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Abstract

In this study we investigate a novel approach to stochastically perturb the
disease transmission coefficient, which is a key parameter in susceptible-infected-
susceptible (SIS) models. Motivated by the papers [5] and [2], we perturb the
disease transmission coefficient with a Gaussian white noise, formally modelled as
the time derivative of a mean reverting Ornstein-Uhlenbeck process. We remark
that, thanks to a suitable representation of the solution to the deterministic SIS
model, this perturbation is rigorous and supported by a Wong-Zakai approxima-
tion argument that consists in smoothing the singular Gaussian white noise and
then taking limit of the solution from the approximated model. We prove that
the stochastic version of the classic SIS model obtained this way preserves a cru-
cial feature of the deterministic equation: the reproduction number dictating the
two possible asymptotic regimes for the infection, i.e. extinction and persistence,
remains unchanged. We then identify the class of perturbing noises for which this
property holds and propose simple sufficient conditions for that. All the theoret-
ical discoveries are illustrated and discussed with the help of several numerical
simulations.
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1 Introduction

There are key biological parameters to analyse in epidemiology. The pathogen’s type,
infection target, pathogen’s vulnerability to immune system, contagiousness and its life
time outside of the host are certainly some of these key parameters. However, they are
not enough to fully describe how an epidemic evolves. A key element, which makes
epidemiology a very complex area, is the interaction inside the population and its un-
predictability.

To address this feature several mathematical models have been proposed and analysed
in the literature: see e.g. [6, 5, 15, 7] and the references quoted there. In the classic
susceptible-infected-susceptible (SIS) model there is no long term immunity for the in-
fection. One example of such case is Gonorrhea, as described in [6], where individuals
who are recovered from the infection become infected again and again. This means that
long term immunity is not effective in prevention from re-infection.

From a mathematical point of view, the SIS model (see e.g. [3]) is a very handy tool
that describes the average evolution of an infection with no immunity. It consists of the
system of ordinary differential equations{

dS(t)
dt

= µN − βS(t)I(t) + γI(t)− µS(t), S(0) = s0 ∈]0, N [;
dI(t)
dt

= βS(t)I(t)− (µ+ γ)I(t), I(0) = i0 ∈]0, N [,
(1.1)

where S(t) and I(t) denote the number of susceptibles and infecteds at time t, respec-
tively. Here, N := s0 + i0 is the initial size of the population amongst whom the disease
is spreading, µ denotes the per capita death rate, γ is the rate at which infected indi-
viduals become cured and β stands for the disease transmission coefficient. If we sum
the equations in (1.1), we get that

d

dt
(S(t) + I(t)) = µ(N − (S(t) + I(t))), S(0) + I(0) = N,

which yields

S(t) + I(t) = S(0) + I(0) = N, for all t ≥ 0.

Therefore, system (1.1) can be reduced to the differential equation

dI(t)

dt
= βI(t)(N − I(t))− (µ+ γ)I(t), I(0) = i0 ∈]0, N [, (1.2)

with S(t) := N − I(t). Furthermore, equation (1.2) can be solved explicitly as

I(t) =
i0e

[βN−(µ+γ)]t

1 + β
∫ t

0
i0e[βN−(µ+γ)]sds

, t ≥ 0. (1.3)
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This explicit representation easily identifies two different asymptotic regimes for the
solution I(t), namely

lim
t→+∞

I(t) =

{
0, if RD

0 ≤ 1;

N
(
1− 1

RD
0

)
, if RD

0 > 1,
(1.4)

where

RD
0 :=

βN

µ+ γ
.

This ratio is known as basic reproduction number of the infection and determines whether
the disease will become extinct, i.e. I(t) will tend to zero as t goes to infinity, or will be
persistent, i.e. I(t) will tend to a positive limit as t increases.

