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H I G H L I G H T S  

• We tested the role of vegetation structure, NDVI and PSRI for bird diversity. 
• Shrub cover and tree cover had strong positive effects on bird richness. 
• The PSRI, shrub cover and herbaceous cover had positive effects on bird rarity. 
• Heterogeneous vertical vegetation structure promotes bird richness and rarity. 
• Combining forests with spontaneous succession will balance richness and rarity.  
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A B S T R A C T   

Management of restored areas requires ecologically meaningful spatial data providing objective measures of 
restoration success. Understanding relationships between species diversity on the one hand and habitat het-
erogeneity and productivity on the other can help establish such measures and prioritize restoration manage-
ment. We used airborne LiDAR and hyperspectral data to derive characteristics of vegetation structure, primary 
productivity and senescent vegetation (i.e. old dead vegetation) for prediction of richness and rarity of bird 
communities colonizing newly available habitats restored after coal mining. In addition, we analysed, which type 
of restoration (i.e. agricultural, forest, or spontaneous succession) results in more favourable conditions. The 
boosted regression trees explained 52% and 12% of deviance of overall species richness and rarity, respectively. 
We found that the overall species richness was strongly affected by the variance in vegetation structure, while the 
rarity was also affected by the presence of senescent vegetation. The relative importance of variables differed 
between the richness and rarity. The shrub cover had a strong positive effect on both, while the tree cover had a 
strong positive effect on species richness. The herbaceous cover and presence of senescent vegetation had pos-
itive effects on species rarity. This study, therefore, supports the necessity to create a mosaic of habitats with 
heterogeneous vertical structure including all layers of vegetation and highlights the importance of senescent 
vegetation. Combination of forests restoration with sites left to spontaneous succession appears to be the best 
strategy to increase both bird species richness and rarity in newly restored sites after coal mining.  
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1. Introduction 

The mining of various raw materials has expanded globally in the last 
few decades with the growing demands for various commodities and 
their increasing consumption (Kung et al., 2020; Lèbre et al., 2020). On 
the one side, economic benefits and wealth generated by the resource 
industry are substantial (Svobodova, Owen, Harris, & Worden, 2020); 
on the other side, areas under mining lease are subject to significant 
landscape changes (Worlanyo & Jiangfeng, 2020). The changes are often 
associated with negative environmental impacts, including irreversible 
land degradation and biodiversity loss (Giam, Olden, & Simberloff, 
2018; Osenberg, 2018). However, under certain circumstances, mining 
and related activities can bring about also positive changes enhancing 
conservation value of the landscape (Šálek, Hendrychová, & Řehoř, 
2010; Schulz & Wiegleb, 2000; Vanhée & Devigne, 2018). 

Minimization of the negative effects of mining is typically ensured by 
ecological restoration, i.e. a process of assisting the recovery of an 
ecosystem that has been degraded, damaged, or destroyed (Clewell & 
Aronson, 2013; Martins et al., 2020). Monitoring of restored sites is 
required to gather ecologically meaningful data that can provide 
objective and quantitative measures of the restoration success. In prac-
tice, among other ecological measures, species diversity of various taxa 
is frequently used and many studies evaluated the effect of habitat 
heterogeneity on the diversity of species on restored sites (Crouzeilles, 
Ferreira, Chazdon, Lindenmayer, Sansevero, Monteiro, & Strassburg, 
2017; Martins et al., 2020). To model relationships between the species 
diversity and the heterogeneity of restored sites, however, the envi-
ronment is usually represented by semiquantitative or categorical 
measures only (e.g. by rough subjective estimates of vegetation cover). 
Moreover, even these measures are usually spatially and temporarily 
limited as field surveys traditionally used by ecologists are extremely 
labour-intensive, especially over larger areas (Bejček, 1988; Gould & 
Mackey, 2015; Hagger, Wilson, England, & Dwyer, 2019; Kolář, Ticha-
nek, & Tropek, 2017; Vojar et al., 2016). Although a direct field survey 
of habitat attributes can provide valuable information, it is unsuitable 
for repeated monitoring due to both labour intensiveness and limited 
informative value of subjective estimates, especially where detailed 
habitat characteristics are concerned. 

In this study, we aim to identify measures that can be easily derived 
from airborne remote sensing data and used as a more elegant and more 
precisely measurable alternative to simple and subjective field surveys. 
Airborne remote sensing data are increasingly available from national or 
regional scanning campagins (Melin, Shapiro, & Glover-Kapfer, 2017; 
Stereńczak et al., 2020). Such technologies represent efficient and cost- 
effective sources for developing indicators relevant to the large-scale 
decision making, to the understanding of continuous processes of site 
restoration, and developing effective management tools that will 
maintain high biodiversity of restored sites (e.g., Cordell et al., 2017; 
Laurin et al., 2020; Prošek et al., 2020; Urban, Štroner, Křemen, Braun, 
& Möeser, 2018). In addition, conservation strategies for post-industrial 
sites are highly debated in connection with restoration approaches 
(Hendrychová, Svobodova, & Kabrna, 2020), including the adopted 
restoration method (Tropek et al., 2010; Vicentini, Hendrychova, 
Tajovský, Pižl, & Frouz, 2020; Vymazal & Sklenicka, 2012). Therefore, 
we relate evaluated indicators to the individual restoration methods and 
provide recommendations for restoration practice. 

