
Citation: Vara, G.; Spinnato, P.;

Facchini, G.; Miceli, M.; Ursini, F.;

Spinardi, L.; Vornetti, G.; Ratti, S.

Assessment of Bone Mineral Density

from Lumbosacral MRI: A

Retrospective Study with Texture

Analysis Radiomics. Appl. Sci. 2023,

13, 6305. https://doi.org/10.3390/

app13106305

Academic Editor: Marco Giannelli

Received: 29 April 2023

Revised: 15 May 2023

Accepted: 17 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Assessment of Bone Mineral Density from Lumbosacral MRI:
A Retrospective Study with Texture Analysis Radiomics
Giulio Vara 1,* , Paolo Spinnato 2 , Giancarlo Facchini 2 , Marco Miceli 2, Francesco Ursini 3, Luca Spinardi 4 ,
Gianfranco Vornetti 5 and Stefano Ratti 6

1 Diagnostic and Interventional Radiology, Ospedale Civile “Umberto I”, 70033 Lugo, Italy
2 Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;

paolo.spinnato@ior.it (P.S.); giancarlo.facchini@ior.it (G.F.); marco.miceli@ior.it (M.M.)
3 Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;

francesco.ursini@ior.it
4 IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; luca.spinardi@aosp.bo.it
5 IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; gianfranco.vornetti@unibo.it
6 Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM),

University of Bologna, 40126 Bologna, Italy; stefano.ratti@unibo.it
* Correspondence: giulio.vara@gmail.com; Tel.: +39-320-262-7412

Abstract: Osteoporosis is a common condition characterized by low bone mineral density (BMD)
and deterioration of bone microarchitecture, leading to increased risk of fractures. Early diagnosis
and treatment of osteoporosis are critical for preventing fractures and their associated morbidity and
mortality. Currently, dual-energy X-ray absorptiometry (DXA) is the gold standard for assessing
BMD; however, it has limitations such as radiation exposure, cost, and limited availability in certain
regions. Magnetic resonance imaging (MRI) of the lumbar spine is routinely performed for various
indications, and it provides high-resolution images of the bone and tissue without ionizing radiation.
Recently, texture analysis (TA) of MRI images has shown promise in assessing BMD by quantifying
the spatial distribution and heterogeneity of bone marrow fat and trabecular bone. In this article,
we present our experience with the opportunistic use of lumbar spine MRI for BMD assessment
using TA, and we compare the results with DXA measurements. We also discuss the potential clinical
implications of this approach, including its use in patients who cannot undergo DXA or in whom
BMD assessment is not routinely performed. MRI should provide information in a single examination
in regard to degenerative disk pathology and arthritis, with the addition of BMD prediction.

Keywords: texture analysis; radiomics; osteoporosis; MRI; machine learning

1. Introduction

Currently, dual-energy X-ray absorptiometry (DXA) and quantitative-CT (QCT) are
the standard methods for assessing bone mineral density (BMD). DXA is a widely available
and relatively low-cost method that involves exposing the patient to low levels of radiation.
However, DXA has limitations in its ability to assess trabecular bone density, and it does
not provide information on bone quality. QCT provides comparable results to those of
DXA but involves a higher radiation dose and is more expensive. Both methods are also
limited by the fact that they only assess the bone mineral content and do not provide any
information on the underlying bone structure [1].

Texture analysis can overcome some of these limitations and provide additional
information about bone quality.

Textural analysis of MRI scans has been used in various fields, including radiology
and oncology, to identify disease states and provide quantitative measures of disease pro-
gression [2]. In the case of bone health, texture analysis can be used to extract quantitative
measures that reflect trabecular bone morphology, such as bone volume fraction, trabecular
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thickness, and trabecular separation. Texture analysis can also reveal changes in bone
structure that may not be apparent on DXA or QCT [3].

Recent studies have shown that texture analysis has potential as an alternative method
for assessing BMD. For example, a study comparing texture analysis performed on lumbar
spine MRI scans and DXA measurements found that trabecular bone texture features were
significantly associated with DXA-derived BMD values [4].