As seen from (1.3) and identity S(t) = N − I(t), the infected and susceptible popu-
lations will have smooth flows to each other with rates specified by the model. This
description is very good at yielding overall results for a population but it fails to capture
its heterogeneity, hence realism. In reality, individuals have different recovering rates or
get infected at different rates, thus creating a distortion in the smooth flow between the
two populations. To describe this randomness, several approaches have been proposed
in the literature.
One example is the approach of Allen [1]: here one starts with a discrete Markov chain
whose transition probabilities reflect the dynamical behaviour of the deterministic model;
then, via a suitable scaling on the one-step transition probability, one obtains a forward
Fokker-Planck equation which is canonically associated with a stochastic differential
equation.
Another common method for introducing stochasticity is the so-called parameter pertur-
bation approach [5, 14, 4]: it amounts at perturbing one of the parameters of the model
equation with a suitable source of randomness, usually a Gaussian white noise. One of
the most representative papers in this direction is [5]: here the authors formally perturb
equation (1.2), rewritten in the form

dI(t) = βI(t)(N − I(t))dt− (µ+ γ)I(t)dt, I(0) = i0 ∈]0, N [,

through the replacement

βdt 7→ βdt+ σdBt (1.5)

with {Bt}t≥0 being a standard one dimensional Brownian motion and σ an additional
parameter of the model. Since β is a parameter for disease transmission rate, the term
βdt can be interpreted as number of transmissions in time interval [t, t + dt], as stated
in [5]. This way, the authors propose the model

dI(t) = [βI(t)(N − I(t))− (µ+ γ)I(t)]dt+ σI(t)(N − I(t))dB(t), (1.6)
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interpreted as an Itô-type stochastic differential equation, which will encapsulate the
randomness in the disease transmission; moreover, they identify a stochastic reproduction
number

RS
0 := RD

0 − σ2N2

2(µ+ γ)
,

which, in contrast to (1.4), characterizes the following asymptotic behaviours:

� if RS
0 < 1 and σ2 < β

N
or if σ2 > max{ β

N
, β2

2(µ+γ)
}, then the disease will become

extinct, i.e.

lim
t→+∞

I(t) = 0;

� if RS
0 > 1, then the disease will be persistent, i.e.

lim inf
t→+∞

I(t) ≤ ξ ≤ lim sup
t→+∞

I(t),

where ξ := 1
σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
.

(see also [14]). It is worth mentioning that going from (1.2) to (1.6), as described in
[5], one has to accept some reasonable but heuristic manipulations of the infinitesimal
quantities dt and dBt.

The aim of this paper is to propose a different method for perturbing the disease trans-
mission rate in the SIS model (1.2). Our idea stems from the following simple observa-
tion: if we let β in (1.2) to be a function of time, then the solution formula (1.3) takes
the form

I(t) =
i0e

N
∫ t
0 β(s)ds−(µ+γ)t

1 + i0
∫ t

0
β(s)eN

∫ s
0 β(r)dr−(µ+γ)sds

=
i0e

N
∫ t
0 β(s)ds−(µ+γ)t

1 + i0
N

(
eN

∫ t
0 β(r)dr−(µ+γ)t − 1 +

∫ t

0
e
N

s∫
0

β(r)dr−(γ+µ)s
(γ + µ)ds

) , (1.7)

where in the second equality we performed an integration by parts in the denominator.
Equation (1.7) now depends on the function β(t) only through its integral

∫ t

0
β(s)ds. In

[2] the authors utilized this approach to mimic the perturbation proposed in [5]; in this
case, the singular perturbation

β(t) 7→ β(t) + σ
dBt

dt
,

formally employed on the differential equation (1.2) by the authors in [5], becomes the
well defined transformation ∫ t

0

β(s)ds 7→
∫ t

0

β(s)ds+ σBt,

4



if directly applied on the explicit solution (1.7). As shown in [2], this different procedure
of parameter perturbation results in an alternative stochastic SIS model which surpris-
ingly exhibits the same asymptotic regimes of its deterministic counterpart (1.2). It
is important to remark that this new parameter perturbation approach, which directly
acts on the explicit solution (1.7), is also justified via Wong-Zakai theorem at the level
of differential equations, thus ruling out the necessity of having a closed form expression
for the solution.
In the current paper we employ the just mentioned approach to the case where the
perturbation is modelled as a mean reverting Ornstein -Uhlenbeck process. This choice
is suggested, but not investigated, both in [1] and [5]. From a modelling point of view
it is motivated by the fact that the variance of a mean reverting Ornstein -Uhlenbeck
process is bounded in time, while the one of a Brownian motion, utilized in [5], is not.
This feature seems to be more realistic and hence desirable (we illustrate in Section 3.4
below the effect of such boundedness of the variance on the trajectories describing the
evolution of the desease). However, from a mathematical point of view, the perturbation
with a mean reverting Ornstein -Uhlenbeck process makes the analysis of the model more
demanding since in this case equation (1.6) becomes a stochastic differential equation
with random coefficients.
This problem is discussed in [4] with an approach that follows [5]. Here, we introduce
the model working directly on the explicit representation (1.7) and cross-validate the
proposal from a differential equations’ perspective passing through the Wong-Zakai the-
orem. We prove that our model fulfils some basic biological constraints, i.e. the solution
is global and lives in the interval ]0, N [ with probability one. Then, we analyse the
asymptotic behaviour and discover that the threshold for the different regimes coincides
with the one for the deterministic SIS model; in other words, the parameters describing
the mean reverting Ornstein -Uhlenbeck process do not play any role in the limiting be-
haviour of the solution. We also identify a class of perturbations for which this invariance
is preserved thus offering a complete analysis of our approach.