In the next chapter, the theoretical background of the research and 
ecological explanation for the selection of environmental variables 
derived from airborne remote sensing data will be discussed and the 
aims of this study will be clearly expressed. Chapter 3 introduces the 
study area, the data and its preprocessing, the environmental variables 
and statistical analyses including models evaluation. Chapters 4 and 5 
then present the obtained results followed by their discussion with 
respect to restoration goals and informing on possible limitations. 
Finally, the Chapter 6 contains conclusions and recommendations for 
resoration practice. 

2. State of the art 

Birds with their high dispersal ability play an important role in the 
early colonization of restored sites and therefore comprise one of the 
best indicators for the assessment of the restoration success (Bejček & 
Š̌tastný, 1984; Cardoso da Silva & Vickery, 2002; Martins et al., 2020). 
One of the important factors affecting bird species richness is the habitat 
heterogeneity. Habitat heterogeneity is determined by the variability of 
environmental conditions (e.g. habitat type, dominant vegetation spe-
cies, soil types, topography) and it is assumed that more complex en-
vironments may provide more niches and thus increase species diversity 
(so-called habitat heterogeneity hypothesis; see review by Tews et al., 
2004). 

A common approach of indicating heterogeneity of the habitat is to 
use the variability in its physical structure (physiognomy) (Davies & 
Asner, 2014). Physiognomy of the habitat is generally determined by 
plants and the debate whether bird species diversity is more affected by 
vegetation structure or by plant composition is still ongoing (Adams & 
Matthews, 2019; MacArthur & MacArthur, 1961; Müller, Stadler, & 
Brandl, 2010). Although some studies have shown the importance of 
plant composition and it is clear that it should not be ignored (Adams & 
Matthews, 2019), the vegetation structure has been traditionally 
considered the primary driver of bird diversity (Müller et al., 2010). This 
may be partly due to intensive research addressing relationships be-
tween bird richness and vegetation structure, which has been triggered 
by advances in the measurement of the vegetation structure by airborne 
LiDAR (see reviews by Davies & Asner, 2014; Bakx, Koma, Seijmons-
bergen, & Kissling, 2019). 

Soon after the first studies showed the potential of LiDAR-derived 
vegetation structure for explaining species-environment associations, 
attempts begun to integrate LiDAR with variables derived using other 
complementary remote sensing data (e.g. multispectral or hyper-
spectral) assessing their relative importance and complementarity (Bae 
et al., 2018; Cooper, McShea, Forrester, & Luther, 2020; Goetz, Stein-
berg, Dubayah, & Blair, 2007; Vogeler et al., 2014). Such variables 
include, for example, the normalized difference vegetation index (NDVI; 
Tucker, 1979). The use of NDVI to model bird species richness is based 
on species-energy theory. According to that theory, species richness is 
limited by the quantity of available energy (Brown, 1981; Wright, 1983) 
and energy available to consumers is dependent on primary productivity 
(Evans, Warren, & Gaston, 2005). It is assumed that greater primary 
productivity of plants (i.e. biomass) supports higher animal species 
richness and NDVI is commonly used as a measure of vegetation pro-
ductivity (Bailey et al., 2004; Hobi et al., 2017; Leyequien et al., 2007; 
Youngentob, Yoon, Stein, Lindenmayer, & Held, 2015). 

On the other hand, however, many species including birds are spe-
cialists and/or poor competitors, preferring specific habitats with rela-
tively lower habitat heterogeneity or low primary productivity (Reif, 
Hořák, Krǐstín, Kopsová, & Devictor, 2016). The occurrence of these 
species can be associated with early stages of spontaneous succession, 
which are rare in the cultural landscape but relatively common on 
restored sites (Šálek, 2012). These early successional habitats can, 
therefore, represent valuable refuges for rare and unique bird specialists 
and/or poor competitors. 

For the early successional habitats in areas after coal mining, 
growths with old dead vegetation from previous vegetation season are 
typical (Hendrychová et al., 2020). This is particularly true for aquatic 
vegetation in areas left to spontaneous succession (e.g. Phragmites aus-
tralis and Typha latifolia) but a similar representation of such old (dead) 
vegetation can be also observed in low steppe vegetation in agricultur-
ally restored areas (e.g. Calamagrostis epigejos and Arrhenatherum ela-
tius). For birds, the dead vegetation provides shelter, nesting, and 
foraging opportunities at the time when green vegetation is at minimal 
heights. It is, therefore, an important component of habitat heteroge-
neity not only in the autumn and winter but possibly even more so in the 
spring. The amount of old dead vegetation (i.e. senescent vegetation) 
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can be estimated using the plant senescing reflectance index (PSRI), 
which was developed as a quantitative measure of leaf senescence 
(Merzlyak, Gitelson, Chivkunova, & Rakitin, 1999) and used as a po-
tential predictor of species occurrence in studies published previously 
(e.g. Soto, Pérez-Hernández, Hahn, Rodewald, & Vergara, 2017). 

Determining the attributes of the habitat heterogeneity and primary 
productivity of restored sites and their association with species diversity 
and/or rarity can help to identify ecologically valuable areas on large 
landscape scales. Therefore, in this study, we examined how the vege-
tation structure, primary productivity (i.e. NDVI) and old senescent 
vegetation from the previous season (i.e. PSRI) derived from airborne 
laser scanning and hyperspectral data predict species richness and rarity 
of bird communities colonizing newly available (restored) habitats after 
coal mining. Specifically, we focused on the following questions: (i) Is 
there a detectable relationship between the fine-scale habitat attributes 
of early succession stages obtained by airborne remote sensing and the 
occurrence of birds? (ii) Which is of greater importance for the occur-
rence of birds – the primary productivity, presence of old vegetation, or 
vegetation structure? And (iii) which type of restoration (i.e. agricul-
tural, forest, or spontaneous succession) results in the development of 
more favourable habitats for bird species richness and rarity? 