Despite these promising results, texture analysis is not yet widely used in clinical
practice for assessing BMD. More research is needed to validate its use as a diagnostic tool
and to optimize the algorithms used to analyze the images.

Texture analysis is a method that involves quantitatively characterizing the patterns
of intensity, contrast, and homogeneity in an image. These patterns can be used to infer
underlying tissue characteristics, such as bone microarchitecture, which may not be readily
visible to the naked eye.

Texture analysis methods can be broadly categorized into two types: first-order and
higher-order features. First-order features are statistical descriptors derived from the
distribution of pixel intensity values within an image, such as the mean, standard deviation,
and entropy. These features provide an overall characterization of the image without
directly capturing the spatial relationships between pixels. Higher-order features, on the
other hand, are calculated from spatial relationships between pixel intensities and describe
more complex patterns in an image. Examples of higher-order features include gray level
co-occurrence matrix (GLCM)-based features, gray level run length matrix (GLRLM)-based
features, and gray level size zone matrix (GLSZM)-based features [5]. These features
capture information about the spatial arrangement of pixels and can provide more detailed
information on the microstructure of bones. Higher-order texture features have shown
promising results in characterizing changes in bone microarchitecture due to different
bone disease states, such as osteoporosis, and may provide valuable information for early
detection and diagnosis of such diseases.

Moreover, a study demonstrated that texture analysis can provide a predictive value
on pathological fractures independently of BMD [6].

The aim of our study is to report our preliminary experience in the assessment of
BMD via MRI-based textural analyses in a cohort of patients who have undergone DXA
and lumbosacral MRIs, to assess the possibility of a standard examination to be able to
opportunistically raise concern about osteoporosis.

2. Materials and Methods
2.1. Study Design

This is retrospective observational research. This study was conducted following the
criteria set by the Declaration of Helsinki and further amendments.

We retrospectively reviewed all the lumbosacral MRIs from a 3rd level orthopedic
hospital archive (from 2019 to 2021); then, we included those patients who were submitted
for a lumbar DXA in our institution within 2 years from MRIs.

2.2. Study Population

Patients who underwent bot lumbar tract DXA and spine MRI in the last 2 years were
selected from the institution’s database, comprising a total of 881 MRI and 1793 DXA.

Exclusion criteria were the presence of metal artifacts, vertebral fracture incurring
between DXA and MRI, and MRI acquired with a 3T scanner. Occurrence of menopause or
beginning of treatments may influence BMD in the range of time between DXA and MRI.

Information regarding ge, sex, and time passed between the two examinations was
collected.
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2.3. DXA

The evaluation of the lumbar spine (L1–L4) was performed using the Hologic Explorer
(Hologic, Bedford, MA, USA) with Apex system software (v4.6.0.7). Bone mineral density,
Z-score, T-Score, and area of the vertebra were collected.

2.4. MRI

The MRI examination was performed with a 1.5 T scanner (Signa® 1.5 T, General
Electric, Boston, MA, USA) that was equipped with a phased array spinal coil. T2w with
and without fat saturation (FS), and T1w sequences were analyzed.

2.5. Texture Analysis

Texture analysis was performed using LifeX software (7.20). Volumes of interest
were manually defined on the vertebral bodies of the L1–L4 tract of the lumbar spine by
1 radiologists (G.V.) with 5 years of experience in the field of musculoskeletal imaging.
Intensity discretization was set on 256 grey levels, and intensity rescaling was set to the
upper and lower bounds of the VOIs. All the available features were computed. Figure 1
depicts the regions of interest (ROIs) drawing method and the extraction of the local maps
of 2nd order features.
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Figure 1. T2-w Lumbar spine MRI (A) with the ROIs (pink) placed on the tracts L1–L4 (A’). Rainbow-
scale local maps representing contrast (B), entropy (C), dissimilarity (D), homogeneity (E), energy (F),
and correlation (G). The DXA results for this patient are shown in panel (H).

