of [[X∕Γ̃]∕B2K] on a
three-manifold Y should have the form

ZY

([
[X∕Γ̃]∕B2K

])
= 1|K| ∑

𝛾∈H3(Y,K)

𝜖R(𝛾)

×
{
sum over 𝛾-twisted Γ̃ bundles and maps into X

}
, (5.71)

where 𝜖R(𝛾) is the gauged two-form theta angle associated with
R ∈ K̂ that determines which universe will be selected.
It is natural to conjecture that a 𝛾-twisted Γ̃ bundle onY defines

a G bundle on Y obeying the constraint

𝜖Y (P) = 𝛾 , (5.72)

and we will see that this correctly selects out universes when
gauging B2K in a three-dimensional theory.
Utilizing the conjecture above, our general formula (5.71) for

the partition function of a B2K gauged 2-group orbifold [X∕Γ̃] on
the three-manifold Y = T3 takes the form

ZY

([
[X∕Γ̃]∕B2K

])
= 1|K| ∑

𝛾∈H3(Y,K)

𝜖R(𝛾)

[
1|K|2|G| ∑z1−3∈K

∑
g1−3∈G,𝜖Y=𝛾

Z(g1, g2, g3)

]
,

(5.73)

where the sum in G is over commuting triples of elements of G
(such that 𝜖Y (g1, g2, g3) = 𝛾).
Let us check this in some simple examples. First, from [48,

section 4.3], consider the case G = ℤ2 = K, so that

1 ←→ Bℤ2 ←→ Γ̃ ←→ ℤ2 ←→ 1. (5.74)

As noted in [48, section 4.3], there is a nontrivial extension of
this form, which we take. For that extension, it was argued in [48,
section 4.3] that the theory decomposes as

QFT
(
[X∕Γ̃]

)
=
∐
𝜌∈K̂

QFT([X∕G]), (5.75)

all universes with trivial discrete torsion.
Now, we consider partition functions on Y = T3. As noted in

[48, section 4.3], for allG bundles on Y = T3 (meaning, commut-
ing triples (g1, g2, g3) ∈ G3),

𝜖Y (g1, g2, g3) = 1, (5.76)

regardless of the extension class 𝜔. As a result, there is no con-
straint onG bundles appearing in the partition function of [X∕Γ̃]
on T3, and the orbifolds [X∕G] appearing in the decomposition
do not have any discrete torsion. Explicitly, the partition function
of [X∕Γ̃] on Y = T3 was given by

ZT3
(
[X∕Γ̃]

)
= 1|K|2|G| ∑

z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G

Z(g1, g2, g3), (5.77)

= |K||G| ∑g1 ,g2 ,g3 Z(g1, g2, g3), (5.78)

= ZT3

⎛⎜⎜⎝
∐
𝜌∈K̂

[X∕G]
⎞⎟⎟⎠, (5.79)

consistent with the decomposition of [X∕Γ̃]
Next, we consider gauging the global B2K symmetry of this

theory. From the prescription we outlined above, the partition
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function on Y = T3 is given by

ZT3
([
[X∕Γ̃]∕B2K

])
= 1|K| ∑

𝛾∈H3(T3 ,K)=K

𝜖R(𝛾)

×

(
1|K|2|G| ∑

z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G,𝜖Y=𝛾

Z(g1, g2, g3)

)
. (5.80)

Since 𝜖Y (g1, g2, g3) = 𝛾 only has solutions in the case 𝛾 = 1, we
see that the only contributions to the path integral arise from
𝛾 = 1, hence

ZT3
([
[X∕Γ̃]∕B2K

])
= 1|K|

(
1|K|2|G| ∑

z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G

Z(g1, g2, g3)

)
, (5.81)

= 1|G| ∑
g1 ,g2 ,g3∈G

Z(g1, g2, g3), (5.82)

= ZT3 ([X∕G]), (5.83)

where we have used the fact that the theta angle 𝜖R(+1) = 1.
Thus, we see that the partition function of the B2K-gauged theory
matches that of the orbifold [X∕G] for all 𝜖R. This is consistent
with the original decomposition: all universes are identical,
copies of [X∕G], so we see that, trivially, for each R ∈ K̂, we have
recovered the corresponding universe of the decomposition.
Next, we consider a less trivial case. Specifically, consider the

case G = (ℤ2)
3, K = ℤ2, with extension

1 ←→ Bℤ2 ←→ Γ̃ ←→ (ℤ2)
3 ←→ 1 (5.84)

of extension class𝜔4 ∈ H3(G,K), as discussed in [48, section 4.4].
In this case, the decomposition is nontrivial:

QFT
(
[X∕Γ̃]

)
= QFT(]X∕G])

∐
QFT

(
[X∕G]d.t.