3. Data and methods 

3.1. Study area, type of reclamation and habitats 

The study was carried out on the Radovesická spoil heap (Fig. 1) 
located in the North Bohemian Brown Coal Basin, Czechia, one of the 
largest active brown coal mining regions in Europe. The study area was 
subject to various methods of restoration (i.e. agricultural, forestry, and 

spontaneous succession; Fig. 2). Agricultural reclamations typically 
include the establishment of permanent grasslands with initial sowing of 
a species-poor grasses mixture (Festuca, Dactylis, Phleum, Poa, Cynosurus, 
Agrostis) mixed with about 10% of legumes (Trifolium, Coronilla, Lotus, 
Medicago). Such areas are mowed twice a year even after the reclama-
tion is completed. Afforestation includes predominantly homogenous 
plantations of even-aged stand combining autochtonous and allochth-
onous trees (Acer, Pupulus, Quercus, Fraxinus, Tilia, Carpinus, Larix) 
supplemented with shrubs (Eonymus, Padus, Lingustrum, Cornus, Sym-
phoricarpos, Spiraea, Lonicera, Viburnum). Successional sites in our study 
area are characterized by structurally diversified bare ground with 
sparse annuals and biennials, followed by perennials (Tanacetum, Arte-
misia, Cirsium) and grasses (especially Calamagrostis epigejos and Arrhe-
natherum elatius) with scattered authochtonous shrubs (Sambucus, Rosa, 
Betula, Crataegus). The tree growths on the successional sites are domi-
nated by birch (Betula pendula), mixed with other deciduous trees (Salix, 
Populus). See Fig. S1 in the Supplementary material for examples of 
vegetation structure. 

3.2. Bird survey, richness and rarity calculation 

Bird data were collected in 2012 by five experienced ornithologists 
(co-authors of this study). Each of the 153 survey points was visited 
twice during the season (5–6 and 28–29 May) to increase the likelihood 
of detecting the earlier and later breeding species. The survey points 
form a grid spaced at 300 m intervals. At each survey point, all bird 
individuals identified by sight or sound within a 100 m distance from the 
survey point were recorded. The results from both visits were pooled 
together and the bird diversity (species richness) for each survey point 
was calculated as the number of species detected on the survey point. In 

Fig. 1. Study area; (A) Location of survey points and adopted restoration method (forestry, agriculture, and naturally regenerating systems called “spontaneous 
succession”). The survey points represent a 100 m buffer; (B) Location of the study area in the Czech Republic; (C) Canopy height model (meters). 
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addition, we calculated an index of species rarity for each survey point 
reflecting the scarcity of species throughout the Czech Republic based on 
the large-scale quadrat mapping of birds (Š̌tastný, Bejček, & Hudec, 
2006). For each species, the rarity index was calculated using the for-
mula 1-N/628 where N represents the number of quadrats occupied by 
the species from 628 in total (Šálek, 2012; Table S2 in Supplementary 
material). The overall rarity for each survey point was then calculated as 
the sum of index values for all species recorded at a point. Individuals 
recorded while flying over the site or beyond the defined distance were 
excluded from the analysis. 

3.3. Airborne data collection and pre-processing 

The airborne LiDAR and hyperspectral data were acquired simulta-
neously on 18th May 2017 using a remote sensing platform FLIS (The 
Flying Laboratory of Imaging Spectroscopy; Hanuš, Fabiánek, & Fajmon, 
2016). Flights for data collection were conducted at 1030 m above 
ground at 110 knots (ground speed). Data from the hyperspectral 
(Visible Near Infrared, VNIR, CASI-1500), and LiDAR sensor (Riegl LMS 
Q-780) were used in this study. Although there was a time lag between 
the field survey and LiDAR and hyperspectral data campaign, we assume 
that data were still useful for describing birds’ habitats in terms of 
vegetation structure, vegetation productivity and presence of old dead 
vegetation as it has not changed substantially over the five years (but see 
more on this topic in Discussion). 

3.3.1. Hyperspectral data 
The hyperspectral imagery consisted of 48 bands covering the visible 

near-infrared range from 380 to 1050 nm (CASI-1500) with a bandwidth 
of 7.2 nm. Pre-processing of the hyperspectral images (i.e., radiometric 
correction, georeferencing and atmospheric corrections) were all carried 
out by the provider (CzechGlobe). Radiometric corrections were per-
formed in the RadCorr software by converting spectral radiances to 
physical radiance units based on calibration parameters from the 
CzechGlobe spectroscopic laboratory (Hanuš et al., 2016). Radiance 
images were geometrically corrected, orthorectified using a digital 

terrain model (DTM), and georeferenced to the local Datum of Uniform 
Trigonometric Cadastral Network (EPSG: 5514). Data were corrected for 
atmospheric conditions using a radiative model MODTRAN and the 
BREFCOR method was used for correcting the bidirectional reflectance 
distribution function (BRDF) effect (ATCOR-4 software; Richter & 
Schläpfer, 2016). 