2.6. Statistical Analysis

Statistical analysis was performed using IBM® SPSS® v25. Variable selection was
performed using stepwise-forward method. A linear regression was performed between
texture features and BMD. The Kruskal–Wallis test was used to compare distributions
among healthy, osteopenic, and osteoporotic patients. The ROC curve was used to assess
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accuracy of features in identifying healthy, osteopenic, and osteoporotic patients. A single
layer perceptron (SLP) was built with 12 nodes with a training test ratio of 7:3.

3. Results

A total of 42 patients were selected, with 160 vertebral bodies suitable for the analysis.
The selection process is shown in Figure 2.
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Figure 2. The PRISMA diagram illustrating patients’ selection.

The selected patients were all females, with an average age of 70 (±10.8) years.
Descriptive statistics of the results of the DXA of the population are shown in Table 1.

Table 1. Descriptive statistics of the study population.

DXA DESCRIPTIVE STATISTICS

Minimum Maximum Mean Dev. Std.

AREA 0.485 18.710 14.12411 2.331933
BMC 6.680 20.850 12.07048 3.296413
BMD 0.529 1.636 0.85173 0.219239

T-SCORE −5.000 5.200 −1.64048 2.043687
PR 49.000 154.000 81.85714 20.961320

Z-SCORE −3.800 8.100 0.22840 2.273391
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3.1. Correlations between Radiomics MRI Features and BMD

In Table 2, correlations between radiomics MRI features and BMD are shown.

Table 2. Correlations between radiomics MRI features and BMD. The correlation index is followed
by the significance (p) in parentheses. N.A. = Non Available, redundant; N.S. = Non significative.

Feature T1 T2 T2 Fat-Sat

First Order

Volume 0.226 (0.005) N.A. N.A.

Surface 0.228 (0.004) N.A. N.A.

Compacity 0.179 (0.026) N.A. N.A.

Conv. Min. −0.173 (0.032) N.S. N.S.

Conv. Max N.S. −0.166 (0.039) N.S.

Conv. Kurtosis −0.261 (0.001) −0.265 (0.001) N.S.

Conv. Excess Kurt. −0.340 (<0.001) −0.265 (0.001) N.S.

Disc. Standard Dev. N.S. 0.224 (0.005) 0.344 (<0.001)

Disc. Q2 N.S. 0.183 (0.022) 0.169 (0.014)

Disc. Q3 N.S. 0.224 (0.005) 0.253 (0.001)

Histogram Energy −0.205 (0.010) −0.260 (0.001) −0.247 (0.002)

Histogram Entropy N.S. 0.199 (0.013) 0.265 (0.001)

GLCM

Homogeneity −0.205 (0.011) −0.289 (<0.001) −0.212 (0.008)

Contrast N.S. 0.169 (0.036) 0.187 (0.020)

Entropy 0.250 (0.002) 0.280 (<0.001) 0.258 (0.001)

Dissimilarity N.S. 0.231 (0.004) 0.227 (0.005)

GLRLM

SRE 0.167 (0.038) 0.239 (0.003) 0.173 (0.031)

LRE −0.169 (0.035) −0.241 (0.003) −0.170 (0.034)

HGRE N.S 0.176 (0.028) 0.247 (0.001)

SRHGE N.S 0.177 (0.028) 0.275 (0.001)

LRHGE N.S 0.174 (0.031) 0.272 (0.001)

GLNU N.S N.S −0.160 (0.047)

RP 0.168 (0.037) 0.240 (0.003) 0.172 (0.032)

GLZLM

SZE −0.176 (0.028) 0.216 (0.007) 0.159 (0.048)

HGZE N.S 0.169 (0.036) 0.271 (0.001)

SZHGE N.S 0.170 (0.034) 0.270 (0.001)

ZLNU N.S N.S 0.171 (0.033)

ZP 0.160 (0.046) 0.233 (0.004) 0.173 (0.032)

NGLDM

Contrast 0.237 (0.003) 0.282 (<0.001) 0.228 (0.004)

PET/CT

Agatston N.S N.S −0.358 (0.013)

Peak Sphere 0.5 mL N.S N.S 0.266 (0.001)

Peak Sphere 1.0 mL N.S N.S 0.298 (<0.001)
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3.2. Linear Regression Modeling on BMD

Features extracted from the T2 and the T2FS sequences showed significative coeffi-
cients in the linear regression for BMD; the resulting predicted values showed a correlation
with BMD with correlation index of 0.640 (p < 0.001), F = 11.442, R2 = 0.485. Coefficients are
detailed in Table 3. The adjusted predicted values are shown in Figure 3, in a scatterplot
with BMD.