The paper is organized as follows: in Section 2 we introduce the model and its cross-
validation via the Wong-Zakai theorem; Section 3 is devoted to the analysis of our
model: support of the solution, extinction, persistence and discussion of several nu-
merical simulations. Lastly, in Section 4 we address the problem of finding a general
class of perturbations for which the results from Section 3 remain the same; numerical
simulations are also presented for this enlarged framework.

2 Stochastic parameter perturbation with a mean reverting
Ornstein-Uhlenbeck process

Let {Yt}t≥0 be a mean reverting Ornstein-Uhlenbeck process driven by a standard one
dimensional Brownian motion {Bt}t≥0; this means that {Yt}t≥0 is the unique strong
solution of the stochastic differential equation

dYt = −αYtdt+ σdBt, Y0 = 0 (2.1)
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where the parameters α and σ are positive real number. the process {Yt}t≥0 can be
explicitly represented as

Yt = σ

t∫
0

e−α(t−s)dBs, t ≥ 0, (2.2)

entailing that Yt is a Gaussian random variable with mean zero and variance 1−e−2αt

2α
σ2.

We also recall the ergodic property of {Yt}t≥0:

lim
t→+∞

1

t

∫ t

0

Ysds = 0 almost surely. (2.3)

We now perturb (1.7) via the substitution

β(t) 7→ β +
dYt

dt
(2.4)

or more rigorously ∫ t

0

β(s)ds 7→
∫ t

0

(
β +

dYs

ds

)
ds = βt+ Yt. (2.5)

This gives

It :=
i0e

νt+NYt

1 + i0
N

(
eνt+NYt − 1 +

∫ t

0
eνs+NYs(γ + µ)ds

) , t ≥ 0, (2.6)

where to ease the notation we set ν := Nβ − (γ + µ) and It instead of I(t, Yt); note
that RD

0 ≤ 1 is equivalent to ν ≤ 0. The stochastic process (2.6) is the object of our
investigation. Observe that an application of the Itô formula gives

dIt =

[
It(N − It)

(
ν

N
− αYt +

N − 2It
2

σ2

)
− γ + µ

N
I2t

]
dt+ σIt(N − It)dBt. (2.7)

This equation can be considered either as a one dimensional stochastic differential equa-
tion with random coefficients (for the presence of {Yt}t≥0) or, if coupled with (2.1), as
a two dimensional system of stochastic differential equations. The local Lipschitz conti-
nuity of the coefficients of such system entails path-wise uniqueness and hence that the
couple {(It, Yt)}t≥0, with It defined in (2.6) and Yt defined in (2.2), is its unique solution
(see e.g. Theorem 2.5, Chapter 5 in [8]).

2.1 Cross-validation of the model via Wong-Zakai theorem

We obtained the stochastic process (2.6) perturbing the explicit solution (1.7) with the
transformation (2.5). One can however derive the stochastic differential equation (2.7),
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which is uniquely solved by (2.6), through a parameter perturbation procedure acting
on the deterministic equation (1.2), which resembles the approach employed in [5].
Let {Bπ

t }t∈[0,T ] be the polygonal approximation of the Brownian motion {Bt}t∈[0,T ], rel-
ative to the partition π. This means that {Bπ

t }t∈[0,T ] is a continuous piecewise linear
random function converging to {Bt}t∈[0,T ] almost surely and uniformly on [0, T ], as the
mesh of the partition tends to zero. Now, replace (2.1) with

dY π
t

dt
= −αY π

t + σ
dBπ

t

dt
, Y π

0 = 0, (2.8)

which gives a smooth approximation of {Yt}t≥0. Using {Y π
t }t≥0 instead of {Yt}t≥0 allows

for a rigorous implementation of the transformation (2.4) in (1.2), that means

dIπt
dt

=βIπt (N − Iπt )− (µ+ γ)Iπt + Iπt (N − Iπt )
dY π

t

dt
=βIπt (N − Iπt )− (µ+ γ)Iπt − αIπt (N − Iπt )Y

π
t

+ σIπt (N − Iπt )
dBπ

t

dt
. (2.9)