3.3.2. LiDAR data 
Airborne LiDAR data were acquired with a Riegl LMS Q-780 laser 

scanner. The scanner has a rotating polygon mirror and scans in parallel 
lines. The scan field of view is 60◦ and the wavelength is 1064 nm. The 
LiDAR data were provided in LAZ format with an average point density 
of 8 points per square meter. The LiDAR point cloud was processed using 
a proprietary software by the Global Change Research Institute CAS and 
referenced to the local Datum of Uniform Trigonometric Cadastral 
Network (EPSG: 5514) and Baltic Vertical Datum – After Adjustment 
(EPSG: 5705). We further processed the point cloud using LAStools 
(http://lastools.org) and classified the point cloud into ground and 
vegetation classes (Klápště et al., 2020; Moudrý et al., 2020). We divided 
the study area into 36 tiles and classified each tile separately to allow 
different settings and thus a better identification of ground and vege-
tation returns. In addition, we identified noise returns (e.g. returns from 
birds) and within the distance of 100 m from the grid survey points, we 
manually checked and edited point clouds for obvious errors (e.g. high 
voltage poles classified as vegetation). Returns other than vegetation 
and ground were removed from subsequent analyses. Prior to the 
calculation of vegetation structure variables, we height-normalized the 
LiDAR point cloud (i.e. the returns’ height above the DTM was 
calculated). 

3.4. Primary productivity and habitat heterogeneity variables 

To investigate the importance of primary productivity and habitat 
heterogeneity, we derived two vegetation indices from the hyperspectral 
data and six variables from the LiDAR data; all these indices and vari-
ables bear a potential relevance to the bird diversity (Table 1). The two 

Fig. 2. Aerial photos of the study area. The two photos in the top row were taken on the 10th of May 2020 and show the two areas left to spontaneous succession 
surrounded mostly by agriculturally restored areas. The three bottom images were taken on 25th of April 2020 and show the areas after agricultural restoration (left), 
forest restoration (middle), and the area left to spontaneous succession (right). Note the presence of old dead vegetation even at this time of the year, particularly in 
areas left to spontaneous succession, near water bodies and other terrain depressions. 
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calculated vegetation indices included 1) NDVI (R862 − R662)/(R862 −
R662), which corresponds to plant chlorophyll content and hence in-
creases with vegetation productivity (i.e. the green component of 
biomass), and 2) PSRI (R678 − R500)/R750, which is a measure of the leaf 
senescence and is sensitive to the carotenoid/chlorophyll ratio. PSRI is 
in this study used as an estimate of the amount of old dead (senescent) 
vegetation from the previous vegetation season, which is present in the 
study area even in May when both bird and airborne data were collected 
(see Fig. 2). The old dead vegetation from the previous season is mainly 
present in the aquatic vegetation (e.g. Phragmites australis and Typha 
latifolia) and, to a somewhat lesser extent, in low steppe vegetation (e.g. 
Calamagrostis epigejos and Arrhenatherum elatius). 

In order to assess the effect of habitat heterogeneity on bird species 
richness and rarity, we described habitat heterogeneity using the vari-
ance in vegetation structure. We used vegetation structure variables 
adopted in the previous bird diversity studies (see Bakx et al., 2018 for 
the conceptual categorization of LiDAR-derived vegetation metrics). To 
describe the total vegetation (sensu Bakx et al., 2018) we used the mean, 
standard deviation of vegetation returns, and canopy cover (Table 1). 
We calculated these metrics to describe the structural variability of the 
vegetation directly from the point cloud (e.g. Bae et al., 2018); but note 
that some other studies calculated these metrics from the rasterized 
canopy height model (CHM) to describe a horizontal variation in the 
canopy cover (e.g. Müller, Moning, Baessler, Heurich, & Brandl, 2009; 
2010). In addition, we used variables characterising the individual 
vegetation layers (single layer sensu Bakx et al., 2018). Three layers of 
vegetation are typically recognized; the herbaceous layer, the shrub 
layer, and the tree layer (e.g. Lesak et al., 2011; Jones, Arcese, Sharma, 
& Coops, 2013). The same vegetation layers are typically assessed 
during field inspections on postmining sites (e.g. Šálek, 2012). There-
fore, we calculated the cover for three vegetation layers: first, we 
counted the number of points between 0.1 m and 1 m and divided this 
number by the sum of all points to estimate the cover of the herbaceous 
layer. Second, we counted the number of points between 1 m and 3 m 
and divided the result by the sum of all points to estimate the cover of 
the shrub layer. In the same way, the number of points between 3 m and 
40 m was divided by the sum of all points to estimate the cover of the 
tree layer (in our study area, there are no trees higher than 40 m). It 
should be noted that the heights of these vegetation layers are selected 
arbitrarily based on our field experience (e.g. Šálek, 2012) and can thus 
greatly vary among different areas (e.g. Lesak et al., 2011). All primary 
productivity and habitat heterogeneity metrics were calculated within a 
100 m radius of grid survey points using ENVI (version 5.5) and LAStools 

(version 200112), respectively. 

3.5. Statistical analyses 

We used boosted regression trees (BRT) implemented in the R 
package gbm version 2.1.5 (Greenwell, Boehmke, Cunningham, De-
velopers, & Greenwell, 2019) and some additional features available in 
the package dismo version 1.1–4 (Hijmans, Phillips, Leathwick, Elith, & 
Hijmans, 2017) to assess how primary productivity and habitat het-
erogeneity were associated with species richness and rarity. First, we 
examined the collinearity among all variables to reduce the number of 
input variables (Fig. S3 in Supplementary material). Canopy cover and 
mean height were highly correlated with vertical vegetation structure 
metrics. As it has been highlighted that birds show a higher preference 
for the structural variability of the vegetation than for canopy cover 
(Davies & Asner, 2014) and as the vertical vegetation variability was of 
our primary concern, we retained the three vertical layers (i.e. herba-
ceous, shrub and tree cover) and excluded the canopy cover and mean 
vegetation height from further analyses. Another highly correlated pair 
of variables were NDVI and PSRI; however, as they represent unique 
components of the aboveground biomass and were essential for our 
study, we decided to retain both variables in the model. However, to 
evaluate whether retaining both NDVI and PSRI affected our results, we 
ran the models also individually with PSRI and NDVI, respectively (see 
the Supplementary material, Figs. S5–S8). Therefore, our final set of 
variables consisted of four variables representing the habitat heteroge-
neity and two variables representing the primary productivity (Table 1). 