Table 3. Linear regression for BMD.

LINEAR REGRESSION FOR BMD
FEATURE B Std. Err. t Sign. 95% C.I. Importance
CONSTANT 29.560 11.620 2.544 0.012 6.675–52.445

T2 DISC.
HISTO.
ENTR.

−6.516 0.898 −7.260 <0.001 −8.284–−4.749 0.169

T2
NGLDM

CON-
TRAST

0.986 0.137 7.192 <0.001 0.716–1.256 0.165

T2 FS
GLNU −0.002 0.000 −5.813 <0.001 −0.001–0.108 0.108

T1 HISTO.
ENERGY −144.307 25.540 −5.650 <0.001 −194.607–−94.007 0.102

T1 MIN. −0.001 0.001 −4.443 <0.001 −0.002–−0.001 0.063
T2 ZLNU <0.001 <0.001 4.133 <0.001 0.000–0.000 0.055
T2 LZLGE >−0.001 <0.001 −3.023 0.003 −0.000–−0.000 0.029

T2 FS
DISSI. −0.024 0.008 −2.834 0.003 −0.040–−0.008 0.028

T1 LZHGE >−0.001 <0.001 −2.834 0.005 −0.000–−0.000 0.026
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Healthy, osteopenic, and osteoporotic patients showed significatively different pre-
dicted values with the Kruskal–Wallis test (p < 0.001) (Figure 4).
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3.3. Single Layer Perceptron

The ML model improved the accuracy for the prediction of the BMD (R2 = 0.580,
p < 0.001) (Figure 5).
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Figure 5. Cluster scatterplot of the adjusted predicted values obtained using the single-layer percep-
tron with the BMD.

It demonstrated significative accuracy when used with a nominal dependent variable,
i.e., the clinical condition

The accuracy for training and test is reported in Table 4 and illustrated with a box-plot
for the pseudoprobability of the predicted groups (Figure 6).



Appl. Sci. 2023, 13, 6305 8 of 14

Table 4. The accuracy of the single-layer perceptron to predict the clinical condition, in the training
and test cohorts.

SLP

Sample
Predicted

Normal Osteopenic Osteoporotic Correct

Training

normal 21 0 0 100.0%

osteopenic 1 10 0 90.9%

osteoporotic 1 0 5 83.3%

global perc. 60.5% 26.3% 13.2% 94.7%

Test

normal 2 0 0 100.0%

osteopenic 0 5 0 100.0%

osteoporotic 0 0 1 100.0%

global perc. 25.0% 62.5% 12.5% 100.0%
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The cost function graph helps visualize how the sample is sufficient for the task, and
the risk of overfitting is minimal (Figure 7).

The following table (Table 5) reports the normalized importance for each feature in
the building of the model.
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Table 5. Normalized importance for each feature in the single-layer perceptron. Conditional format-
ting helps highlight the most important feature on each sequence. The background color of the cells
is in a scale from green to red, to highlight the most (green) and least (red) important features.

Feature T1 T2 T2FS Shape %

CONVENTIONAL_min 38.3% 36.8% 68.2% SHAPE_Volume
(mL) 31.2%

CONVENTIONAL_mean 32.9% 40.4% 29.3% SHAPE_Volume
(vx) 43.7%

CONVENTIONAL_std 46.8% 27.7% 28.6% SHAPE_Sphericity 31.5%

CONVENTIONAL_max 28.0% 23.4% 43.7% SHAPE_Surface
(mm2) 52.5%

CONVENTIONAL_Q1 27.9% 24.9% 40.0% SHAPE_Compacity 23.1%
CONVENTIONAL_Q2 35.3% 30.9% 42.8%
CONVENTIONAL_Q3 35.9% 35.2% 31.0%

CONVENTIONAL_Skewness 43.3% 65.7% 69.5%
CONVENTIONAL_Kurtosis 38.6% 58.8% 27.2%

CONVENTIONAL_ExcessKurtosis 56.0% 52.9% 41.2%
CONVENTIONAL_peakSphere0.5mL:discretized

volume sought 34.1% 26.5% 27.1%

CONVENTIONAL_peakSphere0.5mL(value only for
PET or NM) 23.8% 35.7% 54.4%

CONVENTIONAL_peakSphere1mL:discretized
volume sought 28.9% 16.2% 46.8%
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Table 5. Cont.