According to the Wong-Zakai Theorem [13],[11] the unique solution {Iπt }t∈[0,T ] of the
random ordinary differential equation (2.9) converges, as the mesh of the partition π
tends to zero, to the solution of the Stratonovich stochastic differential equation

dIt = [βIt(N − It)− (µ+ γ)It − αIt(N − It)Yt] dt+ σIt(N − It) ◦ dBt,

which in turn is equivalent to the Itô SDE

dIt =

[
βIt(N − It)− (µ+ γ)It − αIt(N − It)Yt +

σ2

2
I(t)(N − I(t))(N − 2I(t))

]
dt

+ σIt(N − It)dBt.

The stochastic differential equation above coincides with (2.7) thus validating our pa-
rameter perturbation approach also from a model equation pont of view.

3 Analysis of the stochastically perturbed SIS Model

In this section we analyse the stochastic process (2.6) which we recall to be the unique
strong solution of the SDE (2.7). We will in particular show that such process lives in
the interval ]0, N [, for all t ≥ 0, almost surely and we will provide sufficient conditions
for extinction and persistence.

3.1 Support of the solution

We start with the following.

Proposition 3.1. For the stochastic process {It}t≥0 defined in (2.6) we have

P(It ∈]0, N [) = 1, for all t ≥ 0.
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Proof. First of all, we observe that It can be rewritten as

It =
Ni0e

νt+NYt

N − i0 + i0eνt+NYt + i0
∫ t

0
eνs+NYs(γ + µ)ds

.

Since by assumption 0 < i0 < N , we see that It is a ratio of almost sure positive
quantities; this yields It > 0 for all t ≥ 0 almost surely. On the other hand, the last
identity also gives

It <
Ni0e

νt+NYt

i0eνt+NYt + i0
∫ t

0
eνs+NYs(γ + µ)ds

=
N

1 + (γ + µ)
t∫
0

eν(s−t)+N(Ys−Yt)ds

< N.

The proof is complete.

3.2 Extinction of the infection

We now provide a sufficient condition for extinction; remarkably, the parameters de-
scribing the stochastic perturbation, i.e. α and σ, do not play role in that.

Theorem 3.2. If RD
0 = βN

γ+µ
≤ 1, or equivalently ν = βN − (γ + ν) ≤ 0, then

lim
t→∞

It = 0 almost surely.

Proof. We take G(x) := ln
(

x
N−x

)
for x ∈]0, N [ and observe that G is a strictly increasing

function that maps the interval ]0, N [ into ]−∞,+∞[. An application of the Itô formula
gives

dG(It) =

[
ν −NαYt − (γ + µ)

It

N − It

]
dt+ σNdBt,

which corresponds to the integral equation

G(It) = ln

(
i0

N − i0

)
− αN

t∫
0

Ysds+

t∫
0

f(Is)ds+ σNBt, (3.1)

where

f(x) := ν − (γ + µ)
x

N − x
, for x ∈]0, N [. (3.2)
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It is useful to note that f is monotone decreasing on the interval ]0, N [ and that f(x) < ν,
for x ∈]0, N [. Therefore, from equation (3.1) we get

lim sup
t→∞

1

t
G(It) ≤ lim sup

t→∞

1

t
ln

(
i0

N − i0

)
− lim

t→∞

αN

t

t∫
0

Ysds

+ lim sup
t→∞

1

t

t∫
0

f(Is)ds+ σN lim sup
t→∞

Bt

t
. (3.3)

By recalling (2.3), it is easy to notice that the first two terms in right hand side above
are equal to zero. Moreover, by the strong law of large numbers for martingales (see for
instance [10]) we also have

lim
t→∞

Bt

t
= 0, almost surely.