Two most important parameters that need to be specified for BRT are 
the tree complexity (which controls whether interactions are fitted) and 
learning rate (shrinkage) as they determine the number of trees required 
for the prediction. As a rule of thumb, a combination of tree complexity 
and learning rate that results in a model with at least 1000 trees is 
recommended. For models with less than 500 records, it is preferred to 
model simple trees (i.e. tree complexity 1–3) with a small learning rate 
to allow the model to grow enough trees. We fine-tuned the settings in 
preliminary testing and used models with tree complexity (the number 
of splits in a tree) of 1 (i.e. without interaction terms, as allowing in-
teractions did not lead to a model improvement), shrinkage (learning 
rate) of 0.001, bag fraction (the proportion of data used when selecting 
optimal tree number) of 0.5, and the maximum number of trees of 5000. 
To estimate the optimal number of trees, we used 10-fold cross- 
validation. At each iteration, the residual deviance was calculated and 
the number of trees giving the best model (i.e. lowest deviance) was 

Table 1 
Overview of 8 potential explanatory variables derived from LiDAR and hyperspectral data within a 100 m vicinity of survey points. Rx denotes the reflectance at the 
wavelength of x nm. We excluded areas of water bodies from calculations of NDVI and PSRI. Variables in bold were used in our final models (i.e. after excluding 
collinear variables).  

Hyperspectral and LiDAR derived metrics Description Category according to Bakx et al. 
(2020) 

Primary 
productivity     

Normalized Difference Vegetation Index 
(NDVI) 

(R862 − R662)/(R862 − R662); sensitive to vegetation greenness – 

Old dead vegetation from the previous vegetation season   
Plant senescing reflectance index (PSRI) (R678 − R500)/R750; sensitive to senescent vegetation – 

Vegetation structure (Total vegetation)   
Mean height Average height of vegetation returns Total vegetation - Height  
Standard deviation of height Standard deviation of vegetation returns heights above 1 m Total vegetation - Vertical 

variability  
Canopy cover Number of first returns above 1 m divided by the sum of all first 

returns 
Total vegetation - Cover 

Vegetation structure (Single layers)   
Cover of the herbaceous layer Number of points between 0.1 m and 1 m divided by the total number 

of points 
Single layer (Understorey) - Cover  

Cover of the shrub layer Number of points between 1 m and 3 m divided by the total number 
of points 

Single layer (Understorey) - Cover  

Cover of the tree layer Number of points > 3 m divided by the total number of points Single layer (Canopy) - Cover  
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identified (Elith, Leathwick, & Hastie, 2008; Hastie, Tibshirani, & 
Friedman, 2001; Leathwick, Elith, Francis, Hastie, & Taylor, 2006). 
Species richness and rarity were modelled specifying the Poisson and 
Gaussian error distribution, respectively. All models were fitted in R, 
version 3.6.0 (R Development Core Team, 2019) 

3.6. Assessment of model performance 

The identified best models were fitted to the entire dataset and used 
to produce partial dependency plots that show the effect of each variable 
after accounting for the average effects of all other variables (De’Ath, 

2007; Elith et al., 2008). In addition, we assessed the relative importance 
of each variable (i.e. the contribution of each variable to the model fit 
scaled so that the sum adds to 100) using formulae developed by 
Friedman (2001) and implemented in the gbm package (Greenwell 
et al., 2019). The overall performance of BRT models was evaluated 
using the total deviance explained, which was calculated by dividing the 
difference between the mean total deviance and the estimated 10-fold 
cross-validated residual deviance by the mean total deviance. The 
cross-validated residual deviance is a measure of the deviance left un-
explained by the model. Because results from the k-fold cross-validation 
can vary depending on the random selection of points for the folds, this 

Fig. 3. Spatial distribution of species richness (upper images) and rarity (lower images) along with the four most influential explanatory variables (Standard de-
viation of height, Tree cover, PSRI, and Shrub cover). 
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procedure was repeated 5 times for each model, and overall means were 
calculated for the relative importance of each variable and total devi-
ance explained by the models (Leathwick et al., 2006). 

4. Results 

4.1. Bird richness 

We observed 83 bird species from a total of 1340 individual bird 
records. The overall bird species richness ranged from 1 to 17 species per 
survey point with a median of 6 species (Fig. 3). The BRT model of 
overall species richness explained 52% of deviance. The overall species 
richness was strongly affected by the habitat heterogeneity while pri-
mary productivity had only a minimal effect (Table S4 in Supplementary 
material). The effects of the midstory density and canopy density were 
the strongest and jointly accounted for most of the explained variability. 
The standard deviation of height had a moderate effect, and the effects 
of herbaceous cover, NDVI and PSRI were weak (Fig. 4). The partial 
dependency plots of the individual variables showed a rapid increase of 
species richness at relatively low values of the shrub cover and tree cover 
with only a minimal change as these variables continued to increase. The 
ranges of the shrub cover and herbaceous cover associated with the 
steepest increase in the bird richness were 0–5% and 0–20%, respec-
tively. The standard deviation of height had a positive effect with an 
increase in overall richness for values between 2 m and 3 m and no effect 
above that value (Fig. 4). 