Feature T1 T2 T2FS Shape %
CONVENTIONAL_peakSphere1mL(value only for PET

or NM) 45.5% 18.3% 32.4%

CONVENTIONAL_calciumAgatstonScore[onlyForCT] 58.8% 30.8% 44.4%
CONVENTIONAL_TLG (mL)[onlyForPETorNM] 35.2% 33.9% 19.4%

DISCRETIZED_mean 47.9% 46.4% 67.2%
DISCRETIZED_std 47.3% 59.4% 52.7%
DISCRETIZED_Q1 48.2% 49.0% 53.5%
DISCRETIZED_Q2 40.7% 39.0% 54.9%
DISCRETIZED_Q3 25.2% 40.8% 59.8%

DISCRETIZED_Skewness 31.5% 53.2% 55.5%
DISCRETIZED_Kurtosis 43.4% 75.6% 64.0%

DISCRETIZED_ExcessKurtosis 51.7% 43.4% 43.9%
DISCRETIZED_peakSphere0.5mL:discretized

volume sought 23.8% 40.5% 19.5%

DISCRETIZED_peakSphere0.5mL (value only for PET
or NM) 63.8% 43.0% 50.8%

DISCRETIZED_peakSphere1mL:discretized
volume sought 19.4% 30.1% 21.4%

DISCRETIZED_peakSphere1mL (value only for PET
or NM) 46.6% 36.4% 43.2%

DISCRETIZED_TLG (mL) [onlyForPETorNM] 67.0% 60.8% 46.2%
DISCRETIZED_HISTO_Entropy_log10 64.0% 50.4% 40.4%
DISCRETIZED_HISTO_Entropy_log2 39.1% 40.3% 46.6%

DISCRETIZED_HISTO_Energy [=Uniformity] 41.6% 51.9% 32.9%
GLCM_Homogeneity [=InverseDifference] 46.6% 26.4% 26.4%
GLCM_Energy [=AngularSecondMoment] 30.7% 18.9% 18.9%

GLCM_Contrast [=Variance] 53.6% 39.9% 39.9%
GLCM_Correlation 39.5% 49.1% 49.1%

GLCM_Entropy_log10 39.0% 34.4% 34.4%
GLCM_Entropy_log2 [=JointEntropy] 38.2% 38.7% 38.7%

GLCM_Dissimilarity 47.5% 71.0% 71.0%
GLRLM_SRE 32.7% 48.4% 48.4%
GLRLM_LRE 44.8% 40.3% 40.3%

GLRLM_LGRE 27.9% 36.1% 36.1%
GLRLM_HGRE 34.4% 29.9% 29.9%
GLRLM_SRLGE 27.8% 33.6% 33.6%
GLRLM_SRHGE 44.2% 55.5% 55.5%
GLRLM_LRLGE 67.9% 33.2% 33.2%
GLRLM_LRHGE 33.7% 33.6% 33.6%
GLRLM_GLNU 47.4% 36.5% 36.5%
GLRLM_RLNU 50.3% 41.8% 41.8%

GLRLM_RP 42.8% 34.1% 34.1%
NGLDM_Coarseness 61.0% 45.8% 45.8%

NGLDM_Contrast 63.6% 40.4% 40.4%
NGLDM_Busyness 100.0% 32.9% 32.9%

GLZLM_SZE 30.9% 50.5% 50.5%
GLZLM_LZE 36.8% 51.8% 51.8%

GLZLM_LGZE 17.3% 45.5% 45.5%
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Table 5. Cont.