Therefore, inequality (3.3) now reads

lim sup
t→∞

1

t
G(It) ≤ lim sup

t→∞

1

t

t∫
0

f(Is)ds < ν,

that means

lim sup
t→∞

1

t
ln

(
It

N − It

)
< 0, almost surely.

Since the last statement implies our thesis, the proof is complete.

In the stochastic SIS model obtained by this parameter perturbation method from the
deterministic one, the limiting behaviour of both models are the same for RD

0 ≤ 1.

3.3 Persistence of the Infection

We now turn to the problem of finding sufficient condition for persistence of the disease.
Again, the parameters describing the stochastic perturbation, i.e. α and σ, do not
influence the threshold.

Theorem 3.3. If RD
0 > 1, or equivalently ν > 0, then we have with probability one

lim sup
t→∞

It ≥ x∗ and lim inf
t→∞

It ≤ x∗, (3.4)

where x∗ = N
(
1− 1

RD
0

)
.
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Figure 1: The plot of f(x) from (3.2) with ν = 20, γ + µ = 0.2 and N = 10

Proof. The assumption of the theorem implies that the function in (3.2) has a unique
root in ]0, N [ given by x∗ = N(1− 1/RD

0 ), as shown in figure 1.

We follow the proof of Theorem 5.1 in [5]. Assume the first inequality in (3.4) to be
false. Then, there exists ε > 0 such that

P(Ω1) > ε where Ω1 :=

{
lim sup
t→∞

It ≤ x∗ − ε

}
. (3.5)

Therefore, for all ω ∈ Ω1 there exists T (ω) ≥ 0 such that

It ≤ x∗ − ε, for all t ≥ T (ω),

and the monotonicity of f yields

f(It) ≥ f(x∗ − ε) > 0, for all t ≥ T (ω). (3.6)

Therefore, using identities (3.1), (2.3) and the strong law of large numbers for martin-
gales, we can write for all ω ∈ Ω1 that

lim inf
t→∞

1

t
G(It) ≥ lim inf

t→∞

1

t
ln

(
i0

N − i0

)
− lim

t→∞

αN

t

t∫
0

Ysds

+ lim inf
t→∞

1

t

t∫
0

f(Is)ds+Nσ lim
t→∞

Bt

t

= lim inf
t→∞

1

t

t∫
0

f(Is)ds

10



≥ lim inf
t→∞

1

t

T∫
0

f(Is)ds+ f(x∗ − ε) lim inf
t→∞

t− T

t

and hence

lim inf
t→∞

1

t
ln

(
It

N − It

)
≥ f(x∗ − ε) > 0.

This gives lim
t→∞

It = N which contradicts (3.5).

To prove the second inequality in (3.4) we proceed as before and assume that there exists
ε > 0 such that

P(Ω2) > ε where Ω2 =
{
lim inf
t→∞

It ≥ x∗ + ε
}
. (3.7)

Therefore, for all ω ∈ Ω2, there exists T (ω) ≥ 0 such that

It ≥ x∗ − ε, for all t ≥ T (ω).

The monotonicity of f gives

f(It) ≤ f(x∗ − ε) < 0, for all t ≥ T (ω), (3.8)

and

lim sup
t→∞

1

t
ln

(
It

N − It

)
≤ lim sup

t→∞

1

t

t∫
0

f(Is)ds ≤ f(x∗ + ε) < 0.

This implies lim
t→∞

It = 0, contradicting (3.7).

3.4 Trajectory simulations

In this section we present various simulations; we consider two different values of σ to
emphasize that, according to our theoretical results, the limiting behaviour of the so-
lution doesn’t depend on them. We also illustrate that the perturbation of β proposed
here, i.e. via a mean-reverting Ornstein-Uhlenbeck process (whose variance is bounded),
differs significantly at level of trajectories of It from the case with Brownian perturba-
tion investigated in [2].

For the first example, we set N = 200, i0 = 100, β = 0.06, γ + µ = 14, α = 0.4, so that
RD

0 = 0.8 and ν = −2. According to Theorem 3.2 the infection should extinct almost
surely. See Figure 2.

Next, the same simulation is performed with a different set of parameters. We take
N = 200, i0 = 100, β = 0.06, γ + µ = 12, α = 0.4 which gives RD

0 = 1 and ν = 0.
According to Theorem 3.2 the infection should extinct almost surely. See Figure 3.
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(a) σ = 0.005 (b) σ = 0.05

Figure 2: The plot with parameters N = 200, i0 = 100, α = 0.4, RD
0 = 0.857 and hence

ν = −2. The label for y-axis I(t, Yt) stands for It.