4.2. Bird rarity 

The bird rarity index ranged from 0.04 to 3.81 per survey point with 
a median rarity of 1 (Fig. 3). The BRT model of bird rarity explained 12% 
of deviance and the rarity was strongly affected by both habitat het-
erogeneity and primary productivity (Table S4 in Supplementary ma-
terial). The shrub cover, herbaceous cover and PSRI had the strongest 
effects and jointly accounted for most of the explained variability. The 
effects of the standard deviation of height and NDVI were moderate, and 
the canopy density had a weak effect (Fig. 5). The partial dependency 

plots of the single variables showed a rapid increase in rarity for PSRI 
values above 0.10. A rapid increase in rarity was also shown at relatively 
low values of shrub cover and herbaceous cover with a minimal change 
as these variables continued to increase. The ranges of the shrub cover 
and herbaceous cover associated with the steepest increase of the bird 
rarity were 0–5% and 10–15%, respectively (Fig. 5). 

4.3. Heterogeneity and productivity with respect to the restoration 
technique 

Our results show a clear effect of the adopted restoration technique 
on habitat heterogeneity and primary productivity (Fig. 6). Most 
importantly, the spontaneous succession considerably differs from other 
sites when looking at primary productivity. The values of NDVI (i.e. 
vegetation greenness) and PSRI (i.e. senescent vegetation) were rela-
tively similar for the agricultural and forest restoration but compared to 
them, the sites left to spontaneous succession had much lower values of 
NDVI and clearly higher values of PSRI (Fig. 6). The structural measures 
show a distribution of values commensurate with the individual habitat 
types. Note that the sites with unspecified restoration method were 
similar to agricultural restoration and mostly consisted of low 
vegetation. 

5. Discussion 

In this study, we evaluated the effect of the variance in vegetation 
structure, primary productivity and senescent vegetation on bird com-
munities colonizing newly available (restored) habitats after coal min-
ing (Fig. 3). We found a detectable relationship between fine-scale 
habitat attributes of early succession stages derived from airborne 
LiDAR and hyperspectral data and the occurrence of birds. The models 
with six variables representing the vegetation structure, primary pro-
ductivity and the presence of senescent vegetation explained 52% and 
12% of the variability in species richness and rarity, respectively, which 
is comparable to prior studies. The previous studies combining LiDAR 
data with the indices derived from passive optical sensors (e.g. NDVI) 
typically explained the variability in species richness between 15% and 

Fig. 4. Partial dependency plots for boosted tree analyses of overall species richness. The partial plots show the modelled relationships between species richness and 
standard deviations of height, herbaceous cover, shrub cover, tree cover, NDVI, and PSRI. The relative importance of the variable in the model is given in 
parentheses. 
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55% (Goetz et al., 2007; Jones et al., 2013; Vogeler et al., 2014). 

5.1. Importance of vegetation structure, NDVI and PSRI for bird species 
richness 

Variance in vegetation structure had a positive effect on species 
richness and explained most of the explained variablity (Fig. 4). While 
NDVI and PSRI showed almost no effect on species richness, shrub cover 
(i.e. the cover of shrubs and saplings between 1 m and 3 m high) and tree 
cover (i.e. cover of vegetation >3 m high) exhibited a strong positive 
effect on species richness. The standard deviation of height and herba-
ceous cover (cover of vegetation up to 1 m high) had minor effects on 
species richness. Species richness climbed steeply at low values of shrub 
cover (0%–5%), low values of tree cover (0%–20%), and the standard 
deviation of height between 2 m and 3 m (Fig. 4). Such conditions are 
typical of forest restoration and sites left to spontaneous succession 
(Fig. 5). These findings are in accordance with prior studies such as 
Goetz et al. (2007) and Vogeler et al. (2014) who combined LiDAR with 
NDVI and more recently Melin, Hill, Bellamy, and Hinsley (2019) who 
combined LiDAR with variables derived from hyperspectral data and 
showed that the vegetation structure (i.e. LiDAR derived variables) is 
more important for the assessment of bird species richness at local scales 
than variables derived from passive remote sensing. 

5.2. Importance of vegetation structure, NDVI and PSRI for bird species 
rarity 

In contrast to species richness, our results show that combining in-
formation from LiDAR and passive optical sensors might be important 
when species rarity is of concern. We found a positive effect of both 
habitat heterogeneity and primary productivity on species rarity 
(Fig. 5). PSRI (i.e. old dead vegetation from the previous vegetation 
season) was the most important predictor with a strong positive effect on 
species rarity, followed by shrub and herbaceous cover. The greatest 
increase in rarity was associated with PSRI values higher than 0.10, 
above 2% for the shrub cover, and above 10% for the herbaceous cover 
(Fig. 5); above these values, the rarity remained more or less constant. 
This is likely because the senescent vegetation and relatively high 

herbaceous and shrub covers provide shelter and enhance the diversity 
of insect communities and hence food availability for birds (e.g. Müller, 
Bae, Röder, Chao, & Didham, 2014; Soto et al., 2017; Vergara et al., 
2017). 