Feature T1 T2 T2FS Shape %
GLZLM_HGZE 37.3% 50.9% 50.9%
GLZLM_SZLGE 27.6% 35.6% 35.6%
GLZLM_SZHGE 48.9% 32.3% 32.3%
GLZLM_LZLGE 27.4% 28.8% 28.8%
GLZLM_LZHGE 20.3% 59.1% 59.1%
GLZLM_GLNU 36.3% 31.8% 31.8%
GLZLM_ZLNU 47.6% 54.1% 54.1%

GLZLM_ZP 54.9% 39.5% 39.5%

4. Discussion

Osteoporosis is a common skeletal disorder that is associated with increased morbidity
and mortality worldwide. It is characterized by reduced bone density and increased risk of
fracture, and its diagnosis and management require accurate assessment of bone mineral
density (BMD). Dual-energy X-ray absorptiometry (DXA) is currently the gold standard for
BMD assessment and osteoporosis diagnosis. DXA is a non-invasive imaging technique
that uses low-dose X-rays to measure BMD at specific sites, particularly the distal forearm,
the hip, and the lumbar spine for the diagnosis of osteoporosis [7].

Spinal disorders have a significant impact on radiology work and, as a result, on
the entire healthcare system. MRI of the lumbar spine is currently ranked second (USD
686 million per year), after mammography (USD 718 million per year), in terms of total
charges for imaging examinations in the United States [8]. Due to this, the application of a
textural analyses for BMD assessment in lumbosacral MRI would have a huge impact on
clinical practice, possibly avoiding further unnecessary examinations.

Texture analysis (TA) is a computerized method for quantifying the spatial distribution
and heterogeneity of image intensities in MRI images. In the context of bone mineral density
(BMD) assessment, TA can be used to analyze the texture of the trabecular bone and bone
marrow in MRI images of the lumbar spine.

One of the main challenges in using MRI for TA is the presence of noise in the images.
MRI is inherently noisy due to several factors, including the low signal-to-noise ratio (SNR)
of the images and the presence of artifacts such as motion and susceptibility artifacts. This
noise can affect the accuracy of TA parameters, particularly those that rely on the spatial
distribution of image intensities. In contrast, CT images typically have higher SNR and less
noise, which can make TA analysis more robust and accurate [9].

Another challenge in using MRI for TA is the complex nature of the MRI signal. Unlike
CT, which provides a direct measure of X-ray attenuation, MRI measures the relaxation
times of protons in tissue. This signal can be influenced by numerous factors, including
the tissue composition, magnetic field inhomogeneities, and imaging parameters. These
factors can affect the accuracy and reproducibility of TA parameters derived from MRI [10].

Furthermore, the acquisition and processing of MRI images can be more time-consuming
and technically challenging compared to CT. MRI typically requires longer acquisition
times, and the images must be processed to correct for motion artifacts and other sources
of image distortion. This processing can introduce additional variability and noise into the
images, which can affect the accuracy of TA parameters [10].

To increase the reliability of texture analysis (TA) features derived from magnetic
resonance imaging (MRI) for bone mineral density (BMD) assessment, several approaches
can be employed. The following include some of these:

1. Image quality control: It is important to ensure that the MRI images used for TA
analysis are of high quality and free of artifacts such as motion or susceptibility arti-
facts. This can be achieved by implementing quality control measures such as visual
inspection, automated motion correction algorithms, and coil sensitivity correction.
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2. Reproducible image acquisition: Reproducibility of MRI acquisition is critical for reli-
able TA analysis. To achieve this, it is essential to use standardized protocols for MRI
acquisition, including imaging parameters, patient positioning, and scanner calibration.

3. Automated segmentation: Accurate segmentation of bone and bone marrow regions
in MRI images is essential for reliable TA analysis. Manual segmentation is subject to
inter- and intra-observer variability, which can affect the reproducibility of TA features.
Automated segmentation algorithms, such as thresholding or machine learning-based
methods, can improve the accuracy and reproducibility of segmentation.

4. Standardized TA parameters: There are many different TA features that can be derived
from MRI images, and the choice of features can affect the reliability and reproducibil-
ity of BMD assessment. To address this issue, it is important to use standardized TA
parameters that have been validated in previous studies.