(a) σ = 0.005 (b) σ = 0.05

Figure 3: The plot with parameters N = 200, i0 = 100, α = 0.4, RD
0 = 1 and hence

ν = 0. The label for y-axis I(t, Yt) stands for It.

(a) σ = 0.005 (b) σ = 0.05

Figure 4: The plot with parameters N = 200, i0 = 100, α = 0.4 and RD
0 = 1.2 so ν = 2.

The deterministic limit is 33. The label for y-axis I(t, Yt) stands for It.
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(a) Bt Perturbation, R
D
0 = 1.000 (b) O-U Perturbation, RD

0 = 1.000

(c) Bt Perturbation, R
D
0 = 1.091 (d) O-U Perturbation, RD

0 = 1.091

Figure 5: The plot with parameters N = 200, i0 = 100, α = 10 and σ = 0.005. The
labels for y-axis are I(t, Bt), standing for β parameter perturbed with Bt, and I(t, Yt),
standing for It.

Then, we consider N = 200, i0 = 100, β = 0.06, γ + µ = 10, α = 0.4 so RD
0 = 1.2 and

ν = 2. According to Theorem 3.2 the infection should persist a.s., or more precisely it
should oscillate above and below the deterministic limit. See Figure 4 where fluctuations
above and below the deterministic limit x∗ is visible as well.

Lastly, Figure 5 shows a comparison between the trajectories of It in the presence of
Brownian and mean reverting Orstein-Uhlenbeck perturbations of β: the boundedness
in time of the variance of Yt is clearly observed in the size of the fluctuations of It.

4 Stochastic parameter perturbation with a general process

In this section we try to understand to which extent the results of the previous sections
are determined by the choice of the particular perturbation {Yt}t≥0 in (2.1). To this aim

13



we consider {Zt}t≥0, solution of the stochastic differential equation

dZt = b(t, Zt)dt+ σdBt, Z0 = 0, (4.1)

where σ is positive real number and the function b : [0, T ]×R is assumed to be globally
Lipschitz continuous in z, uniformly in t; we also introduce the corresponding perturba-
tion of the parameter β, namely∫ t

0

β(s)ds 7→
∫ t

0

(
β +

dZs

ds

)
ds = βt+ Zt. (4.2)

If we employ such transformation in (1.7), which is the solution of the deterministic SIS
model with a time dependent transmission coefficient β, we get the stochastic process

It :=
i0e

νt+NZt

1 + i0
N

(
eνt+NZt − 1 +

∫ t

0
eνs+NZs(γ + µ)ds

) , t ≥ 0. (4.3)

where to ease the notation we set It instead of I(t, Zt). Moreover, an application of the
Itô formula yields

dIt =

[
It(N − It)

(
ν

N
+ b(t, Zt) +

σ2N

2
− σ2It

)
− γ + µ

N
I2
t

]
dt

+ σIt(N − It)dBt (4.4)

Remark 4.1. The restriction to constant diffusion coefficients imposed in (4.1) is due
the necessity of cross validating the model (4.3) also from a differential equations’ point
of view. In fact, if we smooth the process {Zt}t≥0 as

dZπ
t

dt
= b(t, Zπ

t ) + σ
dBπ

t

dt
, Zπ

0 = 0,

and perturb correspondingly the parameter β in equation (1.2), we obtain

dIπ
t

dt
=βIπ

t (N − Iπ
t )− (µ+ γ)Iπ

t + b(t, Zπ
t )Iπ

t (N − Iπ
t )

+ σIπ
t (N − Iπ

t )
dBπ

t

dt
.

According to the Wong-Zakai Theorem the unique solution {Iπ
t }t∈[0,T ] of the random

ordinary differential equation above converges, as the mesh of the partition π tends to
zero, to the solution of the Stratonovich stochastic differential equation

dIt = [βIt(N − It)− (µ+ γ)It + b(t, Zt)It(N − It)] dt+ σIt(N − It) ◦ dBt,

which in turn is equivalent to the Itô SDE

dIt =

[
βIt(N − It)− (µ+ γ)It + b(t, Zt)It(N − It) +

σ2

2
I(t)(N − I(t))(N − 2I(t))

]
dt
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+ σIt(N − It)dBt.