It is, however, important to note that the model of bird rarity 
explained only 12% of deviance. This is likely related to the fact that 
typical rare species that occur in our study area are ground-nesting or 
foraging birds. Such species include, for example, Wheatear Oenanthe 
oenanthe, Montagús Harrier Circus pygargus, Bluethroat Luscinia svecica 
cyanecula, Whinchat Saxicola rubetra, Stonechat Saxicola torquata, Great 
Reed Warbler Acrocephalus arundinaceus or Meadow Pipit Anthus pra-
tensis. These specialists require specific and mutually different condi-
tions such as bare grounds (Wheatear), unmanaged grassy patches 
(Montagús Harrier, Whinchat, Stonechat, Meadow Pipit) or reedbeds 
(Bluethroat, Great Reed Warbler) that are neither adequately repre-
sented by the variance in the vegetation structure nor by NDVI and PSRI 
indices, respectively. Indeed, ground-nesting or foraging species are 
typically reported to be poorly modelled using habitat heterogeneity and 
productivity variables (Cooper et al., 2020; Weisberg et al., 2014). The 
five-year time lag between the data acquisitions and difficulties to 
distinguish old dead vegetation from bare surfaces might represent 
alternative explanations for the relatively low deviance explained by 
these factors (see Chapter 5.4. below). 

5.3. Which type of restoration results in the development of more 
favourable habitats? 

It is evident that all vertical levels of habitat heterogeneity (i.e. 
herbaceous, shrub and tree covers) are important either for species 
richness or rarity. This supports the necessity to create the mosaic of 
habitats with heterogeneous vertical structure during restoration to 
support high species richness as suggested e.g. by Harabǐs, Tichanek, 
and Tropek (2013). However, the high variance in vegetation structure 
alone is not sufficient to support rare species. Indeed, management and 
restoration goals can change considerably depending on whether the 
aim is to support high species richness or rare species (Cooper et al., 
2020). It seems that a high herbaceous and shrub cover combined with 
the presence of old dead vegetation promote rarity. However, this 

Fig. 5. Partial dependency plots for boosted tree analyses of species rarity. The partial plots show the modelled relationships between the species rarity and standard 
deviations of height, herbaceous cover, shrub cover, tree cover, NDVI, and PSRI. The relative importance of the variable in the model is given in parentheses. 
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combination is rare on technically reclaimed sites, i.e. after agricultural 
and forest restoration. In contrast, this study shows that such conditions 
are typically present on sites left to spontaneous succession (Fig. 5). This 
is a likely explanation for the fact that the spontaneous succession sites 
are particularly favoured by rare vertebrates (Šálek, 2012; Vojar et al., 
2016). 

5.4. Use and limitations of airborne remote sensing data in restoration 
practice 

We have shown that the measurement of the habitat heterogeneity 
derived from airborne laser scanning point clouds can provide ecologi-
cally meaningful variables. As field-based estimates of vegetation 
structure are used as a rapid and efficient way of assessing the condition 
of restored sites (Gibbons & Freudenberger, 2006), LiDAR can become 

an alternative to such field surveys. Compared to field surveys, however, 
LiDAR has a higher potential for providing information that can lead to 
management action. As LiDAR data availability is increasing continu-
ously due to national or regional scanning campaigns (see Melin et al., 
2017; Stereńczak et al., 2020 for the list of countries and regions with 
LiDAR data available) and thanks to the more common adoption of open 
data policies (Rocchini et al., 2017), there is a high potential to use it in 
restoration ecology, especially for assessment of vegetation structure 
(Guo et al., 2017; Koska et al., 2017; Moudrý, Gdulová, et al., 2019; 
Moudrý, Urban, et al., 2019; Szostak, Pietrzykowski, & Likus-Cieślik, 
2020). Therefore, we suggest that such data should be increasingly 
utilized by managing authorities for optimizing the restoration success 
assessment and enhancing the ecological value of reclaimed areas. 

It should be, however, noted that despite the increase of LiDAR data 
availability, acquisitions for the same area (e.g. state) have, due to high 

Fig. 6. Comparison of the vegetation structure (LiDAR variables), NDVI and PSRI indices depending on the adopted restoration techniques. The central horizontal 
line in the box marks the median. The boxes show the interquartile range (25th to 75th percentile) and the whiskers indicate 1.5 times the interquartile range. 
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acquisition costs, long repetition times. Therefore, studies such as the 
presented one are often being done under suboptimal conditions and the 
time lag between field surveys and LiDAR data acquisition is common 
(Lesak et al., 2011). For example, Goetz et al. (2007) – 6 years; Wallis 
et al. (2016) – 10 years. Huber, Kienast, Ginzler, and Pasinelli (2016) – 

10 years. It has been shown that several years time lag is not a funda-
mental source of error in mature woodland ecosystems as the changes in 
vegetation structure are usually relatively slow (Hill & Hinsley, 2015; 
Vierling, Swift, Hudak, Vogeler, & Vierling, 2014). This is, however, not 
the case of our study area that consists of agricultural, forest, and suc-
cessional sites and the time lag between remotely sensed and bird data 
collection might be a potential source of error. While this is certainly not 
a problem for agriculturally restored sites, differences in vegetation 
structure might have arisen during the 5 years at sites restored through 
forestry and those left to spontaneous succession. On the other hand, the 
two sites left to spontaneous succession in our study area are 16 and 26 
years old, respectively, and the current rate of changes in the vegetation 
structure is relatively slower than during the early stages of succession. 
Moreover, the spontaneous succession is often blocked by sandy soils 
and dense grass cover (e.g. Calamagrostis epigejos). Therefore, the main 
differences can be expected in vegetation within the 1 – 3 m height range 
that could have grown over 3 m. 