)
, (5.85)

where the second copy of [X∕G] has nontrivial discrete torsion.
The partition function of [X∕Γ̃] on Y = T3 takes the form

ZY=T3
(
[X∕Γ̃]

)
= 1|K|2|G| ∑

z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G,𝜖Y=1

Z(g1, g2, g3). (5.86)

In this case, the constraint 𝜖Y (P) = 1 on G bundles arising as Γ̃
bundles is nontrivial for Y = T3, and as discussed in [48, sec-
tion 4.4],

ZY=T3
(
[X∕Γ̃]

)
= |K||G| ∑

g1−3∈G,𝜖Y=1
Z(g1, g2, g3), (5.87)

= ZT3

(
[X∕G]

∐
[X∕G]d.t.

)
. (5.88)

Next, we gauge the B2K action on the theory above. From the
general prescription (5.73),

ZY=T3
([
[X∕Γ̃]∕B2K

])
= 1|K| ∑

𝛾∈H3(T3 ,K)=K

𝜖R(𝛾)

×

(
1|K|2|G| ∑

z1 ,z2 ,z3∈K

∑
g1 ,g2 ,g3∈G,𝜖Y=𝛾

Z(g1, g2, g3)

)
, (5.89)

= 1|K| 𝜖R(+1)
(|K||G| ∑

g1−3∈G,𝜖Y=+1
Z(g1, g2, g3)

)

+ 1|K| 𝜖R(−1)
(|K||G| ∑

g1−3∈G,𝜖Y=−1
Z(g1, g2, g3)

)
. (5.90)

In the case that 𝜖R(−1) = +1,

ZY=T3
([
[X∕Γ̃]∕B2K

])
= 1|G| ∑

g1 ,g2 ,g3∈G
Z(g1, g2, g3), (5.91)

= ZY=T3 ([X∕G]), (5.92)

consistent with

QFT
([
[X∕Γ̃]∕B2K

])
= QFT([X∕G]), (5.93)

recovering one of the two universes of the decomposition (5.85).
In the case that 𝜖R(−1) = −1,

ZY=T3
([
[X∕Γ̃]∕B2K

])
= 1|G| ∑

g1 ,g2 ,g3∈G
𝜖Y (g1, g2, g3)Z(g1, g2, g3),

(5.94)

= ZY=T3
(
[X∕G]d.t.

)
, (5.95)

where 𝜖Y (g1, g2, g3) represents the phase arising from discrete tor-
sion in this context[51,52] (which is a minus sign on the sectors
which were excluded in the original Γ̃ orbifold), consistent with

QFT
([
[X∕Γ̃]∕B2K

])
= QFT

(
[X∕G]d.t.

)
. (5.96)

In this case, we recover the other universe of the decomposi-
tion (5.85), as expected.

5.2.2. Defects

In this section we will consider a three-dimensional defect in a
four-dimensional low-energy effective orbifold [X∕Γ̃] by a 2-group
Γ̃:

1 ←→ BK ←→ Γ̃ ←→ G ←→ 1, (5.97)

where BK acts trivially, and the extension is classified by 𝜔 ∈
H3(G,K), as in [48] and as reviewed in section 5.2.1.
Because the BK acts trivially, the resulting theory has a global

two-form symmetry. In a four-dimensional theory, this would not
result in a decomposition, but in a three-dimensional theory, as
along a defect Y , it does.
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Restrict the four-dimensional theory above to a three-
dimensional submanifold Y of spacetime, the location of the de-
fect. The restriction of the four-dimensinoal theory to Y is a the-
ory with a global two-form symmetry, and so decomposes. We
will product an analogue of a condensation defect by gauging that
global two-form symmetry, as reviewed in section 5.2.1, which se-
lects out a universe (depending upon the theta angle chosen).
So, for each three-dimensional submanifold Y , we now have a

collection of defects, one for each universe in the decomposition
of a three-dimensional orbifold [X∕Γ̃].
Now, let us consider fusion rules. Following section 5.2.1, the

defect s obtained by gauging a 2-form symmetry B2K on a theory
on the three-dimensional space Y , which means the path inte-
gral

• sums over K 2-gerbes, and then,
• for each K 2-gerbe, sums over 2-gerbe twisted Γ̃-bundles and
maps into X .