This SDE coincides with (4.4) thus validating that model. If we allow σ in (4.1) to
depend also on Z, then this match wouldn’t take place for the presence of an additional
drift term in the equation for {Zt}t≥0.

We now start to analyse the properties of {It}t≥0 by stating the analogue of Proposition
3.1.

Proposition 4.2. For the stochastic process {It}t≥0 defined in (4.3) we have

P(It ∈]0, N [) = 1, for all t ≥ 0.

Proof. Looking through the proof of Proposition 3.1 one easily see that the same con-
clusion holds for {It}t≥0.

The next theorem provides a sufficient condition on the stochastic process {Zt}t≥0 which
guarantees extinction for {It}t≥0.

Theorem 4.3. Assume that RD
0 = βN

γ+µ
≤ 1, or equivalently ν = βN − (γ + ν) ≤ 0. If

lim sup
t→∞

Zt

t
≤ 0, almost surely, (4.5)

then

lim
t→∞

It = 0 almost surely.

Proof. We take G(y) := ln
(

y
N−y

)
, for y ∈]0, N [; an application of the Itô formula gives

dG(It) =

[
ν − (γ + µ)

It

N − It

]
dt+NdZt.

this yields

G(It) = ln

(
i0

N − i0

)
+

t∫
0

f(Is)ds+NZt,

where f is defined as (3.2) again. By utilizing the monotonicity of f , we get

lim sup
t→∞

1

t
G(It) < ν +N lim sup

t→∞

Zt

t
.

Now, if

lim sup
t→∞

Zt

t
≤ 0, almost surely,
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then ν ≤ 0 implies immediately that

lim sup
t→∞

1

t
ln

(
It

N − It

)
< 0.

The last inequality entails the statement of our theorem and competes the proof.

We now state the analogue of Theorem 3.3.

Theorem 4.4. Assume that RD
0 > 1, or equivalently ν > 0. If

0 ≤ lim inf
t→∞

Zt

t
≤ lim sup

t→∞

Zt

t
< +∞, (4.6)

then the infection is persistent. More precisely, for all x ∈]0, N [ we have

lim inf
t→∞

It ≤ x ≤ lim sup
t→∞

It, almost surely. (4.7)

Proof. We now proceed by contradiction as in the proof of Theorem 3.3. Similarly, we

take G(y) := ln
(

y
N−y

)
, for y ∈]0, N [; an application of the Itô formula gives

dG(It) =

[
ν − (γ + µ)

It

N − It

]
dt+NdZt.

We now fix 0 < x < N and first prove that

lim sup
t→∞

It ≥ x, almost surely.

Assume to the contrary that the event {lim supt→∞ It < x} has positive probability.
This means that there exists T (ω) ≥ 0 such that It < x, for all t ≥ T (ω); this, together
with the monotonicity of (3.2), gives

lim inf
t→∞

1

t
ln

(
It

N − It

)
≥ lim inf

t→∞

1

t

∫ t

0

f(Is)ds+N lim inf
t→∞

Zt

t

>f(x) +N lim inf
t→∞

Zt

t
.

Now, the core of Theorem 3.3 is the left hand side above being positive and this is
guaranteed if

N lim inf
t→∞

Zt

t
≥ −f(x). (4.8)

In this case lim inft→∞
1
t
ln
(

It
N−It

)
> 0 and hence limt→∞ It = N , contradicting our

initial assumption. Since the range of f is ] − ∞, ν], condition (4.8) is implied by the
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first inequality in (4.6) and positivity of ν.
We now prove that

lim inf
t→∞

It ≤ x, almost surely.

Assume to the contrary that the event {lim inft→∞ It > x} has positive probability; this
implies the existence of T (ω) > 0 such that It > x, for all t ≥ T (ω). Then,

lim sup
t→∞

1

t
ln

(
It

N − It

)
≤ lim sup

t→∞

∫ t

0

f(Is)ds+N lim sup
t→∞

Zt

t

< f(x) +N lim sup
t→∞

Zt

t
.

Now, the core of Theorem 3.3 is the left hand side above being negative and this is
guaranteed if

N lim sup
t→∞

Zt

t
≤ −f(x) (4.9)

In this case lim supt→∞
1
t
ln
(

It
N−It

)
< 0 and hence limt→∞ It = 0 which contradicts our

initial assumption. Since the range of f is ] − ∞, ν], condition (4.9) is implied by the
last inequality in (4.6).