5. Calibration phantoms: Calibration phantoms can be used to ensure that the MRI im-
ages are consistent across different scanners and imaging protocols. These phantoms
contain known concentrations of water and/or oil, and their signal intensity can be
used to calibrate the MRI images.

6. Multi-site studies: Multi-site studies involving different MRI scanners and patient
populations can help to validate the reliability and reproducibility of TA features. By
comparing the results from different scanners and patient cohorts, the robustness and
generalizability of TA features can be evaluated.

In summary, several approaches can be used to increase the reliability of TA features
derived from MRI for BMD assessment. These include image quality control, reproducible
image acquisition, automated segmentation, standardized TA parameters, calibration
phantoms, and multi-site studies [11].

Dual-energy X-ray absorptiometry (DXA) is the gold standard for BMD assessment,
and it measures the attenuation of X-rays passing through the bone. DXA provides a
two-dimensional image of the bone and reports the BMD as grams of mineral per square
centimeter (g/cm2). DXA is widely used because it is reliable, non-invasive, and has a low
radiation dose.

Several studies have investigated the correlation between TA on MRI and DXA for
BMD assessment. Overall, the results suggest that TA can provide additional information
about bone quality beyond what DXA measures. For example, TA can quantify the hetero-
geneity of the trabecular bone and bone marrow, which may be important for predicting
fracture risk.

Some studies have reported a moderate to strong correlation between TA-derived
parameters and DXA-derived BMD measurements. However, the strength of the correlation
varies depending on the TA parameters and DXA sites analyzed. For instance, a study by
Maciel et al. (2020) found a moderate correlation between TA parameters and DXA-derived
BMD measurements at the lumbar spine [12].

This study reports comparable results; however, the correlation is stronger when
analyzed with the appropriate model: machine learning can help greatly when dealing with
many variables with unknown relationships. However, the appropriate model selection
can impact the accuracy of the prediction [13].

In this study, the single-layer perceptron was used, for the relative simplicity of the
architecture and the possibility to oversee the training and test phases, monitoring the
gain/cost function, to help prevent overfitting [14].

According to Poullain et al. [4], GLNU and entropy hold significant value in predicting
BMD from an opportunistic use of a conventional MRI scan. This study confirms this result
when adopting the linear regression modelling; yet, in the multilayer perceptron approach,
the NGLDM busyness appears to be more important. However, this feature describes
a semantically similar property of the image, thus not deviating conceptually from the
previously reported results.

Moreover, the direct relationship between entropy and BMD is demonstrated by
Knoepflin et al. [3]. Even if the ultra-high field MRI employed in their study cannot pave
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the way for an opportunistic use in clinical practice, the reported result helps to establish
entropy as a core feature related to BMD. Lumbar MRI is a routine exam performed in
patients with low back pain, and is widely available, representing no extra cost for the
retrospective analysis (apart from the human processing time).

In all the procedures applied, it was evident that T2-weighted sequences yield more
information than the others. The authors suggest basing upon these sequences further
studies on the topic. The superiority of T2-w sequences on other topics has already been
established by Crombé et al. [15].

Specific MRI sequences, such as T2* Mapping, could help better study the bone
structure; however, they would require additional time to study. When evaluating the
images retrospectively, T2-w sequences are widely available. Nonetheless, T2* Mapping
could be considered when encountering a newly onset insufficiency fracture during the
execution of the exam.

This study presents some limitations. Texture analysis can be heavily influenced
by other conditions not strictly related to BMD: the presence of spinal hemangiomas or
lymphoma could alter the derived features. Moreover, an heterogeneous population of
males and female is needed to achieve more solid results. Finally, this study is retrospective,
and a prospective follow-up of the presented cohort is necessary to test the potential of
texture analysis to represent a risk factor for possible fractures.

In summary, while there is evidence of a correlation between TA on MRI and DXA for
BMD assessment, the strength of the correlation may vary depending on the specific TA
parameters and DXA sites analyzed. Nonetheless, TA may provide valuable information
beyond what DXA measures and could be a useful adjunct for BMD assessment in certain
patient populations.
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