It is even more important to minimize the time lag when hyper-
spectral data are used. This is especially true when indices related to the 
vegetation biochemistry (which can change in a matter of weeks across a 
vegetation season) are used, it is much preferable if the hyperspectral 
data collection and bird survey are performed at the same time (e.g. 
Melin et al., 2019). Whit this in mind, we did not use any indices related 
directly to vegetation biochemistry and concentrated only on indices 
that are positively correlated to the characteristics that should have 
remained relatively stable over the five years (i.e. NDVI for vegetation 
productivity and PSRI for the amount of old dead vegetation). Besides, 
the bird occurrences and remotely sensed data were both collected in 
May, which was particularly important for the ecological relevance as 
this allowed accurate estimates of the amount of old dead vegetation 
present during the breeding season. The old dead vegetation is typical 
for terrain depressions (e.g. Phragmites australis and Typha latifolia) and 
agriculturally restored areas (e.g. Calamagrostis epigejos and Arrhena-
therum elatius) and its detectability is changing more within a year than 
between years due to the pronounced seasonality (see also the note 
above on blocked succession). The amount of old dead vegetation is 
actually constantly growing and such sites might have become even 
more favourable for rare species as Whinchat, Stonechat, Montagús 
Harrier or Bluethroat in 2017 (the year of remote sensing data acquisi-
tion) than they were in 2012 (the year of bird data collection). 

There is, however, another potential source of error, which might 
possibly also have been the reason why the model of bird rarity 
explained only 12% of deviance, namely the fact that the PSRI is high 
also in areas completely without vegetation, such as roads (Fig. 2). On 
the other hand, however, old dead vegetation, which forms an important 
habitat for Whinchat or Stonechat, is often present in the ditches along 
the roads (e.g. Arrhenatherum elatius) and it is, therefore, difficult to 
separate their effects. 

For future studies and especially for monitoring practice, it would be 
beneficial to agree on several LiDAR-derived metrics proven to be 
effective for explaining species diversity and to recommend them as 
standard structural indicators. To facilitate comparisons, Bakx et al. 
(2019) recently grouped LiDAR-derived variables into 24 classes defined 
by six categories of vegetation (total vegetation, single trees, canopy, 
understorey, other single layers, and multi-layer) and four categories of 
the structural type (cover, height, horizontal variability and vertical 
variability). Our results show that the total vegetation vertical vari-
ability (i.e. standard deviation of returns height) and canopy and un-
derstory cover (i.e. herbaceous, shrub and tree covers) are potentially 
relevant for the assessment of conditions on early successional restored 
sites. 

6. Conclusions 

Understanding drivers of species distributions across restored land-
scapes and identifying areas that have the potential for supporting high 
species richness, vulnerable or rare species, is important for successful 
management of restored sites. Overall, our results show that both habitat 
heterogeneity and primary productivity play an important role in bird 
species diversity on restored sites. Shrub cover had a strong positive 
effect on both species richness and rarity, while tree cover had a strong 
positive effect on species richness. Herbaceous cover and the presence of 
senescent vegetation had both positive effects on species rarity. This 
highlights the necessity of creating a mosaic of habitats with heteroge-
neous vertical structure during restoration or to design the vegetation 
structure in a way supporting preferred species. To support this, we 
suggest to reduce intensive mowing of agriculturally restored areas (e.g. 
by creating unmowed strips of vegetation), preserve naturally formed 
waterlogged areas, plant trees with different growth rates and combine 
them with shrub vegetation. Sites left to spontaneous succession play an 
important role in creating restored ecosystems of high ecological value 
as they represent a unique combination of vegetation density and 
presence of senescent vegetation that, in combination, promote high 
species rarity. 

In our opinion, airborne remote sensing, particularly laser scanning, 
should constitute an integral part of restoration success assessment and 
should be acquired with reasonable repetition rate (e.g. 5–10 years) over 
the restored areas, as the information derived from such data can be 
more easily implemented in management actions than subjective semi-
quantitative or categorical measures collected during intensive field-
work. We suggest a wider use of vegetation structure and productivity 
indices derived from remotely sensed data in restoration success 
assessment. Our results show that the total vegetation vertical vari-
ability (i.e. standard deviation of returns height) and various vertical 
layers of vegetation cover (i.e. herbaceous, shrub and tree cover) in 
combination with senescent vegetation (i.e. PSRI) are potentially rele-
vant for monitoring of early successional restored sites. 
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Klápště, P., Fogl, M., Barták, V., Gdulová, K., Urban, R., & Moudrý, V. (2020). Sensitivity 
analysis of parameters and contrasting performance of ground filtering algorithms 
with UAV photogrammetry-based and LiDAR point clouds. International Journal of 
Digital Earth, 13, 1672–1694. 
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Szostak, M., Pietrzykowski, M., & Likus-Cieślik, J. (2020). reclaimed area land cover 
mapping using sentinel-2 imagery and LiDAR point clouds. Remote Sensing, 12, 261. 

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & 
Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/ 
diversity: the importance of keystone structures. Journal of Biogeography, 31, 79–92. 

Tropek, R., Kadlec, T., Karesova, P., Spitzer, L., Kocarek, P., Malenovsky, I., … Konvicka, 
M., 2010. Spontaneous succession in limestone quarries as an effective restoration 
tool for endangered arthropods and plants. Journal of Applied Ecology, 47, pp.139- 
147. 

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 
vegetation. 
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