Remark 4.5. If the process {Zt}t≥0 satisfies both (4.5) and (4.6), then for ν ≤ 0 one
has extinction and for ν > 0 one has persistence for the associated model. It is useful to
note this is the case only when

lim
t→∞

Zt

t
= 0. (4.10)

4.1 Trajectory simulations

In this section a simple example will be given to support the theoretical results of
Theorems 4.3 and 4.4. We choose

Zt := αt+ σBt (4.11)

and note that

lim sup
t→∞

Zt

t
= lim inf

t→∞

Zt

t
= α, almost surely.

If α < 0, then the assumption of Theorem 4.3 is fulfilled while those of Theorem 4.4 are
not. This means that for RD

0 ≤ 1, or equivalently ν ≤ 0, the extinction is guaranteed;
however, for RD

0 > 1, or equivalently ν > 0, the persistence of infection is not guaranteed.
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Figure 6 supports this claim. As one can see the panels 6a and 6b shows the extinction
of the infection since Theorem 4.3 is satisfied. However, panels 6c and 6d shows both
the examples of extinction and persistence even though the ν > 0 (RD

0 > 1). Thus one
looses the properties of the deterministic model.

A complementary analysis can be made for α > 0. In this case the assumption of
Theorem 4.4 will be satisfied while those of Theorem 4.3 are not. This indicates that
the infection will be persistent as long as RD

0 > 1; however, the extinction of infection
is not guaranteed for RD

0 ≤ 1. The results of Figure 7 support this claim.

In the panel 7d, the infection is persistent as expected. However, the extinction is not
seen in panels 7c and 7b since the sufficient condition in Theorem 4.3 is not satisfied.
Because the condition was sufficient and not necessary, although it is not satisfied, the
extinction can still happen for RD

0 ≤ 1, as shown in panel 7a.

(a) RD
0 = 0.857 (b) RD

0 = 1.000

(c) RD
0 = 1.200 (d) RD

0 = 1.333

Figure 6: The plot with parameters N = 200, i0 = 100, α = −0.011 and σ = 0.005. The
label for y-axis I(t, Zt) stands for It.
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(a) RD
0 = 0.800 (b) RD

0 = 0.857

(c) RD
0 = 1.000 (d) RD

0 = 1.200

Figure 7: The plot with parameters N = 200, i0 = 100, α = −0.011 and σ = 0.005. The
label for y-axis I(t, Zt) stands for It.

One last important comment is that, when α = 0, then one has the same kind of
perturbation of the β parameter utilized in [5], so now Zt = σBt. If the β parameter
is perturbed in the same way as this study and not in [5], since lim

t→∞
Zt/t = 0, by the

remark 4.5 it can be said that, for RD
0 ≤ 1 (ν ≤ 0) cases there will be extinction and

for cases RD
0 > 1 (ν > 0) there will be persistence of infection. We would like to stress

that conditions are not the same as published in [5] because the perturbation method is
different in this study.

5 Discussion

In this study we propose a new perturbation method for the disease transmission coef-
ficient in SIS model. Our approach consists in acting directly on the explicit solution
of the deterministic problem, thus avoiding delicate manipulations of differential quan-
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tities such as dBt. Nevertheless, our model is cross validated at the level of differential
equations once we smooth the perturbation and use the Wong-Zakai theorem. We first
use this method with a perturbation of mean reverting type and properties of the cor-
responding model are analysed. Then, generalization to different sources of randomness
are investigated.
When the deterministic SIS model 1.1 is perturbed with a mean reverting Ornstein-
Uhlenbeck process {Yt}t≥0, the solution {It}t≥0 is shown to preserve the deterministic
model’s regimes for extinction and persistence. Namely:

� if RD
0 ≤ 1, then we have extinction of infection;

� if RD
0 > 1, then we have persistence of infection.

Then, we identified some simple sufficient conditions on the class of possible pertur-
bations which entail the same key feature for the corresponding models. This study
emphasizes that the methodology of perturbation of deterministic models is crucial in
generating different stochastic versions. For further studies one can apply the same ra-
tionale to other parameters in the deterministic SIS model, i.e. γ+µ, or to other models,
such as Lotka-Volterra type of equations ([9],[12]).
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