In principle, just as in the two-dimensional case, in the path in-
tegral of the fusion of the two defects along the same submani-
fold Y , one would like to tensor together the K 2-gerbes and the
twisted Γ̃-bundles, for which one runs into analogues of the same
issues encountered in two-dimensional examples previously.
First, let us discuss tensoring the 2-gerbes. Our analysis here

is very similar to that in the two-dimensional orbifold examples
earlier, and we shall closely follow the same pattern. Since K is
abelian, it suffices to assume that K is cyclic. Suppose one defect
is defined by gaugingB2ℤp, and the other by gaugingB

2ℤk, where
both ℤp,ℤk ⊂ K. Formally, the product of these 2-gerbes maps to
a ℤpk 2-gerbe; however, that overcounts physical degrees of free-
dom, as a common ℤgcd(p,k) 2-gerbe can be eliminated through a
change of variables. Proceeding in a fashion closely analogous to
the two-dimensional case, the relation (5.4) induces

H3(Y,ℤgcd(p,k)) ←→ H3(Y,ℤp × ℤk) ←→ H3(Y,ℤlcm(p,k)) ←→ 0.

(5.98)

Put more simply, this means that the product of ℤp and ℤk 2-
gerbes can be described as ℤlcm(p,k) ⊂ K 2-gerbes, and the map-
ping to ℤlcm(p,k) 2-gerbes has, as fiber, ℤgcd(p,k) 2-gerbes.
Next, we turn to the Γ̃ bundles. As in the case of two-

dimensional orbifolds, we do not know of a way to simply tensor
together the bundles in general. However, as in our previous dis-
cussion, we can instead borrow a trick from OPE computations
of anomalies, and compute the fusion products by replacing Y
with a box Y × I, with the defects at either boundary. As before,
since I is contractible, the path integral sums over isomorphisms
between the data at each boundary.
Assembling these pieces, and using results for partition func-

tions for Γ̃ orbifolds and B2K orbifolds thereof, we find that in
a large mass limit, the partition function of the fusion product
of one defect obtained by gauging B2ℤp and another obtained by
gauging B2ℤk on Y = T3 is

gcd(p, k)|ℤlcm(p,k)| ∑
k∈H3(Y,ℤlcm)

[|K|2|G|2 ∑
g1−3∈G,𝜖Y=k

∑
h1−3∈G,𝜖Y=k

×
∑
𝛾∈G

𝜖𝓁1 (k) 𝜖𝓁2 (k)Z(g1−3, h1−3, k)

]
, (5.99)

where

gigj = gjgi, hihj = hjhi, gi = 𝛾hi𝛾
−1, (5.100)

and

𝜖Y (g1, g2, g3) = k = 𝜖Y (h1, h2, h3). (5.101)

Suppose for example that G is abelian, then 𝛾 effectively de-
couples as gi = hi, and the partition function above reduces to

gcd(p, k)|ℤlcm(p,k)| ∑
k∈H3(Y,ℤlcm)

[|K|2|G|2 |G| ∑
g1−3∈G,𝜖Y=k

𝜖𝓁1+𝓁2 (k)Z(g1−3, k)

]
,

=
(
gcd(p, k)

)|K|ZY

([
[X∕Γ̃]|Y∕B2ℤlcm(p,k)

])
. (5.102)

For example, if G = (ℤ2)
3, K = ℤ2, and p = k = 2, then denot-

ing the 𝓁th defect by S𝓁(Y), and assuming we did not drop any
factors, this becomes

S𝓁1
(T3) × S𝓁2

(T3) = (2)|ℤ2|S𝓁1+𝓁2 mod 2(T
3), (5.103)

= (4)S𝓁1+𝓁2 mod 2(T
3). (5.104)
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